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In§ 1 of the present work it is shown that if in a circular disk a
harmonic function u is given whose boundary values are tw ce continuously
differentiable (uECe(y) , Where 'y is the boundary of the disk), then
the same function u need not have bounded second derivatives in the
open disk nor on any fixed line. In§ 2 is investigated the error of the
ordinary finite difference nmethods of solving the Dirichlet problem for
Laplace's equation, when at the interior nodes of the net the solution is
the arithnmetic nean of the values at the four neighboring nodes, and at
the nodes near the boundary there is applied Collatzts nethod of |inear
interpolation. In the case where the solution has second derivatives in
the closed disk which satisfy a H8lder condition with exponent A >0 , it
is established in [1] under very weak conditions on the boundary of the
region that this method gives uniform convergence on the net with a speed
n® (h is the mesh constant), and that the order of convergence cannot be
i mproved by any power of h (see [2]). In the present work it is assuned
that the boundary everywhere has a tangent |ine whose angle of turning
satisfies a Lipschitz condition (7601,1) and that the boundary val ue has

a first derivative satisfying a Lipschitz condition (belongs to Cl l(7) )
2

and there is derived a uniformestimate for the error in the finite



di fference method which has the order h2 I n h'f

In§3it is proved
- that this estimte cannot be inproved under the stated conditions.
Moreover, it is established that the speed of convergence of the schene
bei ng considered can be worse than n® in aregion with an arbitrarily
snooth boundary, for exanple in a circular disk, and with nore stringent
conditions on the boundary values. Indeed, for any function g(x)
- — satisfying the properties that the ratio g(x)/1In x is positive for x =2,
is strictly nmonotonically decreasing as x increases, and takes val ues
frominfinity to zero, there exists a function harnonic in the circle
with boundary values in 02(7) , for which the difference scheme considered
above gives convergence not better than n? (h'l) . In§Lkis presented a
»— special schene for a square net which ensures uniform convergence with
speed n® ina region wth boundary 7601’1 and with boundary values in
C1,1(7) . In §5 it is proved that the given requirements on the boundary
and boundary val ues, generally speaking, cannot be weakened in terns of
the classes Ck,)\. and still obtain nethods with order of convergence 2 10t :
— considered in § 2, or order of convergence h2 , considered in § L.
The uninprovable error estimate for finite difference nethods of order
1

ne 1o n , as derived in § 2, is stronger for the class of regions wth

boundaries -in than the corresponding result in [1], since the present

C1,1
result is established under weaker conditions on the solution of the Dirichlet
— probl em for Laplace*s equation than in [I]. Mreover, these conditions are
-inposed in a natural manner only on the boundary of the region and the boundary
values, and in a definite sense cannot be weakened. In [1] the error estimte

u of order n® 1n x'l

was derived under essentially weaker conditions on the
boundary than in the present work, but under the assunption of boundedness in

i _ the region of the second derivatives of the unknown sol ution.
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§1. On the unboundedness of the second derivatives of harnonic

functions with boundary val ues in Cs

Let Q = Q {(x-l)2 + y2< 1} be a disk with boundary 7, and
| et
v(xye):—lm{zelnz}
I € c J
wher e zZ_=x+e +iy and e is a paraneter. Cbviously, for
arbitrary e > 0 the function v is twice continuously differenti-
able along the arcs of the boundary y . Indeed, as is shown by an

el ementary cal cul ation,

sup mex | v(i)\ v <w k= 0,1,2; (1.1)
o< el 7 s
v}(qer) (x,0,€) = — 2 1n (X + €) =k, X +e >0 . (1.2)

We consider the function

@

\ 2
w(x,y) = Z L v(xy,e ") (1.3)

n=1 n

In view of (1.1) the value of w is twce continuously differentiable

along Y, and also, because of Weierstrass's Theorem the function w
is continuous on § and harnmonic in Q. Define
2m
1 -n2
alx,y,m) = L vy,
n
n=1

By virtue of (1.2),
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2
2(0,0m) > am-8 - (1.4)
Let N be'an arbitrarily large but fixed natural number, N> 8. In

view of (1.4) and the continuity on @ the nixed derivative Q’(;r)(x,y,N)

at the point (xN,O) € Q, where 0 < xy < e'3/2, satisfies the relation

Q‘;(Cy(x ON >2N.

Hence, by (1.2),

2 * 2
Q07 2 ¢ ,0,m) 5 e, (1.5)
(e}
wher e N*=max N, hve + 1
AN

W have (cf. [3], § 3) :

2 0s0) = @2 00" | < Sy max fitas) - o)

7 KN Y
< 4y°
7 N
Tl
Hence it follows from (1.5) that
2
{2 0) | > .
Because N was arbitrary,
sup lw( )(x,0)] = (1.6)
O0<x< 1l
4



It will be proved in § 2 bel ow that

s (W2 (0] W& (5,00 ) <= . (1.7)
O<x<1l x Y

Hence from (1.6) it follows that

sup Bzw =, (1.8)

& |312 ,

where 9/df is the operator of differentiation along an arbitrary
fixed direction coinciding with neither the x nor y axes.

As is not difficult to show, the boundary values of the function
w are thrice continuously differentiable everywhere on vexcept
at the origin of the coordinates. Hence [4] the function w has
all its second derivatives bounded in an arbitrary subregion of the
disk Q@ whose closure does not contain (0,0). Hence from (1.8)

it follows that for the function

W (%,y) = w(x,y) + W(’H—y'l— +1, X—u> s (1.9)
/2 /2

which is harmonic in Q and has boundary values in C, (), the
second derivatives conputed in an arbitrary direction, including those

parallel to the coordinate axes, are not bounded in the open disk Q .
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$2. An upper bound for the error of the finite difference nethod

V¥ consider the Dirichlet problem

M =0 in Q, u=¢ on 7y, (2.1)

where A = az/ax2 + 82/8y2 , y is the boundary of the finite region o, and

¢ is a given function. W assunme that 7 that is, each point

Ecl,l'
of y has a tangent whose angle with the x-axis satisfies a Lipschitz
condition with respect to arc length s . Further, we assune that each
point of y is tangent to a circle-of fixed radius r_ lying entirely
inside 0. The function cpecl,l(y), that is, its first derivative

with respect to s satisfies a Lipschitz condition.

As is known ([5], p.257) a solution of (2.1) that is continuous
inQ has its first derivatives unifornly bounded in o . W investigate
the higher derivatives of the function u . W construct a circul ar
disk K of radius r  , lying in a, whose boundary is tangent to vy
at a certain fixed point M. W introduce a system of polar coordinates
ps © , With the origin at the center of the disk and the polar axis on

the line fromthe center to the point M. Let ny be the normal to 7

at the point M. Then
v=u+aMx+bMy+cM 3 (2.2)
where the constants a.M,bM,cM are so chosen that

_ (v-u)r(];>|M -0 (2.3)
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r;,.m

& represent the function v on the disk K by the Poisson

i ntegral

2 2
| L ox (08 - Dv(r) .
v(p0) 5= [ = 2 ° 50 (2.4)
- Tg - 2 p cos(w-0) + p

In view of (2.2), (2.3) and the uniform boundedness in Q of the

first derivatives of u ,
Moo cew? 0 ol <x (2-5)

where c' is a certain constant not depending on the choice of the
point Mey . By differentiating in the interior of the disk K under
the integral sign in (2.4) both with respect to ¢ and to p and
applying some elenentary transformations, we derive in view of (2.5) and

(2.2) the following inequalities:

(2) ' T (t + wz)dw *
o’z ||p=r 4, o=0 S b [ 2 S %
o o 0 ot(w)
(2.6)
1 (1)\(1) Lo dw %1 o
I(E ug ), llp=ro—t, 00 S §° oI A < cpn g+ 1),
() 1 (1)) B
wy | * 5 ) k1
P p=ro-t, 6=0 P o} p=r -t, ©=0
< e & < PR x>z (2.7)
0 o (w)
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where u is the solution of problem(2.1), 0 <'t <t and

*
cl,c
RV

M are constants independent of t and the choice of the point M.

_ -1
Al so, ct(a)) =+ tr” .

In this manner, in particular, it is established that the second
derivative of u conputed along an arbitrary normal to y , at an
arbitrary point not farther than r_ fromy , remains bounded by a

constant that does not depend on the choice of the normal. Consequently,

by virtue of Laplace's equation, on an arbitrary normal in a neighborhood

of the boundary, the second derivative conmputed in a direction perpendicul ar

to the normal is also bounded. Thus (1.7) hol ds.

Inside the region at a distance fromy exceeding L al |
derivatives of the function u with respect to the variables x and y
are bounded by constants depending on the order of the derivative;
see [3],83. Hence from (2.6), (2.7), and the fact that u is

harnonic it also follows that

max [u(ri)z_m| <_62(]1_ﬁ t] + 1) s (2.8)
Om<2 Xy

max |u(11:)]r_m| < g £ 2K s, k>2 , (2.9)
an.gi Xluy.lL_AIL Ly

where t is the distance of the current point fromy , and € are
constants not depending on t .

The estimates (2.7)-(2.9) cannot be inproved in the degree of
dependence on t, since they are achieved for the function (3.1).

Ve construct a square net by the lines x,y = 0, + hy+ 2h,... .

W\ denote by Q the set of nodes of the net lying in Q and having the



property that all interior points of the segments of net connecting them
with the four neighboring nodes lie in Q. Al other nodes that
lie in q are assigned to the set T, - Ve i ntroduce on Q the

averaging operator A
Au(x, y) = (u(x+h, y) + u(x-h,y) + u(x,y+h) + u(x,y-h))/4

At the point P of 7, We construct the interpolating operator |

Tu = cpo/(l‘*'a) + ulf)/(l‘*'f)) o,

where u, IS the value of u at a point PE€Q U 7, 5 @  is the

value of ¢ at the point P at the intersection of y with the line
passing through the point P, and the point By, ; & is the ratio
of the lengths of the segments P_P and PP, . ¥ assune that 8 > 2,
that the point P lies on the segment PP, that the length of the

segment P_P, does not exceed 3h , and, noreover, that the segment

PP forms with the tangent to y at the point P an angle |arger
than a certain fixed positive value, for exanple »/30 , and that all

the interior points {of PP ? -- GEF} belong to Q .

1
Let uw, = @ on 7. The followi ng system of difference equations

has a unique solution and approximates the problem (2.1):

w =Ay on Q , w=Iyg on 7 . (2.10)
Theorem 2. 1. |If 7601’1 andl,l(y ) , then
max Iuh-ul < ch2(|ln n| + 1) (2.11)

QU
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where u is the solution of (2.1), w is the solution of the system

(2.10), and ¢ is a constant independent of h and of the rectangul ar

coordinate system used to construct the net.

Pr oof .

Taking into account (2.8)and using the remainder termin

Taylor's formula in the integral form (cf. [6], §3) using the second

derivative, we derive the inequality*

2
|u-Tu| < c,h (J]In n| + 1) on Ty - (2.12)

Let Qﬁ be the subset of Q. consisting of the nodes whose

2

distance from y does not exceed 3h/2 , and | et Q = Qh\().i .

Anal ogous to (2.12) we can derive the inequality

1

2
|u-pu| < e, B°(|In b| + 1) on o . (2.13)

From (2.9) for k = 4 and Taylor% formula follows the inequality

[u-Au| < g n'/t®  on ar

where t is the distance of the current node of the set Q; fromy .

wher e

In view of the conparison theorem ([7], p. 594)

|lw-ul <€, om o Uy (2.15)
- -1 -2 -3

€h = +oep + €L s (2.16)
-1 -1 -1 -

e, = Ae on Q , € = Iei‘l + |u-Tu| on 7y, o (2.17)

* Here and bel ow cP (P = 1,2,...) Wl denote constants not depending

on the factor standing to their right.

10



é111 = Aéi + |u-Au| on Qi
-2 _ =2 2 -2
eh = Aeh on Qh ) eh
-3 _ ,-3 1 -3
eh - Aeh on Qh 9 €h
3 L2

€, = I on 7,

and -6\1:1 =0ony for v = 1,23,

In view of (2.12) and the estinmates

-1
max €, < cuhg(lln h| + 1)
0, U7,

By the nmethod expounded in [9],p. 1074, and in [8], using

(2.13), we easily establish the following inequality:

-2 =y
mx e < c5h (|In n| + 1)

y U7y

and, in addition, the inequality

3 -4
max < ¢ 1 €
6 MmaX <y
QU ry ﬁh
wher e
é4 = Ae, + |u-Au| n
h h on Q .

(2.18)
-2
Ieh on 7h 3
Aéfl + |u-Au| on Qfl :

(2.19)
of [8],

(2.20)

(2.21)

, (2.22)

& =0o0noy ua . (223
h h h !



On the basis of (2.14) and a lemma from[1], §1 (see also [1],
§2, 3 and [10], §2, 3) which, as is easily shown, is applicable to the

system (2.23), we derive

_4
mag & < c7h2(|ln n| + 1) ‘ (2.24)

hy

Using the fact that the constants in inequalities (2.12)-(2.14),
(2.20)-(2.22), and (2.24) may be chosen so as not to depend on the system
‘of rectangul ar coordinates in which the net is built, from (2.20)-(2.22),
(2.24),(2.16), (2.15) we are led to inequality (2.11). Theorem 2.1
has been proved.

(bservation. In the special case where the boundary y has a
curvature which everywhere satisfies a H8lder condition with a positive
exponent, for the derivation of inequality (2.24) we may exploit the

majorant
2 2
¥ =ah In (1 + (1 - WE(y) - V(1)) /a0

where u,v are the real and imaginary parts of the function which
conformal |y maps the region Q onto the unit circle, and ay and a,

are certain positive constants [11].

12
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§3. Lower bounds for the error

W prove that the estimate (2.11) is sharp with respect to h .

W consider on the disk @ = 9{(x-l)2 + y2 < 1) the harnonic function
2
u = Im {Z In Z} 3 (3'1)

where z = x+iy . The boundary values of this function satisfy the
conditions of Theorem 2.1. W construct a net by neans of two fanilies

of lines:

+ -y _
\%Y=o,+__h,+2_h,- Co %_X-o,+h, + 2h, ... .

Let 0 < h <1/50, P = P(h//2, b//2) , PO: PO(O,O) ,
P, = Pl(/’a h, /2 h) . Here Pey, . PEQ . W have at the point P

u-lu = hz(ln h - 2 1n 2h) >h2(|ln n| + 1)/2 . (3.2)
Since
1 ,
() |, = 3 (uh-u)lpl - (w-mw)|,
it follows therefore, using also‘(3.2), that for 0 < h < 1/50

o rr?; Iuh—u|~>%2— (|1n n] + 1) (3.3)
h h
and, consequently, estinmate (2.11) cannot be inproved by any order of
magni tude with respect to h .
Ve now prove that the speed of convergence of the system (2.10)
can be mrsé t han h2 , even if the boundary values have a continuous

second derivative. Indeed, for any function g(x) such that the ratio

15



g(x)/1n x is equal to unity for x = 2 and is strictly nmonotonically
decreasing for increasing x (x > 0) , going to zero at infinity,

: . o : 2 2
there exists a function u , harmonic in the disk Q{(x-1)" + y~ < 1}

with boundary values in C,(y) such that on the above-considered net

max !u.h-u| > c*hgg(h_l) , (3.4)

GUry
wher e w, is the approxi mate value of the function u , derived from
the system (2.10), 0 <h < h* , and- ¢® is a positive constant
i ndependent of h . For exanple, we may take g(x) = m% 2 m%x,
where a is a constant with 0 < a < 1.
Let f(x) be the function g(x)/In x , and let &(x) be its inverse
function (&(n(x)) = x , x >2 ). Then |et

U(X,Y) = Z }'2‘ Vn(X)Y) ’ (5-5)

n=l n

B 2
wher e Vg T Im{zn In zn} ., and

N S i(y+ 1
90 E(n™T) 90 E(n”)

Zn(x’Y) =X +

By \Wierstrass, Theoremthe function u of (35)is harnonic on the
di sk o and continuous on Q ; moreover, in view of the uniform
(with respect to n ) boundedness of the maxi mum of the moduli of the

second derivatives of the boundary values of the functions v o t he

boundary val ues of the function u are twice continuously differentiable

(uECE(y) , where Yy is the boundary of the disk Q).

14



Since for 0 < x < e'3

2, 2
d (XglnX) - 2Inx+3 < Inx,
dx

then for 0 <h < e3/3 at the point Pey,  considered in the

;*— preceding exanple
‘ e /2
T vn-Ivn>-’—°2-J_n(2h+_ —) >0 ,
90 &(n"7)
- where n = 1,2,... . |In particular, at the point P for
: m>m = It 1, we have
2 2
h h -1
Vm-IVm>-—é-ln5h>T’lnh

Therefore at the point P, for 0 <h < e'3/5, we have

2 © 2

n

_ u-lu >%In ho1 Y 13 > E——lnh'l >%1-lnh-l11(h-l)
m=mh m mh
L — 2 1
=_8.g(h ) _ (3.6)
= Since

- (w-u) |p = % (uh-u)‘Pi - (u-Tw) [

wher e w is the solution of the system (2.10) for boundary val ues

-coinciding with the boundary val ues of the function (3.5), and u is

g — the function (3.5), then in view of (3.6)
| 2
n -1
- mex |uw -u| > == g(h™")
P, Yh 12

15
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Consequently, inequality (3.4) is satisfied, where u is the function
of (3.5), and ¢* = 1/12 (n* = e'5/5) . That is, for Dirichlet's
problemon the disk @, the solution of the system (2.10) for boundary
values coinciding with those of (3.5) (uECE('y)) , converges with a
speed not better than heg(h'l) . On the other hand, in view of

Theorem 2.1 the estimate (2.11) holds.

Remark. By nmethods anal ogous to those of the exanples considered, one
can prove there exist functions harmonic in g with boundary val ues
in Cl, l(7) and 02(7) , for which for sufficiently small h are
satisfied, respectively, inequality (3.3) and (3.4) for an arbitrary

choice of coordinate systems in which the net is constructed.

16



§4. A nethod with accuracy O(hg) :

We assume that yeC .\ introduce on 7, U Ql:’Ll a special

3.1
interpolation operator |I* of the following form Through the point
Pey, U Qfl' we draw the normal to y (at the point PO) and extend

it to the point P |l ying on sone diagonal of the nearest net square
which is at a distance not less than h/2 fromy (see the figure on

the next page). In a special case one of the vertices of this square

may coincide with the point P ; then the point P, nust lie on the

' di agonal not containing P. W denote by uh//2 the distance from

P, to the center of the chosen square, and by & the ratio of the

length of the segnent PP to the length of the segment PP, . A

the point P
2 2 2
o8 (T+p) 7wy + (1) 7y, + (1-p )(u5+u5)
*u = =— + 38
1¥0 L4(1+d) ’

wher e ? is the value of u at the point P and u is the val ue
of u at the point nunbered k (see the figure). On O,hZV\B i ntroduce

the averagi ng operator A* :

A" u(x,y) = (u(xh,y) + u(x-h,y) + u(x,y+h) + u(x,y-h))/5

+ (u(x+h,y+th) + u(xth,y-h) + u(x-h,y+h) + u(x-h,u-h))/20 .
VW consider the following system of difference equations:
% * % 2 * % ¥ 1
u,thu.h on Qh s wu_h—Iu_h on)’hUQh, (4.1)

whi ch have a unique solution (cf. [7], p.594).

17
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max |u§ - u| < ch2 ) (M-E)

* . .
where u is the solution of uw otis the.l)s o | ut_i o n o f

the system (k.1), and ¢ is a constant not depending on h nor on

the choice of rectangular coordinate system for constructing the npet,

Proof. Let U3 be the maxi mum of the maxi num noduli of all

=

possible third derivatives with respect to x and y of the harnonic

function on the closed net square containing P . Then the operator
I* is the composition of an interpol ation operator at the point Py

interms of points 2,3,45(see figure) with a local error not

exceeding in modulus the quantity (:8h3U135 and the operator of
1

linear interpolation at P along the nornal between points P, and P

Hence, because of (2.6)and (2.9),

|u - I*u| < c9h2 on 7, U Q.i ’ (4.3)

where the constant °q may be chosen independently not only of h ,
but also of the position of the rectangular system of coordinates in
which the net is constructed. Mreover, by using Taylor's theorem

with a remainder term conputed with the eighth derivative and by using

29 with k = 8, it is easy to establish the inequality
|u - A%u| < clth /% on Qﬁ : (b.k)

wher e 10

rectangul ar coordinates. Furthernore, by use of (4.3)and (4.4), and

is a constant independent of h, t, or the choice of

relying on a lemma from [1], §1 and the method of [8 , We prove Theorem4.1

19
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anal ogously to the proof of Theorem 2. 1.

Observation. The estimate (4.2) cannot be inproved in its order

of magnitude with respect to h ; see the introduction to [1].

20



$5. On the necessity of the conditions on the boundary and boundary

- val ues.
W prove first that in the statenent of Theorems 2.1 and 4.1 the

conditions on the boundary in terms of the classes Ck,?\. cannot be

renmoved. W consider a special finite region Q , whose boundary

contains the piece described by the equation

= M, bl =1,
- where N is a nunber, %<x<1 .~ On the whole boundary y, except
- the point at the origin of coordinates, we assume the curvature to be
continuously differentiable. Mreover, we assume that the region Q
e lies entirely on one side of the curve x = |y|l+>“ , vyl <, for
exanple on the right-hand side. Qoviously, 7¢01,1 , but in any case
- the angle made by the tangent to 7 with the x-axis satisfies a
_ H8lder condition with exponent A ; i.e., 7601;\ , % <A<l
V% consider the function
| - u= ot cos(l + M) - p COS @ CO %H‘) ) (5.1)
- which is harmonic in @, where o =|z|, 6=argz, and z = x+iy .
| The boundary val ues of the function u are twice differentiable, and
their second derivative on 7 satisfies a H8lder condition with positive
- exponent. \¥ have
. u(h)‘ =u(t) > (l--)x.)p%'n3 . (5.2)
; x ly=0 y y=o
|
—~ Moreover, on Q

21



s

(5) (5) A=k
|uX5 | + |uy5 | < ciq P . (5.3)
Construct a net with the lines x,y =0, +1, +2, . . . . and
choose h, so that for all h (0 <h <hy), the point

P(h(2 + [ 5cll/(l->\.) ],O)GQh . By expanding the function u in the
nei ghborhood of the point P according to Taylor's formula with a
remai nder terminvolving the fifth derivative, in view of (5.2) and

(5.3), we obtain the inequality

|u-Au|‘ > c*hl-”\',» O<h§ho,
P

wher e C*:(l-)\.)(2+[5cll/(l-?\.)])%'_5/1&8 . Hence, since
u U = A uh-u)-(u-Au) on Qh , Where w is the solution of the

correspondi ng system (2.10), -

mex  |w-u| > -c2—-h , 0<hg<hg . (5.4)

Anal ogously it can be established that the use of the schene (4.1)
for the function (5.1)on the region considered above gives convergence
with a speed not better than p

The impossibility of weakening the requirenents on the boundary
values in ternms of the classes Ck,)\. in the hypotheses of Theorens 2.1
and 4.1 was already inplied in the introduction to [I]. Mreover, if in
the function (5.1) one elininates the second term which in view of the
linearity in x and y does not affect the error of the schemes (2.10)
and (4.1), and considers u on the disk q = Q{(X-l)2 - < 1} , then
the inequality (54)is still satisfied. But here uECl,)\(V) , Wwhere

y is the boundary of the disk.

22



<
E

.

§6. Qbservations

1.

Theorem 2.1 can be generalized in a natural way to nultiply

connected multidinensional regions with snooth boundaries in the

cl ass C:L

2.

,l .

In the two-dinensional case Theorem 2.1 can be generalized

to a bounded region with N (W <) corners with angles |ess

than n/2 , when the pieces 7,, J=1,..,N , conrecting adjacent vertices of the
J

corners belong to the class ¢, and when the boundary val ues
)

are continuous on the boundary and, noreover, belong to Cy 1(73') s
2

Jj =

l;e,l..,N-

3.

The method in [12] for obtaining a nunerical majorant of the

error in the formof the solution of an auxiliary system of difference

equations can be applied also to the cases considered in the present

paper .

For that it is necessary to develop in nmore detail the estimtes

of the derivatives in (2.6)-(2.9), giving the numerical values of the

exhi bited constants.

4.

There remains the open question, whether under the hypotheses

of Theorem 2.1 it woul d accel erate the convergence, if in schene (2.10)

at 7, the difference equations were not used with the operator | |,

but

instead with the five-point difference operator approximting the

Laplace operator on a non uniformnet (see [7], nunber 3, page 591). I n

this case for the exanples considered in §2 one does not succeed in

deriving an estimte from below for the maximal error that is worse than
2
) .

o(h

On the other hand, the inequality (2.11) i s satisfied.
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5. In [13] are considered regions that are rectangul ar
paral | el epi peds, and under certain conditions on the boundary val ues
on the faces of the parallelepipeds that are weaker than Lipschitz
conditions, there is derived a uniform estimte of order h2 In h'l
for the error in the nethod of finite differences for the Dirichlet

probl em for Laplace!s equation, when the net is determned by planes

parallel to the faces.

Received by the editors 27 March 1968.

Transl ated by George E. Forsythe, Cctober 2L, 1969.
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