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In 6 1 of the present work it is shown that if in a circular disk a

harmonic function u is given whose boundary values are twice continuously

I
L

differentiable (NC2(y) , where y is the boundary of the disk), then

the same function u need not have bounded second derivatives in the

I open disk nor on any fixed line. In 6 2 is investigated the error of the

L

L

ordinary finite difference methods of solving the Dirichlet problem for

Laplace's equation, when at the interior nodes of the net the solution is

. the arithmetic mean of the values at the four neighboring nodes, and at

c
the nodes near the boundary there is applied Collatz% method of linear

interpolation. In the case where the solution has second derivatives in

the closed disk which satisfy a HBlder condition with exponent h > 0 , it

is established in [l] under very weak conditions on the boundary of the

region that this method gives uniform convergence on the net with a speed

h2 (h is the mesh constant), and that the order of convergence cannot be

improved by any power of h (see [2]). In the present work it is assumed

that the boundary everywhere has a tangent line whose angle of turning

satisfies a Lipschitz condition (YEC
191

> and that the boundary value has

a first derivative satisfying a Lipschitz condition (belongs to C1 l(Y) 1,>

and there is derived a uniform estimate for the error in the finite
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difference method which has the order hC In h-l . In 0 3 it is proved

that this estimate cannot be improved under the stated conditions.

Moreover, it is established that the speed of convergence of the scheme

being considered can be worse than h2 in a region with an arbitrarily

smooth boundary, for example in a circular disk, and with more stringent

conditions on the boundary values. Indeed, for any function g(x)

satisfying the properties that the ratio g(x)/In x is positive for x = 2 ,

is strictly monotonically decreasing as x increases, and takes values

from infinity to zero, there exists a functi on harmonic in the circle

with boundary values in C2(Y) t for which the difference scheme considered

above gives convergence not better than h2g(hm1) . In 5 4 is presented a

special scheme for a square net which ensures uniform convergence with

speed h2 in a region with boundary yECl 1 and with boundary values in
9

cl,1  l
(Y)

In 6 5 it is proved that the given requirements on the boundary

and boundary values, generally speaking, cannot be weakened in terms of

the classes Ck h and still obtain methods with order of convergence h2 ln h-l ,
3

considered in 4 2, or order of convergence h , considered in $ 4.

The unimprovable error estimate for finite difference methods of order

-1
h21nh , as derived in 0 2, is stronger for the class of regions with

boundaries -in Cl 1 than the corresponding result in [l], since the present
Y

result is established under weaker conditions on the solution of the Dirichlet

problem for l&place% equation than in [l]. Moreover, these conditions are

-imposed in a natural manner only on the boundary of the region and the boundary

values, and in a definite sense cannot be weakened. In [l] the error estimate

of order h2 ln x-1 was derived under essentially weaker conditions on the

boundary than in the present work, but under the assumption of boundedness in

the region of the second derivatives of the unknown solution.
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$1. On the unboundedness of the second derivatives of harmonic

functions with boundary values in C2

Let R = R ((~-1)~ 2+ y. < l} be a disk with boundary Y , and

let

Vb,Y,E > =- I.dz~lnzEl,

where z =X+E +iy and EE is a parameter. Obviously, for

arbitrary E>O the function v is twice continuously differenti-

able along the arc s of the boundary y . Indeed, as is shown by an

elementary calculation,

sup max I 04
Vsk

I dJk<m
0<6<1y

vg) (x,O,c) = - 2 In (x + e) - 4,

We consider the function

G 1'
2

dX,Y> =
-n

-
n2

v(x,w 1

n=l

k = o,v;

x+e>O.

(1*1)

0.2)

W3)

In view of (1.1) the value of w is twice continuously differentiable

along Y , and also,

is continuous on 5

because of Weierstrass's Theorem, the function w

and harmonic in R . Define

2m

c

2

Q(x,y,d =
1 -n
2 v(⌧,y,e  > l

n=l n

;. .
1’

BY virtue of (1.2),



Q,($(O,O,m)  > 4m - 8 (1.4)

Let N be‘an arbitrarily large but fixed natural number, N> 8. In

view of (1.4) and the continuity on a the mixed derivative ~+x,y,N)

at the point (x8,0) E a, where 0 < xN < em3/2, satisfies the relation

Q$)(x~,O,N ) > 2~

Hence, by (1.2),

(2)xN’O,N*)  2 sy (xN,o,N)  > 2N,

where
N* I>+1 .

We have (cf. c31, 0 3) :

< 4v"
2;n CN.
lr

XNN

Hence it follows from (1.5) that

Iwg)(rN’o)  1 > N.

Because N was sirbitrary,

sup Iw~)(x,o)l = c0 .
O<x<l

(1.5)

(1.6)

-

L

,

L
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It will be proved in 6 2 below that

sup ‘W(I
O<x<l

1;) (⌧,0)  1 + Iw$)  (⌧,0)  I) < O3 l

Y

Hence from (1.6) it follows that
2

sup aw

I I

=a0

s2 3
3

b7)

(W

where a/a1 is the operator of differentia.tion  along an arbitrary

fixed direction coinciding with neither the x nor y axes.

As is not difficult to show, the boundary values of the function

w are thrice continuously differentiable everywhere on Y except

at the origin of the coordinates. Hence [4] the function w has

all its second derivatives bounded in an arbitrary subregion of the

disk Q whose closure does not contain (0,O). Hence from (1.8)

it follows that for the function

w*(x,Y) = w(x,y> + w x + y
c

-1+1 x - y - l
3

>
3

J2 J2
(1.9)

which is harmonic in R and has boundary values in 5 (YL -the

second derivatives computed in anarbitrary direction, including those

parallel to the coordinate axes, are not bounded in the open disk Q .
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$2. An upper bound for the error of the finite difference method

We consider the Dirichlet problem

AU =Oinn, u=cpony, (2-U

where n E a2/ax2 + a'/&' , y is the boundary of the finite region R , and

cp is a given function. We assume that yECl 1 , that is, each point
3

of y has a tangent whose angle with the x-axis satisfies a Lipschitz

condition with respect to arc length s . Further, we assume that each

point of y is tangent to a circle-of fixed radius ro lying entirely

inside R . The function EC, l(y) , that is, its first derivative
3

with respect to s satisfies a Lipschitz condition.

As is known ([51, pa 257) a solution of (2.1) that is continuous

in fi has its first derivatives uniformly bounded in 0 . We investigate

the higher derivatives of the function u . We construct a circular

disk K of radius r^ , lying in 0 , whose boundary is tangent to y
”

at a certain fixed point M . We introduce

PY Q 3 with the origin at the center of the

the line from the center to the point M .

at the point M . Then

V =u+a8 + b# + 'M 3

a system of polar coordinates

disk and the polar axis on

Let nM be the normalto y

where the constants &MJbMycM
are so chosen that

(1)
"IM = vs I, = (v-u);)lM = 0 .

(24

(2.3)
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We represent the function v on the disk K by the Poisson

f
L

i
i
L

I
i
Ii

I
t

, ’
I

I

II

L

L

i

I
I

L.

integral

V
1 TI ( r -

XPYQ) .3& J-
0=-

r2
2& l

(2.4)
-II

0 - 2ro p cos(cu-8)  + p

In view of (2.2), (2.3) and the uniform boundedness in 0 of the

first derivatives of u ,

I ( )I 2v ro,w 5 c'w 3 1 l-w <IT (2.5)

where c' is a certain constant not depending on the choice of the

point J&y . By differentiating in the interior of the disk K under

the integral sign in (2.4) both with respect to Q and to p and

applying some elementary transformations, we derive in view of (2.5) and

(2.2) the following inequalities:

p=ro-t, Q=O L '

(2.6)

< c’ Jp=ro-t, Q=O - 2 o

II + I
p=ro-t, Q=O o=ro-t, Q=O

Jl
da

ck-1
< c;t20k , k>2 ,

+ (4 -

7

(2.7)



where u is the solution of problem (2.1), 0 < t ,< r. , and

cG,cG are constants independent of t and the choice of the point M .

i
Also, a,(u) = 0 + tri' .

In this manner, in particular, it is established that the second

‘L derivative of u computed along an arbitrary normalto y , at an

L

arbitrary point not farther than r. from y , remains bounded by a

constant that does not depend on the choice of the normal. Consequently,

. by virtue of Laplace's  equation, on an arbitrary normal in a neighborhood

of the boundary, the second derivative computed in a direction perpendicular

C to the normal is also bounded. Thus (1.7) holds.

Inside the region at a distance from y exceeding r. , all

L derivatives of the function u with respect to the variables x and y

L
are bounded by constants depending on the order of the derivative;

see [3], 93. Hence from (2.6), (2.7), and the fact that u is

harmonic it also follows that

max uI (2) 1 < ~2(p -q + 1) 3
ocln<2 xmy2-m -- -

(2*8)

L

I

/ -

where t is the distance of the current point from y , and i3, are

constants not depending on t .

The estimates (2.7)-(2.9) cannot be improved in the degree of

i L

c-

k-4
-

dependence on t , since they are achieved for the function (3.1).

We construct a square net by the lines x,y = 0 , + h,+ 2h,... .

We denote by G!h the set of nodes of the net lying in Q and having the

8



property that all interior points of the segments of net connecting them

with the four neighboring nodes lie in Q . All other nodes that

lie in sb are assigned to the set yh . We introduce on Rh the

averaging operator A ,

Au(% Y) g Mx+b Y> + u(x-h,y) + u(x,y+h) + u(x,y-h))/4 l

At the point P of yh we construct the interpolating operator I ,

Iu z cp,/(1+6) + u,s/(l+S) - ,

where u1
is the value of u at a point plcs u yh iI PO is the

value of cp at the point PO at the intersection of y with the line

passing through the point Pl and the point Ky, ; 6 is the ratio

of the lengths of the segments POP and PPl . We assume that 8 > 2 ,

that the point P lies on the segment POP1 , that the length of the

segment POP1 does not exceed 3h , and, moreover, that the segment

POP1 forms with the tangent to y at the point PO an angle larger

than a certain fixed positive value, for example 1-r/30  , and that all

the interior points {of POP1 ? -- GEF] belong to s2 .

Let uh = cp on y.. The following system of difference equations

has a unique solution and approximates the problem (2.1):

uh=Auh on s , uh=Iuh on yh . (2.10)

Theorem 2.1. If yECll
3 TGlyl(~ > , thenand

max juh-uI < ch2((ln hl + 1) ,

% ' 'h

(2-m



where u is the solution of (2.1), uh is the solution of the system

(2.10), and c is a constant independent of h and of the rectangular

coordinate system used to construct the net.

Proof. Taking into account (2.8) and using the remainder term in

Taylor's formula in the,integral form (cf. [6], $3) using the second

derivative, we derive the inequality*

Iu-IuI ,< clh2(Iln hi + 1) on yh .

Let
1

et2
be the subset of

% consisting of the nodes whose

distance from y does not exceed 3h/2 , and let 4 = C$\Qi .

Analogous to (2.12) we can derive the inequality

Iu-AU! ,< c2 h2(lln hi + 1) on 4 .

From (2.9) for k = 4 and Taylor% formula follows the inequality

I u-Au < c h4/t2
- 3

on ht2h '

(2.12)

(2.13)

n
where t is the distance of the current node of the set Rh from y .

In view of the comparison theorem ([7], p. 594)

where

-1 -2E =E
h h

+E - 3
h
+E

h 3

-1
eh = AZ: on s, h2 + ju-IuI on yh ,

(2.15)

(2.16)

(2.17)

*
Here and below cp (P = 1,2,.**) will denote constants not depending

on the factor standing to their right.
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‘L

L

t

f
L

L

L-

L

L

and
- V
'h

In

= 0 on y for V = 1,2,3 .

view of (2.12) and the estimates of [8],

-1
max

'h "h

Eh 5 c4h2(lln

BY

PJ3)Y

the method expounded in [p], p. 1074, and in [8], using

we easily establish the following inequality:

n n
max

% ' 'h

:; ,< c5hc(lln hi + 1)

and, in addition, the inequality

-1
= A:; + Iu-Au[ 1

'h on Cl, ,II

-2
= AZ; 2

'h on 0h '
E2
h

=IEE on yh.,

-3 -3= Aeh 1
Eh on Rh '

-3 -3
'h = IEh on yh ,

(2.18)

-,3 -3
h

= Ach + Iu-Au1 on < ,

(2*19>

hl+l) .

-3 -4
max

'h ' 'h
\ ,< ‘6 m;$ -‘h

h

(2.20)

(2.21)

(2.22)

where

-4 -4
'h

= AEh + Iu-AuI on if , $ = 0 on yh u 0: . (2.23)



On the basis of (2.14) and a lemma from [1], $1 (see also [l],

$2, 3 and [lo], $2, 3) which, as is easily shown, is applicable to the

system (2.23), we derive

4
maX :h 5 c7h2(lln hl + 1) .

2
?h

(2.24)

Using the fact that the constants in inequalities (2.12)-(2.14),

(2.20)-(2.22), and (2.24) may be chosen so as not to depend on the system

'of rectangular coordinates in which the net is built, from (2.20)-(2.22),

(2.24), (2~6)~  ( 2 . 1 5 ) we are led to inequality (2.ll). Theorem 2.1

has been proved.

Observation. In the special case where the boundary y has a

curvature which everywhere satisfies a HBlder condition with a positive

exponent, for the derivation of inequality (2.24) we may exploit the

majorant

If= alh2 In (1 + (1 - P~(x,Y) - V2(xy~))/a2h) ,

where p,v are the real and imaginary parts of the function which

conformally maps the region D onto the unit circle, and a1 and a2

are certain positive constants [ll].

I -
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$3. Lower bounds for the error

We prove that the estimate (2.11) is sharp with respect to h .

We consider on the disk 0 = Q{(x-~)~ + y2 < 1) the harmonic function

U = Im fz2 In 2) , (3.1)

where z = x+iy . The boundary values of this function satisfy the

conditions of Theorem 2.1. We construct a net by means of two families

pf lines:

x+y = 0, + h, + 2h, . . . .
P -- = 0, + h, + 2hy .= l ' l

Let 0 < h < l/50 , P = P(h/& h/p) , P = Po(O,O) ,
0

Pl = Pl(J2 h, $2 h) . Here Eyh , Pl@Zh . We have at the point P

u-Iu =h2(lnh-21n2h)>h2(11nhl +1)/2 . (3.2)

Since

bp) I, = $ (u-pd~pl - b-Iu)lp 3

it follows therefore, using also\(3.2), that for 0 < h < l/50

max Iub-ul.>$ (p-n hl + 1) (3.3)

and, consequently, estimate (2.U) cannot be improved by any order of

I magnitude with respect to h .

We now prove that the speed of convergence of the system (2.10)
I

can be worse than h2 , even if the boundary values have a continuous

- second derivative. Indeed, for any function g(x) such that the ratio

13



g(x)/ln x is equal to unity for x = 2 and is strictly monotonically

decreasing for increasing x (x 2 0) , going to zero at infinity,

there exists a function u , harmonic in the disk fJ{(~-l)~ + y2 < l]

with boundary values in C2(y) such that on the above-considered net

max I\-ul > c*h2g(h-') ,

92"'h

(3.4)

where 3-l
is the approximate value of the function u , derived from

the system (2.10), 0 <h ,< h* , and- c* is a positive constant

independent of h . For example, we may take g(x) = lnlma 2InQ:x,

where a is a constant with 0 < cx < 1 .

Let q(x) be the function g(x)/ln x , and let E(x) be its inverse

function (E(q(x)) = x , x 2 2 ). Then let

u(X,Y)
co

= c
n=l

1
v (x,y>zn 3 (3.5)

where v = Im(zg In z,) , and
n

qx,Y) = x +
1 + i(y+ 1

PO E(n">
1

90 E(n") '

By Weierstrass , Theorem the function u of (3.5) is harmonic on the

disk 0 and continuous on fi ; moreover, in view of the uniform

(with respect to n ) boundedness of the maximum of the moduli of the

second derivatives of the boundary values of the f'unctions vn , the

boundary values of the function u are twice continuously differentiable

(uEC2(Y) 3 where y is the boundary of the disk 0 ).

14



Since for 0 < x < e -3

d2 (x2 In x)

dx2
2lnx+3

then for 0 <h < e -3/3 at the point PEyh considered in the

preceding example

h2
Vn

-lvn > -2Ln (2h+ J2 )>O
PO td>

3

where n = 1,2,... . In particular, at the point P for

m >-% = [&h-l)]+1 , we have

-Ivm > -
h2 h2

V +Ln3h >-r;-lnh
-1

.
m

Therefore at the point P , for 0 <h < e -3/3 , we have

h2
u-Iu >T In h

-1 O3 1
c

h2
2 > 4-lnh

-1 h2

nh
> -g- ln h-'q(h-')

m=m, m

h2= T g(h-l) . (3.6)

Since

(lJ-$J) I, = $ (yl-“)lp; - b-14 1, ,

where yn
is the solution of the system (2.10) for boundary values

-coinciding with the boundary values of the function (3.5), and u is

the function (3.5), then in view of (3.6)

max lu.pkI >
pup,

$ g(h-l) .

15
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L

I
i
i

I
L

Consequently, inequality (3.4) is satisfied, where u is the function

of (3.5), and c* = l/12 (h* = eS3/3) . That is, for Dirichlet's

problem on the disk s2 , the solution of the system (2.10) for boundary

values coinciding with those of (3.5) (uEC2(y)) 3 converges with a

speed not better than h2g(h-1 ) . On the other hand, in view of

Theorem 2.1the estimate (2.11) holds.

Remark. By methods analogous to those of the examples considered, one

can prove there exist functions harmonic in R with boundary values

in C
13 1 (Y) and C,(Y) 3 for which for sufficiently small h are

satisfied, respectively, inequality (3.3) and (3.4) for an arbitrary

choice of coordinate systems in which the net is constructed.

i

i

i
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54. A method with accuracy O(h2) .

We assume that yECll l We introduce on yh U L$ a special
3

interpolation operator I* of the following form. Through the point

KY, u 4 we draw the normal

it to the point Pl lying on

to y (at the point PO ) and extend

some diagonal of the nearest net square

which is at a distance not less than h/2 from y (see the figure on

the next page). In a special case one of the vertices of this square

may coincide with the point P ; then the point Pl must lie on the

'diagonal not containing P . We denote by ph/,f2 the distance from

Pl to the center of the chosen square, and by 6 the ratio of the

length of the segment POP to the length of the segment PPl . At

the point P

cp
1*u E 0 + 6

O+d2u2 + hd2u4 + (w2)b3+u5)

4(1+8) 3It-0

where cp, is the value of u

of u at the point numbered

the averaging operator A* :

at the point PO and uk is the value

2
k (see the figure). On &!h we introduce

A*u(x,y) G (u(x+h,y) + u(x-bYI + ubw+h) + u(x,Y-h))/5

+ (u(x+h,y+h) + u(x+h,y-h) + u(x-h&h) + u(x-h,u-h))/20 .

We consider the following system of difference equations:

*
uh

= A*" on R
2 * ** 1
h ' %= 9-l On yh u hzh , (4.1)

which have a unique solution (cf. 171, p. 594).



i

. h-I
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Theorem 4.1. If YCC~,~ and PQ(Y) , then

where u is the solution of problem (2.1),- - < &s-the s o l u t i o n  o f

the system (4.1), and c is z constant not depending on h nor on-m

the choice of rectangular coordinate system for constructing the net.

Proof. Let U
3

be the maximum of the maximum moduli of all

Pl
possible third derivatives with respect to x and y of the harmonic

function on the closed net square containing Pl . Then the operator

1* is the camposition  of an interpolation operator at the point Pl

in terms of points 2, 3, 4, 5 (see figure) with a local error not

exceeding in modulus the quantity
3c h U

8 <

and the operator of

linear interpolation at P along the normal between points PO and Pl

Hence, because of (2.6) and (2.9),

I u- I"uI ,< cvh2 On Yh u 4 Y (4.3)

where the constant
c9

may be chosen independently not only of h ,

but also of the position of the rectangular system of coordinates in

which the net is constructed. Moreover, by using Taylor's theorem

with a remainder term computed with the eighth derivative and by using

(2.9) with k = 8 , it is easy to establish the inequality

I 8 6
U- ALUM < clOh /t on 4 , W)

where cl0 is a constant independent of h , t , or the choice of

rectangular coordinates. Furthermore, by use of (4.3) and (4.4), and .
-

relying on a lemma fram [l], $1 and the method of [8 Y we prove Theorem 4.1



L
i

L.ic
I
L

L
i

L

f
i

L
I

i

analogously to the proof of Theorem 2.1.

Ob6eermtion. The est3nate (4.2) cannot be improved in its order

of magnitude with respect to h ; see the introduction to [l].

20



$5. On the necessity of the conditions on the boundary and boundary

values.

We prove first that in the statement of Theorems 2.1 and 4.1 the

conditions on the boundary in terms of the classes C
k,h

cannot be

removed. We consider a special finite region !J , whose boundary

contains the piece described by the equation

I I 1+hx= y Y Id II 9

where h is a number,
1
T<h<l. - On the whole boundary y , except

the point at the origin of coordinates, we assume the curvature to be

continuously differentiable. Moreover, we assume that the region 0

lies entirely on one side of the curve x = lyl
1+h

, /yI ,< 03 , for

example on the right-hand side. Obviously, y$Cl 1 , but in any case
Y

the angle made by the tangent to y with the x-axis satisfies a

H6lder condition with exponent X ; i.e., YEClh , $ < h <l .
Y

We consider the function

u=p l+lL cos(1 + A)@ ll(1+h)- p cos 8 cos 2 , (54

L”

which is harmonic in R , where F = IzI , 8 = arg z , and z = x+iy .

E The boundary values of the function u are twice differentiable, and
! -

j their second derivative on y satisfies a Htflder condition with positive

( L-I exponent. We have

I-!
U
(4)

41
=u (4)

X y=o 41
> (l-h)ph-3 .

y y=o
(54

Moreover, on 0

21



L

$)I + IJ:” < Cl1 phm4. .

i i Construct a net with the lines x,y = 0, + 1, +_ 2, . . . . and

choose hO
so that for all h (0 < h 5 ho) , the point

P(h(2 + [ 5cU/(1-h) ],O)E~ . By expanding the function u in the

neighborhood of the point P according to Taylor's formula with a

i remainder term involving the fifth derivative, in view of (5.2) and

(5.3), we obtain the inequality

I u- 4 I > c%l+h -t
P

O<h_<ho ,

i

where c* = (l-~)(2+[5cll/(l-~)])~~3/48  . Hence, since

i yu = A(uh-u)-(u-Au) on $ , where uh is the solution of the

corresponding system (2.10), -

(5*3)

(5.4)

Analogously it can be established that the use of the scheme (4.1)
L

for the f'unction  (5.1) on the region considered above gives convergence
,.

with a speed not better than
1+h

h .

The impossibi&ity  of weakening the requirements on the boundary

L values in terms of the classes Ck x in the hypotheses of Theorems 2.1
t

and 4.1was already implied in the introduction to [l]. Moreover, if in

L

the function (5 .l) one eliminates the second term, which in view of the

linearity in x and y does not affect the error of the schemes (2.10)

and (4.1), and considers u on the disk R = n{(x-l)* + y2 < 13 , then

the inequality (5.4) is still satisfied. But here WI1 &(y) , where
Y

y is the boundary of the disk.-
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$6. Observations

1. Theorem 2.1 can be generalized in a natural-y to multiply

connected multidimensional regions with smooth boundaries in the

class C
lyl l

2. In the two-dimensional case Theorem 2.1 can be generalized

to a bounded region with N (N -1 corners with angles less

than ~12 , when the pieces y; , j = 1, . . ., NY connecting  adjacent vertices of the
J

corners belong to the class cl,l'
and when the boundary values

are continuous on the boundary and, moreover, belong to C (7L1 3

j=l*, Y*'*Y N .

1 Y

3. The method in [12] for obtaining a numerical majorant  of the

error in the form of the solution of an auxiliary system of difference

equations can be applied also to the cases considered in the present

paper. For that it is necessary to develop in more detail the estimates

of the derivatives in (2.6)-(2.~)~ giving the numerical values of the

exhibited constants.

4. There remains the open question, whether under the hypotheses

of Theorem 2.13~ would accelerate the convergence, if in scheme (2.10)

at yh the difference equations were not used with the operator I ,

but instead with the five-point difference operator approximating the

Laplace operator on a non uniform net (see [7], number 3, page 591). In

this case for the examples considered in $2 one does not succeed in

deriving an estimate from below for the maximal error that is worse than

O(h*) . On the other hand, the inequality (2.l.l) is satisfied.
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5m In [13] are considered regions that are rectangular

parallelepipeds, and under certain conditions on the boundary values

on the faces of the parallelepipeds that are weaker than Lipschitz

conditions, there is derived a uniform estimate of order h* ln h
-1

for the error in the method of finite differences for the Dirichlet

problem for Laplace's equation, when the net is determined by planes

parallel to the faces.

Received by the editors 2'7 March 1968.

Translated by George E. Forsythe, October 24, 1969.
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