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G ven real nunbers 315 3y5...58 We are interested in the
n
classic problemof the error in conputing S = Zzﬁhwhen the sum
n 1
. -~ * . .
is conputed by Sy = ) a; wher e ar is the nearest integer to
1

ay. W shall first study this error as a function of a A shift,

i.e., when all nunbers a, are each shifted A and then rounded;

i

n
() S -ma =] (a - A
i=1

~ -
@ 5,- m o= ] (3-A"
i=1

VW will then et A become a random variable that can take on

uniformy any value in the interval - %_5 A<+ %f. Different
choices of A give rise to different rounding errors Sy =S and
the variance of the distribution of S, - s can be used to neasure

A
the variability of the rounding error due to the random sel ection of

the origin of the real nunbers 8, with respect to that of the

conput er.

The cumul ative error from (1) and (2) is

sy, - s = 1l -8 -( - A

i=1

Let £, be the positive fractional part of a; and | et oy be the

| argest integer not exceeding & i.e.,

(4) a'l = o, + f



th

Denoti ng by T, the error of the i term we have

1-(£.-A) if ’%iAi‘%"" £,

(5) ri =[(ai-A* - (a-H] =¢ * 2 i
-(f.-A) if ==+ f, <A<+ =

1 2 i—" - 2

To prove the above, we note that £,-8 = (ai-A) +a,. | f

1 1 N ,
-y 2f A+ t hen (a;=8) is rounded to a,, Hence a.,-A is

rounded down if - El + £, < Aot herw se rounded up.

Denoting expected value by E we have by direct evaluation

1
)
(6) E(ri) = fl r.dA =0
2
Assune fi < fJ, t hen
E(rirj) = !1 ril:jdA+ {Lf rirjdA + {l+f r.rjdA
2 271 2 73
+ L
= [ 20 - agE + £ + 8% an
-1 i i
2
"%'*fi -
+ {l [(1-£,-£,) + 2] da
2
__;+f
+ [, ] [-f, + A a
- 24,
2 71

Performng indicated integration yields:

1 2 1
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which is one-half the 2"d

order Bernoulli Polynonial in |fj—fi|. For
fjifi we also get (7). Note that the individual errors r, and rJ,

are not independent of one another.

[t now follows that

(9 E(S) = S

~ 2 n n 1 n
(10) E(S-S)" =E(] ) nr) =3

i=1-4=1 i

I e~—3

1 j=1

The usual value of variance, E(SFS)2 =n/12, will result if we further
assune fi are independently drawn from uniform distributions on

[0 < fi < 1].

Theorem |If the fractional parts of all a, are equal to each other,
then each termof (10) is maxi num for Oifiil and

n 2

n
(11)  Max E(s-s}P= + .zl '21 @ =% .
1= J-—'

From (10) we have an interesting inequality, namely for all £

This function is not convex even for n=2, since £ 2 ( —é—, 0) and
1

£@ - (22,0 yields 1% = veeh = 2

2 1
Lote-£ %15 ]+ 2]
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to establish that V(f) >0 for all 0 < f s 1. Qur devel opnent shows

w

V( There appears to be no obvious direct way

V(f) to be a variance and this,of course,constitutes an indirect proof.

We can replace (12) by a convex realization: Assume £,> £ for all

1

i, then the problemof finding Mn V(f) can be rewitten:

2
. _ 2 n
(13) Find Mn [V(f)] —i<ZjZ (-£0° + I3 - [@-Df; + @-3)f, + (@-5)f,

+. ..+ (n-2k+1) fk+. ..=(n-1) fn]

subject to
(14) £, 8, . . > f N
(15) 0<f <1

Formal 'y (13), (14), (15), is a positive definite quadratic program
Fortunately, as we shall see this can be solved by classical calculus

by ignoring inequalities (14) and (15).

Theorem Equal ly spaced £, = (n-4)/m, (i =1,...,n) yields

Mn V(f) = i ndependent of n, i.e., the variance of the sumin

1
12
this case is mnimumand is the same as the variance of the individual

terms formng the sum

Proof:  Setting partials = 0 in (13) yields:



(2(0-1) 1, - 2¢, C e - 2f = (n-1)

- 2f,  + 2(-D)f, -2 = (n-3)

o j - 2f) =26, . . 2-Df - 2f = -(n-3)
| -2 - 2f, 2(@-Df, = -(n-])

Adding shows the equations to be dependent. Hence we may drop the |ast

equation as redundant. Moreover, we can always translate the fi SO

that the smallest f namelyfn:O

i’
Re-addi ng vyields:
2f, + 2f, +...2f 1 +0 = (n-l) 'fn =o.
Adding this last equation to each of the others gives
2nfi = m-2i+1)+(@m-1) =2 - i)

(17) fi = (n - 1i)/n

Evidently the conditions 0 < £, < 1 and £, > £, are (by good | uck)

also satisfied so that (17) yields the mninum nanely

2 n

(18) Min V(f) = I{—Z - %z (n_zi+l)fi = _ﬁ '



