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Given real numbers aI, a2,...,an we are interested in the
n

classic problem of the error in computing S = 1 ai when the sum
c n

is computed by So = 1 ai.
* 1

where a
1 i

is the nearest integer to

a . l1
We shall first study this error as a function of a A shift,

i.e., when all numbers ai are each shifted A and then rounded;

n
(1) S - nA = 1 (ai - A)

i=l

n-
(2) iA- nA = 1 1 (a - A)*

i=l i

We will then let A become a random variable that can take on

uniformly any value in the interval 1 1
- 2~ A g + T . Different

Iv
choices of A give rise to different rounding errors SA - s and

#w
the variance of the distribution of SA - s can be used to measure

the variability of the rounding error due to the random selection of

the origin of the real numbers a
i with respect to that of the

computer.

The cumulative error from (1) and (2) is

L

(3) ZA - s = f [(ai - A>* - (ai - A)]
i=l

Let fi be the positive fractional part of ai and let CL~ be the

largest integer not exceeding a., i.e.,1

(4) a. =
1 cti+ fi

1

i -



Denoting by ri the error of the ith term, we have

(5) ri = [(ai-A)* - (a -A)] =
1-(fi-A) if - $2 A 2 - $+ fi

i -(fi-A) if - $ + fi < A < + $- -

To prove the above, we note that fi-A = (ai-A) + oi. If

1 1-yLfi-AL+y then (ai-A) is rounded to a,. Hence
1 ai-A is

rounded down if 1
- y + fi < A otherwise rounded up.-

Denoting expected value by E, we have by direct evaluation

Assume fi < f., then
- J

E$rJ) =

1-4-f

I
2 i

1
r r,dA +

- - iJ
2

1--l-f
I

2 j
1

- ?+fi
rirjdA +

= ,‘z ( f.f.
- - iJ

- A(fi + fj) + A2) dA

2

+

+

%
++fi

1--
2

1--+f
%

2 S
1

- $+fi

+ 2A] dA

[-f. + A) dA1

Performing indicated integration yields:

1

I
+T
1--kf
2 j

rirjdA

(7) E(rirj) = 2‘[ jfj-fi12 - Ifj-fil + ~I
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This function is not convex even for n=2, since f(l) = ( 1T, 0) and

f(2) = ( 1- 2, 0) yields 0V(f ) 1= V(f ) 1 1= 12 + 12 - & = & but

which is one-half the 2nd order Bernoulli Polynomial in Ifj-fiI. For

fj'fi we also get (7). Note that the individual errors ri and r,
J

are not independent of one another.

It now follows that

(9) E(S) = S

(10)
E(S-S)2

i=l-j=l
rirj > fi-fj12-/fi-fjI+ ~1

The usual value of variance, E(S-S) 2
= n/12, will result if we further

assume fi are independently drawn from uniform distributions on

[O < f- i 2 ‘1.

Theorem: If the fractional parts of all ai are equal to each other,

then each term of (10) is maximum for 0 < f < 1 and- i-

(11) Max E(S-S>2= $

From (10) we have an interesting inequality, namely for all fi

(12) V(f) = + : y {lfi-fj12 - (fi-fj(+$ 20
i=l j=l
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There appears to be no obvious direct way

to establish that V(f) 10 for all 0 2 fi 2 1. Our development shows

V(f) to be a variance and this,of course,constitutes an indirect proof.

We can replace (12) by a convex realization: Assume fi) fi+l for all

L then the problem of finding Min V(f) can be rewritten:

2
(13) Find Min [V(f)] = 11 (fi-fj)2 + k -

i.<j
[(n-Of1 + (n-3)f2 + (n-5)f3

+. ..+ (n-2k+l) fk+".-(n-l)f,]

subject to

(14) fl > f2 . . . > f- - n

(15) O<f <l- i-

Formally (13), (14), (15), is a positive definite quadratic program.

Fortunately, as we shall see this can be solved by classical calculus

by ignoring inequalities (14) and (15).

Theorem: Equally spaced fi = (n - i)/n, (i = l,...,n) yields

Min V(f) = & independent of n, i.e., the variance of the sum in

this case is minimum and is the same as the variance of the individual

terms forming the sum.

Proof: Setting partials = 0 in (13) yields:
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i-. (n-1 > fl

- 2fl

- 2fl

- 2fl

- 2f2

+ 2(n-l)f2

. . . . - 2f
n = (n-l)

- 2f
n = (n-3)

- 2f2 . . . 2(n-l)fn 1 - 2f
n = -(n-3)

- 2f2 2(n-1)fn = -(n-l)

L

i

Adding shows the equations to be dependent. Hence we may drop the last

equation as redundant. Moreover, we can always translate the fi so

that the smallest fi, namely f = 0
n

L

Re-adding yields:

2fl
+ 2f2 +...2f, 1 + 0 = (n-l) ,f =o.n

Adding this last equation to each of the others gives

2nf .= (n-2i+l)+(n-1)=2(n-i)i

(17) fi = (n - i>/n

Evidently the conditions 0 2 fi 2 1 and fi 2 fi+l are (by good luck)

also satisfied so that (17) yields the minimum, namely

2 n
(18) mn V(f) = & - +- 1

i=l
(n-zi+l)f i

= -& ,
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