ON A MODEL FOR COMPUTING ROUND-OFF ERROR OF A SUM

BY
GEORGE B. DANTZIG

STAN-C S-70-156 MARCH 1970

Reproduction and research of this report was partially supported by Office of Naval Research, Contract N00014-67-A0112-0011; U.S. Atomic Energy Commission, Contract AT[04-3] 326 PA 非18; National Science Foundation, Grant GP 9329 and Grant GJ 320; U.S. Army Research Office, Contract DAHC 04-67-0028; and National Institutes of Health, Grant GM 14789-02.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.

Given real numbers $a_{1}, a_{2}, \ldots, a_{n}$ we are interested in the classic problem of the error in computing $S=\sum a_{i}$ when the sum is computed by $\mathrm{S}_{0}=\sum_{1}^{n} \mathrm{a}_{\mathbf{i}}^{*}$ where $\mathrm{a}_{\mathrm{i}}^{*}$ is the nearest integer to a_{1}. We shall first study this error as a function of a A shift, i.e., when all numbers a_{i} are each shifted A and then rounded;
(1) $S-n \Delta=\sum \sum_{i=1}^{n}\left(a_{i}-A\right)$
(2) $\tilde{S}_{\Delta}-n \Delta=\sum_{i=1}^{n-}\left(a_{i}-A\right) *$

We will then let A become a random variable that can take on uniformly any value in the interval $-\frac{1}{2} \leq A \leq+\frac{1}{2}$. Different choices of A give rise to different rounding errors $\tilde{S}_{\Delta}-s$ and the variance of the distribution of $\tilde{S}_{\Delta}-s$ can be used to measure the variability of the rounding error due to the random selection of the origin of the real numbers a_{i} with respect to that of the computer.

The cumulative error from (1) and (2) is
(3) $\tilde{S}_{\Delta}-s=\sum_{i=1}^{n}\left[\left(a_{i}-\Delta\right)^{*}-\left(a_{i}-A\right)\right]$

Let $\mathbf{f}_{\boldsymbol{i}}$ be the positive fractional part of \boldsymbol{a}_{i} and let α_{i} be the largest integer not exceeding a., i.e.,

$$
\begin{equation*}
a_{1}=\alpha_{i}+f_{i} \tag{4}
\end{equation*}
$$

Denoting by $\mathbf{r}_{\mathbf{i}}$ the error of the $i^{\text {th }}$ term, we have
(5) ri $=\left[(\mathrm{ai}-\mathrm{A}) *-\left(\mathrm{a}_{\mathrm{i}}^{-A)]}= \begin{cases}1-\left(\mathrm{f}_{\mathbf{i}}-\Delta\right) & \text { if }-\frac{1}{2} \leq A \leq-\frac{1}{2}+\mathrm{f}_{\mathbf{i}} \\ -\left(\mathrm{f}_{\mathbf{i}}-\Delta\right) & \text { if }-\frac{1}{2}+\mathrm{f}_{\mathrm{i}} \leq A \leq+\frac{1}{2}\end{cases}\right.\right.$

To prove the above, we note that $f_{i}-\Delta=\left(a_{i}-\Delta\right)+\alpha_{i}$. If
$-\frac{1}{2} \leq f_{i}-\Delta \leq+\frac{1}{2}$ then $\left(a_{i}-\Delta\right)$ is rounded to $a_{\rho_{1}}$. Hence $a_{i}-\Delta$ is rounded down if $-\frac{1}{2}+f_{i} \leq A$ otherwise rounded up.

Denoting expected value by E, we have by direct evaluation
(6) $E\left(r_{i}\right)=\int_{-\frac{1}{2}}^{+\frac{1}{2}} r_{i} d \Delta=0$

Assume $\mathrm{f}_{\mathbf{i}}$ < $\mathrm{f}_{\dot{j}}$, then

$$
\begin{aligned}
E\left(r_{i} r_{j}\right)= & \int_{-\frac{1}{2}}^{-\frac{1}{2}+f_{i}} r_{i} r_{j} d A+\int_{-\frac{1}{2}+f_{i}}^{--\frac{1}{2}-f_{i}} r_{i} r_{j} d \Delta+\int_{-\frac{1}{2}+f_{j}}^{+\frac{1}{2}} r_{i} r_{j} d \Delta \\
= & \int_{-\frac{1}{2}}^{+\frac{1}{2}}\left(f_{i} f_{j}-\Delta\left(f_{i}+f_{j}\right)+\Delta^{2}\right) d \Delta \\
& +\int_{-\frac{1}{2}}^{-\frac{1}{2}+f_{i}}\left[\left(1-f_{i}-f_{j}\right)+2 \Delta\right] d \Delta \\
& +\int_{-\frac{1}{2}+f_{i}}^{-\frac{1}{2}+f_{j}} \quad\left[-f_{i}+A\right) d \Delta
\end{aligned}
$$

Performing indicated integration yields:

$$
\begin{equation*}
E\left(r_{i} r_{j}\right)=\frac{1}{2}\left[\left|f_{j}-f_{i}\right|^{2}-\left|f_{j}-f_{i}\right|+\frac{1}{6}\right] \tag{7}
\end{equation*}
$$

which is one-half the $2^{\text {nd }}$ order Bernoulli Polynomial in $\left|f_{j}-f_{i}\right|$. For $\mathbf{f}_{\mathbf{j}}<\mathrm{f}_{\mathbf{i}}$ we also get (7). Note that the individual errors $\mathrm{r}_{\boldsymbol{i}}$ and $\mathbf{r}_{\mathbf{j}}$ are not independent of one another.
(9) $E(S)=S$
(10) $\quad E(\tilde{S}-S)^{2}=E\left(\sum_{i=1}^{n} \sum_{j=1}^{n} r_{i} r_{j}\right)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left|f_{i}-f_{j}\right|^{2}-\left|f_{i}-f_{j}\right|+\frac{1}{6}\right]$

The usual value of variance, $E(S-S)^{2}=n / 12$, will result if we further assume f_{i} are independently drawn from uniform distributions on $\left[0 \leq f_{i} \leq 1\right]$.

Theorem: If the fractional parts of all a_{i} are equal to each other, then each term of (10) is maximum for $0 \leq f_{i} \leq 1$ and
(11) $\operatorname{MaxE} E(S-s)^{2}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{1}{6}\right)=\frac{n^{2}}{12}$.

From (10) we have an interesting inequality, namely for all f_{i}

$$
\begin{equation*}
V(f)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\{\left|f_{i}-f_{j}\right|^{2}-\left|f_{i}-f_{j}\right|+\frac{1}{6}\right\} \geq 0 \tag{12}
\end{equation*}
$$

This function is not convex even for $n=2$, since $f^{(1)}=\left(\frac{1}{2}, 0\right)$ and $f^{(2)}=\left(-\frac{1}{2}, 0\right)$ yields $V\left(f^{0}\right)=V\left(f^{1}\right)=\frac{1}{12}+\frac{1}{12}-\frac{1}{12}=\frac{1}{12}$ but
$V\left(\frac{f^{1}+f^{2}}{2}\right)=V(0)=\frac{3}{12}$. There appears to be no obvious direct way to establish that $V(f) \geq 0$ for all $0 \leq f_{i} \leq 1$. Our development shows $\mathrm{V}(\mathrm{f})$ to be a variance and this,of course, constitutes an indirect proof. We can replace (12) by a convex realization: Assume $f_{i} \geq f_{i+1}$ for all i, then the problem of finding $\operatorname{Min} \mathrm{V}(\mathrm{f})$ can be rewritten:
(13) Find $\operatorname{Min}[V(f)]=\int \sum_{i<j}\left(f_{i}-f_{j}\right)^{2}+\frac{n^{2}}{12}-\left[(n-1) f_{1}+(n-3) f_{2}+(n-5) f_{3}\right.$

$$
\left.+\ldots+(n-2 k+1) f_{k}+\ldots-(n-1) f_{n}\right]
$$

subject to
(14) $\quad f_{1}>f_{2} \cdot \cdot>f_{n}$

$$
\begin{equation*}
0 \leq f_{i} \leq 1 \tag{15}
\end{equation*}
$$

Formally (13), (14), (15), is a positive definite quadratic program. Fortunately, as we shall see this can be solved by classical calculus by ignoring inequalities (14) and (15).

Theorem: Equally spaced $f_{i}=(n-i) / n,(i=1, \ldots, n)$ yields $\operatorname{Min} V(f)=\frac{1}{12}$ independent of n, i.e., the variance of the sum in this case is minimum and is the same as the variance of the individual terms forming the sum.

Proof: Setting partials $=0$ in (13) yields:

$$
(16)\left\{\begin{array}{rlrl}
2(n-1) f_{1} & -2 f_{2} & \cdots \cdots f_{n} & =(n-1) \\
-2 f_{1} & +2(n-1) f_{2} & -2 f_{n} & =(n-3) \\
-2 f_{1} & -2 f_{2} \cdots 2(n-1) f_{n 1}-2 f_{n} & =-(n-3) \\
-2 f_{1} & -2 f_{2} & 2(n-1) f_{n} & =-(n-1)
\end{array}\right.
$$

Adding shows the equations to be dependent. Hence we may drop the last equation as redundant. Moreover, we can always translate the f_{i} so that the smallest f_{i}, namely $f_{n}=0$

Re-adding yields:

$$
2 f_{1}+2 f_{2}+\ldots 2 f_{n} 1+0=(n-1) \quad, f_{n}=0
$$

Adding this last equation to each of the others gives

$$
2 n f_{i}=(n-2 i+1)+(n-1)=2(n-i)
$$

$$
\begin{equation*}
f_{i}=(n-i) / n \tag{17}
\end{equation*}
$$

Evidently the conditions $0 \leq f_{i} \leq 1$ and $f_{i} \geq f_{i+1}$ are (by good luck) also satisfied so that (17) yields the minimum, namely
(18) $\quad \operatorname{Min} V(f)=\frac{n^{2}}{12}-\frac{1}{2} \sum_{i=1}^{n}\left(n-2_{i}+1\right) f_{i}=\frac{1}{12}$,

