ALGORITHMS FOR MATRIX MULTIPLICATION

BY

R. P. BRENT

STAN-CS-70-157
MARCH 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ALGORI THVS FOR MATRI X MULTI PLI CATI ON

BY

R P. Brent

March 1970

Reproduction in whole or in part is permtted
for any purpose of the United States Government.

The preparation of this manuscript was supported in part by the Ofice
of Naval Research (NR okk 211), the National Sci ence Foundation (G 798),
and the Atom c Energy Conmission (Stanford PA #18).

5/

L/

5/

6/

7/

8/

Contents

[ntroduction

Known results

Error analysis

| npl enent ati on

Strassen-1ike nethods

Search for new nethods

Concl usi on

Ref er ences

9/ Appendi x: ALGOLW procedures

— " T

r— r— r— r ™ r AR

r-s T~

—

—

1. [ntroduction

If A= (aij) isan mx n mtrix, and B = (b

1.1

Jk) isann x p mtrix,

then the matrix product C = ABis the mx p matrix (cﬂg defined by

. = a..- .
ik ;;; 13°P %

for1<i<m 1<k<p.

Matrix multiplication and its special cases occur very frequently

in numerical analysis. For exanple: the inner-product of two vectors

(the case m=p = 1), matrix times vector nultiplication (the case p = 1),

back substitution when solving linear systens, iterative refinenent (per-

haps with several right hand sides at once), the power nethod for eigen-

values, in least squares problens, and nmany nore. Hence, it is interesting

to investigate algorithnms for matrix nultiplication, and in particular to

see in what circunstances it is possible to do better than the straight-

forward inplementation of the definition (1.01).

It is clear that advantage may often be taken of special properties

of A Bor C e.g.

a priori. W shall

sparseness or symretry, if such properties are known

only consider the general case where no such hel pful

properties are known. For practical applications, we need only consider

matrices over the rational, real and conplex fields, although the definition

above makes sense for matrices over any ring. The algorithms described will

all Dbe applicable to the problem of nultiplication of matrices over an

arbitrary commutative ring, and it will later be inportant that, for some

of the algorithns,

the ring need not even be comutative.

(1.01)

If the algorithms are to be inplenented on a digital conputer,
then sinply counting arithmetic operations can be rather m sleading,
for loads, stores and address conputations are also inportant. The
best test is to inplenent the algorithns and see how fast they actually
run, and even then the conclusion nay depend on the programer, conpiler
and machine used. Also, froma practical point of view, storage re-
qui rements and roundoff errors may be vitally inportant. Hence, after
describing several different algorithms in Sec. 2, | shall discuss
their numerical properties in Sec. 3; and describe sonme experi ment al
results in Sec. 4. In Sections 5 and 6 an attenpt to find sone new
algorithms is described, and in Sec. 7 the results are summarized and
some conclusions drawn. The notation of the definition (1.01) wll be

used in Secs. 2 to L.

1.2

2.1

2. Known Results

2.1 The Normal Method

To evaluate the inner-product in the definition (1.01) takes n
nmultiplications and n - 1 additions. Hence, the m.p el ements ¢,y can
be found in mp nultiplications and n(n - 1)p additions, and about the

same nunber of |oads, stores and address conputations.

If we count only nultiplications then this strai ght forward met hod
is known to be optimal in sone inportant special cases. Ifp=p =1
then we have the case of a vector inner-product, and a sinple dimensionality
argunent shows that, in general, n nultiplications are necessary. 1Ifp =1

then we have the case of matrix times vector nultiplication, and m mil -

tiplications are necessary in general (Wnograd, see [1]). |n the general
case, however, less than mmp nultiplications are necessary: stprsssen's |,
method shows this even when m=n =p = 2. Dinensionality argunents give
the |ower bound max (mMm, np, pm), but usually this is too low, and the

best possible result is not known. For nore details, see Secs.5 and 6.

2.2 Winograd's Met hod

Wnograd [7] has given a nmethod based on the follow ng identity:

2,|n/2| In/2)
— \
b, = AY) (-
j=1 #13%5% j=1 (ey, 031 T Pognd (Byrpy * Pos17k)
/2| [n/2f
a. . . . - .
£ %, 23-1%1,2j jgl b23~l,kb2j,k

(2.21)
Here |x) neans the greatest integer y < x, and anal ogously [x] means

the least integer y > x .

e

e~
s

— r—

r-«-—h

- r— /o

2.2

If nis even, the left side of (2.21) is just C.p0 but if nis odd,

the terma, b . nust be added to give c, The point of Wnograd' s nethod

-
is that the last two sums in (2.21) can be precomputed and, once this has
been done, roughly half the usual number of nmultiplications are required

to conpute each Cpe using (2.21).

Supposing for sinplicity that n is even, let us calculate the nunber
of multiplications and additions involved in the conputation of C by

Wnograd's nethod. W shall never distinguish between additions and sub-

tractions. To conpute n'2 -
505 L %4,05-1%, 24
j=1
requires n/2 multiplications and (n/2 - 1) additions, and simlarly for
n/2
V. = 8 b.. b..
k j:l EJ-l’k EJ,k . (2.25)
Hence, to precompute x,, x5, . . . , % and y, yo,..., Yy takes (m + p)n/2

multiplications and (m + p)(n/2 - 1) additions*

G ven X, and y,» L0 conpute ¢, using (2.21) takes n/2 multiplications

k
and (3n/2 + 1) additions. Thus the conputation of the entire matrix pro-

duct C takes (mp + m+ p)n/2 multiplications and (3mp + m+ p)n/2 + Mp - m- p
additions. From Sec. 2.1, we have saved (np - m- p)n/2 nultiplications at
the expense of (np + m+ p)n/2 + 2np - m- p additions, in conparison with

the normal nethod.

Since mp -m-p =(m-1)(p-1) -1 thereis nogainat allif
m=1 or p =1 so the remarks above on the mniml nunber of multiplications

required for matrix times vector nultiplication are not contradicted.

(2.22)

2.3

Supposing for sinplicity that m=n = p > 1, Wnograd' s nethod saves
(n - 2)112/2 mul tiplications, at the expense of (ng +6n - 4)n/2 additions.
Hence, there is a. saving in the nunber of multiplications if n >4 (recall
that we assumed that n was even, but it may easily be verified that there

is nosaving for n =1 or 3. If nis large then about n5/2 mul tiplications

have been traded for additions. |f a nultiplication takes w tines as |ong
as an addition, we see that Wnograd tine _ w+3 . o(n'l) ,
Normal tinme 2(wl)

so the nost we can expect is a gain of nearly 504 if wand n are |arge.
Since (2.24) neglects loads, stores etc. the gain will probably be rather
less than this. Typically we mght have w = 2 (say real nultiplication)
or w=1L4 (say conplex multiplication), giving savings of up to 17% and
30% respectively. In Sec. 4 we shall discuss how large n has to be for
any gain in practice, and the inportant question of roundoff error will

be discussed in Sec. 3.

(2.24)

—

—

-

- r r—

—

2.k

2.3 Strassen's Method

Suppose there is an algorithmfor the multiplication of ny X n

matrices, for a certain fixed n, > 1, taking M nultiplications and A

additions. Suppose further that this algorithmis applicable for ma-

trices over an arbitrary ring. In particular, we are not allowed to

assunme the comutative law for nultiplication, so, for exanple, Wnograd's

met hod is excluded.

Let v(k) and w(k) be the nunber of multiplications and additions,

respectively, required to multiply ngx nlg matrices, for k=0, 1, 2. . . .

V¢ have v(0)

1 wW0) =0,

v(1) < M, w(l) < A

(2.31)

(2.32)

Now consi der n15+1 X ngﬂ matrices partitioned into ng bl ocks, each
k, k - : :
block an ny X nJ matrix. Qur matrices may be regarded as ny X n, mtrices
with elenents in the (noncommutative) ring of ng X ng matrices, so our
algorithmis applicable. Applying it will take M nmultiplications, and A
addi tions, of nk X nk matrices.
0 0

Hence v(k + 1) < Mv(k)
and Wk + 1) < Mw(k) + a2

From(2.31) and (2.32) it follows by induction on k that

v(k) <

2k
and w(k) < Ag(Mk—nO)
(M-n7)
0
R . 2 o, . .
for any k> 0 (provided that M;éno, but M < ny i's inpossible for

n, > 1 anyway).

(2.33)

2.5

Now, in order to nultiply n x n nmatrices for any n > 1, just take
k = llog, nl and enbed the n x n matrices in nnkX nﬁkmatrices with the
J.J.O A v
| ast nlg - n rows and colums zero, and use the above nethod. From (2.33),

the nunber of arithnmetic operations required is

O(Mlognon) = O(nlOgnOM as n=+ o .,

3

For exanple, the normal nethod with any ny, > 1 has M= Do Iogr1 M= 3,

0
gi ving o(n5) operations, which is no surprise.
From (2.34), square matrix multiplication can be done in o(nB)
operations, where B = Iogn M= (log M)/(log no) - (It is interesting
0

to note that g is independent of A) dearly there is a constant
By = inf {BlO(nB) operations suffice .
The normel nethod, and Wnograd's method, both show that g <3, while
the results discussed in Sec. 2.1 show that g, > 2. The actual value of

Bo is not knowmn. Wile it mght be considered "intuitively obvious" that

By = 3 this is false: as Strassen [5] has shown,

By < logg'?i..‘- 2.8 .

Strassen's idea is to give an algorithmfor the nultiplication of 2 x 2

matrices over an arbitrary ring, with the algorithm involving 7 multipli-
cations (instead of the usual 8) and 18 additions (instead of the usual 4).

Putting ng =2 M=17 and A =18 in the above, his result follows.

(2.34)

(2.35)

(2.36)

Strassen's

and

wher e

and

Strassen in [5] gives no hint of howthe identities (2.37) were
di scovered,
a "graphical" nethod which makes the ideas clearer,

one to rediscover the identities (2.37)

at hand.

algorithmis based on the following identities:

R

" - 9+ 95+ g

(817 = a35)by .

(8p) = upp)Pqq 5
ALV

ag1(Bp * by

(817 4 2pp)(bgp - Byq)
(817 4 2p)(Pqq 4 o)

(e1p + 2200 (P14 D)

-b

and they are certainly not immediately obvious. |

Ve want the four sunms of products

cikeaﬂb]kfr a, by (i, k=1, 2).
This mght be represented diagrammtically thus:
b'al 21 11 where we want the four
b, X 22 12 suns of products which
by 21 1 y correspond to simlarly
b12 99 19 labelled squares.
831 211 %2 %12

and which enabl es

inafewmnutes if they are not

2.6

?(2-57)

give

2.7

A product (ay; + all)(bll t by,) mght be represented as:

by (the signs of the
b terms are not
ee represented in the
diagra
bll —T gram
b12 S
21 %11 %22 P12
Now consi der the representations of the seven products gl, . . . %Y

of (2.37). For exanple,

o and 4, + :

It is immediately obvious fromthe diagrams that we can conbine 9 and q,

linearly to give terns involving the products 8110100 81,0, and 81100y

It is conceivable that for a suitable conbination the alleP termw ||

drop out and |eave c If the reader now draws the representations of

12’
Qs -2 Gy and sees how they conbine according to (2.37) to give

e he will see that one could reconstruct the identities

117 - - - 2 S
(2.37) fromthe easily remenbered graphical representations, apart from
anbiguities in sign. A little thought and juggling of signs will then give
a set of identities equivalent to Strassen's (there may be = trivial

pernutation of the suffices).

It is interesting to experiment wth other graphical representations
and convince oneself that it is inpossible to nultiply 2 x 2 matrices in

|l ess than seven nultiplications. Wnograd [8] clains to have proved this.

=

In Sec.

rectangul ar nmatrices,

L we shall

discuss how to inplenent Strassen's nethod for

and how to avoid any wasteful "bordering" wth

zeros. The question of roundoff errors will be discussed in Sec. 3.

10

2.8

s

e

r— r"”“‘

—

3, Error Analysis

The nost inportant case in practice is that of real matrices and
limted-precision floating-point computation. | shall use WIkinson's
notation [6], and assume all arithmetic operations are done in t-digit
rounded binary arithmatic*, except that some operations may be especially
noted to be done in double-precision (2t-digit). WIkinson's assunptions
concerning the method of rounding or truncating will be made. Sone of
these assunptions, e.g. binary arithnetic, do not hold for the |IBM 360,

and this will be discussed later. For sinplicity, all matrices will be

assunmed to be square (n x n).

[t will be convenient to use the norm

IX”M = X ‘Xij I
1<i, j<n

(note that HXY\IM < HXHM.HYHM is generally false). This normwill usually
be witten just as || . The results obtained may be expressed in terms of

nmore usual matrix norns by using the attainable bounds
Wy < Il < me Tl

where q stands for 1, 2, », or E

W kinson [6] defines nunbers t. and t, which are slightly less than t.

1

\Wher ever t, or t, appear there is the inplicit assunption that n.2't < 0.1,

1
which is no restriction in practical cases.

* The analysis is sinilar with any base g > 2, and in nost cases the sane
bounds will hold with 2't repl aced by %el't . For a discussion of wino-
grad's nethod, and sone further applications of (2.21), with base g > 2,

see [12] .
11

3.1 The Nornal Method

W ki nson [6] shows that if

C=1fl(AB) =AB+E (3.11)
-t
then lely < (2 o ¥ el Joly (5.12)
He notes that if llagll, << [lallg-lIBllg then the relative

error in Cmy be high. O the other hand, if the inner-products are
accumul ated in doubl e-precision,

-t 3 2%
then Il <2 AL+ 22 2 fally- lel (5.13)

and hence the relative error in Cwll be low unless there is so nmuch

cancel | ation that llallg . lBllg §

JN: 2

t

S

To get a bound in terms of the norm HHM, consider a typical term

inthe product C. Such a termwll be an inner-product

n
fl([xiyi) = Z,lxiyi + e say.
1

[f the sumis accunulated in the natural order, we have

lel < 2 l.(n.lxll.‘yll + n.|x2|_|y2| + (n—l).|x5|.|y5|
+ ot 2dx [y D (3.14)

-t 2
so le]l <2 1 (n +gn - 2), maX|Xi|-maXIyi| : (3.15)

As the x; are el ements of A the A el ements of B, (3.15) and the
definition (3.01) give -t

1 (n2+5n—2)
) l

el < 2 T (5.16)
(3.12) and (3.16) are of the same form
-t
B <2 e fall. 5] (5.17)

and a bound of this form wth sone reasonable f(n), is the best we can
expect for any single-precision method.

12

3.3
For doubl e-precision accunul ation of inner-products, the bound
corresponding to (3.13) is
. -t 3 2 'th
I#fy, < 2" laslly, + . (2" + 30 - 202 = [lall. |8, (3.18)
Again, unless there is exceptional cancellation, the relative error in
Cwll be low
3.2 Wnograd's Method
First consider a sinple inner-product
p=fly - (§+1)) .
n/2
2) (3.2
g = f1(é XEj-lXEj) P)
n/2
_ J

conputed by Wnograd' s nethod (n even).

A sinple exanple illustrates what can happen when |inited-precision

arithmetic is used. Suppose we are using Gdecimal floating arithnetic, n = 2,

X, =X, = 1.000'+3, y; = ¥, = 1.000"-3 .
Then € = 1.000'+6

and M = 1.000'-6 (both exactly correct),
but 7 = 1.000'+6 (instead of the exact

1.000002000001'+6),

0.000 instead of 2.000 . The difficulty is in

SO p
f orm ng fl(xej_l + yej) etc. when the elements of x may differ widely in
magni tude from the elenents of y . This conclusion will also follow from

the rigorous error analysis bel ow.

13

Let a = max |xi| and b = nmxlyi| :

n/2

and let § =)

X, -X. . T € etc.
T 2j-1 23 g

From (3.15) wth n replaced by n/2 we get

—t

leel <2 L2 (n" + 6n - 8)/8
and simlarly -t

Ieﬂ| <2 18 .(x® + 6n - 8)/8
If fl(x+vy) = x +y + €yry (x any x5 Y any yi)

-t
then T egl < 27Ul + Iy
< e't.(a+b)
Thus 1 (x+y) (x"+y')) = (1 + EO)(X + Y + el)(x' +Y + ee)
=5t +y)(x' + y')+e, say,

wher e |€J < e-t and |e1|,|e2| < 2"a + b)'.

By expanding (3.25) it follows that
-1 5
|e5| <2 53.(a + 1),

where t5 is defined by
-t3 -1 - 2t -3t
2 =2 +2 + 2 ’

(so in practice t3 ~t).

-t 5
Hence le,l <2 2.(3n/2) .(a + b)° +

-t -t
2 L ((2® + 2n - 8)/8)(atb)2(143.2 D) .
In all practical cases

-t -t -t
(3n/2 + 3.2 H(x® + 20 -8)/8)).2 7 <(3n/2) @ 2 T,
and with this assunption we get

-t
) <2 L((n° + 1in - 8)/8).(a + D)%

14

3.4

(3.22)

(3.23)

(3.24)
(3.25)

(3.26)

(3.27)

From (3.23) and (3.27), the error ¢ in p is bounded by

-t
el <2 * [((f + 1bn - 8)/8)(a + B)° + ((n° + 6n - 8)/8)(a° + b°)

+ |ly-g-nl+ |g| + lﬂﬂ

-2 have been neglected, but they nmay be dealt with as

(ternms of order 2
above (see [12])).

Wow |y - € - M| < meb + (27", |g] < B a® + |egl, 1] < B b7 + ey
and a° + b° < (a + b)°

-t

2
so] <2 l.n——J'—i—al——'-g. (a + v)° .

By considering (3.29) with n replaced by n - 1 and a term added for
the error in conmputing and adding X Vs it may be shown that (3.29)
hol ds whether n is even or odd, and bounds the error in conputing an
i nner-product by Wnograd's nethod. From (3.29) we obtain the bound

-t

2
e LR AR ()l + YB3

for matrix multiplication by Wnograd's method. (A slightly stronger

result than (3.29) can be obtained if a = b, see [12].)

Suppose ||all / ||Bll = k. (Assuming k #0 or)
Then

Clall + 18D % . (2 1/ liall . 8],
whi ch shows tht (3.210) will be much worse than (3.16)
when k is very small or very large, and this is verified

by the exanple above.
Scal i ng

Ignoring the cases ||A]l = 0 and ||| = 0, it is always possible to
find an integer A such that 1/2 52‘%‘%&5 2. Hence a practical

15

3.5

(3.28)

(3.29)

(3.210)

s

—t A

scheme woul d be to conpute |ja]| and |8 (in o(n®) operations), find A ,

and then apply Wnograd's nethod to 2*A and 28 rather than to A

and B. If this is done, then since

max (k+ 2 + |/k) =9/2,
1/25k<2

we get, in place of (3.210), the bound
-t
B2 *3-(a®+ 12n - &) [l 3],

which is of the form(3.17) and is not nuch worse than (3.16).

This shows that Wnograd' s nmethod is feasible provided sone form of
scaling is used to make |jal| ~ |[B] . Wthout scaling, the results may
easily lose all significance. This does not seemto have been nentioned
by anyone recomending the use of Winograd's method: e g. blindly fol-

| owi ng the procedure reconmended in [2] could lead to disaster.

A nore sophisticated formof scaling could be used, but it is im-
portant t0 keep the time for scaling to a mninum or Winograd's nethod
becones slower than the normal nethod. The extra time taken by scaling

will be considered in Sec. &.

If it is easy to accunulate inner-products in double-precision then

this may as well be done. The error bound will still be like (3.211)

though, unless the terms a. +b and a, of (2.21)

i,25-1 P23,k oy T

’ 23"1, k
are conputed in double-precision. Then we get a bound

t

- -2t
IEll<e il +2 2O pvin-9 0 e,

provided that the terms X, and y, of (2.22), (2.23) are kept in
doubl e-precision, and assuning scaling as above. (3.212) is very sinilar

to (3.18) and the same remarks apply.

16

(3.211)

(3.212)

5.7

3.3 Strassen's Method

: -
Assuning a bound IEll <2”.t(m).J8] @ Bl (3.31)
for n x n matrices, it is possible to deduce a simlar expression for

2n x 2n matrices, if the multiplication of these matrices is reduced to

the nultiplication and addition of n x n matrices using Strassen's
identities (2.37). This gives f(2n) in ternms of f(n), and as (3.31)
is certainly true when n =1 (with f(1) = 1), we can find f(n) for n

an integral power of 2. If the "bordering" method is used for general

- n then the zeros will have no effect on the error, so the bound for the
L next power of two may be used.
t To express f(e2n) in terms of f{n), let A, B, and C be 2n x 2n
matrices (deviating slightly fromour usual notation), and regard A B,
l and Cas 2 x 2 mtrices with n x n blocks. Consider forning C =
f1(A.B) using the identities (2.37). Terns of order g2 will be
(‘ ignored, for although they may be dealt with by replacing t by t'ast
as we replaced t by ty, and t3 in Sec. 3.2, this conplicates the
v argument, and the resitsare not significantly different. For brevity
! let a = |N|M’ b = HB“M . (3.32)

The error in conputing g, of (2.37) will be denoted by g o for
gi

example f£1((all - alz)bee) = (all —alg)bgg + qu (where 8105 8100
b, and qu are n x n matrices). Sinilarly, the error in conmputing

¢ 5 of (2.37) will be denoted by E.l.J. Thus

E.. ' E
C=r1(A.B) = AB + E, where E = E;E;.;?
21 22

17

r—

e

Si nce q = fl((all - 312)'b where the n x n matrix

22) 1
multiplication is done by Strassen's method with the error bound (3.31),

and the matrix addition is done in the usual way, we have
Im gyl <27 (a2)l + llay o). Mool
so |lEsll < 27" 2ab.(n + f()) |
and sinilarly for qu, Eqﬁ’ and th . For i =5, 6and 7
we get the bound
el < 27" Lab.(2n+ f(N))
in the sane way.

Now it follows from(2.37), neglecting terns in 2'2t, t hat

ey oll < Egall + llm gyl + 275Cllagll + ligy)
but

2nab for i =1, 2, 3, L
lla,ll < | .
Ynav for i =5, &6, 7 ,

so from (3.33), (3.35) and (3.36) we obtain

1] < g_t.hab.(2n + f(n)),

and clearly the same bound holds for E, - Simlarly we have
2, < Il + m gl + Im gl + (el +

2™ Glayll + 3llagh + 2llag)l + llaslD

(assuming 94> 935 s and % are added in this order),

t

so |lE,qll < 277.ab.(¥kn + 12f(n))

and simlarly for Eqpe

From (3.37) and (3.39) we see that
Il < 27 (ukn + 128(n)) . |jall.[|B]

so (3.31) will hold if f satisfies f(1) = 1 and f(en) =k4kn + 12f(n) .

1R

3.8

(3.33)

(3.34)

(3.35)

} (3.36)

(3.37)

(3.38)

(3.39)

(3.310)

(3.311)

———

3.9

By induction on k, it follows from(3.311) that

£(25 = %(27.12k - 2225y (3.312)
so £(2%) < _251.12]" = %.(ek)l"gel2 - 5 0 m)
Hence, for general n, taking k such that n < 2 < on ,
we have [l < 27" .650°.||al. |8l

(3.314)

wher e c =log212 ~ 3,58

(3.314) gives a bound for the error in matrix multiplication by
Strassen's nethod, as described in Sec. 2.3. The bound is of the form
(3.17), although the function 5An5‘58 increases rather nore rapidly
than we would [ike. On the other hand, all the error estimtes obtained
here are rather pessimstic, for the individual rounding errors are un-
likely to be correlated in the worst possible way. |If our bound is
e'tf(n)HAH,HBH then the actual error is probably about 2°° /£(m) Ilall 1Bl
(see Sec. k4.6).

The anal ysis above assunes that a "pure" form of Strassen's nethod
is used. In practice it turns out that Strassen's identities wll be
applied until the matrices to be nultiplied are of order ~ 100 or |ess,
and then the normal method will be-used (see Sec. 4.3). Supposing we
have matrices of order 2knb, and apply Strassen's identities k tines
miltiplying the matrices of order ny by the normal method. Then (3.311)
hol ds with

f(no) = (ng + 3ny - 2) /2 (from 3.16) ,
so, assumi ng n, > 6, We have

£(2"n.) <16%n . (3.315)

Thus, for n x n matrices, the bound becomes ||| < 27 %1% 0% Al |8 . ~ (3.316)

19

™=

5.10

Since k will be very small in practice, the bound (3.316) i s not
too bad. Comparing it with (3.16), it appears that we may |lose up to
two bits of accuracy, conpared to that of the normal nethod, each tine

Strassen's identities are applied recursively.

In using Strassen's method there does not seemto be nuch point in
doing some of the arithmetic in double-precision, unless it can all be done
in doubl e-precision, when the above bounds hold with t replaced by 2t
(and a factor of 3/2 with WIkinson's assunptions about the nethod of

rounding or truncating).

It is interesting to note that with Strassen's method there is no
point in scaling the matrices so that |ja|l~[B||. This is because, unlike
Wnograd's identity, Strassen's identities never involve the addition of

an elenent of Ato an elenent of B.

3.4 Complex Arithmetic

The above analysis is based on the assunptions that fi(x +y) =
x(1 + el) + y(1 + 62) and fi(xy) = xy(1 + 65) wher e |ei| < e’t,
i =1, 2, 3%. These assunptions will be valid for conplex arithmetic too,
provided that t is decreased by a small anount (2 or 3) depending on how
the arithmetic is done. Hence, with this small change in t, the above
bounds will hold for conplex matrix nultiplication. Simlar remarks
apply to real arithnmetic done on a decimal or hexadeci mal machine (e.g.

the I BM 360). A curious anomaly which appeared when Wnograd's method

was being tested on an I BM 360/67 conputer is described in Sec. k4.6,

* A stronger assunption about addition, used in Section 3.2, was not
real |y necessary (see [12]).

20

——

L. Inplementation

In order to conpare the normal, Wnograd' s and Strassen's nethods
in practice, they were all inplenented in ALGOLW[10] on an |BM 360/67
computer. Doubtless all three nethods would run faster if coded in,
say, FORTRAN-H or assenbly |anguage, but their relative speeds woul d
probably be about the same. Wiile it would be easy enough to code
the normal method and Wnograd' s method in FORTRAN or assenbly |anguage,
for Strassen's nethod it is very convenient to have a |anguage which
allows recursive procedure calls. The sinplest way to code Strassen's
method in a language |ike FORTRAN would be to limt the depth of re-
cursion and duplicate any subroutines which would naturally be called
recursively. The three methods were tested on both real and conpl ex

matrices, wth results which will be sumarized bel ow

Al three nethods were coded in the formof a pure procedure,
with calling sequence
name (A, B, C M N P)
to formC:= AB, where Ais an Mx Nmatrix (dinensioned (1 :: M
1 ::N), Bis NxP, and Cis Mx P. Calls such as name (A A
A N N N are valid, and correct results should be returned for any

M Nand P> 1, provided enough tenporary storage is available.

At first the procedures were coded so that the"inner loops"involved
references to doubly-subscripted array elenents. In ALGOLW such re-
ferences take considerably |onger than references to singly-subscripted
array elements [Il], and it was found that all the procedures could be
speeded up Dy passing cross-sections of two-dinensional arrays as para-

meters to procedures which then operated on them as one-dinensional

21

L.l

e

=

h.2

arrays. (This is not allowed in ALGOL-60.) For exanple, instead of:

For | 1 until Mdo

for J := 1 until N do A(l,J) := B(I,J);

We use:

For | 1 until Mdo assign (A(l,*),B(l,*),N;
where we have defined
Procedure assign (real array A, B(¥); integer value N);
for J := 1 until Ndo A(J) :=B(J);
The second formw |l execute faster provided N> 10 . As this device
speeded up the normal nethod rather more than Strassen's nethod, it is

clear that a conparison of the three nethods depends on the |anguage

and the progranm ng techniques used to inplement them

The inplenmention of each nmethod will now be described in nore detail.
The procedure for the real and conplex cases are very simlar, and |ist-

ings for the real case are given in the Appendi x.

4.1 The Normal Method

(Procedure MATMULT, see Appendix, |ines 288-311.) There are no

particular difficulties in the inplenentation of this nethod. Because

of the possibility that Cis the sane as Aor Bin the call, the product

is fornmed in a tenporary array Q and then transferred to C Thus M.P

words of tenporary storage are used. |nner-products are accumulated in

doubl e-precision, for in ALGOLWthis is very nearly as fast as accumu-

lation in single-precision. Hence the error bounds (3.13) and (3.18)

are applicable (with the alteration noted in Sec. 3.4), and in nmost cases each

¢ will be the correctly rounded result, although this can not be guaranteed.

22

k.3

4.2 Wnoarad's Method

(Procedure W NOGRAD, see Appendix, lines 219-285.) Again the
implenentation is fairly straight-forward. The matrices A and B
are scaled as described in Sec. 3.2, and the scaled matrices are
stored temporarily in arrays D and E. Strictly speaking, scaling
shoul d be done to the nearest power of 16 rather than 2, for scaling
by powers of 2 could introduce roundoff errors on the 360, and these
errors have not been taken into account in the error analysis (Sec. 3.2).

Taki ng account of these errors gives the error bound

-t
el <2 ke all. 31 (4.21)

where Kis a small constant, instead of (3.211). |In the conplex case,
|R(x) | + |I{x) | rather then |x| was used to save time. This increases

the error bound by a factor of at nost 1.15 .

The inner-products X, and Yy of (2.22), (2.23) are conputed and
stored in the arrays X and Y. As stated above, it is not significantly
harder to conpute and save the X, and Vi I n doubl e-precision, so this

i s done.

Inall, (n+2)(m+p) words of tenporary storage are used, which
is about twice as nuch as for the normal nethod if m=n =p. The suns

b and (a.

23,1 1,25 ¥ Pojo1,x
single-precision, and then the inner-product involving themis conputed,

(a; 2j-1 +) of (2.21) are conputed in
)

as usual, in double-precision. If nis odd then the necessary correction
is made, and the final result f1(c) is fornmed. It is interesting to note
that if the sums (ai’gj_l + bEJ,k) and (ai’Ej +b2j-l,k) were com-

puted i n doubl e-precision, we would be using double-precision throughout,

25

r—

—

r-—

r

— r—

e

L.y

and the bound (3.212) would apply. Unfortunately,the extra tine taken to
do this slows the procedure down so that it is never faster than the
normal nmethod, so the sums could only be conputed in single-precision,

and the best error bound we can get is of the formof (4.21).

4,3 Strassen's Method

(Procedure STRASSEN, see Appendix, |ines 6-216,) The nethod im
plemented is the following: First, if m nand p are sufficiently small,
normal matrix multiplication is used (see below for the precise criterion).
Qherwise, mis replaced by 2m/9, n by 2im/9, and p by 2p/9 .

Ais partitioned into four m2 by n/2 matrices and B into four n/2 by
p/2 matrices, ignoring the |ast ’row and/or colum if necessary. The
block 2 by 2 matrices are multiplied using Strassen's identities (2.37),
whi ch involves seven recursive calls to STRASSEN to conpute the m 2 by

p/ 2 products I (actually Cis used in place of Q7 to save

%
storage) . Finally, the result is corrected if the original m n or p

were odd. This avoids wasting space and time by filling up the arrays
with zeros as described in Sec. 2.3 . In case C coincides with A or B,
sonme val ues needed for the correction step have been saved in arrays sl

and S2.

Actual Iy inplenenting the identities (2.37) is tedious but straight-

forward. The fast, general-purpose procedure OP is used to take advantage
of-the facility, noted above, for passing cross-sections of arrays as
parameters to procedures. In formng ¢y and Cons the terns 4 G

are added before Q5 - for otherwise the error bound would be in-

O
creased slightly. Al arithnetic is done in single-precision except

2

r"‘_~

k.5

for the accumulation of inner-products when normal natrix nultiplication

is used, so the error bound (3.316) is applicable. Because of the double-
. : . k 2. :

preci sion accunul ation of inner-products, the term4 n~in this bound may

be replaced by 5.12knO .

Procedure IDENTITIES uses the tenporary arrays T, U Q, @, .*a, b,
taking (m + np + 6pm)/4 words. Since the procedure is called recursively,
at any one time we may need < (m + np + 6pm)(1+-l PR)

= (mn + np + 6pm) /3 words of tenporary storage. (k.31)
The arrays S1 and S2, and the stack space required for recursive proce-
dure calls, will be negligible if m n and p are reasonably large. The
space for the array q, used when normal matrix nultiplication is invoked,
nmay be absorbed into (4.31). Hence the tenporary storage used is rough-
ly bounded by (4.51), and if m=n = p this is 8a/5 words, or slightly
nore than that required by Wnograd' s nethod and 8/3 tines that required
by the normal nethod. For all three nethods, the temporary storage re-

quirements can be reduced if Cis not allowed to overlap A or B.

4.4 Conparison of the Three Methods

The three procedures described above were run under the same con-
ditions (idle with "nocheck" option) for various test matrices A and B.
Sone running tinmes for the case of square nmatrices are given in Table 1.
In each case the depth of recursion in procedure STRASSEN was kept at

exactly one.

25

Table 1 Running Tines (in 1/60 sec.)
m=n-=p Real case Complex case
Nor nal W nogr ad Strassen* Normal Wnograd Strassen*
20 28 3k 4o 53 53 66
30 83 88 107 167 150 187
Lo 18k 184 221 384 330 Lol
50 347 336 392 731 615 Th2
60 58k 557 636

*Strassen's nmethod with exactly one recursion. Run tines varied

slightly, but were constant to + 1%.

By counting operations it is clear that the running tinme of each
met hod should be a cubic in n, and for Strassen's nethod the coefficients
will depend on the depth of recursion. It turns out that the constant

termis negligible, and the times in Table 1 are given to + 1% by cubics

T(n) = an5 + bn2 +cn with the follow ng coefficients:
Table 2 Cubic Coefficients, T = an® + bo° + cn, in y sec.
a b c
Nor nal ko 270 2000
Real W nogr ad 37 200 9500
Strassen 36 650 8000
Nor nal 90 320 2000
Conpl ex W nogr ad 3 220 11500
Strassen* 80 790 8000

26

4.6

r—

Sone interesting conclusions nay be drawn from Tables 1 and 2.
Conparing the normal nethod with Wnograd' s nmethod, we see that
Wnograd's will be faster if 3700 + 200n° + 9500 < kom® + 270n° + 2000,

3

i.e. if n > 40 in the real case,and if 73n” + 220n2 + 11500 < 9On5 +

300n° + 2000, i.e. if n > 21 in the conplex case, which may be verified
by inspection of Table 1. As n + « , Wnograd's method will run in
37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal tine in the conplex case. The gains are significant

for reasonably small n: e.g. for n= 100 Wnograd's nethod wll save
7% (real) or 18% (conplex). Hence, for noderately large matrices,

Wnograd's nethod |eads to significant, though not spectacul ar, savings,

and is worthwhile especially in the conplex case.

It is worth noting here that it does not pay to reduce the nulti-
plication of two conplex n by n matrices to three multiplications of
real n by n matrices (plus sone additions) by using (A + B)(C+ D) =
(E-F)+ (G - E- F)i, where E = AC, F = BD, and G = (A + B)(C + D),
for complex matrix multiplication takes |ess than three tines as long

as real mtrix multiplication (using any of the three methods).

It follows from Tabl e 2 that Strassen's method will be faster
than the normal method if n > 110 in the real case, and if n > 60 in
the conplex case. Hence procedure STRASSEN shoul d check to see if
n < ng (with ny set at 110 or 60), and if so use the normal method.

|f n>n. then Strassen's identities should be used to reduce n to n/2,

0
and the sane test applied recursively. This is what the procedure ac-
tually does, except that ny is not conpared just with n, but also with m
and p in case the matrices are rectangular. It can be seen by counting

operations that the appropriate test is if 3mnp < n (mn + np + pm) rather

0

27

4.7

(4.41)

r—

r-—— c— r— r

—

ror— r— r—— ¢ r— r— r~"~"~ 699

r—

4.8
than if n < L The times given in Table 1 were obtained with n, reduced
so that Strassen's identities would be used exactly once.
By counting operations, it can easily be seen that the tine Tshﬂ
for multiplication of n by n matrices using Strassen's nethod should be
given by 3 o
an” + bn- +en +dif n< Ny
TS<n) = YTS(n/Q) +am® +bm 4 if n > rb (4.h2)
From (4.42) it follows that, if
k = max(O0, Llogg(n/no)_l + 1), N
t hen)
k k
L. 7
Tg(n) = () e’ + (D b + 'SP - DaIn® >
. k 2 7 k
(D e+ @ - Dpm (1.43)
+ (754 g(7F - e)

The constants a, b, ¢ and d should be those given for the normal nethod
in Table 2 (d is negligible). The constants a', b' and ¢' deternmined to fit

the data in Table 1 are:

Table 3 Constants in (4.42) (p sec.)
Real case a =190 b" = L00O c' = 120000
Conpl ex case 220 Looo 120000

The constants in Tables 2 and 3 are not very well determned by the
data (especially ¢ and c¢'), and are not exactly consistent. For exanple,
from (4.42) and (4.43) we should.have, in Table 2, ag = TaN/S, whil e the

Tabl e gives ag = 36 and ay = Lo. The consistency is about as good as can be

expected though.

From (4.42) and (4.43) it follows that Ts(n)= o(nIOgQG as N + o«
28

T

RliE oot

k.9

so for sufficiently large matrices Strassen's method is arbitrarily faster
than the normal nmethod or Wnograd's nmethod. In practical cases, say for
n < 200, the normal nethod or Winograd's method appears to be faster

By the above fornulae we can estimate that Strassen's nethod will be
faster than Wnograd's only if n > 270 (real case) or n > 280 (conpl ex
case). On the other hand, these changeover points are very sensitive

to changes in programmng techniques etc., so it is conceivable that
Strassen's nethod woul d be the fastest, in sone |anguage on sone machine,
for matrices of order ~150. |n nost practical cases, Wnograd' s method
will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

4.5 Paged Machines

Sone nachines (e.g. the Burroughs B5500) have a fairly small physical
menory but a large "virtual" menmory. The user's program and data is divid-
ed into "pages", some of which may be held in fast core nemory, and the
others on a device such as a disc or drum \Wen reference is made to a
page which is not in nenory, a hardware interrupt occurs, snd the required
page is read into nmenory fromthe external device (to make roomfor it, a
page may have to be saved on the device). W say that a "page fault" has
occurred. As a relatively slow external device is involved, page faults
are very tine-consumng and should be avoided as nuch as possible. (For
a discussion of the concepts of virtual nenory, paging, segmentation etc

see Randell and Kuehner [9].)

M Kellar and Cof fman [4] have considered the nunber of page faults
which will occur when certain nmatrix operations, including nultiplication,

are perfornmed on large matrices using a machine with paging |ike that

29

described above. They conclude that, for a slight nodification of the
normal method of matrix multiplication, it is better to store a large
matrix by submatrices, with each submatrix fitting into a small number
of pages, than by rows or colums. Even then, the nunber of page faults
will increase |ike e for sufficiently large n. Sinilar arguments woul d

apply to Wnograd's nmethod, again suitably nodified.

Unlike the normal nethod or Wnograd's nethod, Strassen's nethod

2.8

woul d perform well, with eventually Qn“*™) page faults, even when

sinple row or colum storage is used. This is because the only matrix
operations on matrices with n> n, are assignment and addition operations,
and these can be performed as efficiently when row or colum storage is
used as for any other method of'storage. A few nodifications to the
procedure STRASSEN in the Appendix should be made. n, shoul d be de-
creased if necessary so that n, by n, matrices can be multiplied in

core (without any page faults). Also, inner loops should involve opera-
tions on one row rather than on one colum, if row storage i S used.

Thus we should change double |oops |ike

For J :

1l until N do for I := 1 until M do ...

to For |

1
]

1 until M do for J := 1 until N do ...
This also applies to the "inplicit" |oops when procedure CP is called:
e.g. lines 138 -139 shoul d be changed to
For | :=1 until M do
0P(T(1,*),A(I,*),A(I,*),M2,0,N2,-1);
Hence Strassen's method mght be conpetitive with the other nethods for

smal | er values of n on a paged machine than on a machine without paging.

30

k.10

—

4.6 Rounding Errors

The procedures were tested using matrices with elements uniforny
distributed in (-1/2, +1/2), or with real and imaginary parts having
this distribution. HEHE and |[E[|,, were conputed, assuning that the nornal
method gave exact results, which is reasonable considering the error
bounds (3.13) and (3.18). As expected, the error bounds (3.211) and
(3.316) of the form |E|| < E—tf(n) l|all.||B]| were too pessimistic, and the

actual ||E|| was nore |ike 2"t JE(n) J|All.lIBll : See Table k.

Tabl e b _LEl, / ™ e ALl liBll,)

n Real Strassen Conpl ex Strassen Conpl ex W nogr ad

30 0.27 | 0.28 0.28

Lo 0.20 0.83 0.24

(taking f(n) :{%<n2 + 12n-8) for Wnograd,

1502 for Strassen, and t = 21)

A surprising result occurred with Wnograd's nethod in the real case.
The single-precision results agreed exactly with those given by the nornal
nethod! This might be expected if the error bound (3.212), rather than
(3.211), were applicable’ The anomaly is apparently caused by the special
nature of the test matrices and the characteristics of floating-point
arithmetic on the 360/67. As the elements of A and B were unifornly
distributed in (-1/2, +1/2), about 7/8 of themwoul d have absol ute val ues
in (1/16,1/2) . Since the 360 is a hexadecimal machine, any two such
nunbers will be added exactly. This means that at |east 49/64 of the sums

<X23-1 [=] QQJQ) ad (x2j + Vo5 l) of (3.21) will be formed exactly. As

31

L.11

£

e

remarked in Sec. 3.2, this nmeans that we are effectively using at |east
doubl e-precision nost of the time. Presunably the few errors made in
conputing the above sums were not enough to affect the rounded single-
precision results, although it seens strange that all the elenments of

a 50 x 50 product should agree, even to the last bit, when conputed by
two such different nethods. In the conplex case this anonmaly disappears,
for a rounding error will usually be made in adding either the real or

the imginary parts of the above sums.

32

4.12

r—

e

’ I r—

T o

— —

5.1
5. Strassen-like Met hods
For 2 x 2 matrix multiplication, both the normal nethod and Strassen's
method may be described as follows: given the aij and by We form prod-
ucts g, . - ., 4 of the form
and then the c__ are linear conbinations of the 4, i.e. there are
nm
constants 7mnp such that T
L=
th E Tap%y (5.02)
p=1
Substituting (5.01) in (5.02), equating coefficients, and using
the definition of matrix nultiplication, gives the set of equations
3
, =5 .,5.'%
p=1 %15pPurpmap 01’5k Im | (5.0%)

where & is Kronecker's delta. (The subscripts on the Com Vere reversed

to increase the synmmetry of (5.03).) For the multiplication of Mx N
matrices by N x P matrices, (5.03) gives (MNP)Qequations as i, j, k,

L, m and n range over the integers 1<i,n<M 1<j,k<N 1<Lm<P
For exanple, inthe 2 x 2 case with T = 7, we have 64 equations in 84un-
knowns, and Strassen's identities show that there is a solution. Strassen's
solution has the nice property that all the % 5p7 BkLp and 7Irmp are 0 or
+1 . Note that, if a solution of (5.03) exists, it will certainly not

be uni que.

Strassen's method applied to & x 4 matrices shows that the
equations (5.03) have an (integral) solution when M= N =P = 4,
T = 49 (there are 4096 equations in 2352 unknowns). In general Strassen's

met hod shows that there is a solution with T = 7k when M= N=P = 2k ‘

33

If there is a real solution with M= N =P and a certain T, then
matrices of order n can be multiplied in O(nlogNT) arithnetic operations
by a sinple extension of the method described at the beginning of Sec. 2.3
Wiile an integral or rational solution is desirable, in theory a real or

even a conplex solution would suffice.

The problem leading to equation (5.03) can be generalized in the

following way: suppose a and by o bJ are non-comut -

10 8

ing variabl es, % 5k is a given three-dimensional array of real or conplex
nunbers, and we want 'to conpute the K suns of products 9 = Z:oijkaibj
(k=1,. . .. K inas fewmltiplications as possible. Then we want
the | east possible T and scalars Oﬁt’ﬂjt’ Yict such that fromthe T
product s

p, = (& aitai)(j ejtbj) ,1<t<T ,
we can formthe q as linear conbinations of the Py

T

Conmbining (5.04) and (5.05) and equating coefficients gives
T
t§l 9%t T ik

and clearly (5.03) is a special case of (5.06).

To sharpen the upper bound (2.36) for the constant Bo defined by
(2.35), we could look for solutions of (5.03) with M= N = P and
log T < log,7 . For exanple, we would like to find solutions with N =2
T=6o0or N=3, T=21or N=1L4 T =148. As (5.03) is a special case of
(5.06), and as it is convenient to avoid triple subscripts wherever possible,

we shall first consider (5.06).

34

(5.2)

(5.04)

(5.05)

(5.06)

SR

e

r o

r—

In the case | = 1 it is not difficult to show that the minimal T
for which a solution of (5.06) exists is the rank of the J x K matrix
(cljk), and simlarly if Jor K=1, [If I, Jand K are greater than
unity then there does not seemto be any such sinple theorem- and
exanples with | =J = K = 2 show that the mninal T may depend on
whet her the 0y 15 Bjt and it are allowed to be rational, real, or
conplex. This is so even if all the g5, are integral. Hence we
are led to try nunerical nethods for solving special cases of (5.06).
If these methods find a real solution, then it is worthwhile to try

to find an integral solution, but if no real solution exists there

is no point in looking for an “integral solution

35

2.5

r—

-

r——

—

r—

5.1 Least Squares Approach

Because of the |arge number of equations (4096 for N = L),
conventional nunerical methods |ike Newton's method are inpractica
for finding a solution of (5.06). The problem may be regarded as one
of function mnimzation. we want to minimze the sum of squares of
residuals of the set of equations (5.06), If g and y are fixed , then

(5.06) is a set of linear equations in the a Hence we could find a

it*

| east -squares solution of this (overdeterm ned) system then fix 7,

c and find a | east squares solution for g, then for y, and repeat the

cycle. The sum of squares of residuals wll converge to some non-
negative nunber, and hopefully this will be zero. Even this method

woul d be inpractical, except that the coefficient of o, in the system

I't
of linear equations happens to be independent of i. In other words,

the matrix of coefficients has | identical T x T blocks along the main
diagonal, and zeros el sewhere, so each |east-squares problem splits up

into a nunber of smaller ones.

Witing X, for 0, We vant the least squares solution of Ax = b,
where A = (By” ke (3,10,¢.

The solution-is given by x = (ATA)'lATg (in the real case)
and we have
T
A= ((é‘,ejteju)(§ Tt k)4, 0
T
and A = (¥ Byriona)
Jrk

As noted above, (5.13) is independent of i, but (5.14) depends on i.

36

5.4

0 (5.1

(5.12)

(5.13)

(5.14)

5.2 Acceleration of Convergence

It is not clear how one should make a good initial guess at a
solution of (5.06), but in any case, with randony chosen a, B, and y,
the initial rate of convergence is rapid. Unfortunately the convergence
soon slows down. One possible difficulty may be illustrated by a two-
di mensi onal exanple: suppose we try to nmininize s(oB) by fixing B,
mnimzing s with respect to a, fixing o and mnimzing s with respect
to g, etc. If the contour lines of s are ellipses as illustrated in
the diagrambelow, there will be a slow 'zigzag" approach to the

m ni mum

In the case illustrated, the following algorithmwll speed up

conver gence:
1/ i := 0; Guess o, By .

. o ... Q
2/ Find § to minimze s(cti+b,Bi).
3/ Find 6 tomnimze s(a, +o%p, + o).
4L/ Find wto nminimze s 0,19 B i+l) ,

- o - B
wher e @i ooy twT,B L =Bt owh

5/ i:=1i+1.

6/ Go back to 2/ .
37

25

— r—

r

— r r

=

r—

" | —

r———

5-6
In the sinple case of a quadratic function s(a,B), this algorithm
will find the mnimumin one cycle.
The sane idea can be used in our nore general problem If s(a , B, 7)
is the sum of squares of residuals, we find 204 to mnimze s(g+ga,§,1) :
B Lo . Ko’ B
then 6™ to mnimze s(a + 8,8+ 8") |
t hen g7 to mnimze s(a + go‘,g + 95,7 +87)
then w to mnimze s(a',p',7') where a'= o + w” etc.
Since
S(OJ',B',')") = E z t)(Bjt + wsgt)(ykt + woy)J (5‘21)

!J!

we can express s as a sixth degree polynomial in w and then w can be

chosen to mnimze this polynomal (globally).

28

6.1

6. Search for New Algorithns by the Least Squares Method

A programwas witten to try to find a solution of (5.03) using
the |east-squares approach described in Sec. 5. Although it would be
interesting to look for conplex solutions, only the real case was

consi der ed.

The positive definite symmetric matrix AT is found from (5. 13)

and ATb_iS found from (5.14), taking advantage of the identity.

z B 7 § .6. 6 = ZB~ Y.
k,T;m,n kIu'mnu ni jk Lm T JLu'Liu . (6.01)

6.1 Calculation of s(gB8,2)

W shall use two or three subscripts on the a, g and y as con-

venient. The sum of squares of residuals of (5.06) is

s(%B,2) = iJZk Z_; % Bit7it ~ Oige| 2 (6.11)
»Js r 2 i
so s(a,B,7) = i’JZ’k _; aitajtthl
- Ei’;k ("ijk gaitsjtykt)
* .l’jz,k c?jk (6.12)

The straightforward evaluation of (6.11) for matrix nultiplication with
M=0N=P takes ~2N6T operations (just counting multiplications). Using

(6.12) instead, the last two terns give no problens, in fact

Z c]?_jk - Z (caij:skLzsm)2 = MNP (6.13)

i, i,k i,j,k,Lymyn

39

r——nr-..-_—w

6.

and

i,3,k

1]

i,J,kyL,myn,t

It

i) j’ L’ t

z
L

chjk Z B

" 1t Jgt Tkt

B 8

a
1 3t" kLt mnt %ni © 5x0mm

ittt (6. 14)

and the evaluation of (6.14) requires only ~eT operations. The first

termin (6.12) is
2
j_,g:’k (tz O‘itB jtyk‘t) = Z [(Z lt lu J’J-t)QZ 71{1371{1] (6.15)

and the right side of (6.15) jnvolves ~3u T2/2 operations (50% are

2.8

saved Dy symmetry). Since we are interested in values of ™~ ® s can

be found from (6.12) -(6.15) inv5N7'6/2 operations instead of ~2N

8.8

using (6.11) . Hence it is much faster to use (6.12) - (6.15), although

this involves some |oss of accuracy.

2 Quadratic Approxination

At first the coefficients of win the sixth degree polynomal p(w

B

of (5.21) were calculated using o, B, 7, ga, 8" and _g’, and the gl obal

mnimum of p(w) was found. Evaluation of the coefficients of p(w was

rather tine-consuming, and it was noticed that the mininmum usually occurred

for 1<w< 2, and in this range p(w) was approximated very well by the

quadratic fitting p(O, p(1l) and p(2).

Since p(0) = s(w,Byy) is already known,

and both

and

(1) = s(ors%p+sP, 76 ")

P(2) =s(o+28 ,§+2§B,z+2§7) may be found by the method of Sec. 6.1,

the program was speeded up considerably by using the quadratic approximation,

and the rate of convergence was not noticeably di m nished.

40

’
\

o

6.3

As a precaution, necessary for the first few iterations anyway, w

was constrained to lie in [1, 3]. Once w was chosen, s(g+w§a, 5_+wéa,

l+w6_7) was conputed (using previously calculated inner-products |ike

?aiuaiv)’ and a check made that it was less than p(1l) and p(2)

After the first few iterations these precautions usually turned out to
be unnecessary. Note that, once s_ = 3 (a. + x67) (a.__+ x6%) is

X | iu i iv iv
found for x =0, 1 and 2, we can find any 5 from

2 2
N 1.((y2 - y)so + (2 -2y)sl + (v + y)se), where y = x - 1.
This device was also used to save sonme-time. There is a danger of

nunmerical instability unless I%(yz - y)| <1 i.e. unless 0 <x<3,

which is one reason why w was constrained to lie in [1, 3] .

| f M=N= P, the nunmber of operations (just counting multiplications)
per conplete cycle is ~(15N2+T)T2/2 . Since 1 <T< N5 for the cases of
interest, this grows very rapidly with N~ On the other hand, we are trying
to solve N6 nonl i near equations in BNET unknowns, so it would be surprising

i f any other nethod could do much better.

6. 3 Summary of Results

The attenpt to lower .the bound (2.36) was unsuccessful, but sone
interesting negative results were obtained. For 2 x 2 matrices, many
solutions were found with T = 7, but s never fell below 1 for T = 6,
strongly indicating that Strassen's method gives the mniml number of
mul tiplications for 2 x 2 matrices (at least for real @ g and y). Wth
T = 7 each iteration took about 0.2 sec. and convergence was fairly fast,

and appeared to be linear.

41

r— r— rr— r—

—

r—

'

r— r-

r-

G

—

—

6.4

Trying T=1, 2, . . . 7for 2 x 2 mtrices, it was found that

7ifT =5, 6 or7

inf(s) + T=¢(8 if T =1, 2 or 3

7.59 if T =4 .

Thus the mniml sum of squares of residuals is usually integral, but

]

appears to be nonintegral for T = k.

3x 3 mtrices may be nultiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix-. It appears that there is also

a solution with T =25: the program (taking 3 sec./iteration) reduced

s to 0.183 in 33 iterations, and s was still slowy decreasing. Knuth

has found a solution, involving 'cube roots of unity, with T = 2. How
ever, log521+ > log27, and in fact log521 < log 7 < log322, so a solution
with T < 21 is necessary to inprove the bound (2.36). Wen the program was
run with T = 21, s appeared to be tending to 2 rather than to zero. If

the rule inf(s(T)) + T > Toin whi ch was observed for the 2 x 2 case,

hol ds generally, this would indicate that for 3 x3 matrices Thin < 5

For 4 x 4 matrices the programwas run with T = 48, to try to inprove
on Strassen's 49. Unfortunately, each iteration took 18 sec., and con-
vergence was slow, so lack of conputer tine forced a return to smaller

probl ens.

- Various cases of small rectangular matrices were investigated. For
exanpl e, the programwas run with M= P =2, N= 4 and with M= P = 4,
N =2 . In these cases the smallest T for which s appeared to be tending

to zero was exactly the T to be expected by partitioning the matrices and

o

~—

appl yi ng Strassen's nmethod. Convergence often slowed as s approached 1,
and speeded up again once s < 1, and there was no case in which s <1
was attained, but for which s failed to tend to zero. Perhaps s(a , 8, 2)

has sone |ocal nminima or saddle points, but they all have s > 1.

To summarize the results: although nothing has been rigorously
proved, it appears likely that, to inprove on the bound (2.36), matrices
of size at least 4 x 4 nust be investigated. It is plausible that there
are no (real) nethods better than Strassen's for the 2 x 2 or 3 x 3

case, and if this is so it is unlikely that any new method coul d be of

nuch practical use, although it would certainly be of theoretical interest.

A practical method needs to have rational @, 8 and y, and to be fast for
reasonably small matrices nost of the conponents of o, 8 and y shoul d

vani sh.

k3

6.5

7.1

7. Concl usi on

Wiile the normal nethod takes CXnB) operations to multiply n x n
matrices, Strassen's nethod shows that (Xn2'8) suffice. In practice
t hough, the normal method is faster for n < 100 . Wnograd' s net hod,
while still taking CXr1% operations, trades nultiplications for
additions and is definitely faster than the normal nmethod for noderate
and large n, with a. gain of up to about 10% for real matrices and up to
about 20% for conplex matrices. The gain would be greater for double

or multiple-precision arithnetic.

Fl oating-point error bounds can be given for Strassen's and Wnograd's
met hods, and the bounds are conparable to those for the normal nethod if
the sane precision arithmetic is used. Wth Wnograd' s nethod the necessity

for prescaling can not be enphasized too strongly (see also [12]).

Provided scaling is used, Wnograd' s nethod can be recomrended, es-
pecially in the conplex case, unless very high accuracy is essential. It
is much easier to code than Strassen's nethod. Possibly Strassen's nethod

woul d be preferable when working with large matrices on a paged machine.

Attenpts to |lower the constant 10gé]222.8.“ given by Strassen's
nmet hod were unsuccessful. A conpletely new approach seens necessary in
order to bring the upper and |ower bounds on the conputational conplexity
of matrix multiplication much closer together. For matrices of reasonable
size, though, it seems unlikely that any new nethod coul d be very nuch

faster than the known nethods on a. serial conputer

L

8.1

Acknowl edgenent

| would like to thank R Floyd and J. Herriot for their hel pful advice,

and CSIRO (Australia) for its generous financial support.

Ref er ences

L Floyd, R W Unpublished notes.

2. Fox, B. L. "Accelerating LP Algorithms", CACM 12, 7 (July 1969),
384k - 385.

3. Knuth, D E "The Art of Conputer Programming", Vol. II,
"Sem nunerical Al gorithns", Addison Wesley, 1969

L. MKellar, A C & Coffman, E G Organ|2|ng Matrices and Matrix
QJerat|gns for Paged Merrory Systems", CACM 12, 3 (March 1969)
153 - 165

5. Strassen, V. "Gaussian Elimnation is Not Optinmal", Numer. Math. 13,
354 - 356 (1969).

6. Wl6ki nson, J. H "Rounding Errors in Al gebraic Processes", HMS.Q,
1963.

7. Wnograd, S. "A New Algorithm for Inner-product", |EEE Trans. C 17
(1968), 695 - 69k.

8. Wnograd, S. Unpubl i shed conmuni cati on.

9. Randell, B. & Kuehner, J. "Dynamc Storage Allocation Systens"
CAOM 11, 5 (May 1968), 297 - 306.

10. Wrth, N & Hoare, C. "A Contribution to the Devel opnent of ALGOL",
CACM 9, 6 (June 1966),413- 431,

11. Bauer, H & Becker, S. & Graham, S "ALGOLW | npl enent ati on",
Tech. Report No. €898, Computer Science Departnent, Stanford Uni.,
(May 1968) .
12. Brent, R P. "Error Analysis of Algorithns for Mtrix Miltiplication
and Triangul ar Deconposition Using Winograd's Identity', to appear.
45

APPEND- I X

ALGOLW procedures and test program

L6

=

— 0001 |- BEG | N COMMENT:
_ 0002 -- TEST PROGRAM FOR PROCEDURE STRASSEN, WI NOGRAD& M ATMU LT,
! 0003 == FILE |SBRENT.TESTSTRASSEN ON SYS09;
i 0004 -~
- 0005 ==
0006 =~ PROCEDURE STRASSEN (REAL ARRAY A, B, C(*,*);
0007 =~ INTEGER VALUE M,N,P);
0008 2~ BEG | N COMMENT :
- 0009 =~ IF A IS AN M X N MATRIX, AND B IS AN N X P MATRIX,
0010 -- THEN THEMX P PRODUCT MATRIX A. B 1 S RETURNED I N C.
0011 -- A MODIFIED FORM OF STRASSEN'S METHOD IS USED WHEN
0012 -- M, N, AND P ARE SUFF | CI ENTLY LARGE. IT IS BASE@ ON THE
0013 ==~ FOLLOWING IDENTITIES WHICH HOLD IN THE 2X2 CASE:
JOo14 --
0015 -- €11 = Q1 -Q3~-05 + Q7,
0016 =-- €12 = Q4 - Q1,
— 0017 == c21= 02+ Q3, AND
0018 -- C22 =05+ Q6 =-02=-0hL, WHERE
0019 -- a1 = (Al - Al12).822,
0020 --. Q2 =(A21 - A22),B1l1,
— 0021 =- a3 = A22,(B1l1 o+ B21),
0022 =-- ok = Al11.(B12 + B22),
0023 -~ Q5 = (Al + A22).(B22-811),
0024 -- n6 = (Al + A21).(B11 + B12),AND
L. 0025 -- N7 =(A12 +A22),(B21 + B22)
0026 --
0027 == A,BAND/ORCMAY BEIDFNTICALOR OVERLAPPING IN THE
$H028 ~= CALL TO STRASSEN. IN THE CASE M=N=PTHE INTERMEDIATE
— 0122 =-- STORAGE REQUIRED IS ABOUT 8N*%2/3 REAL WORNDS, THIS
0030 -- COULNRE REDUCED TON*#*2 (OR MORF GENERALLY
N3l -= (MM + NP +PM)/3)RY BUILDING UP THE PRODUCT AFTER
032 -- FACHCALL TODSTRASSEN INEVENMULT, BUT THEN C COULD
— 0033 == NOT OVFRLAP A OR R, AND THE PROCEDURE WOULNBE
0034 -- RATHER SLOWER.
0035 -~
0036 -=- IF 3MMP/ (MN+NP+PM)<=NO THEN NORMAL MATRIX MULTI PLICATION
— 0037 -- | SUSFDP, THIS ISBECAUSE STRASSEN'S IDENTITIES SAVE
0038 =-- TIME ONLY IF A MULTIPLICATION TAKES LONGER THAN 14
0033 -- ADDITIONS, WHICH IS CERTAINLY FALSE FOR MATRICES SMALLER
yoL40 == THAN 14 X 14, OR A LITTLE LARGER. THE NUMBER NO
— 0041 -- | S MACH!I NE ANDCOMPI LER-DEPENDENT, RUT 100 1S ABOUT
0042 -~ OPTIMAL FORALGOLW ON THE 360/67 (WITH NO ARRAY BOUNDS
0043 == CHECKING).
0044 --
— 0045 == THE TIME FOR PROCEDURE STRASSEN IS ABOUT THE SAME A S
0046 == FOR THE NORMAL METHOD FOR SMALL M, N AND P, BUT FOR
0047 == LARGEM,NAND P THE TIME MULTIPLIES BY 7 (RATHER
0048 == THANS)EACHTIMEM, N AND P ARE DOUBLED. ACCURACY
- 0049 =- IS NOT MUCH WORSE THAN FOR MATRIX MULTIPLICATION BY
0050 == THE USUAL METHODWITH ALL OPERATIONS DONE IN SINGLE
0051 =-- PRECISION.
0052 ==
— 0053 == R RRFENT, JULY 1969;
0054 =--
0055 == REAL PROCEDURE IP(RFAL ARRAY A, R(#*); INTEGER VALUE N);
0056 3- BEG | N COMMFNT:
. 0057 =-- RETURNS THE INNER PRODUCT OF THE N-VECTORS A ANN B;
0058 =-=-
0059 == LONGREAL S;
0060 == S = 0L;
- 0061 == FOR 1 :=1 UNTIL N N0 S :=S + ACL)*B(1);
0062 =- ROUNDTOREAL(S)
0063 =3 END IP;
- 0664 ==
- 0065 == PROCENUR E OP(REAL ARRAY A, B,C(#); INTEGER VALUE MI,h6M2,M3,F);
0066 3- BEGIN COMMENT:
47

0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132

EFFECTIVELY DOES:

FORI := 1 uNTLM DO

ACl) := B(! + M2) + F+C(l + M3)

WHERE F = 0, +10R-1.

NOTE THAT IN ALGOLW 1-D ARRAY ACCESSES ARE MUCH
FASTER THAN 2-D ACCESSES;

IF F > 0 THEN
BEGIN IFM2=0 THEN
BEGIN IF M3=0 THEN
BEGIN FOR | := 1 UNTIL MI DOA(I):=B(1)+C(1)
END
ELSE FOR I := 1 UNTIL M DO ACI1):=B(1)+ C(l+ M3)
END
ELSE
BEGIN IFM3=0THEN
BEGIN FOR | := 1 UNTL M DO A(1):=B(l+ M2)+C(1)
END
ELSE FOR | := 1 UNTILM DO A(1) :=8B(| + M2) + C(1 + M3)
END
END
ELSE IF F < 0 THEN
BEGIN IF M2=0 THEN
BEGIN IFM3=0 THEN -
BEGIN FORI := 1 UNTILM DO A(l1):=B(l)-Cc(1)
END
ELSE FOR I := 1 UNTIL M1 DO A(I):=8(1)-C(I + M3)
END
ELSE
BEGINIFM3=0 THEN
BEGIN FOR I := 1 UNTIL M DO AC1):=B(1+M2)-C(l)
END
ELSE FOR | = 1 UNTIL M1 DO A(1):=B(1 + M2)=-C(1 + M3)
END
END
ELSE
BEGIN IF M2=0 THEN
BEGINFOR | := 1 UNTILMI DpOACL):=B(1)
END
ELSE FOR I := 1 UNTL M1 NOACT):=R(1 + M2)
END
END OP;

COMMFENT: IF M,N,ORP'SHALL USE NORMAL MATRIX MULTIPLICATION.
THE CONSTANT NO MENTIONED ABOVE IS REDUCED TO 29 FOR
CHECK | NG PURPOSES;

| F(3%«Ma#N*#P) <= (29%(M*N + -N*P + P*M))T H E N

BEGIN COMMENT: WEUSE ATEMPORARY ARRAYQIN CASE C=A OR B;
REAL ARRAYQ (1 : : M, 1 : : P);

FOR I := 1 UNTIL M DO FOR J:= 1 UNTIL P DO

0C1,d) 2= 1PCACL,*), R(=*x,J), N);

FORIl := 1 WUNTILMD OO0P(C(l,*),q(l,*),Q(l,*),P, 0, 0,0)
END

ELSE
BEG | N COMMFNT: USE STRASSEN’'S METHOD;

PROCEDURE IDENTITIES;
BEGIN COMMENT:
THE IDENTITIES ARE PUT HERE TO AVOID SEGMENT
OVERFLOW;

43

.
- 0133 --
- 0134 -- REAL ARRAY T(1 :: M2, 1 :: N2);
0135 -- REAL ARRAY U (1 :: N2, 1 :: PQ):
0136 -- REAL ARRAY Q1, 02, N3, a4, a5, Q6 (1 :: M2, 1 . .p2);
0137 --
— 0138 -- FORJ := 1 UNTIL N2DO
0139 -- OP (T(x,d), AF J),A(s, J + N2),M2, 0, 0, =1);
0140 -- FOR | := 1 UNTIL N2DO
0141 -- OP (UCH,*),B(1 + N2, *),BC\#), P2, P2, o, 0);
= 0142 -- STRASSEN(T,U, Ql , M2,N2,P2);
0143 -- FOR | := 1 UNTIL M2 DO
0144 -- OP (T(I,*),ACE + M2, *),A(l + M2, *),N2 o, =1);
0145 -- STRASSEN(T,B, Q2,M2,N2,P2);
0146 -- FOR I := 1 UNTILM2DO
0147 -- OP (TCI,*), ACT + M2, *),A(l,*), N2, N2, o, 0);
0148 -- FOR l:= 1 UNTIL N2 DO
_ 0149 -- OP (U(I,*),B(1,*),B(1+ N2o®), P2, o, o, 1);
0150 -- STRASSEN(T,U,Q3,M2,N2,P2);
0151 -- FOR J := 1 UNTIL P2 DO
§ 0152 -- OP (U(*, d), B(», J + P2),B(*, J +P2), N2, 0, N2, 1);
L 0153 -- STRASSEN (A, U, M2,NZ,P2);
0154 -- FOR | := 1 UNTIL M2 DO
0155 -- OP (TG, *), ACL, *), ACT+ M2, *), N2, o, N2, 1);
0156 -- FOR | := 1 UNTIL N2 DO
0157 -- OP (UCtr, =), BCI+ N2, '*),BL1x), P2, p2, 0, -1);
0158 -- STRASSEN(T,U,N5,M2,N2,P2);
0159 -- FOR | := 1 UNTILM2DO
L 0160 -- OP (TCr, *), ACH, *), ACE+ M2, %), N2, 0, 0, 1);
0161 -- FORJ := 1 UNTIL P2 DO
0162 -- oP (U(x, J), B(%, J), B(*, J +P2) N2 ,0 ,0 1);
0163 -- STRASSEN (T, U, 06,M2,42,P2); *
0164 - - FOR J := 1 UNTIL N2 DO
L 0165 -- 0P (T(w, J), A(x, J + N2), A¢, 3 +N2) M2, 0, M2, 1);
0166 -- FOR | := 1 UNTIL N2 DO
. 0167 -- OP (U, *),BCE + N2, *),,3(1+ N2, *), P2, 0 P2 1);
‘ 0168 -- STRASSEN(T,U ,C,6M2,N2,P2);
% 0169 --
> 0170 -- FOR I:= 1 UNTIL M2 DO FOR J := 1 WUNTIL P2 DO
R 0171 5- BEGIN
i 0172 -- c (1,4 = 010t,4) - Q3(l,d)+ c (1,4)-0501,4);
H 0173 -- C (1,d + P2) := qu(1,y) - 01(t,
0174 -- c (1 +M2,J) := Q2(1,4d) + Q3(1,
0175 -- C (14M2,J+pP2) := 05(1, J)*QG(I,J)'(QZ(I J) + QuCt Jd))
’ 0176 -5 END
0177 -4 END IDENTITIES;
0178 -- }
0179 -- REAL ARRAY S1(1:: P);
0180 - - REAL ARRAYS2(1::M);
0181 - - INTEGER M2,H2,P2;
0182 -- M2 :=MDIV 25 N2 := N DIV 2 P2 := P DIV 2,
0183 - -
0184 - - COMMENT: THIS PART MUSTBE DONE NOW IN CASE C=A OR B;
0185 - -
0186 -- | F(2%M2) ¢ M THEN
0187 L= BEGIN FOR J := 1 UNTIL 2*P2DO
0188 - - S1(J) := IP(A(M,), B(x, J), N)
0189 - 4 END;
0190 --
0191 -- | F(2%*P2)< P THEN
0192 4- BEGIN FOR | := 1 UNTILM DO
0193 -- S2(t) = 1P(A(I,*), R(x,P), N)
0194 -4 END;
0195 --
0196 -- IDENTITIES;
0197 --
0198 -- fl2 1= 2#M2; N2 := 2%N2; P2 :=2%P2;

49

o

COMMENT : IFM,N, OR P WAS ODD WE HAVE TO FI X UP THE BORDERS;
IF N2 < N THEN

BEGIN

FOR I := 1 WUNTIL M2 DO FOR J := 1 UNTIL P2 DO

C(t,d) = C(1,Jd) + ACI,N)*B(N,J)

END;

IF M2 <M THEN
BEGINF O RJ:= 1 UNTIL P2 DO C(M,d):= S1(J)
END;

IF P2 < P THEN
BEGIN FOR | := 1 UNTILMD OC(I,P):=82(1)
END
FEND
END STRASSEN;

PROCEDURE WINOGRAN(RFAL ARRAY A,B,C(*,*); INTEGER VALUE M, N, P);

BEGIN COMMENT:
IF A IS AN M X N MATRIX AND B AN N X P MATRIX, THEN
THEIR PRODUCT A.B IS RETURNED IN C. WINDGRAND'S METHOD
ISUSENWITHPRESCALING TO ENSURE GOOD ACCURACY;

REALPROCEDURFWP(REAL ARRAY A,B(#); LONG REAL VALUE X, Y);
BEGI N COMMENT:
RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B,
USING PRECOMPUTED X AND Y. NIS GLOBAL;

LONG REAL S;

S = =(X+Y);

COMMENT: IF THE NEXT STATEMENT IS REPLACED BY:

FOR I := 2 STEP 2 UNTIL2*(NDIV2)D O

S == S+ (LONG(A(I-1)) + LONG(B(1)))*(LONG(A(!)) + LONG(B(1-1))).,
THEN THE CQRRECTIY. ROUVINAREN oS W LE-PRECISION RESULT IS USUALLY
RETURNED (ASSUMINGPRESCALING), UNFORTUNATELY TH | S SLOWSDOVWN
THE ALGORITHHM SD THAT ITISNO LONGER FASTER THAN THE USUAL ONE;

FOR | ¢=2 STEP 2 UNTIL2#(NDIV2)D O

S = S +(A(1 - 1) + BC1))=(ACL) + B(1 - 1));
IF (N REM 2)> 0 THEN S :=S +A(N)*B(N);
ROUNDTOREAL(S)

END WP;

LONG REAL PROCEDURE XI(REAL ARRAY A(=*));
BEGI N COMMENT: .
USED TOPRECOMPUTE THE FUNCTIONS OF AREQUIREDB Y WP;

LONG REAL S;

S := 0L;

FOR Il 3= 1 STEP 2 UNTIL N - 1 DO S := S +A(1)*A(I+1);
S

END XI;

PROCEDURE MAX (REAL ARRAY A(*); REAL VALUE RESULT BD);
FOR | = 1 UNTIL N DO IF BD<ABS(A(I))THENBD:=ABS(A(1));

PROCEDURE MUL(REAL ARRAY A, B(#*); REAL VALUE M);
FOR | := 1 UNTIL N DOA(I):=M*B(1);

REAL AMAX, BMAX, MULT;
COMMENT: THE ARRAYS D AND E ARE USED AS TEMPORARY STORAGE IN CASE
SOMEOF A,BANDCCOINCIDF;

REAL ARRAY D(1:mM 1 :: N);
REAL ARRAY F(1 :: N, 1 :: P);
50

0265 -- LONG REAL ARRAY X(1 :: M);

0266 -- LONG REAL ARRAY Y(1 :: P);

0267 --

0268 -- COMMENT: A AND B ARE SCALED BY SUITABLE POWERS OF TWO TO Rl VE GOOD
0269 -- NUMERICAL PROPERTIES, AND THE SCALED MATRICES STORED IN
0270 -- D AND E;

0271 -- AMAX :=BMAX:= 0.0 ;

0272 -- FOR I = 1 UNTILMDOMAXCA(I,*),AMAX);

0273 -- FOR K = 1 UNTIL P DO MAX(B(*,6K),BMAX);

0274 -- MULT := IF (AMAX>0) AND (BMAX>0) THEN

0275 -- 2+* (TRUNCATE((LNOG(BMAX) - LOG(AMAX))/LOG(4) 4 200.5) - 200)
0276 -- ELSE 1. O;

0277 -- FOR I t= 1 UNTIL MDOMUL(NCL,*),ACl,*),MULT);

0278 -- FOR K := 1 UNTIL P DO MUL(F(*,K),B(*,K),6MULT);

0279 -- COMMENT: NOW SOME CONSTANTS ARE PRECOMPUTED AND SAVED IN X AND Y;
0280 -- FOR | :=1 UNTILMD OX(I):=XI(D(1,*));

0281 -- FOR K = 1 UNTIL P DO Y{(K):=X1(E(*,K));

0282 -- COMMENT : NOWTHE INNER PRODUCTS ARE FOUND;

0283 -- FOR | 2= 1 UNTIL M DO FOR J:= 1 UNTIL P DO

0284 -- c(1,Jd) :=up(nDCI,*), E(*x,J), X(1), Y(J))

0285 -2 END WINOGRAD;

0286 --

0287 --

0288 -- PROCEDURE MATMULT (REAL ARRAY A, B,C(*,*);

0289 -- INTEGER VALUE M, N, P);

0290 2- BEGI N COMMENT:

0291 -- FORMS C :=A.B IN THE USUAL WAY;

0292 --

0293 -- REAL PROCEDURE IP(REAL ARRAY A,B(*); INTEGER VALUEN);
0294 3- BEGI N COMMENT:

8382 -- RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B;
0297 -- LONG REAL S;

0298 -- S : =0L;

0299 -- FOR I := 1 WUNTIL N DO S :=S4 A(1)*B(1);

0300 -- ROUNDTOREAL(S)

0301 -3 END IP;

0302 --

0303 -- PROCEDURE ASSIGN(RFALARRAY A,B(*);INTEGERVALUEN);
0304 -- FOR 1 :=1 UNTILND OA(I):=B(1);

0305 --

0306 -- COMMENT : QISUSENDIN CASE C COINCIDES WITH A OR *3;
0307 -- REAL ARRAYQ(1 : : M, 1 : : P);

0308 -- FOR Il := 1 UNTIL MDO FOR J:= 1 UNTIL P DO

0309 -- QCl,Jd) 1= 1PCACL,*), B(*,Jd), N);

0310 -- FOR I := 1 UNTIL M DO ASSIGN(C(1,*),Q(l,*),P)

0311 -2 END MATMULT;

0312 --

0313 --

0314 -- INTEGERRAN1,RAN2,RAN3, RAN4;

0315 -- INTEGER ARRAY RANS5 (0 :: 255);

0316 --

0317 -- PROCEDURE RANINIT (INTEGERVALUER1);

0318 2- BEG!I N COMMENT:

0319 -- MUST BE CALLED WITH ANY INTEGER R |

0320 -- TOINI T I AL | ZE PROCEDURE RANDOM;

0321 --

0322 -- INTOVFL :=NULL; COMMENT: MASKS OFF INTEGER OVERFLOW;
0323 -- RAN1:=1 ; RAN2 :=2*ABS(R1) 4 1 ;

0324 -- FOR I =0 UNTIL 255NDORANG5(1):=R AN 2:=RAN2*65539
0325 -2 END RANINIT;

0326 --

0327 -- REAL PROCEDURE RANDOM;

0328 2- BEGI N COMMENT:

0329 -- USEST'!NS|MPLF LFHMFR GENERATORS OF THE FORM
0330 -- X{N+1) = X(N)*A (MOD T) WITH

51

=

-

—a

—

—

r

r—— c— -

r

0331
0332
0333

0334 ==

0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359

0360 =

0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0-394

Al = 11*+11 (MOD T1) =6435, Tl=2%+13-1= 8191,
A2 = 2%%16+3 =65539, T2 =2%%*31=2147483643.
THE FIRST GENERATOR JUST POINTS TO THE TABLE OF
ENTRIES FOR THE SECOND GENERATOR, SO GOOD RANDOM
NUMBERSWITH A CYCLE LENGTH AT LEAST 2,10%%12 ARE
PRODUCED.

THE IDEA IS DUE TO MACLAREN AND MARSAGLIA, SEE
KNUTH, VOL 2, PG 30, ALGORITHM M.

REALOUTPUT UNIFORM IN(0,1).

NOTE THAT INTEGER RAN1, RAN2, RAN3, RAN4 AND
INTEGER ARRAY RANG5 (0::255) MUST BE DECLARED
GLOBALLY AND RANINIT MUST BE CALLED FOR
INITIALIZATION;

RAN1 := (RAN1#6435) REM 8191;

RAN3 := RANLl REM 256;

RAN4 := RAN5 (RAN3);

RAN2 := RAN5 (RAN3) := RAN2 * 65539;

RAN4 * 0.465661287' .9
END RANDOM;

PROCEDURE RANSET(RFAL ArRRAY A(*,*); INTEcer VALUE M, N);
FOR | =1 UNTILMDO FOR J := 1 UNTIL N NO
AC1,Jd) : =RANDOM =0 . 5 ;

COMMENT : CALLING PRORRAM;

INTEGER R, M,N, P, T, REAL S, MAX, DEL, SW, MAXW;
READ(R);
WHILE R ™= 0 DO
B E G I NREANDON(M,N,P); RANINIT(R); WRITE(" "); WRITE(" ");

”RlTE(“R", R, " M", M, " N", N,
" P, P);
BEGIN
REAL ARRAY ACZ:M, 1 :: N);
REAL ARRAY B(1: N, 1 - P);
REAL ARRAY ¢, D, E(1l:: M, 1 :: P);

RANSET (A , M, N);
RANSET (B, N, P);
T := TIME(1):
MATMULT(A, B .D M, n, P);
WRITE ("MATMULT TIMF ", TIME(1) - T);
T ¢= TIMF(1);
STRASSEN (A,B,C,M,N ,P);
WRITE("STRASSEN TIME", . TIME(L)=T); T:=TIME(1);
WINOGRAD(A,R,E, E | ,N,P);
HRITE(™JINOGRAD TIME", TIME(1) - T);
S t= MAX ::=SW:=MAXW:= O
FOR | := 1 UNTIL M DO FOR J:= 1 UNTIL P DO
BEGINDFL : =ABS(C(1,d)=0DC(1,4));
IF MAX ¢ DEL THEN MAX := DEL;
S 1= s +DEL*DEL;
DEL := ABS(D(I,J) - E(I,4));
IF MAXW<DEL THENMAXW/:=DEL;

SW : =SW + DEL*NEL
END;
WRITE("S ", s , " MAX", MAX);
WR I TE ("sw",sw, " MAXWY, MAXW);
READ(R)
END
END
END.

52

