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THE USE OF DI RECT ME™ODS FOR THE SCLUTI ON OF THE
DI SCRETE PO SSON EQUATI ON ON NON- RFXTANGULAR REG ONS*

J. Alan Ceorge

1. Introduction

In recent years several special direct methods have been devel oped
for solving the discrete Poisson equation on rectangul ar domai ns. These
met hods take advantage of the regular block structure of the coefficient
matrix, and some of themrequire an anount of computation which is close
to being directly proportional to the nunmber of grid points (equations)
in the discretized problem  Dorr [4] presents an excellent survey of
these nmethods. A considerable nunber of these algorithms suffer from
numerical instability and are not suitable for large problems. An analysis
of stability of several nethods appears in [10].

In this paper we describe ways in which these direct methods can be
used to solve non-rectangul ar Poisson problems. W will not concern our-
selves with which of the direct nethods is to be utilized; we nerely observe
that a nunmber of satisfactory ones are available. Notable anong themare
Buneman's version of the method of odd/even reduction [1,2], and methods

based on Fourier analysis [7,8].

* This work was supported in part by the Ofice of Naval Research under
grant NOO13-67-A-00112-0029, the Atom ¢ Energy Comm ssion under grant

AT(04-3)326, PA30, and an | BM Graduate Fel |l owshi p.



The basic procedure is as follows. The domain R of the given problem
is enclosed in a rectangle over which a uniform nesh is placed. The usua
five-point Poisson difference operator is applied over the entire rectangle,
yielding a block tri-diagonal system of equations. The given problem how
ever, determnes only those elenents of the right-hand side which lie in R
the remaining elements can be treated as parameters. Furthernore, the
"solution" of the enclosing rectangular "problem which we have generated
will have certain constraints inposed upon it by the presence within the
rectangle of the boundary S of the given (or inbedded) problem Dirichlet
boundary conditions will require the solution on the rectangle to have
specified values at grid points which lie on S; other types of boundary
conditions will require specific relations to hold between values at grid
points lying on and/or adjacent to S

V¢ now summarize our situation. W have a fast, efficient nethod for
solving a specific system of equations, and we cannot delete or nodify
equations of the system because the nmethod depends upon the structure of the
coefficient matrix. W generate a system of equations which has this ap-
propriate form but for which sonme of the right-hand sides are unspecified, and
where the solution nust satisfy certain constraints. This paper describes

met hods for solving this problem



2. Notation and a Representative Probl em

For definiteness, we consider the follow ng problem

2.1) Au =f inR
(2.1) Au in @iF’T S

u=g on SUT

& superinpose a uniformgrid on the rectangle S, and for sinplicity
we assune that T lies on grid points and on |ines adjoining adjacent
grid points. Approximating the differential operator with the usual

five-point difference operator, and witing out an equation for every

grid point inS we obtain an N x N system of equations
(2.2) Av = h,
where the vectors v and h are defined on the grid, and Nis the total

nunber of grid points in the rectangle. For expository purposes only, we

wite (2.2) in the followng partitioned form

Al A0 VR hp
(2.3) By Ayp Aog Vpl = | P )
Ao A33f \Yq 2y

where the vector partitions with subscripts Q R and T contain elenents
corresponding to grid points lying in Q R and on T, respectively.

W will denote the nunmber of elements in these partitions by Nq, N
Ny V& enphasize that this reordering cannot be done in practice because

the special direct methods depend upon A having the regular block structure

, and
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which occurs only if the grid points are nunbered row by row or colum

by col um.
It should be clear that if h; and hQ are assigned values so that

the solution to (2.3) satisfies the boundary conditions (i.e., if Vi has

the correct values), then Ve will be the correct discrete solution to our

given problem In Section 3 a nethod is presented for finding the val ues

to be assigned to by, and hQ so that the above is achieved.



3. Direct Solution: Mthod 1

This nethod has been described by Hockney [ 7 ], and is closely connected
to the discrete Geen's function [ 6]. Formally, we can invert the parti-

tioned matrix in (2.3) to obtain

{VR\ Bix B B3
(3.1) \T} = By, By 323
'q \Bal B B33’
and solving for By, hT , We have

(3.2) Byy hT = Vp - B,, hR - 323 hQ.

Si nce Bys s non-singular (it is positive definite), we have set hQ to

zero. W have an efficient nethod for solving (3.1) (in a reordered fornm

SO we can easily obtain By; hp as g, fromthe solution of the system

Ay Ao 2R B3
(3.3) Ay Ay, A23 Zq = 0
A32 A33 2q 0
The vector By is then obtained by solving
(3.%) Bpp By = Vg oo 2z

Thus, we need Boos

of the inverse of the coefficient matrix A This nmethod, therefore,

whi ch neans that we need the NT correspondi ng col ums

requires solving NT + 2 systens of the form(2.2), and the solution of

t he Nn linear equations (3.4). If we assume that the number of arithmetic



operations required to solve (2.2) is kN - t henl/ the total nunber of
operations is about kNT (N + % N;). Si nce Ny will typically be o),
t he amount of work will be roughly proportional to Npp- If we suppose S
IS a square with r‘%= N = 104 grid points in it, and that Np IS 2n

(it could easily be this large for typical regions), then the nunber of
arithmetic operations required is O(N3). This is not likely to conpare
favourably with solving for VR using SOR especially when we consider how
little programmng overhead there is for the SOR process. Note, however,
that the matrix By depends only on the-geonetry of the problem Thus,

if we wish to solve a tine-dependent problem one with a non-linear right-
hand side, or many problens with the same geonetry, then this procedure may

very well be the best one to use. It will alnost certainly be the best if

i |
1\1T and NQ are small relative to I\R.

1/ . . . :
Y The factor k is actually a very slowy increasing function of y,

of the form# Ing/ﬁ, £ a constant.



4. Direct Solution: Mthod Il

An alternate approach which is nore general than that of the nethod

of section 3 is the follow ng: W replace equations Avp ¥ AoV *

A23VQ = by, in (2.3) with the equations Ovp + Ivp + OvQ = Vp by addi ng

a suitable correction to A Cbviously, theresulting solution v will have

the correct Vs regardless of the value of h,. Defining F and G by

Q
T
, 0 ~Ax1
(4.1) F={I],G-= AL 41 s
o 22
-AT'
23

and denoting the coefficient matrix of (2.3) by A we can wite the

equation
Ay Bp O VR By
(4.2) o I © vol = |vp
° Ay A3 "Q °
as
(4.3) (A + FG*)v = h.

It can be shown [ 9 ] that
(4.14) (A + rat)t = a7 ARz + 6TaTtR)teTat.

Thus, the procedure is
a) solve AW= G

b) solve Ay, = h;

T

c) conpute p = G f

yland Y=1 + WF;

d) solve Yy3 = ¥



e) solve Ay, = Fy3,

f) compute v = Y -y -

Note that this method is very flexible. It allows us to replace any
equation by another at the expense of one solution of (2.2).

The amount of computation and storage required is virtually the same
as for method |I. However, since nethod Il is somewhat nore conplicated,
method | seems preferable unless the increased generality provided by

method Il is necessary.



5. lterative Solution Based on Method |

Ve now turn to potentially nore efficient ways to utilize direct
nethods to solve non-rectangul ar Poisson problems. Qur basic problem
is tofind a solution to (3.4), and the najor expense in the algorithm
results from the generation of By, - Hence, we would like to arrive at
an iterative scheme which generates an (approximate) solution hg.k) W th-

out actually requiring B First note that for an arbitrary vector

hg‘), (3.1) inplies N

(5:1) Vg‘k) =714 By hg.'k)

or

(5.2) B,y hg_,k) =v (Tk) P ()
wher e

(5-3) W= Vo - ozr

and

(5.4) () v(Tk)- Vo

Her e r(k) is the residual of the linear system(3.4) and is the difference

between the solution on T generated by h(Tk) and the required values v

Qur problemis equivalent to mnimzing the quadratic function

T

1.7 ST
(5.5) 5 hT 322 hT - hT W,

" where we do not know B,y but can conpute the gradient of ¢. W are obviously
free to use any of the many iterative nethods for solving a system of

linear equations or mnimzing a quadratic function that is bounded from bel ow.



However, because the residual (gradient) calculation is expensive

it is natural to use a relatively powerful function mnimzer or |inear
equation solver. For exanple, we could use the conjugate gradient nethod,
or one of the several variable netric algorithns which have been devel oped
[3,5]. In section 8we conpare scrto two of these iterative forns of
method |, making use of the conjugate gradient method in one and the
Davidon-Fletcher-Powell algorithm([s ] in the other. W shall refer to

this class of methods as iterative imbedding al gorithns.
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6.1terative Solution Based on Method ||

Using equation (4.3) as a basis, we consider the following iterative

schemel/:

(k+1)
Apt I A, A3 YR hp
(k+1)
(6.1) Aoy A+ o 23 Vip = BV
, (k+1)
A3l A32 A33+ oI VQ 0
ol 0 0

, ¢ and B real
positive constants.

Denoting the coefficient matrix by A, and expressing the matrix on the

right-hand side of (6.1) by (FGT + o), where

T
0 A1
(6.2) F = I and G = T
0 Ay - BI
T
“23
we obtain the error equation inmediately as
(k+1) (k)
eR eR
-1,..T
e(Tk+l) = A, (FG™ + o) e(k)
- T
(k+1) (k)
Q ‘Q

A&]'{(FGT + ozI)A(;l}k (76T ox)e(©),

Y
W assume that the fast direct methods applicable to solving Av = h

can also be used to solve (A + al)v=nh, a>0.

11



Now the matrix in the braces is

ol 0] 0 B B B

11 12 C13
Ayy Bt (a-B)T Ayg By1 Bap Bpg
0 0 of 1331 By Big
\-—f——"
a1
07
a By @B, B,
= =B
-B By (I-B Byy) - By, o,p .
@ By o By @ Bs,
Hence, we have
(k+1) -1 _k T (0)
e = A, Ba,B(FG + ol)e' /.

The rate of convergence obviously depends critically on ”Ba 5“, and
)
there appears to be no easy way to determne optinmal « and B. For

0=0, it is easy to show that g should be set to 2/(>\max+ Amin) wher e

Mrax and Mpip € the largest and smallest eigenval ues of By BO,B then

X Kmin)/(xmax+ >‘min)’

and the iteration then converges. The problemis, of course, the difficulty

has as its largest (in magnitude) eigenvalue p = (}"ma

in determning estimtes of Moa and A 0 Nunerical experinents and

X mi
further analysis of this nmethod are currently being pursued.
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7. Error Bounds and Convergence Criteria

One of the nost difficult problens in the application of an iterative
process is the determnation of a safe and nmeaningful convergence criterion.
For a short and very good account of this problemwth sorR see [8 ].

Briefly, the problemis as follows: Since we do not know the true (discrete)
solution, the error at each stage of the iteration nust be estimated on the
basis of such measurable quantities as the size of the residuals or the size

of the last correction vector. Unfortunately, small residuals or smal

changes in successive iterates do not guarantee correspondingly small errors
in the conputed solution. .For rather ordinary problens the error can be
several orders of nagnitude |arger.

The iterative imbedding al gorithns seem particularly attractive with

regard to the above problem as the follow ng theorem denonstrates.

Theorem 1. Let v be the true discrete solution on the enclosing

rectangle, and let v* be the conputed sol ution, where v¥ satisfies

the (Dirichlet) boundary condition to within some value €, i.e.

(7.1) vy vEll, < e
Then |
(7.2) llvg- vl < e

Proof: Let L be the discrete Laplacian operator. Then the follow ng

equations are satisfied:

(7.3) Lv, = hy

)

(7-4) Lvk = hp.

13



Denoting the error in the conputed solution by e, we have from (7.1),

(7.3), and (7.4) that

(7-5) Lep = 0
and
(7-6) lel, < e

Since -L is an operator of "positive type," we can apply the well-known

maximm principle to conclude from (7.5) and (7.6) that ”eRHoo=HVR'V§“ < e
Thus, we can deternmne when to stop the iteration sinply by exan ning

the largest elenent of leTI. Since it is difficult to imagine an iterative

schene which would not make use of e, (it is the residual of (3.4)), the

g (
cost of determ ning lleTH00 shoul d be negl i gi bl e.

14



8. Nunerical Experinents

V& now present sone nunerical experinents for a problem of the type
(2.1), where s is covered with a square mesh having< m rows, n col umms,
and nesh width h, and where Q is a kh x fh rectangle. The "southwest"
corners of Sand Qare at grid positions (0,0) and (jl,jz) respectively.

The inplenentation of the SOR algorithm provides for an initial ap-
proximate solution on a coarse grid (with mesh width 2h) which is then used
to furnish a starting solution on the fine net by using linear interpola-
tion. Thirty iterations were carried out on the coarse mesh to obtain the
initial solution, and these iterations and the tinme required for them are
not included in the tables below. An acceleration parameter w of 1.8
was used on the coarse nesh for the first 25 iterations, followed by 5
iterations with w= 1 to estimate the optimal w = w* for the coarse nesh.
The value o* + .55 (2-M was found to be near optimal, for the fine mesh.

The nunber of iterations reported for the iterative imbedding methods
requi res some:discusston. Cbviously each iteration requires substantially
nore work than an SOR iteration. The ratio will depend on the size of the
mesh since the conputation required for the direct nmethods is not quite
directly proportional to' mm. Also, the relative sizes of N, and

R
Np + Ny + NQ will affect the ratio because the SOR iterations wll (at
| east ideally) only involve grid points in R A factor of about 10 seens
reasonable for typical problens having fewer than 20,000 points.
The tine required to conpute the right-hand sides of the equations
is not included in the tables. Al tines are for execution of ALGOL W

programs on an | BM 360/67.
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Case |: f = (2-100 y2) cos (10x)
u=g-= y2 cos (10)()
h =0.0125 n =49, n =127

('jl’jE) = (6)4'132): k =4 =10

Case I1: Same as Case | except (31352) = (20,40) and k = 4 = 20.
Met hod Iterations Maxi mum Time
Error ( Seconds)
SCR 70 4 7x10”% 42
| nbeddi ng | 5 | 2x10" 4 24.0
@se || ipedding 11 5 210" 23.7
Direct NA' 2x10"4 9.6"
SOR 70 b.2x10" " 41
Imbedding | 6 2x10° 4 28.6
Case 11 Imbedding || 6 ox10™4 28.5
Di rect N. A. 2510 * 9.6"
| nbedding | - nethod of Section 5 using the Davidon-Fl etcher-Powel

algorithm[ 5 ].
| nbedding Il - method of Section 5 using the conjugate gradient algorithm
Direct - nethod of Section 3.
The maximum errors for the direct nethod and the inbedding nethods
are all the sane because the error is due entirely to the truncation errar
of the difference operator. The error in the discrete solution for these

met hods is below that |evel

Does not include the time required (approximately 3 minutes and 6
mnutes, respectively, for Cases | and Il) to generate and deconpose

B,, (see Section 3). T



9. Remarks and Concl usions

The reported timesat first do not appear particularly inpressive,
al though the tines required for the imbedding nethods are substantially
less than for the SOR process. It is inportant to keep in mnd, however,
that during the calculation using the methods of Section 5, we have precise
information concerning how close our conputed solution is to the true
discrete solution. This is obviously highly inportant in a practica
situation where the solution to our problemis not known. As we nentioned
in Section 7, it is extremely difficult when applying SOR to ascertain
how cl ose the conputed solution is to the true discrete solution. (For
exanpl e, the maxi mum change for the last step of SOR in Case | above was
8.1x107°.)

As one mght expect, the rate of convergence of the iterative imbed-
ding al gorithns depends on N However , quite extensive experiments seem
to suggest that the nunber of iterations does not increase very rapidly wth
Nps and Jﬁ; iterations are usually sufficient.* Problems with singularities
al so do not appear to greatly affect the rate of convergence.

When EQ and N, are relatively large, and R can be subdi vi ded
into a nunber of rectangular blocks (R mght be H or L-shaped, for
exanple), a direct nethod described in [ 2 ] may be nore efficient than the
met hod described in Section 3. It is not obvious if or when its iterative
anal og converges and, even if it does, no a posteriori bounds are available

because the "paraneters” are grid values lying in Rrather than on a

boundary.
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V¢ have not discussed the direct nethod used to solve our rectang-
ular problens. As we nentioned earlier, many of the nethods discussed
by Dorr [4] suffer from numerical instability and are not suitable for
| arge problens. W have used a nmethod due to Buneman [1] which appears
to be stable even for very large problens. For a qualitative discussion
explaining this stability, see [2]. Hockney's al gorithm POT | [7] coul d
in theory reduce the tines for the imbedding al gorithnms and the direct
nmethod by a factor of two, although in practice program overhead woul d
reduce some of the advantage of the |ower operation count.

. Note that no use has been made of the particular geonetry of the
probl em we have discussed other than it is enclosed by a rectangle. The
met hods we have described are applicable to arbitrary domains, and their
efficiency will depend upon the subjective factors discussed at the end

of Section 3.
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