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ABSTRACT

A flow table nodel is defined for parallel conputer systens. iIn
this nodel, fundanmental-node flow tables are used to describe the op-
eration of system conponents, which may be prograns or circuits. Com
ponents communi cate by changing the values on interconnecting |ines
which carry binary level signals. It is assumed that there is no
bound on the tine for value changes to propagate over the intercon-
necting lines. Gven this delay assunption, it is necessary to specify
a nmode of operation for system conponents such that input changes which
arrive while a conmponent is unstable do not affect the operation of the
conponent. Such a node of operation is specified. Using the flow
table nmodel, a new control algorithm for the two-process nutual exclu-
sion problemis designed. This algorithm does not depend on the ex-
clusive execution of any primtive operations used in its inplementa-

tion. A circuit inplenentation of the control algorithm is described.
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| NTRODUCTI ON

A conputer system can be viewed as a collection of programs, which
are sets of instructions to be executed by processors, and logic cir-
cuits, sets of logic gates and flip-flops interconnected by wires.
Much effort has been expended on the devel opment of formal design
procedures for logic circuits resulting in the body of know edge
known as switching theory. This theory provides procedures for cir-
cuit analysis, the determnation of-what a particular circuit does,
and circuit synthesis, the design of a circuit to acconplish some
task. Unfortunately, designers of conputer systens do not have sim
ilar techniques available to them These techniques would allow
prograns and circuits to be treated in comon framework and woul d
make it possible to analyze a system formally, w thout expensive
testing and debugging, to determne what the system does. They
woul d hel p a designer decide whether a circuit or program inplemen-
tation is nost appropriate. The ability to consider both hardware
and software inplementations is particularly inportant in the design

of operating systens where there is often a choice between a program

or circuit inplementation. In this paper, a nodel is proposed for

parall el computer systems which it is hoped will aid in the fulfill-
nment of these objectives. The nodel depends on the use of _fundamental-

node flow tables, used previously to design sequential circuits [ 23 ],

to describe the operation of both program and circuit conponents.




To notivate the need for such a nodel and to illustrate the
difficulties involved in describing the operation of a conputer sys-
tem let us consider a well known problem which occurs in nulti-pro-

cessor conputer systens. This problem called the nmutual exclusion

or interlock problem occurs when two or nore processes are active

si mul t aneousl y. Such processes are called concurrent processes.

The use of the term process inplies that sonme conponent in the system
is active, performng a task. The activity of the conponent distin-
gui shes a process from a processor. A processor is an entity which
has the capability of performing a task. A further discussion of

the distinction between a process and a processor is given by Dennis
and Van Horn [ 5 ], Dijkstra [ 6 , 7, 8 ], Saltzer [ 26 ], and
Lampson [ 19 ]. In the nutual exclusion problem each process is
assuned to contain certain special operations in a portion of the

process known as a critical section. The processes usually represent

the execution of programs containing infinite loops in which they
enter, leave, and then re-enter their critical sections. The mutua
exclusion problem requires the specification of a control mechanism
to prevent two or nore processes from entering their critical sections
si mul t aneousl y. In addition, it must be guaranteed that, if one pro-
cess wants to enter its critical section, the process cannot be

bl ocked by other processes entering, leaving, and then re-entering
their critical sections. Knuth [ 18 ] has shown that this latter
possibility exists in one control algorithm proposed for the nmutua

exclusion problem The exact nature or content of a critical section



is not inmportant in the development of a solution to the problem
Typically, critical sections nmodify common storage files or system
tables. A precise statenment of the rmutual exclusion problem for two

processes is given bel ow.

Probl em (Mut ual Excl usi on)
Gven two concurrent processes, each containing a critical sec-
tion, control these processes so that the following two rest-
rictions are always satisfied.

Restriction 1: At npbst one process is in a critical section,
at any instant.

Restriction 2. If a process wants to enter its critical
section, it is eventually allowed to do so.

This problemis slightly different fromthe one Dijkstra posed. He
wanted to ensure that the decision as to which process enters its cri-
tical section cannot be postponed indefinitely. Wiile a decision nust
al ways be nmade, a particular program may be blocked indefinitely.

Many sol utions have been proposed to this problem|[ 5, 6, 7,,
8 , 18, 19 ]. Mst of these solutions depend on the existence of
special instructions which are executed whenever a process wants to
enter its critical section. Exanples of these instructions are the
Test-and-Set instruction which- is a machine instruction for the |BM
360 series conputers [ 14 ], the LOCK and UNLOCK statenments for high
| evel |anguages |ike FORTRAN and ALGCOL discussed by Dennis and Van Horn
[ 51, and the P and V operations proposed by Dijkstra [ 7 , 8 ].
Two progranms using Dijkstra's P and V operations to achieve ex-
clusive access to their critical sections are shown in Table 1.

The programs are specified in a version of the ALGOL progranmmi ng
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Table 1. Dijkstra's P, V

BEG N | NTEGER S;

PARBEGIN

PROCESS 1: BEG N

Ll:

D,

PROCESS 2: BEG N

L2:

END
PAREND

- END.

Solution to the Mitual Exclusion

P(8) ;

CRITI CAL SECTION 1;
V(s);

REMAI NDER OF PROCESS 1,

GO TO L1;

P(8) ;

CRI TI CAL SECTI ON 2;
V(s) ;

REMAI NDER OF PROCESS 2;

&0 TO L2;

Probl em



| anguage. The integer variable S is called a semaphore. W will

describe the solution for two processes although it can be generaliz-
ed to handle an arbitrary nunber of processes. For two prograns,

the semaphore variable takes on only two values, 1 and 0. \When S=1,
neither process is inits critical section and when S=0, one of the
processes is in its critical section. The identifiers PARBEGIN and
PAREND were introduced by Dijkstra to denote that every statenent
appearing between these two identifiers can be executed concurrently.
This is Dijkstra's version of the FORK and JON statenents proposed
by Conway [ 4 ] and others. The P operation or statement is perform
ed on a semaphore variable and has the following effect. If the value
of Sis 1, Sis set to 0 and the next statenment is executed. If s

is 0, the process nust "wait" until S becomes 1 before it may proceed.
The V operation is also performed on a semaphore variable and in-
creases the value of the variable by 1. For two processes, V(S)

is equivalent to setting the value of Sto 1. There are two possible
fornms of activity while a process waits for a semaphore to becone 1.
The process may go into a tight loop repeatedly executing the P(S) op-
eration until S becomes 1. This formof waiting is called "busy

wai ting" since a processor nust be assigned to the process contin-
uously. In the other form of waiting, the process is added to a
queue associated with the semaphore where it resides until the sem
aphore becomes 1. In this case, when a V operation is perforned,

the queue for the appropriate semaphore variable must be exam ned

and any process which is eligible to proceed restarted. This form



of waiting allows the processor associated with the idle process
to be freed to execute other processes.
Dijkstra nakes the follow ng tw assunptions about the P and
V operations.
1. The P and V operations are indivisible. That is, it is
i mpossible for one P or V operation to be initiated and
then for another P or V operation to be initiated before
the first is conplete

2. P and V operations may not be executed sinultaneously.

Gven these two assunptions, Dijkstra proceeds to analyze the
behavi or of the system containing the two processes and concl udes

that the mutual exclusion problem has been correctly solved although

he does not claimthat the analysis presented is fornal

Dijkstra's conclusions are hard to accept for several reasons.
First, he has not said enough about the system environnent to det-
ermine if the P and V operations will work. The situation is des-
cribed in Fig. 1. Each process is able to read and change the val ue
of the semaphore S. Dijkstra does not say whether he intends the
system to operate in a synchronous manner under the control of a
master clock or whether the conponents in some way operate indepen-
dently. It is inportant to account for delays which may be present
in the environment. These delays may be in the lines over which
processes access the semaphore variables and also in the processes
t henmsel ves. It is possible in a physical system for operations to

occur sinmultaneously and this possibility should not be dism ssed
6



Process 1 ] S - Process 2

Figure'l. System configuration for Dijkstra's nutual exclusion
probl em sol ution.



by simply assuming sinultaneous interactions do not occur. Any
anal ysis procedure or nodel should consider all possible variations
in timng of system operations. Another objection is that Dijkstra
has solved the mutual exclusion problem for programs by presenting
anot her mutual exclusion problem which nmust be solved in the logic
circuits of the system In order to guarantee that the assunptions
about the indivisibility of the operations and the absence of sinul-
taneous P and V executions hold, another nutual exclusion problem
nearly identical to the one presented earlier nutual exclusion

must be solved. In fact, the statement of the problem given wll
suffice if we replace the words "critical section" by "P or V op-
eration".

We do not intend to be overly critical of Dijkstra's work. oOther
publ i shed solutions to the mutual exclusion problem depend on the
excl usive execution of some primtive operation. A possible excep-
tion is the work of Clark [ 3 ]; however, we are not aware of the
details of their inplenentation. W feel that there remin unanswer-
ed questions and a need for nmore work in this area. In this and
subsequent papers, we discuss a new approach to the study of parallel
systenms.  Methods based on the use of flow tables are presented
which allow circuits and prograns to be described in a comon frane-
work.  These methods pernit the formal analysis of the operation of
systens of the type we have just described and nake it possible to
consider the effects of delays. They are applicable in the synthesis

of solutions to problems such as the nutual exclusion problem A



mode of operation is described for parallel systems which does not
depend on synchronous operation or the exclusive execution of any

primtive operations.

PARALLEL SYSTEMS

A diagram of a portion of a possible system configuration is

, shown in Fig. 2. The square boxes represent system conponents.

These conponents may be prograns or circuits. The operation of a

circuit or the execution of a programis referred to as a process
in the sense used in the introduction.. Some of the conponents nay

act as control mechani sns which enable and disable other conponents.

Each interconnecting line represents a physical wire which carries
a binary level signal. Each line has associated with it a direction
of propagation for transmission of signal value changes from the
out put of one conponent to the input of another. The direction of
propagation is indicated by arrowheads in the system di agram

The operation of the system can be described in a general way
as follows. \henever a process wants to perform an operation that
could affect other processes, the process requests pernission to
perform the operation from a control nechanism The perm ssion has
the form of an enabling signal sent from the control mechanismto
the process. It is the responsibility of the control mechanismto
ensure that no situation arises that violates restrictions placed

on system operation. One control mechanism can seek authorization
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Figure 2. Typical parallel system configuration.
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for an action from another control mechanism and there need be no
central control mechani sm responsible for the operation of the entire
system

The general form of a system conponent is shown in Fig. 3. The
conponent has n input lines and m output lines. Each input

line has an associated input variable xi,i =1, ....n. The values

of the input variables define the input state of the conponent.

Each input variable has two possible values, 0 and 1 . Each

conponent produces outputs which are also binary signals. Each out-

put line has an associated output variable or excitation variable

Z; i =1,...,m. The values of the output variables define the

output state of the conponent. Each input and output line is con-

nected to exactly one other conponent.

FLOW TABLES

In any nodel of conputer systens, it is necessary to be able

to describe precisely the operation of each system component. Mny
model s of parallel conputations and parallel conputer systens have
been proposed in which functions are used to describe conponent
behavior [ 1 , 2, 15 16 17 20 21 22 , 24 25 . 27 1.

These functions define nmappings of conponent input states into output
states. This approach has the advantage of conplete generality in
the types of conmponent behavior that can be described. Any operation

that can be described by a mathematical function can be represented

11
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Figure 3. General form of a component.
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There are several disadvantages associated with this approach however.
First, nost of the interesting properties of the system such as
whet her or not the system ever halts or whether one systemis equi-
valent to another, are undecidable. That is, there do not exist
algorithns which determine for any arbitrary systemif the system
ever halts or for two arbitrary systems, if they do the sane thing.
A second disadvantage is that the function does not necessarily des-
cribe the program or circuit that inplements the function.

The nmodel we propose uses flow tables rather than functions
to describe conponent operation. Flow tables were first introduced
by Huffman [ 13 ] and are nornmally used in the design of sequential
switching circuits [ 23 ]. There is a direct correspondence between
a sequential circuit and a flow table. In another paper, we show
that flow tables can be used to describe conputer prograns and give
procedures for constructing the program that corresponds to a given
flow table and the flow table that corresponds to a given program
Thus there is a direct correspondence between a program or circuit
i mpl ementation and flow table used to describe the inplenentation.
This correspondence is two-way. A programor circuit can be analyzed
to determine what it does and a flow table solution to a problem can
be synthesized or designed and then a program or circuit inplenenta-
tion produced.

A possible disadvantage of using flow tables is that only math-
ematical functions which require finite internal storage can be des-
cribed. For exanple, given a conponent with two inputs x

1and x2|t

13




is inpossible to use a flow table to determine if an arbitrary nunber
1-0-1 transitions on the X, input is always followed by exactly the
same nunber of 1-0-1 input transitions on the Xy input. W are
interested in the study of interactions anong conponents rather than
the types of problems that can be solved using these systens. W
feel these interactions are best studied in a nodel which requires
finite storage and will show that problens which arise in intercon-
necting conponents can be solved using finite techniques. Ve view
a systemas a finite collection of conmponents which have a finite
nunber of interconnections and therefore mathematical properties
such as termnation and equival ence are decidable

Associated with each component, as shown in Fig. 3, is a flow
table of the formshown in Table 2. This table has 2" col ums

one colum for each possible input state and r rows where each

row represents an internal state of the conponent. Each interna

state is designated by a unique integer nunber (1,2,...,r). The
table entry designated by an internal-state input-state pair specif-
ies the next internal state of the conponent. If the next-state
entry is the sane as the present internal state, the entry is called

a stable entry and the conponent (flow table) is said to be in a

stable state or stable. If the next-state entry is not the same

as the present internal state, the entry is called an unstable

entry and the conponent (flow table) is said to be in an unstable

state or unstable. An output state is associated with each interna

state. Wiile it is possible for the output state to depend on the

14

of



Tabl e 2.

| nt er nal
State

Gener al

Form of a Flow Table

[nput State

X1X2 e e Xn

00...1 11...

S (next state)

15

Qut put

le

9"

10 .

State



input state as well as the internal state [ 23 ], this will not

be done in this paper. A flow table nust satisfy the follow ng rest-
riction. Every unstable entry nust specify a next internal state
entry which is stable. Thus the table in Table 3a is a flow table
but the table of Table 3b is not. To be precise, the followi ng def-

inition of a flow table is given

-Definition 1:

Aflowtable is atable with 2" colums, one for each
input state, and r rows, one for each internal state
Associated with each row is an output state. FEach unstable

entry nust specify a next internal state which is stable.

As a consequence of the fact that the output state is associat-
ed with an internal state and since each unstable entry leads dir-

ectly to a stable entry, it follows that each output variable my

change value at mpst once during any internal state transition.

In order to describe situations such as in Table 3b, we define a

state table.

Definition 2:
A state table is a table which is identical to a flow
table except that it is not required that every unstable

entry specify a next internal state that is stable.

16




Table 3. a) Flow Table Exanple b) Table Wich is Not a Flow Table

a) b)

17



O course every flow table is also a state table. The distinction
bet ween flow tables and state tables has been nmade previously [ 23 ].
O hers do not nmake this distinction: state tables are not introduced

and the termnormal flow table is used to describe the case where

every transition leads directly to a stable state and each out put
variabl e changes at mpst once during each internal state transition

[ 10 , 11, 28 1.

DELAY ASSUMPTI ONS

The following assunptions are nade about physical delays present

in a parallel system

Assunption 1:
The tine for a value change to propagate from a conponent output

to a conponent input (the line delay) is finite and unbounded

Assunption 2:

Wthin a conmponent, the delays are finite and bounded.

The intent of Assumption 1 is that |ine delays cannot be controlled. If
a "pulse" or short 1 value is produced at a component output, it is not
assumed that this value necessarily nust propagate to a conponent input.
The consequences of these assunptions are explored in this and sub-
sequent papers. It should be noted that if all delays are assuned

to be bounded, a "synchronous" solution to the mutual exclusion pro-

bl em can be obtained in which the maxi mum delay tine is used to det-

ernine the basic cycle tinme for the system Qur line delay assump-

18




is different fromthat made in other nodels where line delays are
either assumed to be bounded or zero | 1, 15, 16, 17, 20, 21, 22, 24,

25, 27 1.

A FLOW TABLE SOLUTI ON FOR THE TWO- PROCESS MJUTUAL EXCLUSI ON PROBLEM

We now return to the two-process mutual exclusion problem dis-
cussed in the introduction and use flow table nethods to design a
solution or control algorithm for this problem The system config-
uration is shown in Fig. 4. The variables shown are the input vari-
ables for each conmponent. The interpretation of the variable values

is given in Table 4. Suppose x, and z, both have the' value 0. \hen

1
process 1 wants to enter its critical section (CS1), it sets the

value of its output variable X1 to 1. The 1 value eventually reaches
the control mechanism input. The control mechanism sets the val ue

of Zy to 1. This value propagates to the input of process 1, enabling
the process to enter its critical section. The sequence of actions
on the part of process 1, just described in words, can be described
by a flow table. Such a flowtable is shown in Table 5a. The process
isinitially ininternal state 1 with input state z,=0. Internal-
state input-state conbination will be denoted by a pair of states
separated by a dash (-), in this case, 1-O The 1-O entry in Table

5a is 2 indicating that eventually this process enters internal state
2. The output state for internal state 2 is x,=1. The 2-Oentry is

(2), a stable entry. The process remains in this stable state until

the input transition z :0=1 occurs. Ve assume that a process does

19
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Table 4. Interpretation of Variable Values for Fig. 4 (i=1,2)

X, = 1': process i wants to enter critica
section i (csi) or process i is
in CSi

x = 0 : process i does not want to enter
Csi and process i is not in CSi

z; = 1: process i may enter cSi

z. =0 : process i may not enter CSi

21



Table 5. Design of a Flow Table for Process 1.

(a) (b)

Tabl e 6. Fl ow Table for Process 2

22



not remain in its critical section indefinitely. Therefore the 2-1
entry nust be unstable and should be 1 indicating that the process
eventually return to internal state 1 where Xl is set to 0. The
unstable transition does not necessarily occur in a short time and

in general, a substantial portion of the operating tinme of a conponent
may be spent in unstable transitions. The |-l entry in the flow

t abl e nust be(}:} This is necessary to ensure that the contro

mechani sm recogni zes that process 1 has left its critical section.

The control does this by setting Z,

to O which eventually enables
process 1 to start its cycle again. The conplete flow table for
process 1 is given in Table 5b. The corresponding flow table for
process 2 is given in Table 6

If the |-1 entry in Table 5b were 2, the table of Table 7 would
be obtained. This table is a state table and not a flow table since
the 2-1 entry does not specify a stable state. If this table des-
cribed the behavior of process 1, it would be possible for both re-

strictions on the mutual exclusion problemto be violated. First

the X 1= 0 =1 transition could be so short that the 0 value

1’
never is recognized by the control. Thus, if process 2 desires to
enter its critical section, the control would never realize that
process 1 was finished and process 2 would never be enabled violating
Restriction 2.  On the other hand, if process 2 desires to enter

its critical section but is not enabled (x, = 1 and z_, = 0) and the

2
0 value for x| appears monentarily and is recognized by the control

the control may disable process 1 (Zl"o) and enabl e process 2 (2, ™1).

23



Table 7. An Inproper State Table

1
le1
1] 2 |2 ] 0
@] |
S
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But process 1 can re-enter its critical section before z1 becomes 0
In this case, both processes would be in their critical sections
sinmul taneously violating Restriction 1. This informal analysis is
not intended to replace nore formal analysis procedures to be pre-
sented in a later paper. However, it does point out the advantages
of the flow table in making the designer consider all possible state
transitions, allowing himto detect and elininate many potential
errors during the synthesis procedure

Tables 5b and 6 describe the behavior of the two conponents of
the system which contain critical sections. W are now ready to
design the control nechanism The control nechanism has two input
vari abl es X4 and Xy and four possible input states; therefore
there are four colums in the associated flow table. W require
that if neither process is enabled to enter its critical section
and if process requests arrive at the control sinmultaneously, access
is given to the process that was not enabled last. Because of this
requirenent, the control mechanism nust "renenber” which process
was enabled last. Two internal states are required for this purpose
Two nore internal states are required, one to produce the enabling
signal for process 1 and the other to produce the signal for process
2. Thus a minimm of four internal states are required for the con-
trol mechani sm

The usual techniques of flow table synthesis produce first a

primtive flow table which has one stable entry in each row  Sinpli-

fication procedures are then used to elinminate unnecessary interna

25



states [ 23 ]. To sinplify this discussion a flow table with four
internal states will be obtained directly. To see how the design
proceeds, suppose that neither process is requesting access to its
critical section, XX = 00, and process 2 was in its critical section
last. Let the corresponding table entry |-00 be as shown in Table 8a.
The output state is zZ z, = 00, and the control is stable waiting

172

for an input transition. |If the transition X X! 00 » 01 occurs,
the control nust enter a new internal state where process 2 is enabled,

as shown in Table 8b. From|[-00, the transition x 00 » 10

Xyt
may al so occur and process 1 nust be enabled, say by internal state 3.
If the X Xyt 00» 11 transition occurs while in |-00, that is,

sinul taneous requests, state 3 is entered and process 1 is enabled
since process 2 was enabled last. Internal state 4 is used to re-
nmenber that process 1 was enabled last. From 4-00, transitions

anal ogous to those from|-00 can occur'. The table as specified

thus far is shown in Table 8c. Consider the 2-01 entry. In this
state, process 2 is requesting access to its critical section and

is enabl ed, Xy = 1 and z, = 1. There are three possible input tran-

sitions, 01 » 11 or 01 = 00 or Ol » 10. The first indicates

X Ko
that process 1 also desires to enter its critical section and the 2-11
entry is 2 indicating that the control must wait until process 2

| eaves its critical section before enabling process 1. Notice that,
as defined by the flow table in Table 5b, once X, beconmes 1, it

does not change to O until after z,,is set to 1. The x x 01> 00
transition indicates that process 2 has left its critical section.

26
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In this case, the control return to internal state 1, remenbering that
process 2 was in its critical section last. The final possibili-

ty ,xlxzz 01 » 10 accounts for the sinultaneous occurrence of both

of the first two transitions. In this case, the control enters
internal state 3 and enables process 1. These transitions are in-
cluded in Table 8d. Fromthe 2-11 entry, the only possible transi-
tionis xsz: 11 » 10, which takes the control to internal state 3.
The transitions fromthe 3-10 and 3-11 entries are analogous to those
from 2-01 and 2-11. The conplete control flow table and process flow
tables are shown in Table 9. These flow tables describe all possible
interactions of the components in this system The next step in the
design process is to produce the actual prograns and circuits that
implenent this system Before this can be done, it is necessary to
discuss in nore detail the node of operation used for system conpo-

nents.

BASI C COVFONENT STRUCTURE

We assune that there is no bound on the time for value changes
to propagate in lines (Assunption 1); therefore, no global timng
constraints can be made on a system and master clocks, which are
comonly used to synchronize the operation of digital systens, cannot
be relied upon. One approach to the elimnation of master clocks

utilizes propagation-linmited logic [ 12 ]. Extra connections are

provi ded between conponents. [Each conponent has special inputs which
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deternine when the conponent output values may be changed. Special
conmponent outputs are also provided so that a conponent can notify
other components when it is ready to accept new input information.

We propose a structure for conponents which does not require
extra connections such as are used in propagation-limted logic. Extra
control connections conplicate fornmal analysis of a system and in the
case of the mutual exclusion problem are unnecessary. However, extra
circuitry is required to isolate a conponent from input changes which
may occur while the conponent is responding to an earlier input change.
Consi der the operation of a fundamental -node sequential circuit in an
environment where |ine delays are unbounded. Fundamental - mode op-

eration is defined as follows [ 23 ]:

Definition 3:
A sequential circuit is said to be operating in

fundanental -mode if and only if all input changes occur

when the circuit is stable.

A general form for a sequential circuit with level inputs and |evel
outputs for fundanental -node operation-is shown in Fig. 5.  Set-Reset
flip-flops* are used to store the internal state of the circuit and

the output values depend only on the internal state. The internal

* A Set-Reset (S-R) flip-flop has two inputs, S and R and two |
outputs, y and y'. When S=0 and R=1, y=0 and y'=1. When S=1 and R=0,
y=1 and y'=0. \When 8=0 and R=0, the output of the flip-flop is det-
ernmined by the nost recent 1 value for Sor R If S and R have 1

val ues simultaneously, the values of y and y' are arbitrary.
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| ogic and output logic boxes contain conbinational circuits, circuits

with no loops in the direction of signal propagation

Fundament al - node operation is usually attained by requiring that
there be an interval between input value transitions of sufficient
duration to allow the circuit to becone stable. In our rodel, if a
circuit or component has nore than one input, it is possible for the
circuitry to be responding to a change on one input |ine when a change
on another input line occurs. Thus, it is not reasonable to assune
fundament al -node operation. To illustrate-the difficulties if a circ-
uit inthe formof Fig. 5 is not operated in fundanental node, consid-
er the flow table shown in Table 10. Suppose the present table entry
is |-00 and the input value sequence x o 00 = 01 » 11 occurs.
One possible internal transition sequence is shown in Fig. 6a and
another in Fig. 6b. In the first case, the duration of the 01 input
state is sufficient to cause the 2-01 table entry to be entered
This is not the case in Fig. 6b. As a result, seeningly identica
i nput sequences can produce different internal state transitions
and as a consquence different output states. Such behavior is not
desirable. Discussions of these difficulties are concerned wth
hazards in flow tables and circuits which undergo multiple-input
transitions and are beyond the scope of this paper [ 9, 10 ]. In-

stead, we define a node of operation which guarantees that every in-

put transition results in a unique internal-state transition and a

uni que output-state transition. Before presenting our node of opera-

tion, another node of operation comonly used with sequential circuits
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Figure 6. Possible transitions for flow table of Table 9 given input

sequence X, X,: 00 » 01 = 11
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must be discussed. This node of operation is called pul se node and

may be used with clocked sequential circuits [ 23 ].

Pul se Mbde and Clocked Circuits

For our purposes, a clocked sequential circuit is a sequential

circuit with level inputs and level outputs, such as shown in Fig. 5,
but with one extra input called a clock input. If the clock input

has the characteristic that it has a 1 value for a nuch shorter tine
that it has the 0 value, the clock-input is said to be a pulse type

input or pulse input instead of a level input. For a pulse input,

the 1 value for the clock input is called the clock pulse. O ocked
sequential circuits can be designed to operate in fundanental node
as well as in pulse node [ 23 ]. If a clocked sequential circuit is
operated in pulse node, the follow ng assunptions are nmade about the
width of the input pulse.
Assunption 3:

The pulse input is of sufficient duration to cause the appropri-
ate flip-flops to change state.
Assunption 4:

The duration of the pulse-input is short enough that it is no
| onger present at the circuits which generate the flip-flop input sign-
als when the change in flip-flop outputs has propagated to the input
circuitry.

The actual definition of pulse node operation for a sequenti al

circuit is as follows.
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Definition 4:
A sequential circuit is said to be operating
in pulse nmode if and only if the follow ng conditions
are satisfied:
1. At least one input is of pulse type
2. Changes in internal state occur only in response
to the occurrence of a pulse at one of the pul se
i nputs.
3. Each input pulse causes only one change in

internal state

In clocked sequential circuits designed for pul se-node operation,

clocked Set-Reset flip-flops are often used. These flip-flops have

an extra input for the clock signal and change state only when the
clock pulse is present. In order to insure that Assunption 4 holds,

doubl e-rank or master-slave flip-flops can be used. These flip-flops

change their outputs after the clock pul se has disappeared, preventing
f eedback signals from changing while the clock pulse is present. In

Fig. 7, three basic flip-flop-designs are shown, the S-R flip-flop,

the clocked S-R flip-flop, and the clocked, naster-slave S-R flip-flop.
The flip-flop of Fig. 7c operates in the follow ng manner. Wien ¢ is
0, changes in the S and Rinputs are isolated fromthe master flip-
flop and the outputs of the master flip-flop determne the outputs

of the slave flip-flop. Wen c becomes 1, the clock input to gates

3 and 4 nust becone 0 isolating the slave flip-flop hefore any changes
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appear in the master flip-flop outputs. Wile ¢ =1, the nmaster
flip-flop records the new input conditions. Wen ¢ becones 0 again,
the clock inputs to gates 1 and 2 must becone 0 isolating the

master flip-flop before any changes in the slave flip-flop outputs
propagate to the S and R inputs of gates 1 and 2. As long as the
gate delays in this flip-flop are greater than the line delay from
the clock to the inputs of gates 1 and 2, this latter condition

will be satisfied.

A general form for a clocked sequential circuit using clocked
S-Rflip-flops is shown in Fig. 8. In general, there may be nulti-
pl e-i nput changes in the circuitry which deternmines the flip-flop in-

puts. Therefore, static and dynanmic hazards may exist in the flip-flop

i nputs which cannot be elimnated by adding logic gates [ 9 ]. These
hazards can result in spurious inputs to the flip-flops which could
cause an internal-state flip-flop to be set or reset incorrectly if
the inputs change while the clock pulse is present. One way to eli-
mnate the effect of hazard pulses is to assune that the circuit
inputs do not change while the clock pulse is present. However
if we made this assunption and went on to design a solution to the
mut ual exclusion problem we would have solved one nutual exclusion
probl em by posing another one, just as Dijkstra did. This is so
because we woul d have assumed the presence of the clock pulse and
i nput changes are nutually exclusive. To elimnate the possibility

of hazard pul ses which can adversely affect conponent operation,
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we define the follow ng node of operation for the conponents in

%
paral l el system

Conmponent Operation

Wiile nost of this discussion is concerned with circuits, we
intend that these techniques be used with conponents which are cap-
abl e of executing programs as well. The basic form of a conponent
circuit is shown in Fig. 9. This circuit has tw ranks of clocked
SR flip-flops. These ranks are called the input rank and the output
rank.  The output rank corresponds to the flip-flops for clocked
sequential circuits as shown in Fig. 8. Master-slave type flip-flops
can be used in the output rank to isolate internal variable changes
fromthe internal logic. The input rank of flip-flops serves the
sol e function of recording the values on the input lines. These
flip-flops may be the sinple clocked type shown in Fig. 7b. The

conponent i nputs Xp oo oo X MRY change at any time. \en the response

n
to an input change is conplete, a new input state is deternmined by
applying a clock pulse on the cl1 line. The cl pulse nust be of
sufficient duration to allow the input rank to becone stable. \Wen

the cl pulse is renoved, the effect of new input state nust conpletely

propagate to the inputs of the flip-flops in the output rank before

the c_ signal is set to 1. The 1 value for c, causes the effect of

* Fri edman and Menon [ 9 ] have discussed the design of sequentia
circuits with nmultiple-input changes assuming the maxi mum tine between
successive input changes is bounded. This assunption cannot be nade
if line delays are unbounded
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the input state to be recorded in the output rank. It is necessary
to have bounds on the delays in the component circuitry to realize
this nmode of operation (Assunption 2).

Wth this nmode of operation, the only possible transient effect
caused by the occurence of nultiple-input changes is the follow ng.
Wien ¢l has the value 1, there nmay be 1 values on both the Set and
Reset inputs of one or nore input rank flip-flops. Wen cl becones
0, these flip-flops will record the input value either just prior to
the transient condition or just after. In either case, the next
phase of conponent operation proceeds properly.

The design of conponent circuitry, exclusive of the input rank,
is the same as the design of a clocked sequential circuit under the
assunption, which is valid because of the presence of the input rank,

that the circuit inputs x;,...,x do not change when the clock (c,)

1
input is present. The clocked sequential circuit nay be designed for
pul se-mode or fundamental - mode operation.

The flow tables used to describe the operation of a clocked
sequential circuit have extra colums to account for the presence and
absence of the clock (cy) input. Fig. 10a shows a flow table designed
wi thout consideration of a clock input. The internal-state transitions
are indicated by arrows. This sane flow table with a clock input
added is shown in Fig. 10b. Wen the clock signal is absent, the
table is always stable in a particular internal state. For this

reason, these flow tables are usually drawn in the form shown in Fig.

10c with only a single colum to describe the operation when the
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clock input is 0. For pulse-nbde operation, the internal state tran-
sitions are diagonal transitions as shown in Fig. 10c. This is be-
cause of Assunption 4.

Since the clock connections are specified and the non-clock
inputs and outputs are level signals, the design of the internal |ogic
circuits in Fig. 9 can proceed, ignoring the clock input, using flow
tables in the form shown in Table 2. It is understood that these
flow tabl es specify the operation of the conponent when c, has the

value 1 and that when c, is 0, the conponent is in the stable state

2

specified during the previous interval when c, had the value 1.

If pul se-node operation is used, critical races and essential

hazards cannot affect the operation of the clocked sequential circuit.
Critical races may occur in a fundamental-node circuit if two or nore
internal variables are unstable simultaneously. If the final interna
state depends on the order in which the internal variables change
value, a critical race exists [ 23 ]. In pulse node, Assunptions 3
and 4 guarantee that the next internal state is unique. Essentia
hazards may occur in a fundamental -mode circuit if an internal var-

i abl e changes before the propagation of an input change is conplete
As with a critical race, the effect of the essential hazard is such
that the next internal state is not uniquely specified. For pulse
mode, Assunption 4 elimnates the possibility of adverse effects

from any essential hazards.
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Using the basic conponent structure just described, if each com
ponent input changes value at intervals greater than the conponent
cycle time (successive O1-0 transitions for c1 and c,), every i nput
transition will result in a unique internal state transition. It

is possible for an input variable to change value nore than once

during the basic conponent cycle time. |If this happens, input tran-
sitions will not be recognized by the conponent. General considera-
tion of such input changes will be given in a later paper. In the
case of the solution to the two-process nutual exclusion problem

all input transitions must be recognized. This is so because when
each conponent changes one of its output values, it does not change
the output value again until it recognizes an input transition which
is produced in recognition of its own output value change. For ex-
anple, when access to critical section 1 is requested, X is set to
1. This value is not changed until the xI: 0 =1 input transition
is recognized by the control and the control sets Zl to 1 allow ng

the critical section to be entered

The node of operation we have described can be used by a processor

in a multi-processor conputer system \Wen the processor is executing
instructions which have no effect on the rest of the system the

internal clock signals ¢, and c, both have the value 0. CQutput values

1
which are inputs to other conponents, may be changed at any time. Wen
a processor reaches a point where further action depends on the val ues
of inputs from other parts of the system the present input state is

recorded by applying the ¢l pulse. After the input state is deter-

mned, the 1 value for c, initiates the appropriate processor action.
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The use of an input rank of flip-flops to record the input state
should be used by all conponents for which it is possible to have noe
than one input change at any instant. |If a conponent has only a single
input, a fundanental -mbde inplenentation can be obtained wthout using
clock signals. Belay elements may be necessary in feedback paths
to elimnate essential hazards [ 23 , 28 ].

In a |later paper, we show how a sequential program can be prod-

uced to inplement a given flow table specification. In the next
section, a control circuit for the two-process nutual exclusion pro-

blem is designed

A CONTRCL CIRCU T FOR THE TWO- PROCESS MUTUAL EXCLUSI ON PROBLEM

The flow table specification of the control mechanism was given
in Table 9. Let us assume the c, input is a pulse-type input and the
circuit is operated in pulse node. The steps in this design process
are discussed in detail by MCuskey [ 23 ]. The design of the cir-
cuit will be sketched only briefly.

Since the control flow table has-four internal states, two
_internal vari abl es, Yq and Vo, are required. An internal state
assignment, an assignnent of internal variable values for each of the

internal states in the flow table, is given in Table 11. Such a table

is called a transition table. This table has exactly the sane form

as a flow table except that each table entry specifies the next
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Table 11.

Transition Table for the Control Circuit

(2 last)

(2 gets)

(1 last)
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01 10 10 00

@ 01 01 10 00
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values or excitation values of the internal variables, Since the

internal states are realized with Set-Reset flip-flops, the next

step is to produce the excitation table for the Set and Reset input

lines to the flip-flops corresponding to the internal variables vyl
and Yo This table is shown in Table 12. The entries in this table
can be deternmned from the corresponding entries in the transition
table using standard techniques [ 23 ]. From the excitation table,
the excitation functions for the two flip-flops are obtained using
techni ques for conbinational network synthesis [ 23 ]. These excita-
tion functions specify the conbinational network used in the interna
logic portion of the circuit. The excitation functions are given
bel ow.
S1 = xl(xz' + yz')

R = xz(xl' + yz)

w0
]

9 = %X (x2 + yl)

=}
1

= xz'(x1 + yl-')
The output excitation functions deternmine the conbinational network
for the output logic circuit. These functions depend only on the
i nternal variableg Yq and Yoy and can be determined from Table 11
They are given bel ow.

Zy =9y’

Z2:y

|y2
The conplete control circuit diagram including the input rank and
clock inputs is shown in Fig. 11. This conpletes the synthesis of

the control circuit



Table 12.

Excitation Table for

Y152

00

01

11

10

the Control Circuit
xlxz
00 01 11 10
Od, Od 04,10 10,0d| 10,0d
04,01 |Cd, dO | (d, dO| 10,01
do,do | 01,d0 |01,d0 | 01,d0
do,10 01,10 O Od |dO Od
SlRl’ 82R2
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It is interesting to observe that the clocked sequential circuit
portion of the control circuit in Fig. 11 also realizes the contro
flow table of Table 9 when c, is a level signal and the circuit is

operated in fundamental node if the time for all flip-flops in the

output rank to becone stable is less than the mininum delay in pro-
pagation of flip-flop outputs to flip-flop inputs. The latter con-
dition is sufficient to elimnate the effects of essential hazards.
The control circuit contains no critical races because, in the 00 and
11 colums of Table 11, only one internal variable changes at a tine.
The reason both pulse node and fundamental mpde result in proper
operation of the circuit is because of the form of the control flow
table, in which every unstable entry specifies a stable entry [ 23a ].
The next internal state is unique even if ¢y retains the value 1

until the circuit becomes stable.

As we have defined a parallel system every flow table nust have
the form specified by Definition 2. Therefore, any circuit obtained
in the manner described in this section can be operated in pul se
mode or fundanental node with respect to the ¢, clock input. The

2
question which remains to be answered is the following-. Mist it always

be possible to describe component operation by a flow table? W
answer this question affirmatively with the follow ng argunent.

Suppose the conponent (program or circuit) that produces an
input value transition for a variable intends that the variable return

to its original value before the conponent which recogni zes the input
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transition enters its next internal state. This type of operation
should not be used because the line delays between conponents cannot
be controlled (Assunption 1). Next suppose the input value remains
constant. Either the conponent which recognizes the input value
eventual |y becones stable or it does not. A state table which never
becomes stable for some fixed input state is said to contain a cycle,
Consi der such a table. During a cycle either sone output changes val ue
or no output changes val ue. If an output value changes and it changes
more than once, the internediate values may or nay not be recognized
because of the line delay assunption. Therefore cycles with multiple
transitions for a single output should not be used. On the other
hand, a cycle with at nost one change for each output variable can

al ways be replaced by a transition to single stable state without
affecting the external behavior of the conponent. The output state
for the final stable state is specified by the final value for each
output variable. W wll assume that this is always done and that

any state table used to describe the operation of a conponent is
cycle-free. If a state table is cycle-free and the input value re-
mai ns constant, the table (conponent) nust eventually enter a stable
entry. The stable entry may be entered after a sequence of unstable
transitions. During this sequence, consider what can happen to the
val ue of each output variable. Either the value does not change or it
changes exactly once or it changes nore than once. Miltiple value
changes nust not be used for the same reason that ruled out nultiple

transitions during a cycle, the internediate output values may not be
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recognized. In the cases where the output value does not change or
changes exactly once, the entire sequence of unstable transitions can
be replaced by a single transition directly to the final stable entry
wi thout affecting the external behavior of the component (the Iine

del ay assunption (Assunption 1) makes it inpossible to control the
order in which output values actually propagate to conponent inputs).
We conclude that the tables used to describe neaningful conponent
operation can always be put in a formwhich is cycle-free and which is
such that every unstable entry specifies a stable entry. That is,

they can be represented as flow tables.
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CONCLUSI ONS

The flow table mdel has been shown to be valuable in the design
of a control algorithm for the two-process nutual exclusion problem
Froma flow table, sequential circuit inplenentations can be designed.
In a later paper, it will be shown that flow tables can be used for
the analysis and synthesis of sequential prograns. As a result,
our nmodel provides a comon basis for the treatment of program and

circuit inplementations of control algorithmns.
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