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NUMERI CAL TECHNI QUES | N MATHENMATI CAL  PROGRAMM NG

by

R. H. Bartels, G. H Golub, M A Saunders

Abstract

The application of numerically stable matrix deconpositions to
m nim zation problens involving |inear constraints is discussed and
shown to be feasible wthout undue |oss of efficiency.

Part A describes computation and updating of the product-form
of the IU deconposition of a matrix and shows it can be applied to
solving linear systens at least as efficiently as standard techniques
using the product-form of the inverse.

Part B di scusses orthogonalization via Househol der transformations,
with applications to least squares and quadratic programmng algorithns
based on the principal pivoting method of Cottle and Dantzig.

Part C applies the singular value decomposition to the nonlinear

| east squares problem and discusses related eigenval ue problens.
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I ntroduction

Thi s paper describes the application of numerically stable matrix
deconpositions to nminimzation problems involving linear constraints
Al gorithms for solving such problens are fundamentally techniques for
the solution of selected systens of |inear equations, and during the
last fifteen years there has been a major inprovenent in the understanding
of these and other linear algebraic problens. W show here that methods
whi ch have been anal ysed by various workers and proven to be nunerically
stable may be enployed in mathematical programming algorithms without
undue loss of efficiency.

Part A describes neans for conputing and updating the product-form
of the U deconposition of a matrix. The solution of systens of equations
by this nmethod is shown to be stable and to be at least as efficient
as standard techni ques which use the product-form of the inverse.

In Part B we discuss orthogonalization via Househol der transformations
Applications are given to least squares and quadratic programming algorithns
based on the principal pivoting method of Cottle and Dantzig [5 1. For
further applications of stable nethods to |east squares and quadratic
progranmmi ng, reference should be made to the recent work of R J. Hanson [13]
and of J. Stoer [26] whose algorithms are based on the gradient projection
nethod of J. B. Rosen [2L].

In Part C the application of the singular value deconposition to
the nonlinear |east squares problemis discussed, along with rel ated

ei genval ue probl ens.
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A THE USE OF LU DECOVPCSI TION I N EXCHANGE ALGORI THVS

1. LU Deconposi tion

If Bis an n X n , nonsingular matri x, there exists a permutation
matrix M, a lower-triangular matrix L with ones on the diagonal, and

an upper-triangular matrix U such that
(1.1) mB = LU .

It is possible to choose m, L, and Uso that all elements of L
are bounded in magnitude by unity.

A frequently-used algorithm for conputing this deconposition is
built around Gaussian elinmnation with row interchanges. It produces

the matrices m and L in an inplicit formas shown:

For k = 1,2,...,n=-1 in order carry out the follow ng

two steps:

(1.2) . Find an elenent in the k-th colum of B, on or below the
di agonal, which has naximal magnitude. |nterchange the

k-th row with the row of the elenent found.

(1.3) Add an appropriate nultiple of the resulting k-th row to each
row below the k-th in order to create zeros bel ow the diagona

in the k-th col um.



Each execution of the first step (1.2), in matrix notation, anounts
to the premultiplication of B by a suitable permutation nmatrix Ty -

The following step (1.3) may be regarded as the prenultiplication of B

by a matrix Ty of the form

k
1
1
(1) 1
Eer1, k| T
n,k 1 ?
where |g, .| <1 for each i = k+l,...,n .
l,k -

By repeating the two steps n-1 times, B is transformed into U .

And at the same tinme the matrix (L'lﬁ) is collected in product form

-1,
(1.5) LM =T, 4T, 1 1T -

This algorithm requires n5/5+ O(nz) mul tiplication/division operations
and again this many addition/subtraction operations. Both U and all

of the g. i can be stored in the space which was originally occupied by B .

)

An additional n locationsare required for the essential information contained

in the TTk.



2. Exchange Al gorithns

Many al gorithns require the solving of a sequence of |inear equations
(2.1) B(i)x :V(i)

for which each B(i) differs fromits predecessor in only one colum.
Exanpl es of such algorithns are: the sinplex nethod, Stiefel's exchange
nethod for finding a Chebyshev solution to an overdetermned |inear
equation system and adjacent- path methods for solving the complementary-
pivot programming probl em

Gven that ) B(°) has a deconposition of the form

(2.2) g(0) _ (0)4(0)

-1
wher e U(O) IS upper-triangular, and given that 1(9) has been

stored as a product

(2.3) (O (gl plo g0

the initial system of the sequence is readily solved: Set
(2.1) y =1 7

and then back-solve the triangular system

(2.5) u




3. Updating the LU Deconposition

Let the col umm r of B(O) be replaced by the colum vector a(o)
So long as we revise the ordering of the unknowns accordingly, we may

©)

insert a into the last colum position, shifting colums r_*1
through n of B(O) one position to the left to make room W& will
call the result B(l) , and we can easily check that it has the

deconposi tion

3.1) S(D) _ 05D

)

wher e Ii(l) is'a matrix which is upper-Hessenberg in its last n-r_ +1

colums and upper-triangular in its first r_-1 colums. That is,

H(l) has the form

(3.2)

The first ro-l col ums of H(l) are identical with those of U(O)

The next n-r_ are identical with the [ ast n-r, col ums of Lﬂo) ‘

-1
And the last colum of H<l) is the vector L<O) a(o)

H<1) can be reduced to upper-triangular form by Gaussian elimnation
with row interchanges. Here, however, we need only concern ourselves

with the interchanges of pairs of adjacent rows. Thus U(l> s gotten



from H(l) by applying a sequence of sinple transformations:

(3.3) ) ;pr(lﬂnr(l})l l~§i),,r((::) (1)

where each rgl) has the form

|
1
1
| 1
(3.4)
i+l ggl) 1l
1
1 P)
i+l

and each n(il) is either the identity matrix or the identity with the i-th
and i+l-st rows exchanged, the choice being made so that (|1in | <1.

The essential information in all of these transformations can be
stored in n-r locations plus an additional n-ro bits (to indicate

the interchanges). If we et



I L R

B4

“o o

then we have achieved the deconposition

(5.6) I AR

The transition from B(i) to B(i+l) for any i is to be nade
. 0
exactly as was the transition from B( ) to B(l). Any system of
linear equations involving the matrix B(l) for any i is to be solved

according to the steps given in (2.4) and (2.5).




k. Round-off Considerations

For nost standard conputing machines the errors in the basic

arithmetic operations can be expressed as follows:

fi(a + b)

a(l + e« j—_b(1+52)

l)

(k.1) £1(a x b)

ab(l + 63)

f1(a/p) = (a/p) (1 *+e))

wher e |ei( < e . Here B stands for the base of the number system
in which machine arithmetic is carried out and t is the nunber of
significant figures which the machine retains after each operation. The
notation ff£(a "op" b) stands for the result of the operation "op"
upon the two, nornal-precision floating-point nunbers a and b when
standard floating-point arithnetic is used.

The choice of an U deconposition for each B(i) and the particular
way in which this deconposition is updated were notivated by the desire
to find a way of solving a sequence of l|inear equations (2.1) which would
retain a maxinum of information from one stage to the next in the sequence
and which would be as little affected by round-off errors as possible.
Under the assunption that nachine arithnetic behaves as given in (k.1),
the processes described in Sections 2 and 3 are little affectedby
round-off errors. The efficiency of the processes wll vary from algorithm
to algorithm but we will argue in a subsequent section that the processes
shoul d cost roughly as nmuch as those based upon product-form inverses

of the B(i).




W will now consider the round-off properties of the basic steps

described in Sections 2 and 3.

The conputed solution to the triangular system of |inear equations
(4.1) U(i)x =y
can be shown, owing to round-off errors, to satisfy a perturbed system
(k.3) (U(i) + SU(i))x =y

It is shown in Forsythe and Ml er [9 ] that

1su (1)
sy’ n(n+1) 1-t
(k.h) I ~— < (1.01)8 )
R
where ||...|| denotes the infinity normof a matrix, and thus round-of f

errors in the back-solution of a triangular system of [inear equations
may be regarded as equivalent to relatively small perturbations in the
original system

Simlarly, the conputed L and U obtained by Gaussian elimnation
with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation
(4.5) H+ 8H = IU

where Forsythe and Mler show that

(4.6) Lol p2pptt
Tlal
and WIkinson [28] establishes that o < n . Thus, the conputationa




process indicated in (3.3) can be regarded as introducing only relatively
smal | perturbations in each of the F(If) :

Simlar results hold for the initial LU deconposition (2.2) wth
a different bound for p. The reader is referred again to Forsythe
and Ml er.

The nost frequent computational step in the processes which we have
described is the application of one Gaussian elimnation step I' to a

col um vector v :

The conputed vector w satisfies

(4.8) for k #

e = Y%

( +
w fl(fl(gvi) vj)

J

1l

gv (1 + ex) (14 £) + v,(1 + &)

+ + + + +
gvy * vy gvi(el €3 8185) Vo




Thus we may regard the conputed vector w as the exact result of a

perturbed transformation

(4.9) w=(T+38v ,

wher e
(k.10) oI =
J o T
J
J
and
(4.11) o = g(sl+ 55 + 8165)

&>

Therefore we have

locf:  lelby “ o5 * eges [ ¥ e |
el T+ el

(4.12)

_where the right-hand side i s bounded, since |&l <1, according to

toazy L gl g1y < sl01st (say).
P

Hence, the conputations which we perform using transformations (k.7) al so

introduce relatively small perturbations into the quantities which we manipul ate

10




It is precisely with regard to such transformations that we feel

our method of conputation, based upon I deconpositions, is superior
to met hods based upon the inverses of the matrices B)® . such methods

usetransformati ons of the form

1 nl

(4.1k) . e k

T 1

k

. SR (1)t
These are applied to each colum in B to produce B ©oor

alternatively, in product-form methods, they areapplied to the vector

v(i) to produce the solution to system(2.1). As such, they involve
successive conputations of the form (4.7). Each such conputation may be
regarded as satisfying (4.9). But, since the nj may be unrestricted in

magni tude, no bound such as (L4.13) can be fixed.




B

5. Efficiency Considerations

As we have already pointed out, it requires
(5.1) n3/3 + O(n2)

mul tiplication-type operations to produce an initial LU deconposition (2.2).
To produce the product-forminverse of an nxn matrix, on the other

hand, requires
(5.2) n5/2 + O(ng)

operations. _
The solution for any system (2.1) must be found according to the LU-

deconposition method by conputing

(5.3) y =18 7

foll owed by solving

(5.1) vWx=y

The application of L(O)_l to vt i, (5.3) will require

n(n-1
(5.5) >

(4\'1
\=+/

operations. The application of the remaining transformations in L

will require at nost
(5.6) i(n-1)

operations. Solving (5.4) costs



n(n+l
(5'7) 7(2 - )

operations. Hence, the cost of (5.3) and (5.4) together is not greater than

(5.8) e+ i (n-1)

operations, and a reasonable expected figure would be n2+ % (n-1)

On the other hand, conputing the solution to (2.1) using the usual
-1
)

product form of B(‘1 requires the application of n+i transformations

of type (4.14) to v<i) at a cost of

(5.9) n° +in

operations.
If a vector a(') repl aces col umm P in B(i) , then the

-1
updat i ng of (1) requires that the vector
AR R
(5.10) SN C R €Y

be conputed. This will cost n2 +in operations, as shown in (5.9). Then
a transformation of form(4.14) must be produced fromz , and this wll

bring the total updating cost to
(5.11) n° + (i+1)n .

The corresponding cost for updating the LU decamposition Wi |l be not nore

t han
(5.12) M1 4 i(n-1)
- R CORRN €Y
operations to find L a , followed by at nost

13




(5.13) n_(r21+l)

(#1) 4, (3D)

operations to reduce H and generate the transformations

of type (3.4) which effect this reduction. This gives a total of at nost

(5.1%) n® +i(n-1)

. . . 2.1
operations, with an expected figure closer to n +-:2L- (n-1) .

Hence, in every case the figures for the I deconposition: (5.1k4),
- (5.8), and (5.1) are snaller than the corresponding figures (5.11), (5.9),

and (5.2) for the product-form inverse nethod.

1k



6. Storage Consi derations

Al'l conputational steps for the |X-deconposition method may be
organi zed according to the colums of the matrices B(i) . For large
systens of data this permts a two-level menory to be used, with the
hi gh- speed nenory reserved for those colums being actively processed.

The organization of Gaussian elimnation by colums is well-known,
and it is clear how the processes (5.3) may be simlarly arranged.
Finally, the upper-triangular systens (5.4) can be solved col umw se

as indicated below in the 4 x 4 case:

M1 M2 Y13 “1h\ X /yl

O M Uy Y il %2 | T2
(6.1) I l

O O u u2 i X 4 y}

Bring the y vector and the last colum of U into high-speed
memory. Set x) = yl*/um+ . Set yi =y, -uyx, for i =321,

This leaves us with the following 3 x 3 system

‘ t

/ Y1 Y12 Y13 * Y1

' - '
. (6.2) 0 Upy Vo X, | = | Y5
1.

O 0 U 1% T3

W process it as suggested in the 4 x 4 case, using now the third

colum of U to produce X3 Repeat as often as necessary.

15




--w;w»iwwl.

In the event that the matrices B(i) are sparse as well as large,
we wish to organize conputations additionally in such a way that this
sparseness is preserved as nmuch as possible in the deconpositions.
For the initial deconposition (2.2), for exanple, we would wish to
order the colums of B(O) in such a way that the production of L(O)-1
and U(O) introduce as few new nonzero el enents as possible. And at
subsequent stages, if there is a choice in the vector a(i) which is

“to be introduced as a new colum into the natrix B(i) to produce B( i+1) s
it may be desirable to make this choice to some extent on sparseness
consi derations, .

It is not generally practical to demand a mnimum growth of nonzero
el ements over the entire process of conputing the initial deconposition.
However, one can easily demand that, having processed the first k-I
colums according to (1.2) and (1.3), the next colum be chosen from those
remaining in such a way as to mnimze the nunber of nonzero el ements
generated in the next execution of steps (1.2) and (1.3). See, for
exanpl e, Tewarson [27] Choice of the next colum may al so be nmade
according to various schenes of "nerit"; e.g., see Dantzig et al. [6].

The introduction of new nonzero el ements during the process of

updating the i-th deconposition to the it+l-st depends upon

L@ el
(6.3) t he nonzero el ements in L a over those in a‘ ’/,
and
(6.4) t he nunber ry of the colum to be renoved from B(')

16



No freedomis possible in the reduction of H(i+l) to U(i+l) once

a<i) has been chosen and the corresponding r has been determ ned.
The growth (6.3) can be determ n‘ed according to the techniques
outlined in Tewarson's paper, at a cost for each value of i , however,
which is probably unacceptable. The nore inportant consideration is (6.4).
The larger the val ue of:ri , the fewer elimnation steps nust be carried

(1+1)

out on H and the |l ess chance there is for nonzero el enents to be

generated. Again, however, the determination of the value of r,
(1)

corresponding to each possible choice of a may prove for nost

algorithnms to be unreasonably expensive.

7




7. Accuracy Considerations

During the execution of an exchange algorithm it sometimes becones
necessary to ensure the highest possible accuracy for a solution to one
of the systems (2.1). Hgh accuracy is generally required of the |ast
solution in the sequence, and it nmay be required at other points in the
sequence when conponents of the solution, or nunbers conmputed from them
approach critical values. For exanple, in the sinplex method inner
products are taken with the vector of sinplex multipliers, obtained by
solving a system invol ving B(i) , and each of the non-basic vectors.
The conputed values are then subtracted from appropriate conponents of
the cost vector, and the results are conpared to zero. Those which are
of one sign have inportance in deternmning how the matrix B(i+l)
to be obtained fron1B(i). The val ue zero, of course, is critical.

The easiest way of ensuring that the conmputed solution to a system
(7.1) Bx =v

has high accuracy is by enploying the technique of iterative refinenent

[9, Chapter 13]. According to this technique, if x(o) is any sufficiently
good approximtion to the solution of (7.1) (for exanple, a solution
produced directly via the Wdeconposition of B ) then inprovenents may

be made by conputing

(7-2) r(‘j) - v -,
sol ving
(7-5) BZ(J) = r(J) >

18



and setting

() L) (D), ()

for | = 0,1,2,... until ||z03)] is sufficiently small. The inner
products necessary to formthe residuals (7.2) nust be conputed in
doubl e-precision arithmetic. If this rule is observed, however, and if

the condition of the system measured as
-1
(7.5) cond(B) = || B || |7 »

is not close to Bt”l , the refinement process can be counted on to
termnate in a ¥ew iterations. The final vector x(J) wll then be
as accurate a solution to (7.1) as the significance of the data in B
and v warrant.

Step (7.3) is nost economcally carried out, of course, via the
sane | &leconposition which was used to produce x(o) . If thisis
done, each repetition of steps (7.2) through (7.4) wll cost only
o(ne) operations. The alternative approach of producing a highly
accurate solution to (7.1) by solving the systementirely in double-
precision arithmetic is generally nore expensive than iterative

refinement by a factor of n .

19






B. THE QR DECOVPCSI TI ON AND QUADRATI C PROGRAMM NG

8. Househol der  Triangul ari zati on

Househol der transformations have been w dely discussed in the
literature. In this section we are concerned with their use in reducing
a mtrix A to upper-triangular form and in particular we wsh to show
how to update the deconposition of A when its colums are changed one
by one. This will open the way to the inplenentation of efficient and
stable algorithms for solving problems involving |inear constraints

Househol der transformations are symetric orthogonal matrices of
the form>p, = | -ekuggi wher e U is a vector and B = z/ﬁﬁbk)
Their utility in this context is due to the fact that for any non-zero

vector a it is possible to choose u_ in such a way that the

k
transformed vector Pa is zero except for its first element.
Househol der [15] used this property to construct a sequence of transformations
to reduce a matrix to upper-triangular form 1In [29], WIkinson describes
the process and his error analysis shows it to be very stable.

Thus if A = (al,...,an) isan mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r) we have

A

wher e Ry is an upper-triangular matrix of order k . The next step

( k+1)

is to conpute A = B A(k) where P is chosen to reduce the first

20




col um of Ty to zero except for the first conponent. This component

becones, the l|ast diagonal elenment of Rit1 and since its mdulus is

equal to the Euclidean length of the first colum of T it should in
general be nmaximzed by a suitable interchange of the colums of
S
k After r steps, T, will be effectively zero (the length
T
k

of each of its colums will be smaller than some tolerance) and the
process stops.
Hence we conclude that if rank(A) = r then for some pernutation

matrix T the Househol der decomposition (or "QR deconposition") of Ais

r n-r
-~ ame ) ———
R S
QAT = P P . . . P A=
k"l k."g O O O

wher e Q:Pr P. isan mxm orthogonal matrix and Ris

1B - - B
upper-triangular and non-singular.

W are now concerned with the manner in which Q should be stored
and the means by which Q, R, S may be updated if the colums of A
are changed. Ve will suppose that a colum a, is deleted fromA and

that a col um ay is added. It will be clear what is to be done if only

one or the other takes place.

Conpact Met hod:

Since the Househol der transformations p. are defined by the vectors

u, the usual method is to store the w's in the area beneath R, wth

k
a few extra words of nenory being used to store the By's and the diagonal

21




elenents of R. The product z for some vector z is then easily

conputed in the formPrlPre. . By Z where, for exanple,

T T . . .
Pz = (I - Boligly)2 = Z -go(uc‘)z)uo. The updating is best acconplished

as follows. The first p-I colums of the new R are the sane as

before; the other colums p through n are sinply overwitten by

col utms T ..?],aq and transformed by the product Pp-l Pp-e-“ Py
S

to obtain a new P-1"); then Tp—l is triangularized as usual.
T
P-1

This method allows Q to be kept in product form always, and there is no
accunul ation of errors. O course, if p =1 the conplete deconposition
nmust be re-done and since with m> n the work is roughly proportional
to (m-n/B)n"2 this can nean a lot of work. But if p sz n/2 on the
average, then only about 1/8 of the original work nust be repeated

each updating.

Explicit Method:

The method just given is probably best when m>> n . Qherwse
we propose that Q should be stored explicitly and that the updating

be performed as follows:

(1) The initial Q can be conputed by transformng the identity

)

matrix thus:

R S

Pr—l Pr-2 . PO(ATT | Im) (

0 0

22




(2) If ay is added to A then conpute sq:Qaq and add it

S
to the end of (0) .

(3) Delete aP where applicable (p <) . This nornally means

just updating the permutation vector used to describe 7 .

(4) The initial situation

—
QAT = @;: @
!

has thus been changed to

O}
QAT = :

©,

where the areas @ s @ , @, @ are the same as before.

23



This is anal ogous to the Hessenberg form encountered in
updating 1 deconpositions. W now enploy a sequence of

(r-p) plane rotations, as used by Gvens and anal yzed

by WIkinson [30], to reduce‘the subdi agonal of area (3

to zero. This changes areas (:> , (:) and (:) , and the
corresponding rows of Q nust also be transformed. Since

the plane rotations are elenentary orthogonal transformations,
the latter step produces a new matrix Q Wwhich is also
orthogonal, and the work necessary is approximately proportiona

to ann+n2

(5) Finally, a single Householder transformation p is applied
to produce Q = PrQ* , Where this transformation is the one
whi ch reduces area 06 to zeros except for the first

elenent. The work involved is proportional to 2(m-n)m .

Thus the transformation § reduces AT to a new upper-triangul ar

form and the original transformations 1 VI S the plane rotations,
and the final Househol der transformation may all be discarded since the
required information is all stored in @ . The total work involved is

: 2 2, .2
roughly proportional to (2m+n%)+ 2(m-n)m = 2m™ +n

and the stability
.of the orthogonal transformations is such that accunulation of rounding

errors during repeated applications of the updating process should be

very slight.
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9. Projections

In optimzation problens involving linear constraints it is.often
necessary to conpute the projections of some vector either into or
orthogonal to the space defined by a subset of the constraints (usual l'y
the current "basis"). In this section we show how Househol der
transformations may be used to conpute such projections. As we have
shown, it is possible to update the Househol der deconposition of a
matrix when the nunber of colums in the matrix is changed, and thus
we will have an efficient and stable means of orthogonalizing vectors
with respect to basis sets whose conponent vectors are changing one by
one.

Let the basis set of vectors 81805+ formthe col ums of
an mxn matrix A, and |et S, be the sub-space spanned by {ai] .
W shall assume that the first r vectors are linearly independent
and that rank(A) = r . In general, m>n >r , although the follow ng
is true even if m<n .

Gven an arbitrary vector z we wish to conpute the projections
u="PrPz, v=(-Pz

for sone projection matrix P, such that

(a) z = u+v

(o) uI/ = 0

(e) ueS,, (i.e., ®x such that Ax = u)

(d) v is orthogonal to S. (i.e., ALy = 0)
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ne nmethod is to wite P as AM where A is.the nxm general i zed
inverse of A, and in [7] Fletcher shows how N may be updat ed
upon changes of basis. In contrast, the method based on Househol der
transformations does not deal wth A+ explicitly but instead keeps
AA+ in factorized form and si nply updates the orthogonal matrix required
to produce this form Apart from being nore stable and just as efficient,
the method has the added advantage that there are always two orthonor mal
sets of vectors available, one spanning 5. and the other spanning its
conpl enent .

As already shown, we can construct an mxn orthogonal matrix Q

such that

where R is an rxr upper-triangular matrix. Let

Wy 3 r
(9.1) w = Qz =
W, 3 mr
and define
W 0
(9.2) u = QT( l) , v-Q,T (W
0 2

Then it is easily verified that uw,v are the required projections of z |,

which is to say they satisfy the above four properties. Al so, the x in
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(c) is readily shown to be

In effect, we are representing the projection matrices in the form

I
(9.3) P = T, on
0]
and
- 0]
.
(9.4) I-P = g ] (01 )9
m-r

and we are conputing u = Pz, v = (I-P)z by neans of (9.1), (9.2).
The first r columms of Q span S, and the remaining mr span
its complement. Since Qand - R may be updated accurately and
efficiently if they are canputed using Househol der transformations, we
have as clained the means of orthogonalizing vectors with respect to
varying bases.

As an exanple of the use of the projection (9.4), consider the
probl em of finding the stationary val ues of XoAx subject to xx =1
- and c’x =0, where Ais a real ‘synmatric matrix of order n and C

is an nxp matrix of rank r, withr<p <n . It is show in [12]

that if the usual Househol der deconposition of Cis

r N-r

o~ ey

R S
QC =

0 0
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then the problemis equivalent to that of finding the eigenval ues and

ei genvectors of the matrix PA , where

0O 0
P = T1-P = QT<: :)Q
0 I
n=-r

is the projection matrix in (9.4). It can then be shown that if
. 61 Co
QAQ™ =
T
G1p  Gpp

wher e Gy is rxr , then the eigenvalues of PA are the same as

t hose of Gpo and so the eigensystem has effectively been deflated

by the number of independent |inear constraints. Simlar transfornations
can be applied if the quadratic constraint is x'Bx = 1 for some rea

positive definite matrix B .
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10. Othogonalization with Respect to Positive Definite Forns

Fl etcher also shows in [ 7] how to update projection matrices when
it is required to orthogonalize with respect to a given positive
definite matrix D. Ve now show how to conpute such projections using
Househol der transformations, and hence the comrents nmade in the |ast
section concerning changes of basis may also be applied here

Gven an arbitrary vector z it is required to find u = Pz

v = (I -P)z for some P, such that
(a) z =u+v
(b) ulDy : 0
(¢) #x such that Ax = u
@ o)y =0 .

For sinplicity we will assune that rank(A) = n . Then, rather than

computing P explicitly as Fletcher does according to
P = a(aTma)t aTp |

we obtain the Chol esky deconposition of D thus:

T

D = 1L

where L is lower-triangular and non-singular if Dis positive

definite. W then compute B = 174 and obtain the deconposi tion

R
B = (o

29




Def i ni ng

T Wl 31‘1
W = QL 'z =
v, J.mn
and
W 0
u = L--TQT 1 , v = L-TQT
0 W

it is easily verified that w,v are the required projections, and
again the x in (c) is given by x = R'lwl . Since changing a colum
ay of Ais equivalent to changing the column LTak of B, the

matrices Q and R may be updated almost as sinply as before.
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11.  Linear Least Squares and Quadratic Progranmm ng

W first consider mnimzation of quadratic forms subject to
linear equality constraints. The solution is given by a single system
of equations and the algorithm we describe for solving this system will
serve as a basic tool for solving problems with inequality constraints.
It will also provide an exanple of how solutions to even strongly
iIl-conditioned problems nmay be obtained accurately if orthogonalization
t echni ques are used.

Let A,G be given matrices of orders mxn , pxn respectively
and |l et b,h be-given vectors of consistent dinension. The |east

squares problem to be considered here is
Probl em LS: mn |fo - Ax||,
subject to Gx =h .
Simlarly, let Dbe a given positive sem-definite matrix and c

a given n-di mensional vector. The quadratic programmng problem

corresponding to the above is

Probl em QP: m n EleDx +c'x

subject to Gx =h .

Now we can obtain very accurately the follow ng Chol esky deconposition

of D:

31



where we deliberately use A again to represent the triangular factor.
If Dis sem-definite, a symetric pernutation of rows and col ums
will generally be required. If Dis actually positive definite then
A will be a non-singular triangular matrix.

Wth the above notation, it can be shown that the solutions of both

probl enms satisfy the system

G Z h
(11.1) I A r = b
GT AT X c
wher e
c=0 , r=>b-Ax for Problem LS,
b =0 , r=-AX for Problem QP,
and z is the vector of Lagrange multipliers. In [2],[ 3] methods

for solving such systems have been studied indepth. The nethod we
give here is simlar but nore suited to our purpose. This nethod has
been worked on independently by Leringe and Wedin [17]. The solution
of (11.1) is not unique if the quantity rank@ is less than n ,
but in such cases we shall be content with obtaining one solution rather
~than many. The inportant steps follow

(1) Let Ql be the orthogonal matrix which reduces GT to triangul ar

form and |et Qy al so be applied to AT , thus:

R S
(11.2) q (6" | aT) = *

0 T
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As explained earlier, Q; can be constructed as a sequence of
Househol der transformations, and the col ums of ¢ should be
pernuted during the triangularization. This allows any redundant

constraints in Gx = h to he detected and di scarded.

(2) Let Q, be the orthogonal matrix which reduces 7 to triangul ar

form

(11.3) Q?TT =

Here we assune for sinplicity that T is of full rank, which is
equivalent to assumng that (11.1) has a unique solution, and

again we suppress pernutations from the notation.

(3) The conbined effect of these decampositions i S now best regarded
as the application of an orthogonal simlarity transformation to

system (11.1), since the latter is clearly equivalent to

| G T Z h
Q | A QT Q.r = Q.-b
2 2 D o
T T T
G G A Q Qx Q¢

The resulting system consists of various triangular sub-systens

i nvol vi ng R, . By, S, and can easily be sol ved.

(4 If desired, the solution thus obtained can be inproved upon via
the method of iterative refinement [g ], since this just involves
the solution of system(11.1) with different right-hand sides, and

the necessary deconpositions are already available.
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The algorithm just described has been tested on extrenmely ill-conditioned
systens involving inverse Hlbert matrices of high order and with iterative

refinenent has given sol utions which are accurate to full nachine precision
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12.  Positive Definite Programm ng

Wth the algorithmof the previous section available, we are now

prepared to attack the followi ng nore general programmng problens:

Probl em Ls: mn |pb - ax|,
subject to Gyx = hy

ng > h2
Probl em QP mn % xDx + c'x

2

~ Subject to the sane contraints.

Let Gy5Gy be of orders Py X0, PyXn respectively, and again suppose

that D has the Cholesky deconposition aATA . In this section we

A . . .
consider problems for which rank a = n (which is nost likely

o 1
to be true with least squares problenms, though less likely in QP ).
In such cases the quadratic formis essentially invertible (but we
enphasi ze that its inverse is not conputed) and so x can be elimnated
fromthe problem Wth the notation of the preceding section the steps

are as foll ows:

(1) Solve (11.1) with G,,h, to get the solution x = x0 , then conpute

the vector q = GoXy =Dy

() If g >0 then x  is the solution.

Q herwi se, transformthe inequality matrix using 9y fromstep (1),

so that
U }p
T T T 1 1
Q (e | a7 | &)

1l

\ } n"Pl
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T

T RE -T
(3) 1f QQT =] as before and if M= R2 V' it can be shown that

0
the active constraints are determned by the follow ng |inear

complementarity probl em (ICP):

w=q + MM

(12.1)

w,2 >0 , ZTW=O

w,z are respectively the slack variables and Lagrange nmultipliers

associated with the inequality constraints.

(4) The active constraints (for which Wy = 0 in the solution of

the 1cP) are now added to the equalities Gyx = hy and the final

solution is obtained from (11.1).

W wish to focus attention on the method by which the ICP (12.1) is

sol ved. Cottle and Dantzig's principal pivoting method [ 5] could be
applied in a straightforward manner if MM ver e conputed explicitly,
but for nunerical reasons and because MTM (pexpg) coul d be very
large, we avoid this. Rather we take advantage of the fact that no nore

t han n-p; inequalities can be active at any one tinme and work with a

basis M, made up of k colums of M, where 1<k <n-p;, . The R

“ (2

- deconposi tion
is maintained for each basis as colums of Mare added to or deleted

fromM, and as we know, Q and R can be updated very quickly each
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change. Then just as in the LU nethod for |inear programming, the new
basic solution is obtained not by updating a simplex tableau but simply
by solving the appropriate system of equations using the available
deconposi ti on.

As an exanple we show how canpl enentary basic solutions may be
obtained. Let the basis M, contain k colums of Mand let M

1 2
be the remaining (non-basic) colums. The systemto be solved is

» T
0 ql MlMl
= + z
T B
5\ % MMy
with obvious notation. |If we definey = M,z this is best witten as
I M- v 0
(12.2) + =
. A
M % 4

(12.3) Wp = 4, - ng

and the solution of (12.2) is readily obtained from

‘ u\} k
u = R'qu » Zg = Flu oy =QT( )} .
0 n-pl-

The blocking variable when a non-basic variable is increased can be

found fromthe solution of the same set of equations with the appropriate

right-hand side. It is worth noting that the equations can be sinplified
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if the basis is square (i.e., if there are as many constraints active
as there are free variables). Since it seems very comon for the basis
to fill up during the iterations (even if the final solution does not
have a full set of constraints) it is worth treating a full basis
special l'y.
Al most - conpl enentary solutions can be obtained in simlar fashion
(with somewhat more work required as the systemis then not quite so
symmetric) . Thus an al gorithm such as Cottle and Dantzig's can be
i mpl enented using these techniques, and convergence is thereby guaranteed.
o specialxinterest, however, is the follow ng unpublished and
apparently novel idea due to Yonathan Bard, wi th whose perm ssion we
report the results he has obtained. Al nost-conplenmentary bases are
never allowed to occur; instead, if a basic variable is negative,

then it is replaced by its conplenent regardless of the effect on the

other basic variables. Bard has tried this method (carried to convergence)

on hundreds of problens of the formw = g+Mz and cycling has never
occurred when the nmost negative elenent of q is chosen. In a series
of tests on 100 random matrices of orders between 2 and 20,
principal pivoting required a total of 537 pivots whereas the
Cottle-Dantzig al gorithm required 689 .

The present authors' experience with fewer but |arger problens
confirms the above observation that convergence does actually occur and
usual ly after a small nunmber of iterations. Since the idea elimnates
all work other than conputation of conplementary solutions it is

particularly suited to the techniques of this section. At worst it should
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be used as a starting procedure to find a close-to-optinmal basisquickly,

and at best if the conjecture can be proven that it wll always converge
then a lot of conputer time could be saved in the future
[It has since been learned that Bard applied the principal-pivoting

rule to ICP's of the sonewhat special formin which
M= PP, g= Pp

for some P, p. Problens of this form have been studied by Zoutendijk
in [31,32] where several pivot selection rules are discussed. Finite-
ness is proven for one rule, but sinpler nmethods (such as Bard's) are
recormended in prébtice for efficiency.

The question of finiteness for the nmore general ICP remains open
and it is likely that somewhat nore sophisticated rules (e.g., Cottle

and Dantzig) wll be required.

39



13. Seni-#Definite Progranmm ng

W now consi der the nmore general problemin which the rank of the
quadratic formconbined with the equality constraints may be less than n .
The method we propose is conceptually as sinple as it is stable. It is
anal ogous to the revised sinplex method for linear progranmming in that

the essential steps to be inplenented are as follows:

(1) Find the current basic solution froma certain systemof equations
for which a deconposition is available.

(2) Determne according to a certain set of rules what nodifications
shoul d be made to the systemto obtain a new basis.

(3) If necessary, update the deconposition and return to step (1).

Thus, suppose that the current basis contains Ggx = hy as active

constraints. As in (11.1) the corresponding basic solution is then

given by
Gp Zp hy
(13.1) | A r = b
Gg AT b4 c
and
(13.2) Wy = hB - GBx )

(Here, éBx > EB are the currently inactive constraints, Wy the

corresponding slack variables, and zg the Lagrange nultipliers or dua

variabl es associated with the active constraints.) The elenents of 2y




corresponding to any equality constraints may be either positive or
negative and need never be |ooked at. Ignoring these, the basic solution

above is optimal if and only if

>0 and Wy, >0

Zp B

A "Q algorithnf is now to be regarded as the "certain set of rules"
mentioned in step (2) whereby zp,w, and possibly other information are
-used to determ ne which constraints should be added to or dropped fron1GB.
The efficiency of the method will depend on the speed with which this
decision can be made and on the efficiency with which the deconposition
of (13.1) can be updated.

Once again the nost promising pivot-selection rule is that of Bard,

as discussed in the previous section. The general idea in this context

is as fol |l ows:

(a) Find LA mn LA 28 =mn z, fromthose eligible
el ements of LINEA
(b) 1f w, <0, constraint o could be added.

(c) If 2g < 0 , constraint g could be dropped.
(d) If there are already n constraints active and w, <0,

constraint « could replace constraint 8 .

Ve do not consider here the question of convergence, but as already stated,
this type of rule has been found to work.

The problem of updating the requisite deconpositions is nore relevant

at present. W discuss this and other points briefly.
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(1) The natrices QpoRy of Equation (I1.2) can be updated efficiently
using the methods of Section 8. ’

(2) Qss Ry obtained fromthe matrix T in Equation (11.3) unfortunately
cannot be updated, but the work Beeded to reconpute them might often

be very small, for the follow ng reasons:

(a) In Problem1S, a prelimnary triangularization of A (mxn)
can be applied to obtain an equivalent problemfor which m<n .
The Cholesky factor of D in Problem QP already has this property.
(b) If there are many constraints active (up to n) then T has

very few rows.

(c) If the rank of the systemis low (relative to n) then T

has very few col ums.

(3) Hence the nethod is very efficient if close to n constraints are
active each iteration, as should often be the case. It also has the
property, along with Beale's algorithm|[1], of being nost efficient
for problens of |ow rank.

(4) The procedure can be initiated with any specified set of constraints
inthe first basis, and an initial estimate of x 1is not required.

(5) Any nunber of constraints can be handled, in the sane way that the
revised sinplex nethod can deal with any nunber of variables.

(6) If D =0 the problemis a linear program and only bases containing
n constraints need be considered. The nethod reduces to sonething

like a self-dual sinplex algorithm
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Finally we note that with sem-definite problens it is possible
for some basic system(13.1) to be singular. |If there are any solutions
at all then there are many (this wll always be the case with |ow rank
| east squares problens) but this does not matter, since Zy is still
uni quely determined. However, a low rank quadratic program mght be
unbounded, and this is manifested by a singular system (13.1) proving
to be inconsistent. In general, this just neans that there are not yet

enough constraints in the basis, so that trouble can usually be avoi ded

by initializing the procedure with a full set of constraints.
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C. THE svD AND NONLI NEAR LEAST SQUARES

1. The Singul ar Val ue Decomposition

Let A be areal, mxn mtrix (for notational convenience we

assume that m>n). It is well known (cf. [ ]) that
(14.1) A=UTV

where U,V are orthogonal natrices and

0

O } (m-n) X n

U consists of the orthonormalized ei genvectors of 2AT, and

V consists of the orthonormalized eigenvectors of ATa . The

di agonal el ementsof ¢ are the non-negative square roots of the

ei genval ues of ATA - they are called singular values or principal values

of A. W assune

012022'°'20 20 .

n

Thus if rank(A = r , Opp] “Opmp =+ + =0y =0 The deconposition

(14.1) is called the singular value deconposition (SVD).
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ANl nxm nmatrix X is said to be the pseudo-inverse of an nxn

matrix A if X satisfies the following four properties:

(i) &xa =4, (i) xax = X, (iii) T =xa, (iv) @" = A,

W denote the pseudo-inverse by A" . It can be shown that & can
al ways be determined and is unique (cf. [21]). It is easy to verify
that A" = vAu' where A is the nxm matrix

A= diag[c’il,cél,...,c;l,o,o,...,o] . There are many applications of
the S in | east squares problens (cf. [11]).

The SVD of an arbitrary matrix is calculated in the follow ng way.

n-L

First, a sequence of Househol der transformations {Pk}izl s Q01

is constructed pothat

1]
T
=
O

I
(&

PP .-+ -P AQQy.-4Q 7

and J is an mxn bi-diagonal matrix of the form

[ B
/ % B O

o
\ 0

The singular values of J are the same as those of A .

3 (m-n) x n

Next the SVD of J is conputed by an algorithmgiven in [Il]. The
algorithmis based on the highly effective QR al gorithmof Francis [10] for

T then A = PXZYTQT SO

conputing eigenvalues. If the sw of J =Xg¥Y
that U=PX, V= QY .
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15. Nonlinear Least Squares

Consi der the nonlinear transformation F(x) =y where .xeE

and yeE with n <m. W wsh to consider the follow ng problem

min ||b - F(x) H2

subject to
(15.1) Gx =h,

where Gis a pxn matrix of rank p and h.sEp . A very effective
algorithm for solving such problens is a variant of the Levenberg-Mrquardt
al gorithm [18,19\]} in this section we consider some of the details of the
numerical calculation. Further extensions of the algorithm are given
by Shanno [25] and Meyer [20].

Let us assume that we have an approxi mation x(o) whi ch satisfies

the relation (3((0) = h . Then at each. stage of the iteration we

det er m ne 8(k) so that

(15.2) L) _ L (8) 5 (%)
and
(15.3) w® - o

. . . . R :
Again as in Section 11, we wite QlGT o where @, is the product

of p Househol der transformations and R is an upper triangular matrix.

Let

§(k) Ip

(15.4) Qla(k) -

n(k) }n-p
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k
Then from (15.3), we see that E,( ) =0.
For notational convenience, let uwdrop the superscript k ;

we wite x(k) as X and x(k*l) as x, .

In the Levenberg- Marquar dt algorifhn1one deternines the vector 8

so that
(15.5) = - 3l5 + 2 1187 = nin,
wher e

r=>= -FO%),

J i's the Jacobian eval uated at xy . and A is an arbitrary non-negative

paraneter. From(15.4), we see that (15.5) is equivalent to determning 1

so that

b= ()15 + acle 2 + 11 112 )- man.

subject to E=0

(15.6)

nowl et us wite JQ? [M,N] Wwhere N consists of the last n-p

col ums of JQ{ . Then (15.6) is equivalent to finding 1 so that
2 2 .
g(m) = [r-mll, +alinll; = min.
Consider the SVD of N ; nanely

N=UZV

Then
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2
(15.7)  &(m) -2 v n\\i s Alr L,

2 2
ls-zell, +alle ;.
wher e
S =UIr , ¢ = VT'n
Witing out (15.7) explicitly, we have
n-p
)2

2

where p is the rank of N. (Note p may change fromiteration to

iteration.) Then

3(8) = min
when
“ S.o.
C. = —A_L fOf J = l,2,...,p,
J 2
A .
J
= 0 for j >p
and hence

S.o.
m = il 332 v,
Ji= A+ ooy J

wher e Vj is the j-th colum of V . Thus



- 4(2)

Note it is an easy matter to conpute 7 (and hence &) for various
values of A . The algorithm for camputing the SVD can easily be
organi zed so that s is conputed directly ([ 11).

There are several possible strategies for determning x» . One

possibility is to choose X so that
o - F(e, () [, < o -Fee ()) |l

This requires, of course, the evaluation of F(x) at a great many points.

Anot her possibility is to choose & such that

|z -J‘él\2 = mn.
(15.8)

subject to 18771, <o
This is equivalent to determning A such that

2
Il - & (_a_%) < o

j=1 + o a
J A cJ

Wen » = 0 , we have the solution to the unconstrained probl em and

Let |In,l, =8 . If g <o, then we have the solution o (15.8) .

O herwi se, we nust determine ) so that
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S.0O. 2
(15.9) fl —5 =«
= + 0%
J A GJ
Let
9151
cA~S
250
-1 L e 2
u = » Q = dlag(cl;O'E,v.. ‘ YOF) H
S
%%

we assumne sJ, #o0 for | = 1,2,...,p . By repeated use of the

relationship

X Y

det(z W

) = det(X) det(w -zx'lY) if det(X) £0

we can show that (15.9) is equivalent to
(15.10) det((Q + AI)° - wl) =0

whi ch has 2p roots; it can be shown that we need the largest real

root, which we denote by >\* ([8]). Let

2
8.0,
2
r(x) = _J_J__e - q
= + O.
Mooy
and assune that cigcgz. o zci>o. Note 1" (0) :52-a2>o,

2 * o
and T(A) - <" as A - , sothat 0 <A <« and it is the only

root in that interval. W seek.a nore precise upper bound for A
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From (15.10) we see, using a Rayleigh quotient argument,that

>
A* < max [y ay + \/(YTQY) - yT(Q2 - wl)y ] .

A short manipul ation then shows that

(15.11) 0 < )\* < \/yi - 0-2 + uTu - o'i

Thus, we wish to find a root of (15.10) which lies in the interva
given by (15.11). Note that the determinantal equation (15.10)
involves a diagonal matrix plus a matrix of rank one. In the next

section we shall describe an algorithm for solving such problens.
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16. Modified Eigensystens

As was pointed out in Section 15, it is sonetines desirable to
determ ne some ei genval ues of a diagonal matrix which is nodified by
a matrix of rank one. Also, Powell [23] has recently proposed a
m nimzation algorithm which requires the eigensystemof a matrix after
a rank one nodification. In this section, we give an algorithm for
determining in O(n2) numerical operations some or all of the eigenval ues
and ei genvectors of D+cuuT where D = diag(di) is a diagonal matrix
of order n and uck .

T

Let C =D+ couw ; we denote the eigenvaluesof C by Apshys. . w2

n
and we assune N> Mg and di > di+l . It can be shown (cf. [30])

t hat

T -
(1) If 020, dy+towu>nry 247, 4. >k >4 (i = 25400,1)

(2) 1f 6 <0, a >,

. M T
i 3 287 (1 = 1,2,...,0-1) , 4 2 Mg 29 Fouu .

Thus we have precise bounds on each of the eigenvalues of the nodified
matrix.

Let K be a bi-diagonal matrix of the form

52




and let M= diag(ui) . Then

(16.1) KMK

Is a symetric,

Consi der t

(16.2)

2
(b +uor]) WoTq O
Holy * »

2
BTy (g ) By Ty

O * ‘ “‘nrn-l

tri-diagonal matrix.

he matrix equation

(D+o-uuT)x = AX

Ml tiplying (16.2) on the left by X , we have

K(D+cuuT)KTK'Tx = A KKK Tx

or
(16.3) (KD KT+o-KuuTKT)y = KKTy
where x = KTy . Let us assune that we have re-ordered the elements of u
so that
u) =Uy = ... =u ;= 0 and O<|up|5|up+l|<_...§|un|.
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Now it is possible to determine the elenents of K so that

0
(16.11-) Ku = :
0
U
Specifically,
I‘]_ =0 (| = l’eﬁ'u)P-l) ’
f_l = -uj_/uj_+l (i = pyptlyee.yn) ,
and we note that |r,| <1 . (This device of using a bi-diagonal mtrix

for annihilating n-1 elements of a vector has been used by Bjbrck

and Pereyra [4 ] for inverting Vandermonde matrices.) Therefore, if Ku
satisfies (16.4), we see from (16.1) that I{DE+cKuﬂTKT is a
tri-diagonal matrix and simlarly KK is a tri-diagonal matrix. Thus

we have a problem of the form
Ay = ABy

where A and B are symmetric, tri-diagonal matrices and B is positive

definite.
In [22], Peters and WIkinson show how |inear interpolation may

be used effectively for computing the eigenval ues for such matrices
when the eigenvalues are isolated. The algorithm makes use of the value

of det(A-AB) . Wien A and B are tri-diagonal, it is very sinple
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to evaluate det(A-2B) for arbitrary » . Once the eigenval ues are
conputed it is easy to compute the eigenvectors by inverse iteration
In Section 15, we showed it was necessary to conpute a paraneter

x* whi ch satisfied the equation
2 TN _
(16.5) det((Q + AI)° - wu) =0 .

Again we can determine K so that Ku satisfies (16.4) and hence (16.5)

is equivalent to

(16.6) det (K(Q + xI)eKT - KuuTKT) =0 .

The matrix G(n) = K(Q + xI)2K$ - KK Qs tri-diagonal so that it is
easy to evaluate G(n) and det G(x) . Since we have an upper and

| ower bound on x* , it 1s possible to use linear interpolation to

find x* , even though G()) is quadratic-in » . Numerical experinents
have indicated it is best to conpute G(A) = K(Q + AI)EKT - Kuu KT

for each approximate value of x* rather than conputing

c(0) = (KOPK - Kau'KD) + 2% KQK' + A2 KK .

The device of changing nodified eigensystens to tri-diagonal

matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

Again we choose K so that Ku satisfies (16.4) and thus obtain the

ei genval ue problem Ay = \By where
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so that A and B are both tri-diagonal and B is positive definite.
Bounds for the eigenvalues of C can easily be established in terms of
the eigenvalues of D and hence the linear interpolation algorithm

may be used for determining the eigenvalues of C .
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