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NUMERICAL TECHNIQUES IN MATHEMATICAL PROGRAMMING

bY

Rm He Bartels, G. H. Golub, M. A. Saunders
. .

Abstract

The application of numerically stable matrix decompositions to

minimization problems involving linear constraints is discussed and

shown to be feasible without undue loss of efficiency.

Part A describes computation  and updating of the product-form

of the LU decomposition of a matrix and shows it can be applied to

solving linear systems at least as efficiently as standard techniques

using the product-form of the inverse.

Part B discusses orthogonalization via Householder transformations,

with applications to least squares and quadratic programming algorithms

based on the principal pivoting method of Cattle and Dantzig.

Part C applies the singular value decomposition  to the nonlinear

least squares problem and discusses related eigenvalue problems.
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Introduction

This paper describes the application of numerically stable matrix

decompositions to minimization problems involving linear constraints.

Algorithms for solving such problems are fundamentally techniques for

the solution of selected systems of linear equations, and during the

last fifteen years there has been a major improvement in the understanding

of these and other linear algebraic problems. We show here that methods

which have been analysed by various workers and proven to be numerically

stable may be employed in mathematical programming algorithms without
-=.

undue loss of efficiency.

Part A describes means for computing and updating the product-form

of the IU decomposition of a matrix. The solution of systems of equations

by this method is shown to be stable and to be at least as efficient

as standard techniques which use the product-form of the inverse.

In Part B we discuss orthogonalization via Householder transformations.

Applications are given to least squares and quadratic programming algorithms

based on the principal pivoting method of Cattle and Dantzi.g [5 1. For

further applications of stable methods to least squares and quadratic

programming, reference should be made to the recent work of R. J. Hanson [13]

and of J. Stoer [26] whose algorithms are based on the gradient projection

method of J. B. Rosen [24].

In Part C the application of the singular value decomposition to

the nonlinear least squares problem is discussed, along with related

eigenvalue problems.

. . .111





A. THE USE OF LU DECOMPOSITION IN EXCHANGE ALGORITHMS

-.
1. LU Decomposition

If B is an n X n ) nonsingular matrix, there exists a permutation

matrix n , a lower-triangular matrix L with ones on the diagonal, and

an upper-triangular matrix U such that

OJ) TYB = LU .

It is possible to choose fl , L , and U so that all elements of L

are bounded in magnitude by unity.

A frequently-used algorithm for computing this decomposition is

built around Gaussian elimination with row interchanges. It produces

the matrices fi and L in an implicit form as shown:

For k = 1,2,...,n-1 in order carry out the following

two steps:

(1.2) . Find an element in the k-th column of B , on or below the

. diagonal, which has maximal magnitude. Interchange the

k-th,row with the row of the element found.

0.3) Add an appropriate multiple of the resulting k-th row to each

row below the k-th in order to create zeros below the diagonal

in the k-th column.

1



Each execution of the first step (1.2), in matrix notation, amounts

to the premultiplication of B by a suitable permutation matrix flk .

The following step (1.3) may be regarded as the premultiplication of B. .

by a matrix of the form

k

.

.

.

1

1

gk+l,k '

. .

. .

. .

gn,k
1

.
where .lgl kl

< 1 for each i = k+l,...,n .
? -

By repeating the two steps n-l times, B is transformed into U .

And at the same time the matrix (L-'IT) is collected in product form

(1.5) L-57 = rJnWl . ..r.rs, .

This algorithm requires
3 2

n /3+ O(n ) multiplication/division operations

and again this many addition/subtraction operations. Both U and all

of the g.
l9 j

can be stored in the space which was originally occupied by B .

An additional n locationsare required for the essential information contained

in the flk .

2



2. Exchange Algorithms

Many algorithms require the solving of a sequence of linear equations

(24 BiX( ) ( 1i=v . .

.
for which each B '( ) differs from its predecessor in only one column.

Examples of such algorithms are: the simplex method, Stiefel's exchange

method for finding a Chebyshev solution to an overdetermined linear

equation system, and adjacent- path methods for solving the complementary-

pivot programming problem.

Given that B (0) has a decomposition of the form
--.

(2*2) B (0) = L@)uKo 3

where U (0) is upper-triangular, and given that L(O)
-1

has been

stored as a product

-1
(2*3) L (0) = r(o) ,(a

n-l n-l l *' 5 1 '
(0) fl(d

the in?tial system of the sequence is readily solved: Set

.
(24 Y = L(o) -l,Ko >

and then back-solve the triangular system

(2.5) IJ(~)X = y .

3



3. Updating the LU Decomposition

Let the column r. of B (0) be replaced by the column vector a (0) .

So long as we revise the ordering of-the unknowns accordingly, we may

insert a (0 1 into the last column position, shifting columns ro+l

through n of B (0) one position to the left to make room. We will

call the result B (1) , and we can easily check that it has the

decomposition

(34 B(l) = L(')J$) >

where H (1) i&.a matrix which is upper-Hessenberg in its last n-ro+l

columns and upper-triangular in its first ro-1 columns. That is,

H (1) has the form

The first r.-1 columns of H (1) are identical with those of U (0) .

The next n-r0 are identical with the last n-r0 columns of U (0) .

And the last column of H (1) is the vector L (0) -l,(o) .

H (1) can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves

with the interchanges of pairs of adjacent rows. Thus U (1) is gotten



from H (1) by applying a sequence of simple transformations:

(3.3)  - . . . r(l) fl (l) H(l)
r

rQ.  0

9

where each (1)Pi has the form,

i
(3.4)

i+l

1

.

.

.

1

(1)gi '
---- /

1

.

.

.

1

i i+l

(1)and each fli is either the identity matrix or the identity with the i--bh.
(1)

and i+l-st rows exchanged, the choice being made so that lg, 1 5.1 9

The essential information in all of these transformations can be

stored in n-r0 locations plus an additional n-ro bits (to indicate

the interchanges). If we let



then we have achieved the decomposition

(3-6) B0) = Lwu(l).

.
The transition from B '( > to B(i+l) for any i is to be made

exactly as was the transition from B (0 1 0)toB . Arly system of
.

linear equations involving the matrix B '( > for any i is to be solved

according to the steps given in (2.4) and (2.5).

6



4. Round-off Considerations

For most standard computing machines the errors in the basic

arithmetic operations can be expressed as follows:
-.

(44

fl(a 2 b) = a(1 + sl) z b(1 + s2)

fib x b) = ab(l+ ES>

fP(a/b) = (a/b) (1 f E4) J

where 1~1 < plot . Here p stands for the base of the number system

in which machine arithmetic is carried out and t is the number of

significant figures which the machine retains

notation f!(a "op" b) stands for the result

upon the two, normal-precision floating-point

standard floating-point arithmetic is used.

after each operation. The

of the operation "OP"

numbers a and b when

.
The choice of an IX decomposition for each B '( 1 and the particular

way in which this decomposition is updated were motivated by the desire

to find a way of solving a sequence of linear equations (2.1) which would

* retain a maximum of information from one stage to the next in the sequence

and which would be as little affected by round-off errors as possible.

Under the assumption that machine arithmetic behaves as given in (4.1),

the processes described in Sections 2 and 3 are little affectedby

round-off errors. The efficiency of the processes will vary from algorithm

to algorithm, but we will argue in a subsequent section that the processes

should cost roughly as much as those based upon product-form inverses

of the B i .( >



We will now consider the round-off properties of the basic steps

described in Sections 2 and 3.

The computed solution to the triangular system of linear equations

Ui( 1 x = y

can be shown, owing to round-off errors, to satisfy a perturbed system

(4.3)
.

OJ ( 1
.

= +mJ1)x=y .( 1

It is shown in Forsythe and Moler [g ] that

--.
I aJ (01

I!-5-T-
llu i II

< +Q (l.ol)@1-t )-

where \\...\I denotes the infinity norm of a matrix, and thus round-off

errors in the back-solution of a triangular system of linear equations

may be regarded as equivalent to relatively small perturbations in the

original system.

Similarly, the computed L and U obtained by Gaussian elimination

. with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation

X4-5) H+6H=LU ,

where Forsythe and Moler show that

(W 6HII II 5 n2PB 1-t

II II
>

H

and Wilkinson [28] establishes that p ,< n . Thus, the computational

8



process indicated in (3.3) can be regarded as introducing only relatively

small perturbations in each of the H i .( )

Similar results hold for the init.!a1 LU decomposition (2.2) with

a different bound for p . The reader is referred again to Forsythe

and Moler.

The most frequent computational step in the processes which we have

described is the application of one Gaussian elimination step

column vector v :

i

(4.7) w = rv =

3

1
. .

.
1

1
1

1
.

. .
1

Q 1

1
.

9 .
1

i j

The computed vector w satisfies

(44 = v
wk k

for k # j

wj -
- fl(fe(gvi) + Vj>

= @;Vi(l + E3)(1+ "1) + vj(l + '2)

r to a

v1..
.
Vi-l

vi

V
i+l.

.

"j-1
V.
J

vj+l...
V
n

= gvi + v. + gVi(E1 + E3 + ElE3) + V.E .
J 52

9



Thus we may regard the computed vector w as the exact result of a

perturbed transformation

(4.9) w = (r + 6r)v I

where

(4.10)

and

WJ-1

6r =

-w.

i

3

i j

0 = g(y+ E3 + y3)

z =E2 l

Therefore we have

.
(4.12) " 5!!A I II63 El + E3 + El&3 I + 14

9

II \Ir IL+ I4

I where the right-hand side is bounded, since lgl 5 1 , according to

I

\I IIt3r
(4.13) - 5 pl-93 + pl-y < 3.op ( sad l

II IIr

Hence, the computations which we perform using transformations (4.7) also

introduce relatively small perturbations into the quantities which we manipulate.

10



It is precisely with regard to such transformations that we feel

our method of computation, based upon UT decompositions, is superior

to methods based upon the inverses of the matrices B i . Such methods( >

-.
use transformations of the form

(4.14)

r

1
?11

. .

. .

. .

' Vk-l

--

.

.

.

?k

.

l

.

1

k

f: 71 -1

k .

m-l. These are amlied to each column in B'I-l' to produce B'&' ; or

alternatively, in product-form methods, they are applied to the vector

v(i) to produce the solution to system (2.1). As such, they involve

successive computations of the form (4.7). Each such computation may be

regarded as satisfying (4.9). But, since the Tj may be unrestricted in

magnitude, no bound such as (4.13) can be fixed.



5m Efficiency Considerations

As we have already pointed out, it requires

(5.1) n /3 + O(n2)3 -.

multiplication-type operations to produce an initial IU decomposition (2.2).

To produce the product-form inverse of an nxn matrix, on the other

hand, requires

(5.2) n3/2 + O(n2)

operations. --.

The solution for any system (2.1) must be found according to the LU-

decomposition method by computing

(5*3) Y = ,(i) -fp)

followed by solving

(5.4) Ui( > x=y .

(0)
-1

. The application of L

(5.5)
n(n-1)

2
.

.
to v=( > in (5*3) will require

I;+
operations. The application of the remaining transformations in L'"'

will require at most

(5.6) i(n-1)

operations. Solving (5.4) costs



n(n+l)
2

operations. Hence, the cost of (5.3) and (5.4) together is not greater than

(5.8) n2 + i(n-1)
. .

operations, 2 land a reasonable expected figure would be n + $ (n-l) .

On the other hand, computing the solution to (2.1) using the usual
.

( >
-1

product form of B ' requires the application of n+i transformations

of type (4.14) to v i( 1 at a cost of

in(5-9) n2 +

-=.

operations.

If a vector a ( )i replaces column r. in B
1

requires that the vector
.

( >
-I

updating of B i

( )i , then the

(5.W Z = ,ci> -l,@)

be computed. 2This will cost n +in operations, as shown in (5.9). Then

a transformation of form (4.14) must be produced from z , and this will

bring the total updating cost to.

(5-J-l) n2 + (i+l)n .

The corresponding cost for updating the LU decc&osition  will be not more

than

(5.12)
n(n-1)

2 + i(n-1)

operations to find ,(i> -l,(i) , followed by at most

13



(5.13)
n(n+l)

2

operations to reduce H
(i+l) to ,(i+l) and generate the transformations

of type (3.4) which effect this reduction. This gives a total of at most. .

(5.14) n2 + i(n-1)

operations, with an expected figure closer to n'+$ (n-l) .

Hence, in every case the figures for the LU decomposition: (5*14),

- (5.8), and (5.1) are smaller than the corresponding figures (5.11), (5.9),

and (5.2) for the product-form inverse method.



6. Storage Considerations

All computational steps for the IX-decomposition method may be

organized according to the columns of the matrices B ( >i . For large

systems of data this permits a two-level memory to be used, with the

high-speed memory reserved for those columns being actively processed.

The organization of Gaussian elimination by columns is well-known,

and it is clear how the processes (5.3) may be similarly arranged.

Finally, the upper-triangular systems (5.4) can be solved columnwise

as indicated below in the 4 x 4 case:

(6.1)

0 0 0

Bring the y vector and the last column of U into high-speed

qlemory. Set x4 = y4/u44 . Set yf = yi-ui4x4 for i = 3,2,1 .

This leaves us with the following 3 x 3 system:

x10x2x3 =

yi
\

1:

y;

i) Yj

We process it as suggested in the 4 x 4 case, using now the third

column of U to produce x3 l

Repeat as often as necessary.

15



.
In the event that the matrices B i( > are sparse as well as large,

we wish to organize computations additionally in such a way that this

sparseness is preserved as much as possible in the decompositions.

For the initial decomposition (2.2), for example, we would wish to

(0) (0)
-1

order the columns of B in such a way that the produc,tion of L

and U (0) introduce as few new nonzero elements as possible. And at

subsequent stages, if there is a choice in the vector ( 1ia which is
.

- to be introduced as a new column into the matrix B i( 1 to produce B( i+1) J

it may be desirable to make this choice to some extent on sparseness

considerations,.

It is not generally practical to demand a minimum growth of nonzero

elements over the entire process of computing the initial decomposition.

However, one can easily demand ,that, having processed the first k-l

columns according to (1.2) and (1.3), the next column be chosen from those

remaining in such a way as to minimize the number of nonzero elements

generated in the next execution of steps (1.2) and (1.3). See, for

example, Tewarson [27] Choice of the next column may also be made

. according to various schemes of "merit"; e.g., see Dantzig et al. [6].

The introduction of new nonzero elements during the process of

-updating  the i-th decomposition to the i+l-st depends upon

(6.3) the nonzero elements in L (i> -l,(i) over those in a ( 1i ,

and

64) the number r. of the column to be removed from B ( 1i .
1

16



No freedom is possible in the reduction of H
(3-l) to U(i+l) once

( )ia has been chosen and the corresponding ri has been determined.

The growth (6.3) can be determined according to the techniques. .

outlined in Tewarson's  paper, at a cost for each value of i , however,

which is probably unacceptable. The more important consideration is (6.4).

The larger the value of ri , the fewer elimination steps must be carried

out on H(i+l) and the less chance there is for nonzero elements to be

generated. Again, however, the determination of the value of ri

corresponding to each possible choice of a i( > may prove for most

algorithms to be unreasonably expensive.
--.

17



7* Accuracy Considerations
\

During the execution of an exchange algorithm it sometimes becomes

necessary to ensure the highest possible accuracy for a solution to one

of the systems (2.1). High accuracy is generally required of the last

solution in the sequence, and it may be required at other points in the

sequence when components of the solution, or numbers computed from them,

approach critical values. For example, in the simplex method inner
._

products are taken with the vector of simplex multipliers, obtained by

solving a system involving B ( )i , and each of the non-basic vectors.

The computed values are then subtracted from appropriate components of

the cost vector, and the results are compared to zero. Those which are

of one sign have importance in determining how the matrix BCi+') is

.
to be obtained from B 1 . The value zero, of course, is critical.( >

The easiest way of ensuring that the computed solution to a system

(7*1) Bx = v

has high accuracy is by employing the technique of iterative refinement

[9, Chapter 131. According to this technique, if x (0) is any sufficiently

good approximation to the solution of (7.1) (for example, a solution

produced directly via the W-decomposition of B ) then improvements may

be made by computing

(7.2) r 3 .
=v-Bx(J) .,

solving

(7.3)
.

(J)
.

Bz =r (J) 9

18



and setting

(7.4) ,(W) = $> + ,(j)

-.

for j = O&,2,... until 112 l 11(J) is sufficiently small. The inner

products necessary to form the residuals (7.2) must be computed in

double-precision arithmetic. If this rule is observed, however, and if

the condition of the system, measured as

(7.5) cond(B) = 11 B II IIK'\\ 9

is not close to p"-l , the refinement process can be counted on to
-w. .

terminate in a few iterations. The final vector x (J) will then be

as accurate a solution to (7.1) as the significance of the data in B

and v warrant.

Step (7.3) is most economically carried out, of course, via the

same I&decomposition which %ras used to produce x (0) . If this is

done, each repetition of steps (7.2) through (7.4) will cost only

O(n2) operations. The alternative approach of producing a highly

accurate solution to (7.1) by solving the system entirely in double-

precision arithmetic is generally more expensive than iterative

refinement by a factor of n .

19





B. THE QR DECOMPOSITION AND QUADRATIC PROGRAMMING

8. Householder TriangularizationI . .

Householder transformations have been widely discussed in the

literature. In this section we are concerned with their use in reducing

a matrix A to upper-triangular form, and in particular we wish to show

how to update the decomposition of A when its columns are changed one

by one. This will open the way to the implementation of efficient and

stable algorithms for solving problems involving linear constraints.

Householder transformations are symmetric orthogonal matrices of

the form Pk = I -pkukuE where uk is a vector and @, = 2/(uEuk) .

Their utility in this context is due to the fact that for any non-zero

vector a it is possible to choose uk in such a way that the

transformed vector Pka is zero except for its first element.

Householder [15] used this property to construct a sequence of transformations

to reduce a matrix to upper-triangular form. In [29], Wilkinson describes

the process and his error analysis shows it to be very stable.

. Thus if A = (al,...,an) is an mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r> we have

A(k)
= �k-1  �k-2 l  * *

PO A =

i

Rk 'k

0 Tk

where Rk
is an upper-triangular matrix of order k . The next step

is to compute A( k+1) = Pk A04 where Pk is chosen to reduce the first

20



column of Tk to zero except for the first component. This component

becomes, the last diagonal element of s+l and since its modulus is

equal to the Euclidean length of the first column of Tk it should in

general be maximized by a suitable interchange of the columns of

'k

i 'I

. After r steps, Tr will be effectively zero (the length

Tk

of each of its columns will be smaller than some tolerance) and the

process stops.

Hence we conclude that if rank(A) = r then for some permutation

matrix fl the Householder decomposition (or "QR decomposition") of A is

r n-r
--. rs,r-r

&ATT = PkwlPkw2 . . . PO A =

where Q = Pr 1 Pr 2 . . . PO is an mxm orthogonal matrix and R is

upper-triangular and non-singular.

We are now concerned with the manner in which Q should be stored

and the means by which Q , R , S may be updated if the columns of A

are changed. We will suppose that a column a is deleted from A and
P

. that a column a is added.
q

It will be clear what is to be done if only

one or the other takes place.

Compact Method:

Since the Householder transformations Pk are defined by the vectors

uk the usual method is to store the ukTs in the area beneath R , with

a few extra words of memory being used to store the @,'s and the diagonal

21



elements of R . The product Qz for some vector z is then easily

computed in the form Pr 1 Pr 2 . . . PO z where, for example, *
T T

PO" = (I +,uOuO)z = z -~o(uoz)uo. The updating is best accomplished. .

as follows. The first p-l columns of the new R are the same as

before; the other columns p through n are simply overwritten by

columns ap+l, . . ..a ,an q
and transformed by the product Pp-1 pp,2 l '* pO

S
to obtain a new

( )

P-l ; then T
T P-l

is triangularized as usual.

P-l

This method allows Q to be kept in product form always, and there is no

accumulation of

must be re-done

to (m-n/3)n2

errors. Of course, if p = 1 the complete decomposition

and since with m > n the work is roughly proportional-

this can mean a lot of work. But if p i n/2 on the

average, then only about l/8 of the original work must be repeated

each updating.

Explicit Method:

The method just given is probably best when m >> n . Otherwise

. we propose that Q should be stored explicitly and that the updating

be performed as follows:

(1) The initial Q can be computed by transforming the identity

matrix thus:

P
r-1  �r-2 l  * *

poMl Im> =

22



(2) If a
cl

is added to A then compute sq = &as and add it

to the end of

. .

(3) Delete a where applicable (P < r) l
This normally means

P

just updating the permutation vector used to describe fi .

(4) The initial situation

QA'IT =

has thus been changed to

S a

where the areas 0, @ , 0, @ Fe the same as before.

23



This is analogous to the Hessenberg form encountered in

updating UJ decompositions. We now employ a sequence of

(r-p) plane rotations, as used by Givens and analyzed
. .

by Wilkinson [30], to reduce the subdiagonal of area 03

to zero. This changes areas @ , ($ and @ , and the

corresponding rows of Q must also be transformed. Since

the plane rotations are elementary orthogonal transformations,

the latter step produces a new matrix Q* which is also

orthogonal, and the work necessary is approximately proportional

to 2mn+n
2

.

(5) Finally, a single Householder transformation P is appliedr

to produce 6 = PrQ* , where this transformation is the one

which reduces area 06 to zeros except for the first

element. The work involved is proportional to 2(m=n)m .

Thus the transformation a reduces I.fi to a new upper-triangular

form, and the original transformations PO, . . ..Pr 1 , the plane rotations,

and the final Householder transformation may all be discarded since the

required information is all stored in 6 . The total work involved is

roughly proportional to (2mn+n2)+ 2(m-n)m = a2-l-n2 and the stability

Iof the orthogonal transformations is such that accumulation of rounding

errors during repeated applications of the updating process should be
-

very slight.



90 Projections

In optimization problems involving linear constraints it is.of'ten'

necessary to compute the projections of some vector either into or
. .

orthogonal to the space defined by a subset of the constraints (usually

the current "basis"). In this section we show how Householder

transformations may be used to compute such projections. As we have

shown, it is possible to update the Householder decomposition of a

matrix when the number of columns in the matrix is changed, and thus

we will have an efficient and stable means of orthogonalizing vectors

with respect to basis sets whose component vectors are changing one by
--_

one.

Let the basis set of vectors al,a2,...,an form the columns of

an mxn matrix A , and let Sr be the sub-space spanned by {ai] .

We shall assume that the first r vectors are linearly independent

and that rank(A) = r . In general, m 1 n 2 r , although the following

is true even if m < n .

Given an arbitrary vector z we wish to compute the projections

u = Pz , v = (I-P)z

for some projection matrix P , such that

( 1a Z = u+v

04 Tuv = 0

( 1C u&, (i.e., 3.x such that Ax = u)

(4 v is orthogonal to Sr (i.e., ATv = 0) .

.
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One method is to write P as AA+ where A+ is,the nxm generalized

inverse of A , and in [7 ] Fletcher shows how A+ may be updated

upon changes of basis. In contrast, the method based on Householder
. .

transformations does not deal with A+ explicitly but instead keeps

AA+ in factorized form and simply updates the orthogonal matrix required

to produce this form. Apart from being more stable and just as efficient,

the method has the added advantage that there are always two orthonormal

._ sets of vectors available, one spanning Sr and the other spanning its

complement.

As already shown, we can construct an mxn orthogonal matrix Q

such that

r n-r
k-

where R is an rxr upper-triangular matrix. Let

. (9-l)
w1 3 r

W = Qz r 0w2 3 m-r

and define

(9.2)
w1U = QT (1 Y V 5 QT

0

( I

.
0 w2

Then it is easily verified that u,v are the required projections of z ,

which is to say they satisfy the above four properties. Also, the x in
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(c) is readily shown to be

-1
R w1

x = ( ) . . .
0

In effect, we are representing the projection matrices in the form

(9*3) P = QT (Ir O)Q

and

(9.4) --.I-P = QT (0 ImBr>Q

and we are computing u = Pz , v = (I-P)z by means of (9.1), (9.2).

The first r columns of Q span Sr and tine remaining m-r span

its complement. Since Q and' R may be updated accurately and

efficiently if they are canputed using Householder transformations, we

have as claimed the means of orthogonalizing vectors with respect to

varying bases.

As an example of the use of the projection (9.4), consider the

problem of finding the stationary values of xTAx subject to xTx =l

* and CTx
\

= o , where A is a real symmetric matrix of order n and C

is an nxp matrix of rank r , with r 5 p < n . It is shown in [12]

that if the usual Householder decomposition of C is

r n-r
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then the problem is equivalent to that of finding the eigenvalues and

eigenvectors of the matrix $A , where

i) = 1-p = QT Q

is the projection matrix in (9.4). It can then be shown that if

QAQT =
Gll(GT12

G12

G22 1

where Gll
is rxr , then the eigenvalues of :A are the same as

those of G22 and so the eigensystem has effectively been deflated

by the number of independent linear constraints. Similar transformations

can be applied if the quadratic constraint is xTBx = 1 for some real

positive definite matrix B .
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10. Orthogonalization Respect to Positive Definite Forms

Fletcher also shows in [ 7 ] how to update projection matrices when

it is required to orthogonalize with respect to a given positive

definite matrix D . We now show how to compute such projections using

Householder transformations, and hence the comments made in the last

section concerning changes of basis may also be applied here.

Given an arbitrary vector z it is required to find u = Pz ,
-_

v = (I -P)z for some P , such that

( 1a z =u+v
--_

(b) uTDv = 0

(4 3x such that Ax = u

(4 (DA) TV = 0 .

For simplicity we will assume that rank(A) = n . Then, rather than

computing P explicitly as Fletcher does according to

P = A(ATDA)O1 ATl) ,

we obtain the Cholesky decomposition of D thus:

D = LLT

where L is lower-triangular and non-singular if D is positive

definite. We then compute B = LTA and obtain the decomposition

.

QB=; .
0
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Defining

W = QLTz =
w1 n

0
3

w2 E.m-n
and

U = ,-‘QT w10 0
Y V c fTQT

0
0w2

it is easily verified that U,V are the required projections, and

again the x in (c) is given by x = R-1 Since changing a column-=. w1 .

ak of A is equivalent to changing the CO~LWI LTak of B , the

matrices Q and R may be updated almost as simply as before.
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11. Linear Least Squares and Quadratic Programming

We first consider minimization of quadratic forms subject to

linear equality constraints. The solution is given by a single system

of equations and the algorithm we describe for solving this system will

serve as a basic tool for solving problems with inequality constraints.

It will also provide an example of how solutions to even strongly

ill-conditioned problems may be obtained accurately if orthogonalization

techniques are used.

Let A,G be given matrices of orders mxn , pxn respectively

and let b,h be--.given vectors of consistent dimension. The least

squares problem to be considered here is

Problem LS: min lib - AX\\:!

subject to Gx=h.

Similarly, let D be a given positive semi-definite matrix and c

a given n-dimensional vector. The quadratic programming problem

corresponding to the above is

Problem QP: min ' T2 x Dx + cTx

subject to Gx=h.

Now we can obtain very accurately the following Cholesky decomposition

of D :

J-J = ATA =
0
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where we deliberately use A again to represent the triangular factor.

If D is semi-definite, a symmetric permutation of rows and columns

will generally be required. If D is actually positive definite then. .

A will be a non-singular triangular matrix.

With the above notation, it can be shown that the solutions of both

problems satisw the system

m4

where

r

X

C =O, r=b-Ax

b =o , r = -Ax

for Problem LS,

for Problem QP,

and z is the vector of Lagrange multipliers. In [ 21, [ j] methods

for solving such systems have been studied in depth. The method we

give here is similar but more suited to our purpose. This method has

been worked on independently by Leringe and Wedin [1;7]. The solution

of (11.1) is not unique if the quantity rank G0A is less than n ,

but in such cases we shall be content with obtaining one solution rather

. than many. The important steps follow.

(1) Let Ql be the orthogonal matrix which reduces GT to triangular

form, and let Ql also be applied to AT , thus:

Ql(GT 1 AT> = .
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As explained earlier, Ql can be constructed as a sequence of

Householder transformations, and the columns of GT should be

permuted during the triangularization. This allows any redundant

constraints in Gx = h to be detected and discarded.

(2) Let Q2 be the orthogonal matrix which reduces TT to triangular

form:

(11.3) Q2TT = .

Here we assume for simplicity that T is of full rank, which is

equivalent to assuming that (11.1) has a unique solution, and

again we suppress permutations fram the notation.

(3) The combined effect of these decompositions is now best regarded

as the application of an orthogonal similarity transformation to

system (ll.l), since the latter is clearly equivalent to

i

I

. Q2 I

AT

G

A

T
&l
1 ( Z

Q2r

QX1

=

h

Q2b

QIC

. The resulting system consists of various triangular sub-systems

involving Rl , R2 , S , and can easily be solved.

(4) If desired, the solution thus obtained can be improved upon via

the method of iterative refinement [9 ], since this just involves

the solution of system (11.1) with different rightrhand sides, and

the necessary decompositions are already available.
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The algorithm just described has been tested on extremely ill-conditioned

systems involving inverse Hilbert matrices of high order and with iterative

refinement has given solutions which are accurate to full machine precision.



12. Positive Definite Programming

With the algorithm of the previous section available, we are now

prepared to at&a& the following more general programming problems:. .

Problem IS: min bII - 42

subject to Glx = hl ,

G2x ,> h2 .

Problem QP: min 1 x*Dx + c*x
2

--. subject to the same contraints.

Let Gl,G2 be of orders plxn , p2xn respectively, and again suppose

that D has the Cholesky decomposition A*A . In this section we

A
consider problems for which rank

0 Gl
= n (which is most likely

to be true with least squares problems, though less likely in QP ).

In such cases the quadratic form is essentially invertible (but we

emphasize that its inverse is not computed) and so x can be eliminated

w from the problem. With the notation of the preceding section the steps

are

(1)

as follows:

Solve (11.1) with Gl,hl to get the solution x = x0 , then compute

the vector q = G2x0 -h2 .

If q 2 0 then x0 is the solution.

Otherwise, transform the inequality matrix using Ql from step (l),

so that
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(3) If Q,T* = -T Tas before and if M = R2 V it can be shown that

the active constraints are determined by the following linear

complementarity problem (ICP):
-.

w = q + TM Mz

(12.1)

w,z>o , z*w =o .

w, z are respectively the slack variables and Lagrange multipliers

associated with the inequality constraints.

(4) The active constraints (for which w.1 = 0 in the solution of
--.

the ZCP) are now added to the equalities Glx = hl and the final

solution is obtained from (11.1).

We wish to focus attention on the method by which the ICP (12.1) is

solved. Cottle and Dantzig's principal pivoting method [ 5 ] could be

applied in a straightforward manner if M*M were computed explicitly,

but for numerical reasons and because M*M (p2xp2) could

large, we avoid this. Rather we take advantage of the fact

a than n-p1 inequalities can be active at any one time and

be very

that no more

work with a

basis Ml made up of k columns of M , where 15 k ,< n-p1 . The QR

-decomposition

R
Q"l = 0t 1

is maintained for each basis as columns of M are added to or deleted

from Ml and as we know, Q and R can be updated very quickly each
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change. Then just as in the LU method for linear programming, the new

basic solution is obtained not by updating a simplex tableau but simply

by solving the appropriate system of equations using the available

decomposition.

As an example we show how canplementary basic solutions may be

o-btained. Let the basis Ml contain k columns of M and let M2

be the remaining (non-basic) columns. The system to be solved is

. .

i

+
ZB

with obvious notation. If we define y = -MlzB this is best written as

(12.2)

(I-2.3) wB = q2 - M;y

e

and the solution of (12.2) is readily obtained from

.

u = R-*q
-1

1 ' 'B
= -R u , y = .

The blocking variable when a non-basic variable is increased can be

found from the solution of the same set of equations with the appropriate

right-hand side. It is worth noting that the equations can be simplified

37



if

as

to

the basis is square (i.e., if there are as many constraints active

there are free variables). Since it seems very common for the basisL

fill up during the iterations (even if the final solution does not-.

have a full set of constraints) it is worth treating a full basis

specially.

Almost-complementary solutions can be obtained in similar fashion

(with somewhat more work required as the system is then not quite so

syrmnetric). Thus an algorithm such as Cattle and Dantzig's can be

implemented using these techniques, and convergence is thereby guaranteed.

Of special interest, however, is the following unpublished and--.

apparently novel idea due to Yonathan Bard, with whose permission we

report the results he has obtained. Almost-complementary bases are

never allowed to occur; instead, if a basic variable is negative,

then it is replaced by its complement regardless of the effect on the

other basic variables. Bard'has tried this method (carried to convergence)

on hundreds of problems of the form w = q+Mz and cycling has never

occurred when the most negative element of q is chosen. In a series

of tests on 100 random matrices of orders between. 2 and 20,

principal pivoting required a total of 537 pivots whereas the

Cattle-Dantzig algorithm required 689 .
.

The present authors' experience with fewer but larger problems

confirms the above observation that convergence does actually occur and

usually after a small number of iterations. Since the idea eliminates

all work other than computation of complementary solutions it is

particularly suited to the techniques of this section. At worst it should
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be used as a starting procedure to find a close-to-optimal basis quickly,

and at best if the conjecture can be proven that it will always converge,

then a lot of computer time could be saved in the future.

[It has since been learned that Bard applied the principal-pivoting

rule to LCP's of the somewhat special form in which

M= PTP, q= PTp

for some P, p. Problems of this form have been studied by Zoutendijk

in [31,321 where several pivot selection rules are discussed. Finite-

ness is proven for one rule, but simpler methods (such as Bard's) are
--_

recommended in practice for efficiency.

The question of finiteness for the more general ICP remains open,

and it is likely that somewhat more sophisticated rules (e.g., Cottle

and Dantzig) will be required.
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13. Semi-#Definite Programming

We now consider the more general problem in which the rank of the

quadratic form combined with the equality constraints may be less than n .

The method we propose is conceptually as simple as it is stable. It is

analogous to the revised simplex method for linear programming in that

the essential steps to be implemented are as follows:

(1) Find the current basic solution from a certain system of equations

for which a decomposition is available.

(2) Determine according to a certain set of rules what modifications

should be made to the system to obtain a new basis.

(3) If necessary, update the decomposition and return to step (1).

Thus, suppose that the current basis contains GBx = hB as active

constraints. As in (11.1) the corresponding basic solution is then

given by

(13.1)

and

(13.2)

I A

FB

b

wB = 5 - GBx .

(H ere, EBX 2 i& are the currently inactive constraints, wB the

corresponding slack variables, and zB the Lagrange multipliers or dual

variables associated with the active constraints.) The elements of zB
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corresponding to any equality constraints may be either positive or

negative and'need never be looked at. Ignoring these, the basic solution

above is optimal if and only if . .

zB>O a n d WB>O .

A "QP algorithm" is now to be regarded as the "certain set of rules"

mentioned in step (2) whereby zB,wB and possibly other information are

.used to determine which constraints should be added to or dropped from GB .

The efficiency of the method will depend on the speed with which this

decision can be made and on the efficiency with which the decomposition--.

of (13.1) can be updated.

Once again the most pramising pivot-selection rule is that of Bard,

as discussed in the previous section. The general idea in this context

is as follows:

(a) Find wa = min wi , zB = min zi from those eligible

elements of wB,zB .

(b) If wa < 0 , constraint a could be added.

w (c) If zB < 0 , constraint @ could be dropped.

(d) If there are already n constraints active and wa < 0 ,

constraint cx could replace constraint /3 .

We do not consider here the question of convergence, but as already stated,

this type of rule has been found to work.

The problem of updating the requisite decompositions is more relevant

at present. We discuss this and other points briefly.
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(1) The matrices Ql,Rl of Equation (ll.2) can be updated efficiently

using the methods of Section 8.
*

(2) Q23R2 obtained from the matrix T in Equation (11.3) unfortunately
-.

cannot be updated, but the work needed to recompute them might often

be very small, for the following reasons:

(a) In Problem IS, a preliminary triangularization of A (mxn)

can be applied to obtain an equivalent problem for which m < n .

The Cholese factor of D in Problem QP already has this property.

(b) If there are many constraints active (up to n) then T has

very f,Fw rows.

(c) If the rank of the system is low (relative to n) then T

has very few columns.

(3) Hence the method is very efficient if close to n constraints are

active each iteration, as should often be the case. It also has the

property, along with Beale's algorithm [1], of being most efficient

for problems of low rank.

(4) The procedure can be initiated with any specified set of constraints

a
in the first basis, and an initial estimate of x is not required.

(5) Any number of constraints can be handled, in the same way that the

revised simplex method can deal with any number of variables.

(6) If D = 0 the problem is a linear program and only bases containing

n constraints need be considered. The method reduces to something

like a self-dual simplex algorithm.



Finally we note that with semi-definite problems it is possible

for some basic system (13 .l) to be singular. If there are any solutions

at all then there are many (this will always be the case with low rank

least squares problems) but this does n& matter, since zB is s-KU

uniquely determined. However, a low rank quadratic program might be

unbounded, and this is manifested by a singular system (13.1) proving

to be inconsistent. In general, this just means that there are not yet

enough constraints in the basis, so that trouble can usually be avoided

by initializing the procedure with a full set of constraints.
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c. THE SVD AND NONLINEAR

14. The Singular Value Decomposition
. .

IXAST SQUARES

Let A be a real, mxn matrix (for notational convenience we

assume that m > n) . It is well known (cf. [ 1) that
- ’

(14.1) A=U731T

where U,V are orthogonal matrices and

7
--. . 0

.
c=

0 .

%
A*

0 4 1 (m-n)  x n
U consists of the *orthonormalized  eigenvectors of AA* , and

V consists of the orthonormalized eigenvectors of A*A . The

diagonal elementsof C are the non-negative square roots of the

eigenvalues of A*A ; they are called singular values

of A . We assume

Thus if rank(A) = r , or+1
= ati2 = . . . = 0, = o .

or principal values

The decomposition

(14.1) is called the singular value decomposition (SVD).
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An nxm matrix X is said to be the pseudo-inverse of an mxn

matrix A if X satisfies the following four properties:

(i) AXA=A , (ii) XAX = X , (iii) @A)* = XA , (iv) (AX)T = AX .

We denote the pseudo-inverse by A+ . It can be shown that A+ can

always be determined and is unique (cf. [zl]). It is easy to verify

that A+ = VAU* where A is the nxm matrix

A =
-1 -1

didal  ‘a2 9...,~r  J J-IL 0 0 ,.-,Ol . There are many applications of

the SVD in least squares problems (cf. [ll]).

The SVD of an arbitrary matrix is calculated in the following way.
--. n-l

First, a sequence of Householder transformations {Pk)Ezl ) (Qklkzl

is constructed PO that

T
PnPn,l~..PlAQ1Q2...Qn-1~  P A& = J

and J isan mxn bi-diagonal matrix of the form

J

. .

. Bn-l
a

\
n

0 i
3
(m-n)xn .

The singular values of J are the same as those of A .

Next the SVD of J is computed by an algorithm given in [ll]. The

algorithm is based on the highly effective QR algorithm of Francis [lo] for

computing eigenvalues. If the SVD of J =XCY
T then A = PXcYTQT so

that U = PX , V = QY .
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15a Nonlinear Least SquEWeS

Consider the nonlinear transformation F(x) = y where ,xeEn

and yeEm with n <m . We wish to consider the following problem:-

min \Ib - F(x) ii,

subject to

(15J) G x = h ,

where G is a pxn matrix of rank p and heEp . A very effective

algorithm for solving such problems is a variant of the Levenberg-Marquardt
--.

algorithm [l&19]; in this section we consider some of the details of the

numerical calculation. Further

by Shanno [25] and Meyer [29].

Let us assume that we have

the relation Gx (0) = h . Then

determine 6 w so that

extensions of the algorithm are given

an approximation x (0) which satisfies

at each. stage of the iteration we

(15.2) x(k+u = x(k> + fjw

and

(1593) wGE =o.
.

R
Again as in Section 11, we write QIGT = o

0
where Ql is the product

of p Householder transformations and R is an upper triangular matrix.

Let

(15.4) 04Qf =
3P

] n-p
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Then from (15.3), we see that 6 04 = o .

For notational convenience, let US drop the superscript k ;

we write x (k) as x0
and x(~") as x1 .

In the Levenberg-Marquardt algorithm one determines the vector 6

so that

(15*5) lb - Jg + h II 6 II2 = min.

where

r= b -F(xg) Y

--.
J is the Jacobian evaluated at x0 , and h is an arbitrary non-negative

parameter. From (15.4), we see that (15.5) is equivalent to determining 1

so that

(15*6)
IIr - J&T( h) II: + dII E II: + II 7IIi >= min. c

subject to E; 0.=

NOW let US write JQ: = [M,N] where N consists of the last n-p

Te columns of J&1 . Then (15.6) is equivalent to finding ?l so that

Consider the SVD of N ; namely

N=UC;C l

Then



(15a7) @(crl)  = IIUTr-XV* Ill\: + h

= lb -c 5 11; + ill 5

I

I ‘2 -.

I$ v II
2

2

I2

where

T
S =Ur , (5=

h l

Writing out (15.7) explicitly, we have

‘p(5)  =

(‘j  -  ojsj)2  + h

--.

where p is the rank of N . (Note p may change from iteration to

iteration.) Then

when

lj  = 35$

h + aj

= 0

and hence

s .cT .
rl =

cl JJj= A+D~ 2

for j = 1,2,...,p ,

for j > p

where v
3

is the j-th column of V . Thus
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6 T 0
Q()=11

.

Note it is an easy matter to compute 'Q (and hence 6) for various

values of h . The algorithm for canputing  the SVD can easily be

organized so that s is computed directly ([ 14).

There are several possible strategies for determining 1 . One

possibility is to choose i so that

lib - F(xl(h) 1 II2 ,< [lb - F(xl(h) 1 \I2 l

This requires, of course, the evaluation of F(x) at a

Another possibility is to choose 6 such that

(15.8) c llr vEI(~ = min.

subject to II II59 l .

This is equivalent to determining h such that

2
PII 2

27 II = sjoj .
2 &

j=l
(

h + 0;
1 <a!

When h = 0 , we have the solution to the unconstrained problem and

qo= & -5 vj .
j=l Oj

Let Il~oll, = B . If p ~a , then we have the solution

Otherwise, we must determine h so that

great many points.

to (15.8).
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(15*9) sjojit 1
2

=a2 .
3 = A + u;

Let

r

o15

O2"2

.

.

.

1,OPSP

Y R
2 2

= diag(alya2y  l . l yoF) ;

we assume s.
J
f-0 for j = 1,2,...,p . By repeated use of the

relationship

= de-t(X) det(W -ZX%) if det(X) 10

we can show that (15.9) is equivalent to

(15.10) det((n + hI)2 - uu*) = 0

a which has 2p roots; it can be shown that we need the largest real

root, which we denote by A* ([S]). Let

2

T(h) = Sjaj - a2

f( )J= A + u;

and assume that 0: ,> o: 2 . . .
2

>o >o. Note I'(0) = p2 -a2>o,
- P

and r(h) + a2 as h 4~0 , so that 0 5 h* <a and it is the only

root in that interval. We seek.a more precise upper bound for A*.
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From (15.10) we see, using a Rayleigh quotient argument,that

A* < max [-Y*SaY + YTRy)2 - yT(n2 - uu*>y ] .

- IIY 2=1II .  .

A short manipulation then shows that

(15J-l)

Thus, we wish to find a root of (15.10) which lies in the interval

given by (15.11). Note that the determinantal  equation (15.10)

involves a diagonal matrix plus a matrix of rank one. In the next
--.

section we shall describe an algorithm for solving such problems.
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16. Modified Eigensystems

As was pointed out in Section 15, it is sometimes desirable to

determine some eigenvalues of a diagonal matrix which is modified by

a matrix of rank one. Also, Powell [23] has recently proposed a

minimization algorithm which requires the eigensystem of a matrix af'ker

a rank one modification. In this section, we give an algorithm for

determining in O(n2) numerical operations some or all of the eigenvalues

and eigenvectors of D+ouu* where D = diag(di) is a diagonal matrix

of order n and ueEn'

Let C = Il.+ @Au* ; we denote the eigenvaluesof C by hlJh2, . . ., h,

and we assume Ai > hi+l and di ,> di+l . It can be shown (cf. [30])

that

(1) If o_>o, dl+UU*U_>Al->dl,  di 1 _> Ai > di- - (i = 2,...,n) ,

(2) If o < 0 , di ,> Ai ->'diml (i =,1,2,...,n-1) , dn->h, >dn+ouTu .

Thus we have precise bounds on each of the eigenvalues of the modified

matrix.

Let K be a bi-diagonal matrix of the form

K =

/ 1 rl
\

1 . 0
. .

. .

0 . rn-l

\ 1 /

s
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and let M = diag(pi) . Then

(16.1) KMK* = Pkrk-l

is a symmetric, tri-diagonal matrix.

Consider the matrix equation

(16.2) (D+guu*)x = Ax .

Multiplying (16.2) on the left by KY we have

a

K(D+ouu*)I?K-*x  = A KKTK-*x

or

(16.3) (KD K?+~Kuu*I?)Y  = h KK*y

T
where x = K y . Let us assume that we have re-ordered the eJ.ements of u

so that

=u =...=u
ul 2

p 1 = 0 and 0 < Iup1 ,< IuP < ..a 5 111~1 .-
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Now it is possible to determine the elements of K so that

(16.4) Ku =

Specifically,

0

0
..00.0Un

r. = o1

.

(i = 1,2,...,p-1) ,

r. = -"i/ui+l ( i1 = PYptlY*~*Yn) Y
--_

and we note that (ril 51 . (This device of using a bi-diagonal matrix

for annihilating n-l elements of a vector has been used by Bj8rck

and Pereyra [4 ] for inverting Vandermonde matrices.) Therefore, if Ku

satisfies (16.4), we see from (16.1) that KDK?+oKuu KT T is a

tri-diagonal matrix and similarly KS is a tri-diagonal matrix. Thus

we have a problem of the form

where A and B are symmetric, tri-diagonal matrices and B is positive

definite.

In [22], Peters and Wilkinson show how linear interpolation may

be used effectively for camputing the eigenvalues for such matrices

when the eigenvalues are isolated. The algorithm makes use of the value

of det(A-hl3) . When A and B are tri-diagonal, it is very simple
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to evaluate det(A-AB) for arbitrary h . Once the eigenvalues are

computed it is easy to compute the eigenvectors by inverse iteration.

In Section 15, we showed it was necessary to compute a parameter

A* which satisfied the equation

(16.5) det((n + hI)2 - uu*) = 0 .

Again we can determine K so that Ku satisfies (16.4) and hence (16.5)

is equivalent to

(16.6) det(K(0 + XI)2KT - Kuu* 3) = 0 .
--.

The matrix G(h) = K(R + )LI)~K* - Kuu*KT is tri-diagonal so that it is

and det G(h) . Since we have an upper

is possible to use linear interpolation

easy to evaluate G(A) and

lower bound on A* , it to

find h* , even though G(h) is quadratic-in h . Numerical experiments

have indicated it is best to compute G(h) = K(C? + LI)2KT - Kuu*I;r

for each approximate value of A* rather than computing

G(h) = (Kn2KT - Kuu*$) + 21 KsZK* + h2KKT .

. The device of changing modified eigensystems to tri-diagonal

matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

D U

c = (F-HUT u

Again we choose K so that Ku satisfies (16.4) and thus obtain the

eigenvalue problem Ay = ABy where
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A =

so that A and B are both tri-diagonal and B is positive definite.

Bounds for the eigenvalues of C can easily be established in terms of

the eigenvalues of D and hence the linear interpolation algorithm

may be used for determining the eigenvalues of C .
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