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In the present work we will examine estimates of the equivalent
perturbation of roundoff errors in the solution of a system of condi-
tional equations by the nethod of |east squares (Method A) and by a
met hod whi ch was proposed by D. K Faddeev, V. N Faddeeva, and v. N.
Kubl anovskaya in a joint report at a conference on numerical methods
in Kiev in 1966 (Method B).

Let us exanmine the system of conditional equations

Ax = £ (1)
wWth a rectangular matrix A havimg N rows and n colums, where
generally N> n. Mthod A leads to the system of normal equations

T T

A*Ax = A°f (2)

TA of rank n. W wll

with a symetric positive &inite matrix A
assunme that the solution of (2) is found by the method of square roots
- always taking advantage of the accumulation of scalar products, independ-
ently of how one conputes the elements of system (2)

Method B leads to a left orthogonal transformation of (1) into

Px = a (2')

The term "equival ent perturbation” seens to refer to inverse roundoff
anal ysi s.



where P=QA £=C, matrix P has non-null elements only in the right
upper triangle Pofrank =n. Let ¢ be the vector whose conponents are

the first n conponents of the vector-. Qf. The triangular system

~

Px = a (3)
is equivalent to system (2).

The total error in both nethods is conposed of the roundoff error
inreading in the coefficients and the right-hand terns of (2) and (3)
and the roundoff error during the solving of these systems. Since
triangul ar systens may be solved very exactly ([1, Chapter 4]), we can
negl ect the roundoff error in the solution of (3)and in the back-
solution part of the method of square roots in the solution of (2).

Because of the equivalence of (2) and (3)it does not natter whether
one calculates the equival ent perturbation of roundoff errors of Methods
A and B in terms of (2) or (3). W wll do the calculations in terns of
system (2) since this is nore convenient. Everywhere below, if it is not
specifically stated, we will use the synbols adopted in [1] and the
Eucl i dean norm of the matrices and vectors.

1) Let us examne in the first place the errors of Method A
Because of the roundoff in the calculation of the scalar products, the

T T

elements of the matrix A*A and the vector Af will be obtained with

a certain error; i.e., instead of (2) we obtain
Bx = k (14-)
where B = ATA + a(aTa), k = aT¢ + a(aTe).



The norms of the error matrix A(ATA) and the error vector A(A1%)
essentially depend on the nmethod of calculating of scalar products in
t he machi ne.

In the carrying out of all operations in a machine with a t-digit
accuracy, the elenments of A(ATA) and A(ATf), which we will designate
respectively by Abig and &k, my be estimated on the basis of [1,

Chapter 3] as
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<if the calculations are executed with floating point (fl). Here and

| at er tp =t - 0.08406, and 8, is the i-th colum of the matrix A

Hence, we obtain
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If the calculations are executed in fixed point (fi), we get

correspondi ngly

(o)l < w271, Ja(ale) || < w2 271 (6)

Here it is assumed HaiH < 1ot IIf]l < 1-N2't'l, whi ch guarant ees

the possibility of calculating in fixed point.
If the scalar products are calculated with double precision, then

the estimate under consideration is practically independent of N In



particular, in the case of floating point (fﬂg), according to [1,

Chapter 3],

a,
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Assuni ng % %< 0.1, we obtain

-t

T -t
[, 1 <277 (af 8;) + 0.11-27 lay || llall .

Using the relation l(af aj)l < \[a.lll llajll, we find

Ia(aTa) < 1.11°27% |al? . (7)

In the same way,
D=t
Ia(ae) 11 < 11227 fall gl (8)
In the case of fixed point ('fiQ), we have

IaaZa) | < 02752, a(aTe) | < ot/? 2701 (9)

-t-1 t-1

with the assunption that |k, | < 1-2 , el < 1-27
Let us now estimate the equivalent perturbation due to the roundoff
error in the application of the forward step in the nethod of square
roots, i.e., in the deconposition of the matrix of system (4) into the
product of two triangular matrices. It is known that the triangular

factors S and sT of the matrix B that are really obtained in the

machine are the exact factors of a certain matrix B+E ~ that is

B+ E = sst. (10)



The following estimates are verifiable for the elenents e.l.J of mtrix E

559551277 1>
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with an accuracy up to terns of 0(2-2t) in calculations with floating

poi nt and
-t . .
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e.. | <J05s. 2 , 1<y (12)
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in calculations with fixed point. In the latter case, if Ibijl <
1-1.00001-27% for all i,j and if matrix Bis not very badly condi-
tioned, then lsijl <1 for all 1i,j.

Consi dering (&) and (10), we get that the nunerical deconposition

. . . . T T
is exactly the deconposition of a perturbed matrix, i.e., AA+ C =887,

wher e
C =a(ata) + E (13)

The normof ¢ is indeed of interest to us as the normof the total error
. . T

in the coefficients of system(2), while the normof the vector A&(A°f)
Is the normof the error in the right-hand side of the system

From (11) in calculations with floating point, neglecting terms
2t

of order 2~ we have
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we obtain |s] = llall[1 + o(N2't)], wher e

el < 2-27% a1 + o).

As V. V. Voyevodin observed,

these considerations permt

us

(1)

to obtain an estimate of the equivalent perturbation for the nethod

of square roots which is
without the assumption of accumulation.

Actual ly fromthe above explanati on.

accuracy up to quantities of order o(g'2t)

it follows that with an

n times better than that suggested in [2],



-t 2.1 -
el < 227" 12 (2 52,212 < 2.27F ||
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- 227" ||ssT| = 2.27% |B].

Passing from the Euclidean normto the spectral norm we obtain

1/2 mx s,, < 2-2't(n max )\;)1/2

Ie| < 2-2"%(sp B)
—22t o2 g,

This estimate is n times better than the one obtained in [2], for
exanple. For fixed point, an estinate anal ogous to (14), derived from

(12) with the assunption that |Sij | <1, has the form
I 1l <2271 + o(3)). (15)

Using the relations (5)-(15), we obtain finally

i< hRa + o)), Ia(aTe) || < w Lallels (o)

loi < 2.72-27% I, la(aTe)) < 1.21-27% Ja)) il (£2,)

lo 1 < w211 + o(3)), Iaale)) < w2 27t (£i)

lel < 271 + o)), a(aTe) | < o2 27FL (£1,)
T T

respectively, for the calculation of the elements of A'A and A°f

in the cases of f4, £l,, fi, fi,.



2) W will now estimate the equivalent perturbation for the errors
in Method B, which is equivalently an estimate of the errors in the elements

of the system
plpx = Py (16)

which were obtained because of the inaccurate calculation of P and 4.
Let us denote by AP and Af, respectively, the matrix and the vector
error. Because of these errors, instead of (16)we obtain the perturbed

system (P + AE)T(P + AP)x = (P + AP)T(L + AL). Neglecting the products

APTAP  and (AP)TAJ, we obtain for the perturbations the approximte

equalities

T

A(PTP) = Pap + (aP)TP, A(PTR) = PTAL + (2P)T4,

from which

la(e™®) | < 2lle] flael , laeTe)l < lBll laell + flaB]) sl -

Because of the orthogonality of the matrix of transformation Q,

we have

el = lall = lall end (2] = ltll = li£) ,
whence

Ia(ETR) || < 2lall lieell , [Ia(RTe) | < fall lael + ey o) . (17)

In order to obtain final results it is necessary to estimate the norms
of AP and Af4. These estimates essentially depend on the actual nethod
of obtaining P, i.e., the nmethod of transformng the system of sinultan-

eous equations into system (2'). To obtain the matrix 'P we will elimnate




the elenents 2. of matrix A for which i >j. W wll performthe
elimnation with the help of a matrix of rotation or reflection [3].
Moreover, we will designate by o ,a,,... constants, which depend on the
actual method of rounding in the machine. According to the assunptions
of [1], these constants are not nore than a few units or |-2 tens.

(1) The transformation of matrix A is acconplished with the
hel p of a succession of elenentary rotation matrices T.l,J inacyclic
order (Method Bl). Each of these rotations elimnates the elenment standing
inthe (i,j)-th position.

The roundoff error during the corresponding process of elimnating

t he subdi agonal elenents of the square matrix was investigated in [1,
Chapter 3],where elimnation by colums was examned. In our case it
is more convenient and necessary to elimnate elements by rows, i.e., in
the order (2,1), (3,1), (3,2), (4,1),...,(n,n-1), (n+1,1),...,(n+l,n),...,
(Nn). It can be shown that the roundoff error in the elimnation of
elements by rows and colums is the sane.

Wthout stating the calculations, which are like those exam ned in
[1, Chapter 3], but which are even nore cunbersome, let us wite the final

result for the i-th colum N of the error matrix AP;

HAj_”S o:i2_t[n(N-n) + H%l]l/z(l\wné)1/2(l+6’2_t)(N+n-3)Haill (18)
in the case of conputing with floating point. In the same way an estimte,

with the substitution of ||f || for Hain, is verifiable for, the error of

transformng the colum of the right-hand side. Here the calculation of

scalar products with double precision has not been assumed. This cannot



essentially change the estimate since, in the process under consideration,
we do not encounter the calculation of scalar products of a vector of
nore than the second order.

In conputing with fixed point.
Iay 1 < o 2" ¥(n(w-n) + 2EL)y (19)

noreover, for it to be possible to conpute with fixed point it is suf-

ficient that

lal <1 - a, 2™ [ n(N-n) + ﬂﬂ;‘_];l] .

The sanme estimate is correct for the error of rotating the right-hand side.
The estinate obtained is exactly |ike that given in [1, Chapter 3],
where actually the fact that the transformed matrix is square is not used.

n
Considering that |ap|| = ( = llai ||2)l/2, we obtain from (18)
i=1

ool < o W2 27 all | fladl < o W2 27 e

for floating point. In the same way from (19) we obtain

28l < o mat/2 27l el < qp e
for fixed point.

. (2) Errors can be reduced essentially if one uses rotation matrices
with the order of elimnation of the unknowns that is suggested in [4]
( Met hod Bg-)'
Let us denote by Mthe nunmber of cycles required for the transforma-
tion of Ainto triangular form The estimate conputed in [4] for our

case takes on the form

10



ozl < a2™u(1 + 6-27 Al ot < a2y + 627" e (20)

for floating point, and

ol < 2”82 wH/2(n(en) + REL/2

(21)
llae|| < %2-tM1/2[n(N-n) N nfnél)]l/e

for fixed point.

For an estimate of the value of Mlet us note that the nunber of
cycles is_independent of the actual realization of the process suggested
in[4]if one does not consider zero elements of the initial matrix or
any elements accidentally zeroed in one elenentary transformation. For
the elimnation of the m| elements of the matrix consisting of m
rows and one colum, [logy(m-1)] + 1 cycles are required. Here the
square brackets denote the integer part.

Let the matrix have N rows and n colums. For the elimnation
of all the elements of the first colum except the first elenent, one
requires [1og2(N-1)] + 1 cycles. Wth these it could happen that some
of the elements of other colums are elininated. However, even if one
disregards the last situation for the elimnation of elenents of the

second column, [log,(N-2)] + 1 cycles are required, etc.

Finally, we obtain

n
M < E [log,(N-k) + n < n{[logy(N-1)] + 1} .
k=1 ,

11



This estimate is a little excessive, but not by nore than 4-5 tines for
N < 100000.

Using this estimate for M we find from. (20) and (21)
Y

ll2p|| < @, n log, N-2°

; all 5 llagll < oy o Log, w2™"|l2]

for floating point and

1/2 1/2

llapl| < o, n3/2(N 1og, M), |latll < o n(N log, N)

for fixed point.

(3) Using a matrix of rotation (Method B,) for the elimnation of the

; 3)
el ements of A appears nost expedient in that case where the scal ar
products are calculated with double precision. Mreover, the estinmates for
‘AP and A4 are practically independent of N Let us assunme here that
the calculation is. carried out in floating point. The results obtained in

[1, Chapter 3] go for rectangular matrices A and give
llapl| < oz5(n-1)2'tHA\|, llaell < a5(n-1)2't\\f\l-

Having substituted the estimte received for AP and AL . into (17),
we obtain a final estimate of the norm of the error matrix A(PTP) and
t he-error vector A(I;Illl); nanel y,

* for nethod Bl:

o) < oqma/ 22 I, (e < g2l i (22)

(%R ]| < a2, (AP < o227 | (£i)



for nethod B2:

lla(e™)|) < a n losgN-a'f\\Allz, laceTe))| < an 10g,n-27"la]| [l (£2)

IaCT2)]| < 0,2 108,002, %)) < 0,2 ¥/2(x 208,172 (£1)
for mnethod B3:

I < aga-1)2” Al aea)] < ag(a-1)2” Al llel. (£4,)-

Conparing the obtained results, Wwe see that the estimates of the
equi val ent perturbations for the matrix of system 2 have the form
2-t(p(N,n)H;\H2 and 2'tw(N,n), respectively, for the different nethods
of calculation. In the table-the order of magnitude of the functions

o(N,n) and ¢(N,n) are set forth (N >> n).

W Type of Conputation
) l
Met hod | leE ! Wf‘lw t f12
A N ‘ const ! nN i n
K .5 i
‘ B | N R e | noN
; | l2 1/2 ] 2 1/2

B, l n log,N n log,N “ n (N log2N) | n (N logaN) a
% B, |mN n . oNC 2t/2 |
| ‘

[ SSRGS J

In this table it is seen that a conparison of Methods A and B, in
the sense of mgjorizing the estimate, gges as a rule in favor of Method A

Met hod 32 is the elimnation nethod.

13



Let us go now from the equival ent perturbations to the error in
the solution of the system It is not difficult to construct an exanple
in which with Method B, one obtains an order of the normof the error in
the solution which is equal to the largest estimate of Method A without
accunul ation. Let us exanine, for exanple, the systemwth a matrix of

coefficients and a right-hand vector, respectively, of the form

£ 0.5 i =], : 1/n i < m
aij= 0 i#3,1<n, £,0=

i . .

i;el I > n, i 0 I > n;

where €<< 1, so that n(N-n) e < 1.

Let us consider that conputations are carried out with fixed point,
and that the elenmentary matrix rotations are conmputed exactly. Assune
that nultiplication by these matrices is equally exact. After each
multiplication by an elementary matrix of rotation, one rounds off the
el ements obtained up to a t digit nunber with fixed point, which gives

-t-1

an error of 2 It is possible to assume that in this situation the

el enents of AP, which stand on the main diagonal and above,’ have the

-l O(n(N-n) € 2't). Al'so, the conponents of the vector

form (N-n)2
A4 have this formw th nunbers which are not larger than n.

Let us designate by Ax the vector of the error of the solution.
When (; + A;)(x + AX) = Z + AZ, then, neglecting the product A;Ax, we
obtain Ax = ;"l(AE - A;x). Havi ng conput ed Pl and x, we obtain

1/22-40). The sane order for’ }\'Axl \4s obtained iniMethod

llase|| = O((¥-n)
A if one uses the identity AX = AA) ATf and the maxi num

estimtes for A(ATL) and’ C.
14



In conclusion, let us take note of a fact which is connected to the
practical application of the methods under consideration. The application
of Met hods B, and B3 requires storage in menory of all the elenents of the
matrix A, while the application of Methods A and Bg permts a row by-row
introduction of the information. The latter allows one a practically limt-
less way to increase the values of N. In the rowby-row introduction of
information in Method A with accumulation of scalar products, one demands
in addition n2+ n work cells for the storage of intermediate val ues

T W.

during the calculation of the elements of A'A and A Actual ly, in

this case the coefficients (and the right-hand side) of system (2) can be
considered in a parallel fashion and each of these internediate val ues,

witten down in 2t digits, can be stored in 2 cells of menmory

The author wi shes to thank v. V. Voyevodin for posing the problem

and for guidance.
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