
THE SCHEDULING OF N TASKS WITH
-’ M OPERATIONS ONTWO PROCESSORS

BY

HENRY BAUER
HAROLD STONE

l

STAN-CS-70-165
JULY 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

ABSTRACT

The job shop problem is one scheduling problem for which no

efficient algorithm exists. That is, no algorithm is known in which

the number of computational steps grow algebraically as the problem

enlarges. This paper presents a discussion of the problem of

scheduling N tasks on two processors when each task consists of

three operations. The operations of each task must be performed in

order and among the processors. We analyze this problem through four

sub-problems. Johnson's scheduling algorithm is generalized to solve

two of these sub-problems, and functional equation algorithms are used

to solve the remaining two problems. Except for one case, the algorithms

are efficient. The exceptional case has been labelled the "core"

problem and the difficulties are described.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This research was supported by the U.S. Atomic Energy
Commission under contract number AT (04-3) 326 PA23
and NSF GJ 687.

-
b.‘?

The Scheduling of N Tasks with M Operations on Two Processors

bY
-.

Henry Bauer and Harold Stone

I. Introduction

The 'job shop

algorithm exists

problem is one scheduling problem for which no efficient

[Conway 19671. That is, no algorithm is known in which

the number of computational steps grow algebraically as the problem

enlarges. This paper presents a discussion of the problem of scheduling--.

N tasks on two processors when each task consists of three operations.

The operations of each task must be performed in order and among the

processors. We analyze this problem through several sub-problems.

Johnson's scheduling algorithm [Johnson 19551 is generalized to solve

two of these sub-problems, and functional equation algorithms [Iawler 19691

are used to solve the remaining two problems. Except for one case, the

algorithms are efficient. The exceptional case has been labelled the

"core" problem and the difficulties are described.

This problem has been suggested by several examples in computer

science.

1. N tasks exist which alternately require the use of a CRJ

and some peripheral processor and for which the time required

by each processor is known within reasonable tolerance.

2. N tasks exist which are to be prepared (compiled) by one

machine for execution by a second machine and the output is

1

to be processed by the first machine again. The time

required for each processor is again known in advance.

The organization of the paper is as follows: Section II discusses

relevant results of previous researchers. Section III states the problem

of scheduling tasks with three operations on two processors and initiates

the discussion of the problem's solution. Sections IV, V, and VI present

three sub-problems for which efficient solutions have been found. The

"core" problem is discussed in Section VII. Finally, the complete

problem solution is outlined, and a summary of the results and an

indication of future research directions are given.--.

2

II. Historical Results

The major results in the problem are due to S. M. Johnson

[Johnson 19551. Johnson considered the production schedule of N

tasks each of which he assumed to have two operations. The first

operation is performed on the first machine and the second operation is

performed on the second machine. There are only two machines and the

second operation may not begin before the first operation is completed.

Johnson obtained the following two results.

1. The order of the production sequence on the two machines may

be made the same without loss of time.

2. --'Let tasks i , i = 1 ,...,N consist of the pair of operations

ai,b. where ai' i1 =l N,9 .**9 are the lengths of the

operations to be processed on the first machine and b
i'

i =1,...,N are the lengths of the succeeding operations

to be processed on the second machine. An optimal ordering

is given by the following rule:

Item j precedes item j+l if

min(a.,b)
J j+l

< min(a
j+lJbj) ' \

This ordering is unique except for ties.

. Equivalently, result 2 may be stated in other terms for which we

require the following definitions.

Definition: The contribution of the i-th task is the difference bi-ai l

Definition: The delay,A , is the difference between the initiation

times of the two operations of a given task.

3

Intuitively, the contribution of the i-th task represents the

effect of the task's assignment on the value of the delay. A positive

contribution tends toincreasethe delay for the next task assigned;
. .

a negative contribution tends to decrease the delay. Result 2 is

equivalent to the following.

2'. Divide the tasks into two groups according to whether

their contributions are negative or non-negative. Assign

all the non-negative contributing tasks in order of increasing

size of aiTs followed by the negative contributing tasks

in order of decreasing size of birs .
--.

The proof of this assertion can be seen as follows. Let the tasks

with positive contribution be indexed for j = 1,2,...,m . Then, if

arranged by increasing ak , these tasks satisfy

&j <aa- J+l
A aj -<bj A a. <b. A

Jfl - J+l

Then

min(a.,b
J j+l

) = a. and
J

e

Similarly, we obtain

min(a b.) >a.j+l' J J
for m+lL j 5 N-l .

min(aj,bj+l) = bj+l and min(a b.)>b
j+l' J j+l

for the negative contributing tasks which again is Johnson's condition.

aj <b.
- J+l

for 1 < j 5 m-l .-

At the dividing line between the negative and non-negative contributing

tasks

�m 5 bm * a;,+l > bm+l l

4

Therefore, we obtain the Johnson condition

min (“m’bm+l) L min(bm,bm+l) _< min(bm☺am+l> l

Johnson generalized his first result for N tasks, each with M. .

operations, M>2.

1'. Consider N tasks each with M operations to be processed

respectively on M machines, 1,2,...,M . That is, the

first operation of each task must be done on machine one, the

second operation on machine two, and the k-th operation on

machine k. To minimize the maximum flow time it is sufficient

to, consider only schedules in which the production sequence

is the same on machines one and two, and in which the

production sequence is the same on machines M-l and M .

The third Johnson result is for a special case in the N task,

3 machine problem.

3. Consider N tasks each with 3 operations ak,bk,ck ,

k = 1,2,..., N to be processed in order on machines 1, 2,

and 3, respectively. Assume that

min ai >max b. .- 3

Task i precedes task j if

min(ai+bi,cj+bj) <min(aj+b.,ci+bi) l

J

In the general job shop problem for M machines and N tasks,

the only complete solution that is currently known for which the

computational complexity is algebraic rather than exponential in N

5

is for M=2. In an extension of Johnson% results, Jackson

[Jackson 19561 showed that if

CA3 is the set of jobs with only one operation to be performed. .

on machine one,

CB3 is the set of jobs with only one operation to be performed

on machine two,

CAB3 is the set of jobs which have two operations, the first to

be performed on machine one and the second on machine two,

and (BA] is the set of jobs which have two operations, the first to

be performed on machine two and the second on machine one,. .

then simply determine the sequence of tasks in (AB} and (BA] by

Johnson's rule 2 and, using these orderings, assign the tasks to

machine one and machine two as follows:

machine one: tasks in {AB] , followed by tasks in (A] , followed

by tasks in (BA]

machine two: tasks in (BA] , followed by tasks in (B) , followed

by tasks in (AB]

where the order of tasks in CA1 and (B] does not matter.

6

III. The 3-stage Scheduling Problem

In computer scheduling, it is sometimes advantageous to queue a

group of tasks (programs) which use a common facility (compiler) which
. .

is serially reuseable (core resident). In this case, intermixing the

job queue with dissimilar tasks would cause set up delays of dispropor-

tionate length. Similarly, the processing (execution) of these tasks

on a second machine may also require special facilities (run time

administration) which are also serially reuseable. In addition, the

completion of the tasks may be processed by the first machine with

certain advantages of grouping.

The results of this paper concern a special case of the two

machine job shop problem for N tasks with exactly three operations

which reflects the situation stated above. The general problem is

restricted in the following three ways:

1. The first and third operations of each task must be performed

on one machine and the second operation must be performed on

the other machine. Hence in the notation of the previous

section the tasks may be divided into two sets: CJW and

!BAB) l (Note that when fewer than three operations exist

in the cases {A] , {Bj , (AS) , {BA) , an arbitrary extension

to three operation tasks may be made. However, the choice

of the extension may change the resulting assignment.)

2. The form of the solution is restricted as follows for machine

one and machine two.

machine one: The initial operations of the set (ABA] ,

followed by the second operations of the set

FBW 9 and followed by the third operation

of the set {ABA] .

machine two: The initial operations of the set (BAB] ,
. .

followed by the second operations of the set

cABc13 9 and followed by the third operation

of the set
CBm l

3. No idle time is allowed.

These three conditions restrict the solution to one of the four

forms illustrated in the Gantt charts below. In these charts each

segment is labele'd by the set of tasks which may be assigned in the

segment. The underline indicates the operation which is to be

performed. For example, _WA1 indicates that the third operations

of the tasks in the set @W are processed.

l

machine one
&w I @m 1- W&l IV

machine two @m I.- @Al @-AB 1-# +

8

By the symmetry of machine one with respect to machine two,

Gantt Charts II and III are similar, and Gantt Charts I and IV are

similar. The discussion will be limited to forms I and II.

At the beginning of this section it was noted that the form of. .

our problem was chosen to reflect certain restraints found in some

computer scheduling problems. It should also be noted that the solution

to the problem as restricted by these conditions does not necessarily

give an optimal solution for the general scheduling problem. Below

are examples in which no solution of the form described in condition 1

may be found which will also satisfy conditions 2 and 3.

-=.
Example 111.1.

Given the four tasks

{ABA) = ET1 = (7,394) 1, T2 = (l&6) 1

@A@ = ET3 = (4,W) Y T4 = (2,3,5)3

an assignment may be found which contains no idle time and is

completed in 23 time units.

* machine one

machine two

1II.A

However, condition 2 may not be maintained without violating condition 3.

The best solution that satisfies condition 2 is an assignment of length 24

as shown below.

9

machine one

machine two

Tl s3 54 $ 6T 'TI I 2 1e ,

4
T3 3 4 8T

2

III .B

. .

Example 111.2:

An example of a problem with the form of Gantt Chart I follows.

Given the four tasks

(ABA} = 0, = (21% 6) Y T2 = (l&8,2> 1

{B&B) = O3 = (4,8,8) , ~~ = (2,4,8)3

we obtain the minimal solution of length 33.

machine one

machine two

1 .

%l Ic T4 1 +c 8 62 T3 Tl %
2

%4 4 T3 3Tl 8 T4 8T 2 8 T3

However, again condition 2 may not be maintained without violating

e condition 3. The best solution that satisfies condition 2 is of length 37.

machine one

machine two

1II.C

% 1 % 4
T4

8
1 2 T3

6
Tl % 2

II1.D

?c 4 3T4T3 1
idl 8T 8 8T

e 2 T4 3

Let us now consider problems which have the form of Gantt Chart I.

This form of the problem has a very simple solution. The reason for

the ease of solution is that the operations are decoupled.

10

Definition: Two successive operations in a set of tasks in a job shop

are decoupled if all of the first operations of all the tasks in

the set can be completed before any of the successor operations of

any of the tasks in the set-may be initiated.

In an assignment of the type of Gantt Chart I, two pairs of

operations are decoupled: the first and second operations of the set

{MB) and the second and third operations of the set

order in which the first operations of the set mw

therefore, is arbitrary. Likewise, the order in which

{ABA) . The

are performed,

the third

operations of the set (ABA1 are performed is also arbitrary. The--.

remaining operations may be assigned using Johnson*s method if a

feasible assignment is at all possible with this form.

The form of the problem characterized by Gantt Chart II provides

a more challenging problem, It is clear that the operations of {BAB)

may be performed without any regard to their relative order since both

pairs of successive operations are decoupled. We are then concerned

only with the assignment order of the operations of tasks in set @=I l

Figure 1II.E depicts the form of Gantt Chart II. To discuss this

sub-problem we make the following definitions.

Definition: A stage i of a given machine is a segment of time in

which the i-th operations, and only the i-th operations, of all

tasks are scheduled.

Definition: A delay,j ,Ai is the difference between the time a
Y

task's j-th operation is initiated and its i-th operation is

initiated.

Definition: The m is the segment of time after the first stage

terminates and the third stage initiates.

II Ll

machine one stage one G

I

I---- a,,1-
I

III.E

A2,3 ---I

e

machine two -4 ,2-
stage two

412 -

I L2 I

-=.

Figure 1II.E pictures the initial situation of a typical problem

to schedule tasks in the set
@BAl l

Each task Tk consists of three

operations ak,bk,ck , k = 1,2,..., N corresponding to the operations

to be scheduled in stages 1, 2, and 3, respectively. The length of

each stage is defined by Li as follows:

Ll = t ak L2 = e bk L3 = e Ck .
k=l k=l k=l

The length of the gap is designated by G . Al A
,2' 2,3'

A
2,1J and

+392
designate the initial delay values.

An important concept in this assignment problem is again the

contribution of a task.

12

Definition: Let xi,yi be a pair of successive operations of a

task Ti . Then the contribution C(xi,yi) of task Ti

is the difference yi-xi .
. .

The xiyyi of the definition may, for example, be ai,b. or
1

bi,Ci in the description of our problem. Special note should be made

of the properties of the contribution. A contribution C(xi,yi) is

called positive (+) if its value is greater than or equal to zero.

Likewise, C(xi,yi) is called negative (-) if its value is less

than zero. A positive contribution C(xi,yi) increases or leaves

unchanged the corresponding delay while a negative value of C(xi,yi)

decreases the same delay.

Corresponding to Johnson's first result, the order of the operations

during each stage may be the same as at any other stage. The immediate

advantage is that although there are n! operation. assignment orders

at each stage

problem, this

The statement

and therefore (n!) 3 assignment orders for the complete

resultlimitsthe solution space to n! assignment orders.

and proof of this result follow.

Theorem [Johnson]: Consider N tasks each with 3 operations to be

processed on the first machine, the second machine, and the third

machine, respectively. To construct a minimal-time solution it is

sufficient to consider only schedules with the property that the

operations at each stage are sequencedidentically by task number.

13

Proof

Given any minimal

in the first and third

solution assignment, it is shown that the operations

stages may be reordered without extending the

completion time so that operations in each ofthe three stages are

scheduled in the same order, by task number.

1. Inspect the first assigned operation of the first stage. If

it belongs to the same task as the first assigned operation -

of the second stage, then go to step 3.

2. If it does not, find the first stage operation that has the

same task number as the first assigned operation of the second

stage. --Ylace this operation first in stage one, delaying all

previously assigned operations by the length of this operation.

Since the initial ordering was a solution and since no displaced

operation in stage one completes before the first operation

in stage two begins, the new order is still a solution.

3. Inspect the first assigned operation of the third stage.

If its task number is the same as that of the first assigned

operations in the first and second stages, then go to step 5.

4. If it is not, find the third stage operation. which has the

same task number and place it first in stage three. All other

operations of stage 3 either begin later than or at the same

time they did in the initial solution. The new assignment

order is then a solution also.

5. At this point, the first assigned operations at each stage

of the assignment solution belongs to the same task. Remove

the first assigned operation from each stage and consider the

new problem resulting by repeating steps 1 to 5 on the reduced

problem until no tasks remain.

14

We can now assume, without loss of generality, that the operations in

each stage are in the same order by task number.

Let us now construct a table which allows us to determine whether

or not a given assignment order is feasible between two stages.

Definition: An assignment order is feasible if

before its preceding operation is completed

idle during any stage.

For each pair of successive stages we shall construct a table that

no operation begins

and no processor is

we call a feasibility table as shown in Figure 1II.F. Each table

consists of. four columns with each row corresponding to the operations

of a specific task to be performed during the two stages in the order

of the proposed schedule. The first column is the length of the operation

performed in the first of the two stages. The second column is the

contribution of the pair of operations. The third column is the sum of

the contributions of all rows above plus the initial value of the delay

between the two stages. The fourth column is the difference of the value

in the third column minus the first column value. Since the third

column represents the delay before the given operation is assigned,

column four represents the excess delay time when the operation is

assigned. The pair of operations may be assigned without causing idle

time on the second processor only if the fourth column value is non-

negative. Consequently, an assignment order between the two stages

is feasible if and only if all the values in the fourth column are

non-negative.

15

Feasibilitv Table

operation
length

x1

x2

.

.

contribution

cb >lYYl

C(x2,yz)

...

total previous
contribution

C(X,YY,>

1
c c(xk,Yk)
k=O

.

.

excess delay

--
c (X0’ Yo> -x1

1
c
k=O

' cx,, yk> -x2

. .
.

-1e
k=O

' cx,, Y,> '5

1II.F

. where C(xoyyo 1 is the initial value of the delay between the stages

being considered and xi,yi refer to two successive operations of task i .

The feasibility table has a direct relation to the concept of

immediate assignability.

Definition: Let a partial assignment exist after some set of tasks

(possibly empty) has been assigned to the processors. A task is

immediately assignable after a partial assignment if at each pair

of stages the length of the first operation does not exceed the

value of the delay between the two stages.

The existence of immediate assignability for each task in an assignment

may be verified by the feasibility table. In the feasibility tables for

each pair of successive operations no fourth column value may be negative

if all tasks were immediately assignable since the fourth column represents

the excess delay when a task is assigned.

The first goal is to find a canonical form of a solution of the CAJN

problem. Consider the contributions which the pairs of successive operations in

each task make; that is, C(ak,bk) and C(bk,ck) , k = l,...,N .

16

IV. Case 1: Positive contributions at both stages.

Let all tasks be such that the second operation is not greater than

the third operation and that the first operation is not greater than the
-.

second operation. In this case, for all k = l,...,N , C(ak'bk) 2 '

and C(bk,ck) 2 0 . At any instant, whatever task is immediately

assignable may be assigned. This is clear since with each new assignment,

the delay at each stage may not decrease. Therefore, once a task becomes

immediately assignable, it remains immediately assignable until it is

assigned. Only if all tasks may be assigned, is the schedule a feasible

solution. The solution is obtained by assigning the operations of any
-=.

immediately assignable task at each stage.

Example IV.1:

machine one

machine two

, *

%d 4T3 5T2 +-4+ 4'1 7T3 8T2
I I I I

6
T3 7T2

t-------13-
I

1V.A

Figure 1V.A describes a solution to the problem in which the

tasks are

Initially

only task

5J
=4

A
213

= 12

4 ,2 and

Tl = (W,4)

T2 = (5Y7,8>

Tg = (4,6,7) l

the delays are Al
J

= 3 and A2 3 = 10 . Task T is the
Y 1

immediately assignable initially. After Tl is assigned,

and A
2,s

= 11. Then T3 may be assigned and
4 ,2 =

6 and

. Finally, T2 may be assigned. At each step the delays

A were incremented by the respective contributions
2Y3 .

associated with each task.
17

Ib

v. Case 2: Negative contributions at both stages.

Let all tasks be such that the second operation is not greater

than

than

the first operaticn and that the third operation is not greater

case

the second operation. This case is the opposite of the preceding

and may be solved by "reversing time".

Definition: The mirror image problem is the problem obtained by the

following two transformations.

a. The precedence among the three operations of each task is

reversed. That is, if ak precedes bk precedes ck in

task k of the initial problem, then ck precedes bk-=.

precedes ak in task k of the mirror image problem.

b. The initial delays Al
J

, A2 3 ,
Y

A3 2 , and
Y

A2 1 of
Y

the original problem become the initial delays A, ~ , A, , ,

52,

In terms of

which the second

JY c Gt A

and A
2,3 '

respectively.

the mirror image problem this case becomes one in

operation of each task is not less than the first

operation and the third operation is not less than the second operation.

But the mirror image problem is identical to case 1. A solution to the

mirror image problem is found by applying the solution for case 1.

. Reversing the order of the tasks scheduled in the mirror image problem

yields a minimum time solution that satisfies all precedence constraints

in case 2.

18

Example V.1:

In the original problem the tasks are defined as follows.

Tl = (al,bl~cI) c bl’bl) ..L 0

T2 = b2Y b2Y c2) Cb2’bZ) L 0

In the mirror image problem the tasks are:

Ti = (cl~bl~ “1-I c(c& 10

Tk = (cS$b2,a2) C(C2Yb2) 2 0

C(c~Yb~) ,> O C(bN,%) 2� l

19

VI. Case 3: A negative contribution followed by a positive contribution

Let all tasks be of the form in which both the first and third

operations are greater than the second operations. Note that this

problem is symmetric with respect to the first and third operations as

is its mirror image problem.

To facilitate the discussion let us consider that the general

problem consists of tasks whose operations may lend either positive or

negative contributions. A negative contribution in the original problem

will be a positive contribution in the mirror image problem; likewise,

a positive contribution in the problem will be a negative contribution

in the mirror image

one indicate that

blL

and the signs above

c1 <

problem. In Figure VI.A the signs above stage

&l b3 <&3 b2 <a2 b4 1 a4

stage two indicate that

bl c3 Lb3 C2<b2 C4 1 b4 l

That is, the sign above the operation of the j-th task at each stage

represents the sign of the contribution of the task. The mirror image

problem in Figure VI.A is diagrammed in Figure m.B.

VI.B

Both Figure VI-A and Figure VLB may be combined and abbreviated

as in Figure VLC. The arrow to the right above a row of signs

indicates the contributions below are considered in the original while

an arrow to the left above a row of signs indicates the contributionsv

below are considered in the mirror image problem.

> t

i-i i--i lnx

+ +

21

In

problem

this new notation, Figure VLD is a representation of the

of this section.

D

I I
.

VI.D

+ +++++++
--.

Consider that there exists a time D within the gap at which some

second operation terminates and another begins in stage two. Time D

occurs after stage one is complete but before stage three has been

initiated. This condition clearly does not have to exist in an optimal

solution of this form; a second operation may begin before stage one

ends and terminate after stage three begins. The condition will

e be relaxed later. If such a D does exist, however, the problem is

decoupled into two, two-stage problems in which the tasks for each problem

have not been determined. With such a condition and JohnsorPs solution
.

method, it is known that the second operations of stage two are arranged

in increasing order of size in both directions from D . In other words,

the operations of stage two are arranged in order of decreasing size

from each end up to point D . If the second operations are arranged in

a list in order of decreasing size, the task corresponding to the first

*

22

operation in the list must be either assigned first or last. Once this

is decided, the problem (and the list) is reduced by one task and the

solution continues in the same manner. . .

This solution may be expressed in terms of a functional equation.

Four quantities distinguish a partial solution at any instant in the

assignment process. These quantities are:

j
-- the task to be assigned next, l,< j 5 N

l2
-- the total of the lengths of all the operations assigned

initially in stage two

‘2,3
-- the total contribution of all operations of the tasks--.

assigned initially in stage two

cl,2
-- the total contribution of all operations of the tasks

assigned initially in stage one

All other quantities pertaining to the assignment may be calculated

from these quantities. The superscript * indicates that the value is

calculated in the mirror image problem.

a 5 = I2 - 5,2

“3 = ‘2,3 - 52
j-l

c; 3 = -(
9 C(ak'bk) - '1 2)Y

j-l
Ci2 =

Y

-‘K C(bk’ck) - c2,3)

j-l
a; = bk - '2

VI.E

a’
3 = 55 + %3

23

j-l j-l j-1
The sums): C(ak,bk) , >- C(bk,ck) , and > bk are properties

k=l k=l k=l

of each task after they have been ordered in a list by decreasing size

of their second operations. Hence, they need to be calculated only once.

The solution proceeds by determining if the task is immediately

assignable in the original problem and if it is immediately assignable

in the mirror image problem. If the task is immediately assignable in

the original problem, it is tentatively assigned and the solution

recurses by continuing with the next task in order. If a TKUE value is

returned, a solution is found. If a FALSE value is returned or if the

task is not immediately assignable in the original problem, then if the

task is immediately assignable in the mirror image problem, it is

tentatively assigned there and the solution recurses by continuing with

the next task in order. If a value of TRUE is returned, a solution is

found. Otherwise, the value FALSE is returned. In such a situation ZN

possible solution orders exist. However, the tasks are selected in a

predetermined order and the value of the 4-tuple (j,i2,Cl 2,C2 3) describes
Y Y

the total length and contribution assigned using the j-l tasks. As the

iteration continues through the P possible solutions, if a 4-tuple

identical to one previously encountered occurs, it is not necessary to

continue since the result will be the same as when the 4-tuple was

encountered previously. In other words, the problem is reduced to a

sub-problem previously attempted, This algorithm eliminates many solution

possibilities from consideration.

The following algorithm determines if a solution exists.

24

1. Place the tasks in order of decreasing size of their second

operations and renumber tasks so that bl-> b2 2 b 3
,> . . . 2 bN .

3-. A solution exists if f(l,O,O,O) is TRUE where

fW2yCl,2y~2,3) =
FALSE if 12+4,2 >Ll+G

("j _<~

2
-+cl,2 A bj 5 A2,3+c2,3 A

f(j+l,l +b2 jycl,2 +C(aj,bj),C2 3'C(bj'Cj))) VI

(Cj <- 4. Y
2+Ci 2 A bj 5%

Y Yl +ci,3 *

f(j+L RgyCl 2yC2Y31) if L_<jfN
Y

= TRUE if Ll-< 12+4,2 _<Ll+G

= FALSE otherwise.

For simplicity, the solution presented here does not yield the

explicit assignment order. This order may be easily obtained by

modifying f to have a result of an ordered pair of values. The first

value being TRUE or FALSE as described above. The second value is null if

the first value is FALSE. Otherwise, when the first value is TFUE, the
a

second value is a list of tasks assigned in the original problem. At

each iteration a task is appended to the list if it is assigned in the

original problem.

The number of calculations of f for a solution given the tasks

and sizes of operations initially is bounded by

N l (J$+G-4,2) l dCl 2) l r(C2Y Y
3)

25

where r(x) indicates the number of values in the range of x

plus 5N additions to calculate the contributions and sums

indicated in FigureVI.E.
. .

To relax the restriction placed on the solution by the point D ,

consider all tasks with a second operation of size greater than G+l ;

say, there are P such tasks. The above solution method must be repeated

P times for each such task k with a +
2 %,2 not to exceed Ll-1 at

any step and with a2+Al 2 +bk > L
1
+G at termination. P is bounded

Y

by N-l .

--.
Example VI.l:

Using the above algorithm we find the solution to a simple four

task problem

T1 = (715Y6)

T3 = (2~1~2) *

Initially, we find that

T2 = 6% 5)

T4 = (WA

tl2 = 18 a, ,3 = 2
n,Jl = 8

Ll = 19

Ll+G = 20

4,2 = 8

G=l

26

1. f(1,0,0,0) = f(2,0,0,0) since b
1
=5~2+0=2 but

y= -6<8+0 = 8 and

bl
=5~8+0=8.

7 6
1

5
.

NOW Ci 2 = -1 and
I

C$ 3 = 2 .
Y

2. f(%WY0) = f(3,2,-6,3) since a2 =898+0=18 and ,

li,,lb2=2L2+0=2.

3. f(3,2,-6,3) = f(4,3,-7,4) since "3 =298-6=12 and

4. f&3,-7,4) = FALSE since .42+4,2 = 3+18 = 21_>Ll+G = 20.

27

5a Return to 3 and

f(3,2,-6,3) = f(4,2,-6,3) since
c3 =2<8-1=7 and

NOW Ci2=-2 and C'
Y 2,3=3 l

6. w+Y 2, -6,3) = f(4,3,-7,4) = FALSE We have the same argument as in
--.

step 3 but we have already found

that f&3,-7,4) is FALSE in

step 4.

7* Return to 6 and

f(b2, -63) = f(5r 2, -6,3) since =

,~~~,,,=l;:;::' ' and

8. f(w,-6,3) = TRUE since L1 =1g -<i2+A12 =

2+18 =20_<Ll+G=20.

28

--

VII. Case 4: The "core" problem

Let all tasks be of the form in which the first operation is less

than the second operation and the second operation is greater than the
. .

third operation. Note that as in the previous sub-problem, this

sub-problem has the same characteristics as its corresponding mirror

image problem. In Figure VII.A the signs of the contributions are

indicated near each stage.

D

--' I

machine one

E

4
+ + + + + + + + +

q-Y-1 vrL-*A

machine two

No efficient solution has been found to this sub-problem, and hence it

represents the "core" of our stated problem. Certain efficiencies

. may be gained on this special problem which do not readily lend themselves

well to incorporation into the general problem.

29

In reference to Figure VILA, there exists some point D in stage

one when all remaining tasks are immediately assignable. At this

instant the problem is decoupled into a two stage problem consisting

of stages two and three with the remaining tasks. Similarly, at E the

third stage is decoupled from stages one and two reducing the problem

toadifferent two stage problem consisting of stage one and stage two

with the remaining ,tasks. When both D and E have been reached, the

problem is completely decoupled, and the tasks may be assigned in any

order.

A solution may theoretically be found in a computation using a

variation on the usually efficient functional equation method. In

this solution the number of computational steps is dominated by 2m

where m is at most N-l .

In the following algorithm, the value B is an ordered array of N

binary valued elements corresponding to each of the N tasks in order.

A given element Bk of the B array is 1 if the k-th task has been

assigned and 0 if it has not been assigned. The notation B V Bk = 1

means that the value B is unchanged except that the Bk element is

set to 1 6 The value $6 means that all elements of B have the value 0 .

The algorithm is similar to the algorithm for case III. However, here

the tasks previously assigned are explicitly recorded in the B array.

30

1. Arrange the N tasks in an arbitrary order Tl,T2,...,TN .

2. A solution exists if f(1,$?&0,0,0) is TFWE where

fbb f2,Cl = -.
Y

2yC2
Y
7)

FALSE

TRUE

f(j Y W25
Y
2)

f(j Y Bd2,C2
Y
3l

f(j+l,B,a 2ycl,2Jc2,3 1

if j = N+l

if nl_>D and a > E
3 -.

if & > E
3-

if !,>D

if B
3
=l

(
--. "j FL.,2+cl,2A bj -<?2,3A

f(l,B v B. = 1,a2+b.,C
3 3 1~2

+C(aj,bj),C2 3*+C(bj,cj)) V
Y

f(j+l,B,L 2ycl,2'c2,3 1 if B
j
= 0

As in the previous functional equation solution, the exact order of

assignment may be found by pairing this ordering with the TRUE logical

values. The maximum number of computations is found by taking the number

of computations in the previous functional equation example and multiplying

it by 2N .

31

VIII. The Complete Problem

The general problem may have tasks of each of the forms described

in the four sub-problems. However, since it is clear that tasks of the
. .

first sub-problem and the tasks of the second sub-problem may be assigned

as soon as they become immediately assignable, Figure VII1.A exhibits the

canonical form of the solution for the problem which only involves tasks

of the types described in sub-problems three and four and which has a

decoupling point D . In this solution form, the tasks in stage one and

stage three are arranged so that some of the positively contributing

operations are grouped first, followed by all the negatively contributing
--.

operations, followed by the remaining positively contributing.operations.

In stage two, groups of the negatively contributing operations both precede

and succeed the positively contributing operations. The reason for this

canonical form is based on Johnson's result since the point D decouples

the problem into two, two-stage problems. Hence in Figure VIII.A, the

tasks in groups W and Y are arranged, left to right, in order of

increasing size of the respective operations. In groups X and Z ,

the tasks are arranged, left to right, in order of the decreasing size

of the respective operations.

A solution to this problem may be found by ccxnbining the solutions

. presented to the four sub-problems into one algorithm.

I

Z

D f
- 0 -0 0 -+ ++; + + + - - -- ---t+ +

4

VIILA

32

Ix. Conclusions

We have discussed the problem of scheduling N 3-stage tasks on

two processors, a problem that has historically resisted efficient

solution. When schedules are restricted so that operatians are

scheduled by stages, Johnson's scheduling technique and a functional

equation scheduling technique introduced here can be applied to obtain

feasible schedules with high computational efficiency. The problem

divides into several cases, all but one of which can be solved with

algorithms that grow algebraically with the size of problem. One case,

which now may be considered the "core" problem still does not have a
--.

solution that grows algebraically although it is solved here by an

algorithm that grows exponentially with the size of the problem.

The analysis of the decoupling effect described here may be

extended to the similar problem with an arbitrary number of operations

which may be executed in stages. In addition, we continue to research

the problem of more than two processors.

33

Bibliography

[Conway 19671 R. Conway, W. Maxwell, L. Miller, Theory of Scheduling.

Reading, Massachusetts: Addison-Wesley Publishing Co., 1967.
. .

[Dudek 19641 R. A. Dudek, 0. F. Teuton, "DeveloIxnent of M-State

Decision Rule for Scheduling n Jobs through M Machines."

Operations Research, Vol. 12, No. 3, May 1964.

[Jackson 19561 J. R. Jackson, %n Extension of Johnson's Results on

Job-Lot Scheduling." Naval Research Logistics Quarterly, Vol. 3,

No. 3, September 1956.

[Johnson 19551 S. M. Johnson, "Optimal Two-and-Three-Stage Production

Schedules with Setup Times Included." Naval Research Logistics

Quarterly, Vol. 1, No. 1, March 1954.

[Johnson 1959] S. M. Johnson, "Discussion: Sequencing n Jobs on Two

Machines with Arbitrary Time Lags." Management Science, Vol. 5,

NO. 3, April1959.

[Lawler 19691 E. L. Lawler, J. M. Moore, "A Functional Equation and

its Application to Resource Allocation and Sequencing Problems.,'

Management Science, Vol. 16, No. 1, September 1969.

[Mitten 19591 L. G. Mitten, "Sequencing n Jobs on Two Machines with

Arbitrav Time Lap." Management Science, Vol. 5, No. 3, Aprill959.

34

