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ABSTRACT

The work of Adams, Karp and Miller, Luconi, and Rodriguez on

formal models for parallel computations and computer systems is

reviewed. A general definition  of a parallel schema is given so that

the similarities and differences of the models can be discussed.

Primary emphasis is on the control structures used to achieve parallel

operation and on properties of the models such as determinacy and

equivalence. Decidable and undecidable  properties are summarized.
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1

INTRODUCTION

In recent years, a number of articles have appeared in the litera-

ture which may be grouped under the classification, models of parallel

computing. These papers represent efforts to formalize intuitive notions

of parallel computer systems, such as multiprocessor  systems and systems

with multiple functional units, and also parallel computations, which

represent algorithms for solving mathematical  problems such as the

multiplication of two matrices. Of particular  interest in these studies

are the nature of the control structures which determine when operations--.

in a system or computation are performed and the properties and char-

acteristics of the models which result in correct operation.

The operation of a parallel computer system or the execution

of a parallel computation  can be characterized  in the following way.

First the system or computation  must be defined and the initial

conditions given. Operators produce changes in a data base. More

than one operator may be being executed at a given time. When the

execution of each operator is completed, it may be possible to execute

other operators. A computation  or system terminates its operation

when the execution of all operators that are capable of being executed

is completed. The time required to execute each operator is assumed

to be unbounded but finite.

In this paper, only a portion of the current research in parallel

computing is discussed in any detail. We consider the work of Adams

[l, 21, Karp and Miller [ 13, 14, 15 1, Luconi [ 16, 17, 18 ], and

Rodrigues [ 34 1. Adams' work is an extension of the model of Karp
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and Miller described in [ 13 1. Adams' model is intended to describe

parallel computations and not computer systems.
c

The work of Karp and

Miller on parallel program schemata extends work of Ianov [ 11, 12, 33 ]

on sequential schemata to the parallel-case. The emphasis here is also

on the description  of parallel computations. Rodriguez' work uses

concepts from Muller's theory of speed independent circuits [ 30, 31 ]

to develop a model for parallel computations. Luconi's model extends

the work of Rodriguez and earlier work by Van Horn [ 39 ] and emphasizes

the description  of computer systems.

Early contributions to the theory of parallel computation are the

work of Holt [ 8 ]; Petri [ 32, 33 1, and McNaughton  [ 28 1. Petri's

work, in particular  his concept of Petri nets, has strongly influenced

more recent work by Holt [ 9 1, Patil [ 31a ], and Shapiro [ 37 1.

The work of Karp and Miller on program schemata has been extended by

slutz [ 38 1. Rutledge [ 36 ] has developed a model which is another

extension of the work by Ianov. Estrin, Martin and others at the

University  of California  at Los Angeles [ 4, 23, 24, 25, 26, 27 ] have

developed a model which is used mainly for the determination of schedules

for computations in a multiprocessor environment. Bredt and McCluskey

[ 3 ] have applied flow tables introduced by Huffman [ 10 ] to describe

the control of parallel processes and in particular  the control require-

ments for the mutual exclusion or interlock problem. Ashcroft and

Manna [ 3 ] have defined a model for parallel computations which applies

proof procedures of formal logic and is based on earlier work by Floyd

[ 6 ] and Manna [ 19, 20, 21, 22 1. It is hoped that in a future version
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of this paper an integrated description  of the papers mentioned in this

paragraph  can be given.

BASIC CONCEPTS

Consider the data base for a computation as a set of variables.

By a computation, we mean the operation of a computer system or the

execution of a parallel algorithm. A computation  is said to be

determinate  or completely functional if the sequence of values assoc-

iated with each variable in the data base is unique. Determinate comp-

utations are considered desirable although intuitively  it is possible

to have a correct result even though the intermediate value sequences

are not unique. Two computations with the same data base are said to

be equivalent if both result in the same set of value sequences for

each variable in the data base.

There have been two fundamentally  different approaches taken in

the study of parallel computing. The first defines a model in which

it can be proved that every computation which is represented in the

model is determinate. This approach is used by Karp and Miller [ 13 ]

and Adams [ 1, 2 1. Adams proves that every computable function

(every function which can be computed by a Turing machine) can be

represented in his model. This is not true for the model of Karp and

Miller in which data-dependent  decisions or conditional branches

based on the values of variables in the data base are not allowed.



The second approach used is based on the definition of a model or

schema in which not all computations are determinate. One theoretical

result is the determination  of a set of conditions which are sufficient

to guarantee that a given computation will be determinate. In addition

it can also be shown that under certain conditions either it is or it is

not possible to give procedures to test if an arbitrary computation is

determinate or if two arbitrary computations are equivalent.

One might well ask why there is interest in such theoretical proper-

ties of these models. One reason is that the conditions either implicit

in the definition of the model itself or imposed to achieve determinate

operation may give'valuable  insight which can be used in the design of

future systems. Control techniques used to enable operations may also

be of interest and questions about equivalence

forming representations  of computations in the

or optimization.

are important when trans-

interest of economization

GENERAL DEFINITION OF A PROGRAM SCHEMA

e
In this section, a general definition of a model for parallel

computation called a program schema is given. This definition is

then modified and extended to describe the models of Adams, Karp and

Miller, Luconi, and Rodriguez.
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Definition  1:

A program schema or schema A is defined by a triple

A = ( k A, c >

where

M= , XpT-p-‘*‘Xni t a set of variables

A = i a,b,...,c t a set of operators (operations)

C (to be defined) a control

Each operator a has an input set Ia, Ia 5 M, and an output set Oa,

Oa 5 M.

Associated  with each schema is an interpretation  defined as

follows.

Definition 2:

An interpretation  is defined by

1. For each variable xi, a domain Di of values which

the variable may assume.

2 . For each operator a, two functions

Fa: a computation function which maps values associated

with the variables in the input set I into values
a

for the variables in the output set Oa.



Ga: a decision-making  function (not explicit in all

models). The output of this function is used by

the control portion of the schema to determine

which operations may be performed next.

3* The initial variable values.

A partial interpretation  is defined by 1 and 2 above, but not 3.

Definition  3:

A variable history hi is defined to be the sequence of

values associated with the variable x
i

during a computation.

Definition 4:

A schema history H is the n-tuple <hl,h2,...,hn>

consisting of the variable histories for variables x
1' xn'. ..)

Using these definitions, it is possible to give a more precise

definition of determinacy. First, we define the term as it is used by

Karp and Miller in their papers on parallel program schemata [ 14, 15 1.
e

Definition  5:

A schema k is said to be determinate if and only if each

interpretation  results in a unique schema history.
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The following definition will also be used. The phrase "partially

interpreted schema" refers to a schema together with a partial interp-

retation. . .

Definition 6:

A partially interpreted  schema 8 is said to be

determinate  (completely functional) if and only if each

set of initial variable values results in a unique schema

history.

In the work of Karp and Miller on schemata, the results of a

computation  must be determinate  in the sense of Definition  5. This

is directly analogous to mathematical  logic where theorems which are

are valid must be true under every possible interpretation  [ 29 1.

Definition  6 corresponds more to our intuitive notion of a computation

in which not only the structure of the computation  is known but also

the functions which define the operations in the computation as well.

To illustrate these concepts, let us consider a few simple examples

expressed, not in terms of schemas, but in terms of ALGOL-like programs

with which most readers should be more familiar. A sequential program

is shown in Table 1. If the initial value for variables u, x, and y

is 0 and the initial value for v is 3, the variable histories for u, v,

x, and y during the execution  of this program are



Table 1. Example of a Sequential Program

8

begin integer u, v, x, y;

X := u;

Y v;:=

iter: x := x + 1;

Y y-1;:=

if y # u then go to iter

end='.
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hU
=<o>

hV =<3>  _.

hX
= < 0, 1, 2, 3, >

h
Y

= < 0, 3, 2, 1, 0 >

In general if a, @, y, and 6 are arbitrary integers which represent

the initial values for variables u, v, x, and y, respectively, then

h =<a>
U

--.

hV
=<p>

and, if a < p, then

hx = < y, a, a+l, . ..) p-1, B >

h
Y

= < 6, p, p-1, . . . . a+l, a >

but, if a 2 p, then

hX
= < y, a, a+l, a+2,  . . . >

h = < 6, f3, p-1, p-2, . . . >
Y

That is, if CX < (3, all variable histories are finite and if a! 1 p,

. the variable histories for x and y are infinite and the execution of

the program never terminates. However, in each case, the variable

histories are unique and the execution of the program can be said to

be determinate.



”
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A second example is shown in Table 2. The reserved words "parbegin"

and "parend" designate blocks of statements exactly as do "begin" and

"end" ; however, all statements within a-block defined by "parbegin" and

"parend" may be executed concurrently. This extension to ALGOL has been

proposed by Dijkstra [ ?a 1. In this program, the statements x := u

and y := v may be executed concurrently  and the statements x := x + 1

and y := y - 1 may also be executed concurrently. In both cases, the

execution  of one statement cannot affect the execution of the other.

The execution of the program in Table 2 is also determinate for all

possible initial values for the variables and the variable histories

are the same as those for the program of Table 1. In the sense that

every possible set of initial values results in identical variable

histories for the two programs, these programs can be said to be

equivalent.

A third example is shown in Table 3. The execution of this

program is not determinate if the initial value for u is less than

the initial value for v. This follows because the variable history hx

-depends on the rate at which the statements in block b2 are executed.

Suppose u, x, and y are initially 0 and v has the value 2. Some of the

possible variable histories for x are:

hx =CO,l> hx = C 0, 1, 2, 3 >

hX
= < 0, 1, 2, > hx = < 0, 1, 2, 3, 4 >

If the time to execute the statements in b2 is unbounded, the number of

possible histories for the variable x is also unbounded.
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Table 2. Example of a Program With Concurrent Statement Execution

. .

begin integer u, v, x, y;

parbegin

X := U'9

Y v;:=

parend;

iter: parbegin

X := x + 1;

Y Y-k:=

--. parend;

if y # u then go to iter

end .



Table 3. Another Example

begin integer u, v, x, y;

parbegin

X := u;

Y := V'*

parend;

parbegin

bl: begin

iterl: x := x + 1;

if y # u then go to iterl

end;--.
b2: begin

iter2: y := y - 1;

if y # u then go to iter2

end

parend

end .
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These three examples represent "partially interpreted" programs

in the sense that the operations  performed  by each statement are

specified. An "uninterpreted" program for the example of Table 2 is

shown in Table 4. The symbol pl represents a predicate function which

gives the value "true" or "false". In the sense of Definition  5,

determinate  operation requires that unique variable histories must be

obtained for every possible choice of the functions fl, fp f3’ f4J and

the predicate pl.

CONTROL STRUCTURES

In this section, we consider the form of the control used to

permit the initiation  and termination  of the operations in a schema.

For the present, let us consider the variables in a schema to be cells

in a memory or register.

Rodriguez

Rodriguez  [ 34 ] associates status information  with each variable.

The status information  specifies whether a variable is idle (0),

In this model the functionready (l), disabled (ml), or blocked (2).

Ga of Definition  2 may be considered to map the status values associated

with the input set and output set for an operator a into new status

values. An example is shown in Fig. 1 where square boxes represent



Table 4. Uninterpreted  Version of the Program in Table 2

begin integer u, v, x, y;

parbegin

X := f&u);

Y := f2(v);

parend;

iter: parbegin

X := f3(x);

Y := f4(Yh

-Farend;

if pl(u,y) then go to iter

end .

. _.



I =
a 1 Xl' x2 oa = X3’t i x4t

Ga: x1x2x3x4
llOO----0011

Figure 1. Example of a change in status information.
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variables and circles represent operators. In this example, status

values for the input variables are changed to 0 and the status values

for the output variables are changed to 1 when operator a is executed.

This is not a coincidence. In fact, with the exception of data-

dependent decisions, this is the mechanism used to determine wllen

a particular  operation is eligible for initiation. That is, the

status of all input variables must be 1 (ready) and the status of all

output variables must be 0 (idle). When the operation is performed,

the status of all input variables is changed to 0 and the status of

output variables %o 1. Thus an operation may not be performed a second

time until other operations are performed which change the status values

of the variables in the input set to 1 and the status of variables in

the output set to 0. This control technique has been borrowed from

Petri [1 32, 33 1. The 1 status values correspond to the "stones" or

"tokens" which determine when the events in a Petri net may occur.

In the Rodriguez model, operators must be chosen from several

basic operator types. Computations with data-dependent decisions

*
and iteration can be represented but procedures and recursion cannot

be described. Some but not all of the operator types Rodriguez has

proposed will now be described.



1. Input Operator

. .

The functions F and G are not defined for this operator. It

is used only to provide input data for the model. The status

of a variable which is only in the output set of input

operators is assumed to be initially  equal to 1 to indicate

that the variable is ready for use.

2 . Output Operator

The function F is not defined for an output operator. The

function G changes the status values as defined below.

G:
l----O

-l----O

Thus, if ready or disabled status is associated  with an

input variable, the status is changed to idle.



18

3* Fuqction Operator

If all input variables have ready status and the output

variable has idle status, the function F operates on the

values for the input variables  xI i and x.
3

to produce  a

new value for the output variable x
k' The G function

changes status values for x., x
i j' and x

k
as defined below.

--

G: x x.x
iJk
llO- 001
l-l 0 -- 0 Q-l

-1 1 0 - 0 o-1
-1-l 0 -0 o-1

The function operator may have many input variables but

only one output variable.

4. Identity Operator

If the input variable has ready status and all output

variables have idle status, the value of the input variable

is copied by the function F to the output variables. The

G function is defined below. G: x.x ,x1 J k
100-011

-1 0 o-0-1-3
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5- Selector Operator

Each selector operator has an associated predicate function p

which tests the input variable values. A selector operator

may have more than one input variable, The F function copies
*

the input value to xk if p is true and x
3

if p is false.

The G function is defined below,
--

G: x.x.x
1.1k

loo-
t

O-l 1 if p(xi) is true

0 l-l if p(xi) is false

-lOO- o-1-1

6. Loop Junction Operator
X
q

Xr

The loop junction operator is used to initiate an iterative

computation. The input variable with line labelled I supplies

the initial value for the iteration. The variable with line

labelled S supplies the value on subsequent or "feedback"

iterations. The output variable with label LO must be the

* This is not how Rodriguez  defined his selector operator. His
operatorxes not copy the data values. The above form is used
to simplify the description of the iteration example which follows.



input to a loop output operator. The F function associated

with the loop junction operator takes the value present for

the I or S variable and passes it to the output variable xs,

if proper status values are present. The status transitions

for a loop junction operator are given below.

G: x*xX
Pars

F:

1000--2021 X :=
S xP

llOO- 2121 X :=
S xP

l-10 o- 2 12.1 X :c X
S P

-2 0 0 0---- 2 0 2-l
--.

-llOO- 2 1 24

-1-1 0 o- 2-l 2-1

2100- 2 o-i i

2-l 0 o- 0010

7. Loop Output Operator

X :=
S x4

The input variable with line labelled LO must be the JB

output of a loop junction operator.

G: x.x.x
1Jk

F:

110 --001
l-1 0 - 0 O-l Xk '= xj

-1 10 -200
-1-l 0 - 200
210- 010
2-l 0 --,-O-l 0
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To illustrate the use of these operators, an example of a simple

iterative computation, shown in Fig. 2, will be described. The two
. .

ALGOL statements describe the computation performed. In Fig. 3,

operators are joined directly by arcs and the boxes representing variables

are omitted for clarity. Status values are given by the labels on each

arc. The initial status values are shown in Fig. 3a. Fig. 3b shows

the status values after the first execution of the loop junction operator.

The status of the initial value variable has been changed to 2, which

blocks further entry to the loop junction until the iteration is complete.

The loop junction operator copies the initial data value, in this case

into the variable which is the input to the function operator. The

function operator is executed next. It subtracts one from the input

variable value and places the new value in its output variable. The

selector operator may now be executed. The status values after the

execution  of the selector are shown in Fig. 3c. The selector operator

readies the feedback input to the loop junction and disables the input

variable for the loop output operator. The loop output operator must

be executed next and the status values obtained are shown in Fig. 3d.

The loop junction is now executed giving the status values of Fig. 3e.

Both the function and loop output operators may now be executed con-

currently; the status values obtained are shown in Fig. 3f. The

selector operator is now ready to be executed. This time, the test

fails and the feedback input to the loop junction is disabled and

1,



. .

(initially

X := X -

0
630 .

x is 1)

1;

iter: if x = 0 then

begin

X := x - 1;

go to iter

end

Figure 2'. Iteration example in the Rodriguez mdel.
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-=.6OUT

a) initial I b) after LJ

c) after FUN and SEL

Figure 3. Status value transI

6OUT
d) after LOP

itions for the cxamplc of Fig. 2.
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0IN.

_.

-1

.

6UT --.
e) after LJ

g) after SEL

f) after FUN and LOP

,
0 0

h) after LOP and LJ

Figure 3. (continued)
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the input to the loop output is readied. The status values are shown

in Fig. 38. The loop output is executed next which allows the loop

junction to be executed unblocking  the initial value input to the

iteration. The status values are shown in Fig. 3h. The computation

terminates with the execution of the loop output operator followed by

an execution of the output operator. At termination  (not shown) all

variables have idle (0) status values.

Using these techniques for controlling the execution of operations,

Rodriguez is able to prove the following theorem.

Theorem 1:

If a computation  in the Rodriguez model terminates,  it

is determinate.

In this theorem, determinate operation implies that the variable

histories and the status histories as well are unique. The data

functions, F, associated with function operators may be arbitrary.

Rodriguez' results are actually not stated in the above form.

His results are based on Muller's definitions of speed independence and

use the concept of state of the model as defined by the current variable

values rather than the variable histories defined earlier. The fact

that once operators are ready to be executed they may not be disabled

.
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corresponds in essence to Muller's concept of semi-modularity  [ 31 1.

It can be shown that the operation of the Rodriguez model is determinate

in the sense that the variable histories are unique*.
. . Rodriguez gives

necessary and sufficient conditions for a computation to terminate.

These conditions are related to the absence of hang-up states. A

hang-up state is entered if the computation  terminates such that no

operator may be executed and some variable does not have idle status.

Rodriguez states an equivalence problem for his model and proves that

it is decidable.

---.

Luconi

The work of Luconi [ 16, 17, 18 ] differs from that of Rodriguez

in the following way. A model corresponding  to a partially interpreted

schema with variables corresponding to memory or register cells is

defined. However, no status information is associated with the variables.

Instead, some variables contain data which serves only to determine

when operators may be executed. When an operation  is performed,  the

transformation  defined by the F and G functions is carried out, Luconie

assumes that the output values produced propagate instantaneously

(line delays are zero).

.
The following two conditions are defined which relate to the

well-formedness  of Luconi schemas.

* Private communication  from F. L. Luconi.
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Definition  7:

Two operators a and b are said to be conflict-free if and

only if whenever a and b ma-y be executed concurrently, any

common output variable must receive the same value from each

operation.

A slightly stronger condition is that Oa n Ob = @, where C$ is

the empty set.

Definition  8:

Two operators a and b are said to be transformation-lossless

if and only if whenever a and b may be executed concurrently,

the execution of operator a does not affect the results to be

produced by operator b and vice versa.

A slightly stronger condition is that Oa n Ib = @ and Ob n Ia = Q1.

A partially  interpreted schema is said to be conflict-free if all pairs

of operators are conflict-free; it is said to be transformation-lossless

if all pairs of operators are transformation-lossless, Luconi proves

. the following theorem.

Theorem 2:

Every schema in the Luconi model which is both conflict-

free and transformation-lossless  is determinate in the sense of

Definition  6.
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The conflict-free  and transformation-lossless  conditions are "local"

in the sense that they may be tested by examining pairs of operators

which may be executed concurrently. Luconi's transformation-lossless

condition is essentially the same as the semi-modularity  condition of

Muller if the variables are interpreted as values on interconnecting

lines rather than memory cells. Muller can have no conflicts because

the output line for each operator is unique and not shared with other

operators.

Luconi proves that there is no procedure to determine if an
--.

arbitrary, partially interpreted schema is determinate. That is, the

decision problem for determinacy is unsolvable.

In Fig. 4, an example of the Luconi model is given which

represents the computation for the program in Table 2. The dashed

lines indicate portions of the schema the primary function of which

is to control when operations may be performed. The initial variable

values are shown inside the square boxes. In this example, the

control variables (dashed boxes) have their values changed in a

manner similar to that used by Rodriguez. That is, before an operator

may be executed, certain "input" variables must have the value 1 and

certain "Output" variables must have the value 0. During the execution

of the operator, the "input" values are changed to 0 and the "output"

values are changed to 1. We will represent the changes in control



U

x1
r - -

! 1
I- - -

,:2
11
I--

1

?---
J

7
)---

J

i L 1

’ 0
-+w - -

x9--
GO

I

x7 *- -
I- 1-,I 0 -.--a
I I \
i --1

L A--

Figure 4. Use of the Luconi model to represent the computation

of Table 2.



30

variable values using the G function and the change in data values

using the F function. These functions are defined in Table 5. This

example satisfies both the conflict-free and transformation-lossless

conditions and is determinate.

In the second part of his thesis, Luconi views the control,

which determines when operators may be executed, as being separate

from the rest of the schema but still defined as a. schema. A schema

in this form is called a structural schema and is composed of two

parts, an Interpretation-schema  (I-schema)  and a Control-schema

(C-schema). The I-schema performs the computation and the C-schema-=.

determines when the operators in the I-schema are enabled.

Associated  with each operator in the I-schema is an operator in

the C-schema. These operators share a common control variable. Before

an operator in the I-schema is eligible to be initiated, the control

variable must have the value 0. When the I-schema operator is

eligible to be initiated, the value of the control variable is set to

1 by the C-schema operator. When the I-schema operator terminates

e its execution, it sets the value of the control variable to 2.

Fig. 3 shows the interconnection  between an I-schema operator and

a- C-schema operator.

Luconi defines C-schema operators corresponding to Rodriguez'

selector, loop junction, loop output, and other operator types. The

status values are kept in variables which are part of the C-schema.
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Table 3. I;unction Transitions  for the Exmnple of Fig. 14

Ga:

Gb:

Gc:

Gd:

Ge:

Gf:

Gg:

x1x3
. .

10 --- 0 1

x2x4.
lo----01

x8x5
10-01

x6xg
lo--01

if y # u then

x7x8xg
10 o- 011

x5x6x7
110 -001

x3x4x8xg
1100---c 0011

. .

Fa:

X := U

Fb:

Y v: ,1

Fc:

X := x + 1

Fd:

Y Y-1:=

Fe:

null

Ff:

null

Fg:

null



I-schema C-schema

Figure 5. Interconnection  of an I-schema operator with

a C-schema operator.
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A structural schema for the iteration example of Fig. 2 is shown in

Fig. 6. The computation  proceeds as before except that the function

operator (FUN) in the C-schema is responsible for monitoring  the

execution of the I-schema operator which subtracts one from the

current value of the variable x. Notice that data values are no

longer passed from operator to operator as in the Rodriguez model,

QUEUES

FIFO (First-In, First-Out) queues have played an important role in

the models of Adams [ 1, 2 ] and Karp and Miller [ 13, 14, 13 ].

They have been used in two different ways. In the first approach,

used by Adams and in the Karp and Miller program graph model [ 13 1,

each variable is considered  to be a FIFO queue rather than a simple

memory cell. It is required that each queue receive output data from

exactly one operator and provide input data for exactly one operator.

Adams allows complex data structures as queue entries and associates

with each queue status information, which is used for the same purpose

as in the Rodriguez model, to control data-dependent  branches. In the

Adams and Karp and Miller models, operators are ready to be executed

when their input queues are non-empty, assuming appropriate status

values in the case of Adams. Karp and Miller do not need status

information  because they do not allow data-dependent  decisions in

their model.



(initially x is 1)

X := x - 1;e

iter : if x = 0 then

begin
X := x - 1;
go to iter

end

Figure 6. A structural schema for the iteration example of

Fig. 2 .
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Karp and Miller have proved the following theorem.

Theorem 3: . .

iS determinate.

Every computation described in the program graph model

Karp and Miller investigate termination properties of their model and

also the determination  of bounds on the lengths of the queues.

Adams' model is a programming  language for describing parallel

computations. He allows graph procedures which may be recursive. In

addition if, when an operation  is initiated, there are sufficient

entries in the input queues to permit the operator to be performed

more than once, copies of the operator may be created and executed in

parallel. Adams proves the following theorem.

Theorem 4:

Every computation described in the Adams model is

determinate.

The second way in which queues have been used is in the program

schema model proposed by Karp and Miller [ 14, 15 1. Each operator a

has an associated queue p(a). To aid in understanding  how these queues

are used, the control structure for the Karp and Miller schema model

must be described. The control is a transition system which under-

goes changes in control state as the result of the initiation and
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termination of operator executions. Suppose that after operator a is

executed, operator b is ready to be executed. The function Ga produces

a symbol, say a ,1 which causes a control-state  transition into a state

from which operator b may be enabled. This control situation is illus-

trated by a form of transition diagram shown in Fig. 7. The al outcome

from operator a causes the control to enter state q . The enabling of

an operator, in this case operator b, is indicated by a transition to

another control state. The arc joining the two control states is

given a label consisting of the operator name with an overbar, in this

case %. After ogerator b is enabled, the control enters control state

q' from which, in this example, it is possible to enable operator a

once more.

The phrase "enable operator b" has the following meaning. Take

the values of all input variables (memory cells) for operator b and

make these values the next entry in the FIFO queue p(b) associated

with operator b. The actual execution of operator b fs now accomplished

in some unspecified manner. When operator b terminates its execution,

e the queue entry is removed and the output  values as determined by the

function Fb are assumed to be assigned to the variables in the output

set ob. In addition, the output of the decision-making  function Gb

&uses a control-state  transition. A formal definition of the control

portion of the Karp and Miller schema model is given below.
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b

b

b

a1 (operator a terminates)

-6

:

(operator b is enabled)

q'

z (operator a is enabled

.
:

again)

Figure? Diagram of control to enable operator b on

termination of operator a,
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Definition 9:

The control C of a Karp and Miller schema is defined by

a quadruple . .

c = ( Q > q. 9 C ., 7 )

where

Q is a set of control states

Qo is the initial control state

C= U ( x, al, a2' . . . . aK(a) 1 the cont,rol
asA alphabet

--

‘I-: &Xc-Q the transition function

The transition T(q,a) specifies the control state entered when

operator a is enabled and the queue entry is made for operator a.

Transitions T(q,ai), i = 1, 2, . . . . K(a), specify the control state

entered when the execution of operator a is complete. K(a) is the

number of data-dependent outcomes for the operator a. Karp and Miller

require that T(q,ai), i = 1, . . ., K(a), be defined for all q e Q ande

for all a s A. It is assumed that when an operator is enabled, the

operator is executed in a finite but unbounded time.

We now define the state of a schema.
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Definition  10:

The state a of a schema is defined by the triple

CX= (variable values, q, CL)

where the variable values are the present values of all the

variables in M, q is the present control state, and ~1

represents all queues associated with schema operators.

A Karp and Miller schema for the iteration example of Fig. 2

is shown in Fig. 8: An illustration  of a Karp and Miller schema--.

for the program of Table 2 is shown in Fig. 9:

The equivalence  of schemata is defined as follows.

Definition  11:

Given schemata kl and d2

A2 = (4 A, 5)

A, and J 2
are equivalent if and only if for each interpretation,

the set of schema histories for dl is equal to the set of schema

histories for 8,.

*
Control transitions which return to the same state are omitted
for clarity.



Interpretation

Dx: integers ( x is initially 1 )

Fa: x := x - 1

Ga: if x = 0 then al else a2

X

1

ct’

6
a

al

Figure 8. Karp and Miller schema for the iteration  example

of Fig. 2 .



M = u, V) x, y

A = a, b, % d, e

Fa: x := U
x.

Ga: al

Fb: y := v

b -
Gb: 1

Fc: x :=x+1

Cc: cl

Fd: i := y - 1
I

Gd:
dl

Fe: null

Ge: if y # u then el else e2

/c -/

control

Figure 9. Illustration  of a Karp and Miller schema for

the program of Table 2.



Notice that this definition requires that $1 and br2 have identical

variables and operators, only the control may be different. Also,

if a schema is determinate the set of-gchema histories has exactly

one member.

Another property of schemata is the boundedness of the operator

queues.

Definition  12:

If

--. C [ length of p(a) ] 5 K
asA

for some integer K, at every stage in the execution of a

schema, the schema is said to be bounded. If K = 1, the

schema is serial.

In order to specify the class of schemata which is determinate,

restrictions on schemata are introduced, In this discussion (s and 5t

represent arbitrary symbols in the control alphabet C.

Restriction  1: (persistence)

If T(q,q) and T(q,n) are defined, then ~(q,arc) and

?(q,ao) must be defined.
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The persistence  restriction  requires that once an operator is ready

to be initiated,  it must remain ready to be initiated.

. .

Restriction  2: (commutativity)

If ~(q,urc) and T(q,m) are defined, then T(q,oz) = T(q,m).

The effect of commutativity  on the control transition diagram is

illustrated in Fig. 10.

Restriction  3: (lossless)

The output set 0
a

of every operator a must be nonempty

(Oa f @I*

Let us define a next-state function . which is a function of

the present state a and one of the control alphabet symbols defined

for the present control state. We write

a.z next state entered after operator a is

enabled.

a . ai next state entered after operator a

terminates (15 iL K(a)).

Restriction 4:

If a . con: and a . tia are defined, then cx . QII = a . IICY.



Figure  1 0 . Effect of comqwtativity  on the control transition

. diagram.
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Given these restrictions, it is possible to prove the following

theorem.

__

Theorem 4:

Every Karp and Miller schema that satisfies

Restrictions 1 - 4 is determinate in the sense of

Definition 3.

The schema illustrated in Fig. 8 is a determinate schema. The

schema of Zig. 9 is also determinate but it is not lossless

(Restriction  3) since Oe = qj. Therefore, Theorem 4 cannot be

applied to this example.

The precise statement of the Karp and Miller theorem is

slightly different. They prove that a persistent, commutative, and

lossless schema is determinate if and only if Restriction 4 holds

for every interpretation.

The following two restrictions are useful in establishing  further

properties of schemata.

Restriction 3: (repetition-free)

If an operator a is executed twice, each variable in

its input set must appear in the output set of an operator

that is executed between the two executions  of operator a.
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Restriction  6: . (finite-state)..-.--

The number of control states in Q is finite.

The following two theorems summarize some of the decidability  results

for the Karp and Miller model.

Theorem  5:

It is decidable whether

1. A finite-state  schema is repetition-free.

2 . A finite-state,-=. repetition-free  schema is bounded (serial).

3. A given operator a in a finite-state, repetition-free  schema

is performed a finite number of times in each computation.

4. A persistent, commutative, lossless, repetition-free, finite-

state schema is determinate in the sense of Definition 3.

Theorem 6:

It is undecidable  whether

1. Two persistent, finite-state schemata are equivalent.

2 . Two serial, finite-state schemata are equivalent.
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CONCLUSIONS

Richard Hamming has said "the purpose of computing is insight "

1 7 1. We might paraphrase  this statement in the following way "the

purpose of theory is insight". In this paper, we have attempted to

bring together some of the work on the theory of parallel computing

with the hope of furthering the insight derived. One general conclu-

sion is that in all these models, by determinate operation, it is either

implicit or explicitly  required that an operator which is enabled and

ready to be executed must not be disabled by the execution of some other

operator. We understand  that Slutz [ 38 ] has been able to weaken this

restriction  to allow an operator to be disabled if it must eventually be

re-enabled. We do not yet understand  the details of his result.

In our study of solutions to the mutual exclusion problem L 5 3,

we have found examples of systems which were not determinate but which

do operate correctly in the sense that the mutual exclusion problem can

be solved. This suggests the need for investigation of models which are

correct but not necessarily  determinate. The work of Ashcroft and

Manna [ 3 1 is relevant here.

One difficulty with these models, at least with respect to their

. application  in the study of computer systems, is their inadequacy in

describing  how one operator can prevent another operator, which is being

executed at the same time from producing any results. Such an "interrupt"

capability exists in most systems and is desirable to prevent time being

wasted on the execution of operators when their results are known to be

meaningless. For example, a divide by zero should cause the execution
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of all operators used in the computation  of an arithmetic expression

to be terminated.
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