A DESCRIPTION AND COMPARISON OF SUBROUTINES
FOR COMPUTING.EUCLIDEAN INNER PRODUCTS 'ON THE IBM 360

(/"" 3}

BY
M,I CHAELA. MALCOLM

STAN-CS-70-175
OCTOBER 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

"l"’& ’/Ié\ ({5"
- ~~ R
PR A
2 TS
P
3 e S
- ;'.';ﬁ i~
B 3

A DESCRI PTION AND COVPARI SON OF SUBROUTI NES
FOR COMPUTING EUCL| DEAN INNER PRODUCTS ON THE | BM 360

by

M chael A. Mal col m

[ntroduction

In many algorithns, a Euclidean inner product of two vectors nust
be conputed with greater precision than the rest of the calculations

An exanple is the calculation of the residual vector
r =b-AX (1)

used in an algorithmfor inproving an approxi mate sol ution % of

the linear system
/b(sz

Wien the inner product occurs in an algorithm coded in short
precision, it is usually sufficient to accunulate it in long precision
(doubl e precision). Long-precision arithmetic is a hardware feature of
many machines; if so, the inner product is easily coded and quickly
executed. However, when long-precision arithmetic is not available, or
when the entire algorithmis coded in long precision, the inner product
routine becomes nore difficult to code and execution time may become
excessi ve.

This report is primarily concerned with existing routines for
eval uating inner products using more precision than long, for use within
| ong- precision programs for the |BM System/360.. Several such subroutines
can be called from Fortran H prograns; one is available for Watfor (or

Watfiv) For-bran prograns and one for Algol W.

1. Agol w

The doubl e precision inner product routine available for Algol W

prograns is the

long real procedure ip2 (integer i; integer value £, s, u;

long real a, b; long real value c);

comment This procedure conputes the sum of products axb and
adds it to the extra termc. The bound variable i is used
to indicate the subscript in the components of the vectors
a and b over which the scalarproduct is forned. Although the
procedure body is nore conplicated, it can be illustrated as
fol | ows:

begin long real sum sum:= 0.0L,

for i := 1 step s until u do sum:= sum + a¥b,
sum+ ¢
end;
Jensen's device is used through the bound variable i . For exanple,

ip2 could be used to conpute the vector r in Equation (1) as follows:

for i := 1 step 1 until n do

r(i) := -ip2(k,1,1,n,A(i,k),x(k),-b(1i))

Since each product has 28 significant hex digits and a double word has
only 14 digits, a technique related to that suggested by Mpller [1965]
is used to retain full significance. For illustrative purposes, consider

the follow ng segment of an Algol W program

real t; long real a, al, a2, b, bl, b2, b3;

conmment a and b have been assigned doubl e precision val ues;
t :=ajya :=t; a2 := a-al

t :=b; bl :=t; b3 :=Db -bl;

t :=Db3; b2 :=t; b3 = b3 -Db2;

The above program segment splits the nunbers a and b so that

a= al+a2

b = bl+Db2+ b3

Thus

axb = (al+a2) x (bl+ b2+ Db3)

= al¥bl+al*(b2+b3) + al¥bl+ al2¥b2+ a2%b3 (2)

where * indicates double-precision floating-point multiplication and
the synbols x , + and = have the usual mathematical interpretation.
The terms of Equation (2) are accunulated using a technique

suggested by Malcolm|[1970]. It follows directly from Theorem 2 in

Mal col m [1970] that provided n < 13107 , the result (E) cal cul ated py

ip2 satisfies

£ = E(1+¢) (3)

wher e

le] < k16712

and & is the exact result. The procedure can be easily nodified to
accommodate n > 13107 and still satisfy Equation (3).
The parameters i , a and b are passed by name to give maxi num

generality. One may wish to nodify this to econom ze on execution time

[11. Watfor (or Watfiv) Fortran

The same techniques used in ip2 are inplemented in two Fortran

subroutines: DPPUT(A,B) and IPTOTL(S) . The call:
CALL DPRUT(A,B)

adds the product AxB (A and B are double precision) to the

accunul ators. The call:

CALL TIPTOTL(S)

- sunms the accumul ators and assigns the long precision result to S. The

subroutine IPTOTL | eaves the accumulators in their initial state (all
zero).

The result S (= E) satisfies (3) provided DPRUT has not been
called nore than 13,107 tines since the accunulators were last initialized.
DPRUT and TPTOTL use a named common area called DPACCC for storing
the accumulators. A BLOCK DATA subprogramis used for initializing the

named common data area.
Following is an exanple using DPRIT and IPTOTL to cal cul ate the

r vector in Equation (1).

D¢10| :l;N
D 5J =1,N

5 CALL DPRUT(=A(I,J),X(J))
CALL DPRUT(B(I),1.0DO)
10 CALL IPTOTL(R(I))

|V. Fortran H

Several efficient subroutines can be called by a Fortran H program

for computing doubl e-plus inner products.

A VPR2

VPR2 is a subroutine witten by Ehrman [1967] that forns the

doubl e-1ong product of two double precision arguments and adds it to a

doubl e-1ong sum For exanple, VPR2 could be used for computing the r

vector of Equation (1) as follows:

REAL*8 R1(2) ,A(N) ,B(N),X(I) ,R(N)

| NTECER IEXP
D¢ 10 I = 1,N
EXP = 0

R1(1) = 0.0DO
R1(2) = 0.0DO
Dp 5 J =1,N

5 CALL VPR2(-A(I,J),X(J),RL(1),IEXP)
CALL VPR2(1.0D0,B(I),R1(1),IEXP)
IF (IEXP.NE.O) G§ TP 100

10 R(1) = R1(1)

100 {write error nessage and/or term nate)

In the above exanple, RL is an accumulator with 30 hex digits (two double
words with the exponent) and IEXP is used as an indication of underflow or
overflow,

Al though VPR2 uses a 30 hex digit accunulator, it can still result
inalarge relative error. Exanples can be constructed that result in no
significant digits. However,-practical algorithns in which this phenomenon
causes an unacceptable |oss of precision are probably rare.

All calculations in VPR2 are performed in the "general registers".
Al'though VPR2 requires a subroutine linkage for each term of the inner

product, execution times conpare favorably with the fastest routines.

B. DPRT and | PTOTL

The routines described in Part Il for use in Watfor are available
in nore efficient versions coded in PL360 for use with Fortran H The
PL360 versions of DPPUT and |PTOTL differ from the Fortran versions in
that full precision accuracy is obtained and the result is correctly
rounded. This is achieved by a technique described in Section V of

Mal colm [1970]. Also, the result has full precision accuracy and is

correctly rounded.

C. DPDOTP

DPDOTP is a PL360 function subroutine which uses the sane techniques
as DPRUT and IPTPTL described above. The function call for DPDOTP has a

variable length parameter list. The full formal paraneter list is

DPFDOTP(A,B,N,XTERM, INCA, INCB, PVA, PVB)

wher e
A,B -- The locations of the first conponents of the |ong-precision
vectors to be multiplied
N == The nunber of terms entering the inner product

XTERM -- An extra double precision termto be added to the inner

product (optional)

| NCA -- Nunber of (double) words separating successive elenments of

the vector' A (optional)

I NCB -- Nunber of (double) words separating successive elenents of

the vector B (optional)

PVA -- Integer vector specifying a pernutation of the o enent s
of the vector A (optional)

PVB -- Integer vector specifying a pernutation of the elenents

of the vector B (optional)

In the actual paraneter list, only the first three parameters (A, B

and N) are required. Default values of the remaining paraneters are:

XTERM = 0.0DO
INCA =1
INCB = 1
PVA(T) = | (1 = 1,2...)
PVB(I) = | (1 = 1,2,...)
For illustrative purposes assume the follow ng declarations

REAL*8 DPDOTP,A(N,N),B(N),C(N),SUM,R(N),X(N)
| NTEGER*4 PA(N)

Note that DPDOTP nust be declared as a long-precision floating-point
variable. A statement which sets SUMto the inner product of the vectors

B and C is
SUME DFDOTP(B, C,N)

Anot her exanple is the calculation of the residual vector in Equation (1):

pp 101 =1,N
10 R(1) = -DPDPTP(A,X,N,-B(I),N)

In this exanple, | NCA nust be N because Fortran stores the array A
in colum order (see the Fortran |V(H) Programmer's Cui de) which neans
nei ghboring el enents in a given row of A are separated by N double

words. If the colums of A, in the above exanple, were pernuted as

specified by the integer vector PA, the calculation of the residual

vector would then be as follows:

Dp 10 | = L,N
10 R(1) = -DPDYTP(A,X,N,-B(I),N,1,PA)

A PL360 single precision function subroutine for calculating the exact
rounded inner product of single precision vectors is also available. This

routine, called SPDOTP, has the sanme calling sequence as DPDOTP.

. D DOTP

DOTP is an Assenbl er Language function subroutine witten at

Argonne National Laboratories (see Jordan [1967]). The formal paraneter

list is
DOTP(A, B, N)
wher e
A, B -- The locations of the first conponents of the vectors to
be nultiplied
N -- The nunmber of terns entering the inner product

For exanple, the residual vector in Equation (1) could be calculated as

foll ows:

REAL*8 DPTP,A(N,N) ,X(N) ,B(N) ,R(N) , TEMP(N)

l,N .
LN

1Y) 10 |
Dp

5 TEMP(J) ACl, J)

10 R(1) = B(1) -D¢TP TEMP, X, N)

Note that DOTP nust be declared as a |ong-precision variable.

/
DOTP uses the same techniques as DPDOTP (i.e., splitting the

operands and 32 accumul ators); however, DOTP does a number of internal
subroutine linkages (proportionalto N to code that is in line in

DPDOTP.

V. Conparison of Execution Tines

Each of the routines described above has undergone extensive
, tests to insure accuracy. In addition to these tests, each routine

was tined on the 360/67 with the following two calcul ations:

N

Test No. 1: kgl 8, X by
)

Test No. 2: a_ X b
ok k

Each factor 85y 2 8 bk entering the inner product for these tests
was equal to 3.1415926535897932 .
The experinmental results are tabulated in Table I in terms of values

of K for determning execution time according to
execution time = Kx N

in mlliseconds.

The people who programed the various routines are acknow edged

in Table |I.

TABLE |

Val ues of K for

execution tinme = Kxno. of terns in inner product (ms) X/

[nner [nner K K
Cal I'i ng Product Product for for
Language | Routine Conpi | er Programmer | §a.. X b, Zk:ak xb,
Agol W |'ip2 Al gol W M chael 0.710 0.703
(w o $NOCHECK) Saunder s
Al gol w i p2 Algol W M chael 0.544 0.526
(Wi th $NOCHECK) Saunder s
Fortran DPPUT Vatfiv CGor don 2.12 2.03
| PTOTL (w/o NOCHECK) @l | ahorn
Fortran DPRUT Vatfiv Gor don 2.11 2.06
| PTOTL (Wi th NOCHECK) Qil I ahorn
Fortran DPPUT Fortran H Gor don 0.424 0.421
IPTOTL opt =0 Gul I ahorn
Fortran DPRUT Fortran H Gor don 0.332 0.332
IPTOTL opt =2 Gul I ahorn
Fortran DPRUT PL360 M chael 0.212 0.210
| PTOTL Mal col m
Fortran DPDOTP PL360 M chael 0.184 0.184
Mal col m
Fortran VPR2 CS/ Assenbl er John Ehrman 0.196 0.196
Fortran DOTP D. Jordan 0.242 0.218

OS/ Assenhl er

% Al tests were performed on an | BM 360/67.

10

vI. Conclusions

Many |ong-precision routines requiring accurate inner products
can be coded in either Fortran or Algol W For Fortran, DPPUT and IPTOTL
are probably the nost useful for three reasons: (1) they are easy to use
and fast; (2) accuracy of the result is guaranteed; and (3) programs
using them can be debugged and run with the Watfor (or Watfiv) conpiler.
For prograns which are to be debugged and run with the Fortran H conpiler,
DPDOTP i s probably the best because it is easy to use, execution tine is

mnimal and the result is guaranteed.

Bi bl i ogr aphy

Ehrman, John [1967]. "Doubl e-Doubl e Accunul ation of I|nner Products."

Stanford University Conputation Center, Extrinsic Program Library No. C 003.
Fortran |V(H) Programmer's Quide. |1BM Systen’ 360 Operating System

File No. S360-25, Form C28-6602-3.
Jordan, D. F. [1967]. ANL-F1545-DOTP, "Extra-Precision Accumulating

I nner Product."” Argonne National Laboratory, Applied Mathematics

Division. System/360 Library Subroutine. Argonne, Illinois.

Novenber .
Mal colm M chael [1970]. "An Algorithm for Fl oating-Point Accumulation of

Sums with Small Relative Error." Technical Report No. STAN-CS-70-163.
Conput er Science Department, Stanford University. June.
Mgller, Ole [1965]. "Quasi Double-Precision in Floating-Point Addition."

BI T 5. 37-50.

12

