STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO A IM-135

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-179

MLISP >

BY
DAVID CANFIELD SMITH

OCTOBER 1970

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERS ITY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT October,» 1970
MEMO AIM-135

COMPUTER SCIENCE DEPARTMENT
REPORT NO, CS179

ML ISP
by
David Canfjeld Smlth

ABSTRACT1 MLISP |s e high |aeve] I1st-processing and aymbol-
manipulation janguage based o n the programming language
LISP, MLISP progrems are translated Into LISP programs and
then executed or complled, MLISP ex|sts for two purpoOSes:
(1) to ftacl|litate the wrlting and understanding of LISP
programs} (2) to remedy certain |mportant deflclencles In
the | ist=processing abl|lty of LISP,

This researoh was supported by Grant PHS MH 0#66-45«09 and by the
AdvancedResearch Projects Agency ofthe Department of Defense under
aontraot SD=183, This report supersedes and replaces Al Memo 84,

Reproduced In the USA, Avallable from the Clearinghouse for Federal
Sclentific and Technical Information, Springfleid, Virginia 22151,
Prlcei Full slze copy $3,008i mlorgflchecopy 8 4653,

MLISP TABLE OF CONTENTS

SECTION 1 -- INTROOUCTION N R R R R R I N B RN N N A B S R N S SR AN R I
SECTION 2 -- SYNTAX
2.1 Syntax ccnvﬁﬂt'onSl COMMENTS EE R R R R R RN
2.2 COMD'OtQ ML ISP SyntaX DO B RN R R R R S N RN N RN R N RS Y
2.3 Reserved words and symbols, pre~def|ned symbgis vt
2.4 PrO'd.f'ﬂOd atoms RN NN N NN RN E R
2.5 Inflx operator precedences R T A S I I R ST
SECTION 3 - SEMANTICS NN N N N N
3.1 <program> - R RN R R R R R R R T
3.2 <.xpf°s"on> R RN N N N NN N RN R
3.3 <lﬂ'|X-ODarntor> LI B I B I B B R B I B B I S N N R N S S S I S
3 S'A <r.GU|.f-'n"X> 03 00 0o g gl o aggre s
3,3,8B <V.Ct0f_|nf|x> AR R NN NN NN R N
3.4 <prefix_operator> R RN R N N SN NN R N
305 <b.°°k> EE RN NN N N NN RN NN N R
3.6 <funoction_deflinlition>, <LAMBDA_expression> Craerer e
3 . 7 <DEFINE OxDress|0n> N B R R B R R R R N SR B R B SN R S S R S R Y
3.8 <IF expressijion> R R R R R R R Y
3.9 (FOR_OXDP.BS'OH) L I I B R R R R R N A I N N I SN A N I A A A A S I I
3,10 <WHILE _expresslion>, <UNTIL_expression> Ce el
3,11 <assl9nment_oxpresslon> N I R R R R RN B R BTN B N BRSPS I}
3,12 <functlon_ca|[> RN N N NN RN RN REE R
3.13 <lnd0x_oxpress|on> AR RN NN NN NN RN R R
3.14 (I'St_OXDPGSSl°n> L R I R I R B B R I RN I B R N BN R S RS SR
-3,15 <quoted_expressjon> N NN R I N B IO I TSR NY I BE SRS SR
3.16 {ldentifler> I N N R N N NN R R R R R A I S SR SN SRR R R SR S
3,17 <number> R R R R A R R R R A B I B R R R R RPN N R S R A AT N RSP GaY
3,18 <string> RN NN NS NN NN RN R
SECTION 4 -- USER OPERATION OF MLISP
4,1 How to transiate, run and compile MLISP programs vl
4,1,A Trans|ating MLISP program8 P
4,1, Trapns)at,;ng undor program ¢ontro) teer ey
4 1 C L ‘dlng c m J‘d Qr‘ms LA BN LI B I B BN B B B B R B I)
4,2 Roconstruet]ng %hﬁ MLYSS Sy't.m Terr et e s ety e g
4,3 MLISPsourcefl!ies R I R B B N B S U N R S B NP S S S N PP
SECTION 5 -- RUN=TIME FUNCTIONS
g‘é %ﬁ%@}ﬁﬁun-t{meHWUﬁdf]oﬁirIngl L I I R R N O B RS A AT T I

L LR O A B IR B I B RN BN BN AR I I IR |

PAGE

68
68

76
72
73
75

MLISP TABLE OF CONTENTS
SECTION 6 == SAMPLE MLISP PROGRAM

6,1 The program In MLISP IR R R Y
6,21t L | SP trgnsiation R R N R A A AN I IR ST AP SPAR PR

SECTION 7 == THE MLJ]SP SCANNER

701 What tho MLISP scanner does e L NP e e N YT IRt e g e
7.2 An equlvgient sgqnner, written In MLISP et eaae ety
7.3 1t8 Llsptrlﬂﬂllt'on R R R R R R Y
SEC?ION 8 L BIBLIOGRAPHY N N N N NN EEER R

81

07
89
94

99

MLISP INTRODUCTION = SECTION 1 3
+ INTRODUCT]ON « SECTION 1

Most programm|ng |anguages are designed with the Jdea that the syntax
® houlci be struectured to produce eoffloclent code Tor the computer,
Fortran and Algol are outstanding examp|es, Yet,I|tla apparent that
HUMANS spend more time with any glven ~Program than the COMPUTER.
Therefore, |% has been our Intentlon to construct a language whlch Is
as transparent|ly cjear and understandable to a HUMAN BEING as
possible, Considerable effort has been spent to make the syntax

eoncise and wuncluttered, It redyces the number of parentheges
required by LISP, Introduees a more mnemon|e and natural notatlon,
clarifles thefljow of control and permi ts comments, some

"meta~axpressions” are added to Improve the |ist=process|ing power of
LISP, Strings and string manipulatien features, particular|y useful
for Input/output, are Included, In addition, a substantial amount of
rsdundanoy has been bullt Into the language, permitting the
programmer to ¢hoose the most naturaiway of wrliting routines from a
varfety of possibflijtles,

LISP Is a llst=processing and symbo|-manipulation language created at
MIT by John MeCarthy and his students (McCarthy, 1965), The
outstanding Tfeature8 of LISP aret (1) the s|impjest and most elegant
ayntax of any language In ex|stence, (2) high-level symbol
manipulatjon capabillt?os, (3) an efficlent set of |!st=processing
primitives, and (4) an eas|iy-usable power of recursien.
Furtherrore, LISP automatiocally handles all Internal storage
management, freeing the user to concentrate on problem soiving, Thls
Is the single most Important Improvement over the other major
ilst=processing |anguage, I[PLeV, LISP has found applicatjons In many
Important artificlal Inte|ligence investigations, including symbollc
mathmaties, natural-language handling, theorem proving and joglec.

Unfortunate|y, there are several |Important weaknesses in LISF.
Anyone who has attempted to understand a LISP program wrltten by
another programmer tar even by himself a month ear|fer) quickly
becores aware of several difficuities!

A, The flow of control Is very difficult to follow, In fact, It
Is about as difflcult to follow as mechine language or Fortran, Thls
makes understanding the purpose of routines(|.e, what do they do?)
difflcult, Since comments aenot usually permitted, the programmer
Is unable to provide written assistance,

By, An |nordinate amount of ¢time must be spent ba ancing
parentheses, whether In wrlting a LISP program or tryl ng to
understand one, It Is frequently dIfflcult to determine where one
expresslion ends and another beglns, Formatting utli|ity routines
("oretty=print”) hejoi but every LISP programmer knows the dublous
pleasure of laboriously matehing left and right parentheses In a
function,gwhen all he knowslisthat one Is missing somewhere!:

c, The notation of LISP (prefix notatlon Tfor functlons,
parentheses around all funetlons and arguments, ete.), while uniform

MLISP INTRODUCTION = SECTION 1 4

from s f|oglclan’s point af view, |s far from the most natural or
mnemonic for a language, This elumsy notation also makes |l t
difficult to understand LISP programs, Sinee MLISP programs are
translated Into LISP s-expressions, all of the elegance of LKXSP |s
preserved at the translated |eve|} but the unpleasant aspsocts at the
surface level are ejliminated,

Dy There are important omissions |n the |lsteprocessing
capablijties of LISP, Those are somewhat remedied by the MLISP
"meta~expressions”, expressions which have no direct LISP
correspondence but instead are trans|ated Into sequences of LISP
Instructtons, The MLISP meta=-expressions are the FOR expression,
WHILE expression, UNTIL expression, index expression, asslignment
expression, and vector operations, The rarticular deflclency each of
these attempts to overcome |s discussed In the suhsection of SECTION
3 describing the metawmexpression In detall,

MLISP was wr|tten at Stanford Unlvers|ty by Herace Enea for the IBM
360/67 (Enea, 1968), The present author has Implemented MLISP on the
POP-10 time~shared computer, He has rewrl ttan the translator,
expanded and simpjlfled the syntaxy and Improved the rup=time
ro,tines, All of the ohanges and add|tlons are |Intended elther to
make the language more readable and understandable or to make |t more
powerful,

MLISP programs areflrst translated into LISP programs, and then
these are passed to the LISP interpreter or compller, As |ts name
Impiles, MLISP laa"meta=LISP" Ilanguage; MLISP programs may be
viewed as a superstructure over the underlylng LISP processor, Al
of the underlylng LISP functionsareavaljabje to MLISP programs, In
addltlon to several powerful MLISP run=time routines, the purpose of
having Ssueh a superstructure Is to Improve the readabl! ||ty and
“writeabtjjtyo fLISP, long (In)famous for Its obsourity, SinceLISP
Is one of the most elegant and powerful symbo|-manipulatien languages
(but not one of the most readable), |t seems appropriate to try to
faclliltate the use oflt.

MLISP has been running for severa | years on the Stanford PDPe=1p
time-shared computer, It has been distributed to the DEC User
Services Group (DECUS), The MLISP translator and run-time routines
are themselves complled LISP programs, The Stanford versioen runs
under the Stanford LISP 1,6 system (Quam, 1969), Some effort has
been made to keesp the translator as machine Independent as possibie;
in theory MLISP eoutd be Implemented on any machine wlth a working
LISP system by making only minor changes, The one probable exception
to this is the MLISP scanner} to enable scanning (where most of the
time |s spent) to be as effigclent as possible, the translator uses
machine language scanming routines, While these routine9 have
greatly Inoreased trans|atlon speed (MLISP now translates at a rate
of 3200-5000 |Ines per mlnute,), thelruse mean8 that someone wishing

MLISP INTRODUCTION - SECTION 1 5

to Implement MLISP on a system without LISP 1,6 will have to use an
® aulvgent scanner package, For th|s reason, a who|e sectlon of thls
manual (SECTION 7) |g devo¢ed to ppegenting an egylvalent gcanne,,

While LISP was created wlth the goa| of beling machine Independent, It
has turned out that most LISP systems heve unlaue features, The
sltuation Is so difflcult that Anthony Hearn has attempted to define
"a unliform subset of LISP 1,5 capable of assemb|y under awlde range
of ex|sting compiiers and Interpreters," cajled STANDARD LISP (Hearn,
1969), MLISP helps to alleviate this situation by Introducing
another leve| of machlne Independencel to Impliement MLISP onaglven
LISR system, one changes the underiying transiator rather than the
surface syntax, Der, Hearn has also constructed an MLISP=|ike
language ca||ed REDUCE (HEARN, 1970),

MLISP SYNTAX =« SECTION 2.1 6
, SYNTAX = SECTION 2,1

The completeMLISPsyntax Is contajned In the following section.
Severa| sets of meta=-symboisareused to simp|ify the presentation of
the syntax:

(1) <> = ANGLED BRACKETS enclose non=terminal symbols.

(2) () = BRACES encjose optiona| elements; 1.6, the elements Inside
tray or may not be preseant,

(3) (})* = These spbecla| meta=symbo|s enclose optional elements whigh
may bo present 0O or more times (l,e, the enciosed elements need
no¥ be present, but there 18 no Iim]t to the number of times they
may occyr),

(4) €2 = "HORSE SHQES" enclose ajlternative elements, which are
separated by commas, The user may select any one of the enclosed
elements to form a Jegalsyntacticexpression,

(5) The BNF symbo(s (:= and |are used to define syntax elements,
The left-hand s!de of the ¢i2 symbol Is the syntax element being
defined} the rlight-hand side Is Itsdefinition, The vertlical bar
(|)'s used to indlcate aiternative definitions,

(6) All other symbo|s stand for themseives,

There are several features of MLISP that amnot explieltiyIn the

syntax!

ta) IGNORED CHARACTERS = All spaces, carrjage returns, {Ine feeds,
form feeds, tabs, vertloal tabs, and altmodes are Ignored by the
scanner,

(b) COMMENTS <« Any sequence of characters enclosed between percent
signs (%) Is taken to be a comment, The scanner lgnores
comments, consjdering them to be completely non-existent;
ABCX<anything>%DEF |s the same as ABCDEF as far as the soannsr Is
concerned, NOTE: the comment symbe|{%) may not be used In any
other capacity than to start or end a comment!! The
MLISPedef|ned atom PERCENT (value is %) facii|tates dea|lng with
the percent sign In other capacjties,

The user should note that there are no "statements" in MLISP;
averything returns a value, even FOR=-|ocops, WHILE-|oops, etec,
Therefore, all major syntactic entities are "expressjons",

MLISP SYNTAX = SECTION 2,1 7

DISCLAIMER: For reasons of simpllielty, thesyntax presented below |s
slightly different from the one the transiator actually uses, The
only difference |Is that Infix operators do not all have the same
precedence, [nstead they are organized Into a precedenge (hierarchy)
system, Example!

A+« B o« C = 0 CONS L
ls the same as
((A « (B »« C)) « D) CONS L.

From this It may be seen that * takes precedence over *+ and =, and
al 1l three take precedence over CONS, The complete precedence system
is explalned In the sectlion on Infix operators (SECTION 3,3), Glving
Infix operators different precedences helps to out down on the number
of parenthesss needed,

L MLISP SYNTAX =' SECTION 2,2
_ SYNTAX = SECTION 2,2

{program> {1z <expressjon> ,

<expression> 1tz <s|mple_expression>
(<Infix_operator> <simple_expressjond)+

<Infix_operator> tis dregular_Iinfix>
| <vector_infix>

Cregular_|nf|x> = c#) /), *) =, 2, 4, @) =, #) S, 21 €1 &) As |s V3
| <ldenti|fier>

<vector_Iinfix> itz Cregular_Infix> e

<prefix_operator> itz <Cregular_prefix>
| {vector_prefixy

<regular_prefix> tta €+, @, =>
| <ldentifiler>

{vector_pref|x> tte <regular_prefix> o

(simple_expression> i1tz <Cblock>
| <functlon_definition>

| <LAMBDA _expression>

| <DEFINE_expression>

| <IF_expression>

| <FOR_expression>

| CWHILE_expression>

| CUNTIL_expression>

| <assignment_expression>

| <function_call>

| <Index_expressiond>

| <l|st_expression)

| <auoted_expraession>

| <atom>

| <prefix_operator> <simple_expression>
| (<expression>)

\ 84

<block> ti=a BEGIN
{(<declarationd j)=»
(<expression>)«

MLISP SYNTAX = SECTION 2,2 9

{<expression>)
END

{declaration> tim NEW <identifler_|Ist>
| SPECIAL <identifler_||st>

Cidentifler_|ist> titn Cidentifler> (, <identiflerd)s
| <omptyd

<functlion_definitien> tis GcEXPR, FEXPR, LEXPR, MACRO> (ldentifler>
(<iamdda_ldentifier_list>)} <expression

C<LAMBDA _expression> ! Is LAMBDA
(<jambda_ldentifler_IlIist>)} <expression

Ciambda_ldentifler_|ist>ttm (SPECIAL) <ident|fler>
(» (SPECIAL) <identifierd)s

| <empty>
CDEFINE_expression> tis DEFINE <DEFINE_clause> () <DEFINE_ciaused)s
<DEFINE_clayse> its CDEFINE_symbol> PREFIX

| <DEFINE_symbo|> (PREFIX) <alternate_name>
| <DEF INE_symbo|> (PREFIX) {(<a|jternate_name>)
<integer> <|nteger>

CDEFINE_symbo|> ti=s Kldentifler>
| <any character exoept %>

<alternate_name> tis Sidentifler>
| <any oharacter except X, } or ,>

<]F_expression> tiz | F {expression>
THEN <expression> (ALSO <expressiond)+
{ELSE <expression> (ALSO <expressiond)s)

<FOR_expression> tts <FOR_clause> (<FOR_clause>)#
¢0ps» CoLLECT, 3 <lidentifler>> <oxpressir
{(UNelL <expression>)

L el

MLISP

<FOR_clause>

<WHILE _expressiond>
CUNTIL_expression>

<assignment_expressjon>

Crogular_assignment)>
Carray_assignment)>
<index_assignment)>
<decomposition>

<function_oca| (>
Cargument_||st>

<|ndex_expression>
Clist_expression>
<quoted_expression>

(s=gxpression>

SYNTAX =« SECTION 2.2 ip

tte FOR (NEW) <ldent|fler> <IN, ON> <expression>
| FOR (NEW) Cident|fler> . <expresslion>
TO <expression> (BY <expresslon>}

tte WHILE <expression> <D0, COLLECT:, €expression?

112 <eDO, COLLECT2> <expression> UNTIL <expression>

tis Crequiar_assjignment)
] <array_ass|gnment>
<Index_assignment>
<decomposition>

1ts Cldent|fler> + <expression>

ti2 <identifler> (<apgument_IlIist>) « <Cexpression>
tte Cldontifler> [<argument_1iist>] « <expression?
ttx Csimple_expression> «e <expresslond

tiz Cldenti|fjer> (<apgument_|Ist>)
| <LAMBOA expressign> 5 (<apgupent.llist>)

1is <Kexpression> {, <{expressiond)s
I <empty?>

tis <simple_expression?> [<argument_|]st> 3
11z < <argument_|ist> D

11z’ C(s~expression>

i= <atom>
| 0
|
|

. (<s=expressjon> , <s-expression>)
(<s~expression> ({,) <s-expression’}s

MLISP

{atom>

Cidentifiler>

Clatter>

<|fteral|y_character>

<number>

<|nteger>

<dlglt>

<octal_lInteger>

<octal_dlgit>

{real>

{exponent>

<string>

SYNTAX = SECTION 2,2 i1

{identiftier>

<number>

<atr ing>

<letterd (c<|atter>, <digltd>)

€A, By Co oo 2+ 80 Dy €0 vy 20 0 ¥ty 2

<||terally_character> <any character except

?

<integer>

OcTAL <octal_integer>

<rea|>

<dlglt> (<digitd)e

€@, 1, 2,3,4, 3 6, 7, 8,9

Cogta|_dlglt> (<octa|_digitd)s
eB, 1, 2, 3, 4, 5, 6, ?5

<integer> <exponent>
<Integer> ., <integer> (<exponant>}

E (c+, =) <(|nteger>

" (<any character except " and X>)s "

L' MLISP SYNTAX = SECTION 2,3 12

+ SYNTAX = SECTION 2,3

Reserved word8 for MLISP!

BEGIN FOR EXPR
NEW IN FEXPR
SPECIAL ON LEXPR
END TO MACRO
IF 8Y DEF INE
THEN 00 LAMBODA
ALSO COLLECT OCTAL
ELSE UNTIL WHILE

Reserved symbols for MLISPI

-

-
-
L

Symbols preedefinaed in MLISP!
Symbol MLISP Trans|atlion

TIMES

QUOTIENT

PLUS

DIFFERENCE (MINUS If usedas a proeflix;
PRELIST (see SECTION g5.2)
SUFLIST (see SECTION 5,2)
APPEND

EQUAL

NEGUAL (see SECTION 5,2)
LEQUAL (see SECTION 5,2)
GEQUAL (see SECTION 5,2}
MEMBER

ANO

AND

OR

OR -

NOT

F L—D>0m VIAUM&Pe ¢ 7 +4\ 8

MLISP SYNTAX = SECTION 2,4 13
, SYNTAX = SECTION 2,4

Atoms having MLISP=defined vajuest

Atom value Ascl| (octal)
TRUE T 124
FALSE NIL none
F NIL none
CIRCLEX o 26
COLON 1 72
COMMA ’ 34
DASH - 53
DBQUOTE " 42
DOLLAR s 44
EQSJGN ~) 75
LARROW - 137
LABR C (|eft ang|ed bracket) 74
LPAR ((leftparenthes|s) 50
LSBR C (left square bracket) 133
PERCENT X 43
PER]IQD ' 56
pLUSS + 53
o] ' 47
RIBR > (right angled bracket) 74
RPAR) (right parantheslis) 31
RSBR h| (rlght squ.r. brlek.t’ 133
SEMICOLON } ‘ 73
SLASH / 57
STAR b 52
UNDERBAR . 30
TAB Ctab> 11
LF <|lne feed> 12
VT Cysrrdloanl tabhd 13
FF <¥crm fead? 14
CR <{garriage return> 15
BLANK <blank? 40

ALTMODE <altmode> 175

MLISP

SYNTAX = SECTION 2,5

. SYNTAX = SECTION 2.5

Precedence of Inf|x operators In MLISP (from highest to
fol towing table

expialned

table below will|

Symbol

® .
TIMES
#TIMES

/
QUOTIENT
*QUO

L]

PLUS
sPLUS

DIFFERENCE
eDIF

<default>

]
APPEND
#APPEND
NCONC
CONS
XCONS
CAT

EQ
NEQ

s
EQuAL
o

NEQUAL
LESSP
*LESS

s

LEQUAL
GREATERP
*GREAT

|s Included here pdurely for

In SECTION 3,3,
hrvr the defau|t precedence (precedencse jevel| 3) and

default binding powers,

Function

TIMES
TIMES
#TIMES
QUOTIENT
QUOTIENT
«QUo

PLUS

PLUS

oPLUS
DIFFERENCE
DIFFERENCE
spIF

APPEND
APPEND
*APPEND
NCONC
CONS
XCONS
CAT

EQ

NEQ
EQual
EQual
NEQuAL
NEQUAL
LESSP
»ESS
LEQUAL
LEQUAL
GREATERP
*GREAT

Precedence

L T T VN PN

w LVEOVE VR VIS RS)

S 0 DDDLML

GO oOoOIwMoioioioitoiTmol\

14

lowest), The

refereance’ If 1is
Any function8 not present In the

Binding Power

Left

700
700
700
700
700
700

600
600
600
600
600
600

500

450
450
459
450
450
450
450

300
300
300
300
300
300
300
300
300
300
300
300

Right

750
750
750
750
750
750

650
650
650
650
650
650

550

400
a7
400
400
age
400
400

350
350
350
352
350
350
350
350
350
350
I8¢
350

MLISP

2
GEQUAL
¢
MEMBER
MEMQ

GEQUAL
GEQUAL
MEMBER
MEMBER
MEMQ

AND
AND
AND

OR
OR
OR

SYNTAX = SECTION 2,5

[o23¥ » ey} VARV

~

300

300
300

300
300

200
200
200

i00
100
i00

350
M1
350
350
350

230
250
250

159
150
150

15

MLISP SEMANTICS = SECTION 3 16
. SEMANTICS -SECTJON 3

Thls section presents the meaning of .each of the elements In the
syntax, First the syntacticparts about to be explainedare |lated.
than thelr mraning Is explalined In detall, Filnally, a serles of
sxpamples |||ustrates them, and In many cases their actual LISp
transiations e rl) glven,

It |s assumed that the user has a working knowledge of LISP, If not,
Weissman’s PRIMER (We|ssman, 1967) provides a goed tutorial.
McCarthy"s PROGRAMMER®"S MANUAL (MeCarthy, 1965) la the standard
reference manual, In addltlon,the user should famililarize himself
with the manual for hils LISP system, since, as was polnted out, LISP
systemsmay vary from ecomputer to computer,

In this section the symbo| "~" means "Is translated Into",

MLISP SEMANTICS= SECTION 3,1 17
, SEMANTICS = SECTION 3,1

<program> 1i& <gxpression> .

An MLISP program |8 an expression followed bya perlod, Usually the
program |s a serles of expressions encliosed In a BEGIN=END palr} |.e,
it I's black, Thls permits more than one MLISP expression to b e
trans|atedat thes a m e time, The transjation of thr program gets
bound to the funetlon RESTART aftertransiationhas been completed.
Examp|et |f the MLISP program Is

BEGIN
NEW Xi
X o READ())
PRINTSTR("] JUST READ " CAT X)i

END,
then RESTART would be defined to be

(DEFPROP RESTART
(LAMBDA NIL
(PROG (X)
(SETQ x (READ))
£ (PRINTSTR (CAT (QUOTE ™I JUST REAR ") X))))
XPR)

Basically the RESTART functlon serves to glve a name to thr maln bedy
o the program, so that the user can execute hls program at any time
by call Ing 1t, For example, typing (RESTART) to LISP Would cause tho
above program to be executed,

"Any expression whose translation Is NIL (l,e, function definitions
and DEFINE expressions) are not Imecluded In the RESTART fumctlion;
only exeoutable (non=NIL) expressionsare |ncjuded, Example! |[f the
MLISP program ls

BEGIN
NEW X,Y}
EXPR MAX (Xs¥)3 If X2 Y THEN X ELSE Y3
EXPR TPRINT(X); TERPR] PRINT X}
TPRINT MAX(X e READ(), Y « READ())}
END ,

then RESTART would be deflned to be

(DEFPROP RESTART
(LAMBDA NIL
(PROG (X Y) -
(TPRINT (MAX (SETQ X (READ)) (SETQ Y (READ))))))
EXPR)

NLISP SEMANTICS = SECTION 3.2 18

, SEMANTICS = SECTION 3,2

Cexpression> iis (simple_expression> {(<|nfix_operator><simpie_expression>}s

An expression|s ons oOr more simple expressjons Sseparated by Infix

operatorsi

<simple_expression>

<simple_expression> <|nfix_operator> <simple_expression>

<simple_expression> <|nfix_operator> <simpje_expression>
<Infix_operatord> <simple_expression>

From thisdescrintion,
same precedence,

|t appears that all
However » several

been glven different precedences from the others,

Infix aperators have the
often-used LISP functlions have
This often enabjes.

one to eliminateparentheses that would be necessary to group the
terms In anexpressfon, The preocedences have been chosen to be as
natural and usefy| to the LISP programmer as possible, Example!
A+B#C = D/E | X3Y & 2Z3W
ls the same as
(CA +(BaC)) = D) | ((XmY) 8 (23W)),
but the former |s far more readablethan the latter, The precedence
system usedisexpialnedin detaliinthe followingseetion on Inflx
operators (SECTION 3.3),
Examples of expressions!
A » A
(A) - A
«A » (NOT A)
‘A - (QUOTE A)
whn - (QUOTE nAn)
<A> - (LIST A)
16 - 16
123.‘55*10 - 1.2345¢€12
OCTaL 100 - 64 (decimal)
“THIS ISA STRING," - (QUOTE ™THIS IS A STRING,"™)
“"ANOTHER n CAT "STRING" = (CAT (QUOTE "ANOTHER ") (QUOTE "'STRING'™))

‘(A (8,C) D)
<'A"(B.C)I'o>

(QUOTE (A (B,C) D))
(LIST (QUOTE A)

(QUOTE (B,C)) (QUOTE D))

10

»> > >
.

A /8= C

((A 7/ B) Q)
QUOTIENT(A,B) = C
DIFFERENCE(A / B,C)

X e L

X s Y

L1 e L2

L1 o L2 o L3

A CONS B CONS NIL
(ACONSB)Y CONSNIL

A + B GREATERP 1@
A#B + C CONS LiglL2
A CONS B s C | =Y
X=s78&8&Y s A/B

X EQ@ "A | X EQ "8
AABAC VvaA A =B

« B +~C
B(l)eC

»»r > > P
*
*)
*
(]

IF FOO(X,Y) THEN
BEGIN NEW N}
N & X MAX Y3
X &Y e NIL,
PRINTSTR "HO HO";
-PRINT N

END
ELSE PRINTSTR

DEFINE FOO PREFIX,
EXPR MAX (X,Y)}
FOR NEW 1

WHILE A NEQ
DO A « READ()

"HA HA"

SEMANTICS = SECTION 3,2 19

-
<
<
L]

4 583 38 4 3 38

4 48 8 8 8

$ 3 38 82

3

AND &,
IFX2Y THEN
IN L COLLECT <CAR

"STOP DOA-e~

(PLUS A 10)

(ADDL A)
(DIFFERENCE A 19)
(suBl A)

(QIFFERENCE (QUOTIENT A B) C)
(DIFFERENCE (QUOTIENT A B) C)
(DIFFERENCE (QUOTIENT A 8) C)
(DIFFERENCE (QUOTIENT A B) C)

(MEMBER X L)

(EQUAL X Y)

(APPEND LI L2)
(APPEND L1 L2 L3)
(CONS A (CONS B NIL))
(CONS (CONS A 8) NIL)

(GREATERP (PLUS A B) 1)

(CONS (PLUS (TIMES A B) €) (APPEND LI L2!
(OR (EQUAL (CONS A B) C) (NOT Y¥))

(AND (EQUAL X 7) (EQUAL Y (QUOTIENT A B)!
(QR (EQ X (QUOTE A)) (EQ X (QUOTE B)))
(OR (ANDA B C) (AND (NOT A) (NOT B)))

(SETO A (SETQ B €))
(SETQ A (STORE (B 1) C))
(TIMES A (SETQ B C))
‘SETE A (TIMES B C))

S A

(TIM (SET@ B (TIMES C D))
(SETQ A (TIMES B (SETQ C D)))
(COND
((FOO x Y)

(PROG (N)

(SETQ N (MAX X Y))
(SETQ X (SETQ Y NIL))
(PRINTSTR (QUOTE "HO HO™))
(PRINT N W

(T(PRINTSTR (QUOTE "HAHA"))))

OR | 100 158, SUFLIST & 490 4091,
X ELSE Y

I> UNTIL 1 = *(STOP)}

READO
UNTIL hEQ ‘STOP

MLISP SEMANTICS « SECTION 3,3 20

+ SEMANTICS = SECTION 3,3

<Infix_operator> 115 <ragular_infix>
| <vector_Infix>

Creguilar_Infix> 1t o) /) %) =, ¢, 4, @, 8, £, S, 2, €, &) Ay |y V2
| <ldentifler>

<vector_Inf|x> 11z <regular_iInfix> o

A n Infix operator |s elther a regular Infix or a vegtor Infix, A
regular Infix Is any of the symbols |isted, or an ldentif|er which Is
the name of a fuynction taklng two arguments, A veotor |nflx |s a
regular Infix followed by the vector (ndlcator (o),

MLISP SEMANTICS « SECTION 3,3 21
(A) Regujar Infixes

The normal L ISP way of weiting fynction calls S the "preflix
notation," the funetion name ooccuring first followed by Its
argumentsi
MLISP permits functlons oalled with two arguments to be written In
the "Infix notatlion,” €t h e functionnameoccuringbetween the
arguments!

A PLUS 8,
In addition, certaln commonly-wad L1SP and MLISP functions have been
given abbreviations:

A * B
Below la a complete ||st of these abbreviations, The user can define
abbreviations Tor hls own funotions, or ohange the MLISP=def|ned
ones, by using the DEFINE expression(SECTION3,?),

Abbreviation Function
' TIMES
/ QUOTIENT
. PLUS (May be used a@d s preflix.)
- DIFFERENCE (MINUS |f used as a preflix)
. PRELIST (see SECTION 5,2)
+ SUFLIST (see SECTION 5,2)
® APPEND
Ld EQUAL
% NEQUAL (see SECTION 5,2)
< LEQUAL (see SECTION 5,2)
2 GEQUAL (see SECTION 5,2)
¢ MEMBER
8 AND
A AND
| OR
v OR
- NOT (This is a prefix, not an inflix,)
Infix operators d o not all have the same precedengce} some take

prlority over others when expressions are parsed, Example!
A+Be#s# (C-~D/E

is parsed!
(A+ (B C))=(D/ E),

A precedence System for Infix operators has been setup(a)tohelp
eut down on the numper of parentheses needed’ and (b) because most
programming Janguages have a precedence system, and so hayling one Is
more natural to a Programmer than not having one,

ML1SP

Listed pelow I8 the
MLISP, Any functlon whlch does not appear explleltiy

below wl|! the default precedence and bindingpowers

SEMANTICS = SECTJON 3,3

assigned

22

completeprecedance system fop Infix operators In

In the table

(unless the user assigns different ones with theDEFINEexpression).
SECTION 2,5,

For reference, the table below |s a|so|isted in

Symbol

*®

TIMES
sTIMES

/
QUOTIENT
sQUO

-

PLUS
*PLUS

DIFFERENCE
s«DIF

{default>

®
APPEND
s APPEND
NCONC
CONS
XCONS
CAT

£EQ

NEQ

s
EQUAL
F
NEQUAL
LESSP
#LESS
<
LEQUAL
GREATERP
*GREAT

2
GEQUAL

Functlon

TIMES
TIMES
sTIMES
QUOTIENT
QUOTIENT
*QUO

-

PLUS

PLUS

*PLUS
DIFFERENCE
DIFFERENCE
oDIF

APPEND
APPEND
sAPPEND
NCONC
CONS
XCONS
CAT

EQ

NEQ
EQUAL
EQUAL
NEQUAL
NEQUAL
LESSP
« ESS
LEQUAL
LEQUAL
GREATERP
«GREATY
GEQUAL
GEQUAL

Precedence

A A s e g

w NN

[N N W N N 3 N

CIO1TO1OCTOTCTIOT A\ O1O1O1A\R O1

Binding Power

Left

700
700
700
700
700
700

600
600
600
600
600
600

500

450
450
450
450
450
450
450

300
300
300
300
300
300
300
300
300
300
300
300
300
300

Right

750
750
750
750
750
750

650
650
650
650
650
650

550

400
420
400
492
400
400
429

350
350
330
350
350
350
350
350
35¢
358
330
35¢
350
350

MLISP SEMANTICS = SECTION 3.3 23

¢ MEMBER 5 300 350
MEMBER MEMBER 5 300 350
MEMQ MEMQ 3 300 350
] AND 6 200 230
A AND 6 200 250
AND AND 6 200 250
| OR 7 100 150

OR - (R R 1" 100360 150450

The reader has probably notlieced that the last two oolumnr In this
table are labled Blinding Power = Left and Right, Baslcally,» the
"bInding powers" of an |nflx operator are the strengths with which It
"binds" or pulls on the elements to the left and right of |t, The
concept of binding powers|ssufficlent t oocompletely specl!fy any
precedence system, For examp|e, cons|der!

A+38s C(C,

Both *+ and # are trylng to attroh B as the second argument for thelr
functlions (PLUS and TIMES), But the 1eft biIndlng power of # (7088)Is
greater than the right binding power of + (650), so this expression
would be parsed!

A+ (B &« C),

As another example, suppose the user has defined a two-argument
function MAX, Since MAX does not ocour explicltly In the precedence
system above, the default blInding powers (502 and 550) are used.

Then
A MAX B MAX C

is pirnoda
(A MAX B) MAX C

since for default functlions the right bilnding power Is (greater than
the left bindIing nroyer, This Is also true for all other functlons
except those on precedence |jeve| 4, t h e s=expression bullding
tunctions (APPEND, CONS, etc.,)s For a LISP user, |t 18 not only more
natural but more effliclent to have the assoofatlon of these funotlons
go to the rlight!

4 CONSBCONSCCONSNIL

|s parsed!

ML ISP SEMANTICS = SECTION 3.3 24
A CONS (B CONS (C CONS NIL)),

The user should study the precedence system above, Parentheses may
be useda t any timetoalter the assoclations of the precedence
system, but hopeful|y It has been constructed carefully enough so
that the user wll| sejdom have to do thls,

Aljuser=def|ned(nfixfunetions nermally get assigned the default
binding powers, Note that thl®s moans that user-deflined functlons
normal |ytake precedence over some LISP and MLISP functions (those on
precfdence Jevels 4 = 7), However; the user can asslign different
binding powers to his functions, or even to the funotlona above, by
means of the DEFINE expression (SeCTION 3,7), With the DEFINE
expression, he orn set up any Precedence system he ohoses,

MLISP

SEMANTICS

« SECTION 3,3 25

The ratlonaje for theprecedence system!

1

In addition to InfiXx onerators, prefix operators and

operator aiso been Implemented us|ng binding powers,

#) TIMES, #T]IMES
/» QUOTIENT, =QUO

+, PLUS, *PLUS

=, DIFFERENCE, #DIF

«l 1 others

®, APPEND, #APPEND, NCONC
CONS, XCONS

CAT

£Q

s+ EQUAL

£, NEQUAL

$» LEQUAL, LESSP,
2, GEQUAL, GREATERP,
€, MEMBER, MEMQ

*LESS
#GREAT

&y A, AND

l» v, OR

() have

First come the arithmetic functions,
whloh operate only on numbers and
whloh yleld only numerlica| vajyes,

and
over

As |s natura|, multip|lcation
division take precedence
addition and subtraction,

Then come all user-deflined functions,
and all LISP and MLISP funotlons not
I1sted here explicitiy,

These are fol|owed by functions which

operate on s-expressionstobulld new
s=expressions,

of lower precedence are TfTunotlons
which operate o n s=expressione, but
whloh yleld only boolean values,

Of lowest precedence are functlons

which oparate only on boolean values,
and which ylejd only boolean values,

A8 |s natural, OR ha8 a lower
preceadence than AND; In fact OR has
the floowest precedence o T any
function.

the ass] gnment
The

binding powers forprefixes ape =1 and 1002} those for the agslgnment

operator
expressaion,
and

ape $001 and O,

These may be changed by
They are | Isted only for reyir
assignmentexpressions|s expjajned better by the synmtax,

the DEFINE
ence) the use of pref|xes

MLISP SEMANTICS = SECTION 3,3 26

(B) Vector Infixes

Vector Infixes are a very powerful MLISP concept, They provide a
eonclise means of mapplng funotlons onto one or two Iists, a facl | Ity
not readily avaljable In LISP, They developed from the observation
that |Ists may be regarded as any=dimensional vectors, The LISP
system then becomes an Infinlteedimensional vector space, Scalars In
this vector apace are atoms, Veetor Infixes (and veotop prefixes)
arean attempt to deflne some primitive operations over thisvector
space, Baslcally vector Infixesarefunctions whlioh aremapped onto
thelr vector (||st) arguments toyle|d a vector(iist) o f results,
much |lkeatwo-argument MAPCAR,

Suppose V = (vl, v2, ,,, ¥m) and W ® (wi,w2,» .4, Wn) are two vectors
(1,0, lists), Addltlon of two vectors |s accompl|ished by}

V ¢+ W 3 (viewl, v2+W2) .+ VK*WK), where Kk smin(m,n).

Multlplloatlon by ascajart

10 w#»e v = (10evl, 10%v2, ,,. 10wvm)
v #e¢ 10 = (Vl.lg' vaelp, 'R vm#i@)

Multiplication of two scajarss

10 «e 20 = 12 & 20 = 2090

To Il1lustrate these vector primitives, we wi|l use them to wrlte the
Eycildean Inner orod,ceg!
k

V |N=E(V| + w')
=1
Flpst obgepve that If we CONS the functlon PLUS onto a |lst of
numbers, we get an executable expressjont

"PLUS CONS *(1 2 3 4 35) = (PLUS 12345,

Then:
EXPR INNERPROD (V,W)3 EVAL ('PLUS CONS V +e W)

isthe desired Inner produet fungtlion using vector operatifeons, It Is
worthwhl|e noting that we could also writet

EXPR INNERPROD (V,W)3
BEGIN NgW SUM;
SUM « 23)
FOR NEW v IN V FOR NeEW w IN W p0O SUM e SUM + (v+w)}
ENDRETURN SUM

MLISP SEMANTICS « SECTION 3,3 27

oreaulivajent|yt
EXPR INNERPROD(V, W)} FORNEW v IN V FOR NEW w IN W} PLUS vew

Vectoroperations, however, provide the most concise means of writing
the 'UﬂCt'OHQ

The next |oglealstep| n the devejopment o fveector orerationsist o
oermlt virtually any two-argument LISP, MLISP or user=def ined
functlion to be used asavector operator:

VvV %0 8 (vl & wl, v2d ®» w2,,,s Vk * wk)
V CONS. W 8 (vl CONS wi,v2 CONS wW2ss.¢vk CONS wk)
V FOOe W s (yiFOO wi)v2FOO w2,.., vk FOO wk)

where [n each case kamin(jength V, length W),

Note!

(a) Theresulto fveotor operations| o a veotor (l.e, |iIst), unjess
both argumentsarescalars (atoms),

(b) The jength of the result vectorls the shorter 0o T the |engths of
the two vootor arguments, or the jengthof thevector argument |f
the other argument |8 a scajar,

Following an Infix operator by the vaotor Indicator (e)does not
change Its precedence, In determining the parsing of an expression,
the presence Oof absence of o |8 Ignored!

A 40 B we C CONS* |
is parsed exact|y thesame a8
A ¢« B &« C CONS L,

name |y
(A o (B »o C)) CONSe |,

In addltlon to two-argument vector (nfixes, one-argument vector
pref Ixes are also perm|itted, These arc discussed In the fo|lowing
sectlon on prefix operators (SECTION 3,4), Exampnle:

ATOMe “(A B (C) D) = (T T NIL T,

- v

MLISP SEMANTICS = SECTION 3,3 28

Exampjeso fInfix operators:!

A*iﬂ -
A+ 1 -
A =18 -
A.1 -
A/ B =C -
((A / B) « C) -
QUOTIENT(A,B) » C -
DIFFERENCE(A / B,C) -
X e L -
X =Y -
LI eL2 -
L1 & L2 L3 »
CA,B,C> @ FOO(X,Y) -
A CONS B CONS NIL ~ -
(A CONS B) CONS NIL -
<A CONS 8> -
A CONS L+3 @ X -
A + B GREATERP 10 -
A*B + C CONS L -
A CONS B & C | =Y -
X 27 & Y s A«B -

-

X EQ 'A| X EQ ’B

Vector Infixes!

(1 2 3) 4 “(4 5 6)
'(£ 2 3) «0 "(4 56 7)

2 e0 (1 2 %)
2 %0 (1 2 3) +«0 (4 5 §)
2e0(’(1 2 3) %o ‘(4 5 6))

(41 2 3) CONS@ "(A B C D)

'((1 2) (3 4)) e ’((A B) (C D))s

“((A 8 C)Y(DE FY(GHI)) tels=
"((A BCY(DEF)(GHTI) s0 1=

"("JOHN " "MARY ") CAT. ~("DOE"

"JOHN," CAT@ ~('DOE™ ™"SMITH™) =

(PLUS A 10)

(ADDi A)
(DIFFERENCE A 10)
(SUB1 A)

(DIFFERENCE (QUOTIENT A B) C)
(DIFFERENCE (QUOTIENT A B) C)
(DIFFERENCE (QUOTIENT A B) C)
(DIFFERENCE (QUOTIENT A B) ©)

(MEMBER X L)

(EQUAL X y)

(APPEND L% L2)

(APPEND L4 L2 L3)

CAPPEND (LIST A BC) (FOO X V))
(CONS A (CONS B NIL))

(CONS (CONS A B) NIL)

(LIST (CONS A B8))

(CONS A (APPEND (SUFLIST { 3) X))

(GREATERP (PLUS A B) 18)

(CONS (PLUS (TIMES A 6) C) L)

(OR (EQUAL (CONS A B) €) (NOT Y))

(AND (EQUAL X 7) (EQUAL Y (TIMES A B8)))
(OR (EQ X (QUOTE A)) (EG X (QUOTE B)))

s (57 9

a (4 10 18)

2 (2 4 6)

s (6 9 12)

. (12 14 18)

2 ((1 A)(2 , B) (3 . C))

(L2 ABY(3 4 C D))

(CA) (D) (G))
((B C) (E F) (H 1))

"SMITH™)
3 ("JOHN DOE"™ "“"MARY SMITH™)

("JOHN-DOE " "JOHN_SMITH")

AT. ('JOHN,' CAT. =('DOE'™ "SMITH™))

s (JOHN_DOE JOHN_SMITH)

MLISP SEMANTICS = SECTION 3,4 29
+ SEMANTICS = SECTION 3,4

<preflix_operator> 1ts <regular_prefix>
| <vector_pref|x>

<regular_prefix> ‘a+ €4, =, ud
| <ldentifierd

<vector_prefix> tis Croguiar_prefixd> o

4 prefixoperatoris @ Ithot aregular prefix or a vector prefix, A
regular prefix Is any of the symbols ¢, = o or~=, o or an [demtifier
representing any one-argument functlionwhioh theMLISP translator
know8 about, A vector prefix |is a reguiar prefix followed by the
veotor Indlcator (@),

Regular pref|xes

The main purposes of prefixes are toclarify expressionsandt o
® Jlmkat® parentheses, NOT X Isbetterthan NOT(X), though both are
legals and =X|s even better, The trensfator knows about all
one=argument LISP andMLISP fynetions, | naddition, the tramsiator
notes a|| one=argument EXPR’s transiated, Latero nin theprogram
(l,0, aftor the functlion definition), that function may be used | ike
any otherprefix, Example! If the function definition
EXPR FOO (X)) TERPRI PRINT X .

ogeurred In o Progr,m, then In the rest of the proorym followling this
definition It would be legaltotreat FOO a8 a prefix.

This |s one way that the translator c¢an be made aware Of user~def|ned

prefixes, Another way |s to use the DEFINE expression (SECTION 3,7):
DEFINE FOO PREFIX

has the effect of stating Co the translator that the function F00,

regardiess of Its deflInitien (If any), will only have one argument In

the rest of the Drogram and 8o shou|dbe treated asaprefix,

Vector prefixes

Vector prefixes are avery Interesting and very powerful extension of
prefix operators, The concept of vector operations was explalned in
the nreceed|ng section, T hebasic Ideal|s thatvector prefixes
operate on not Just one, but on & whole |18t of arguments, and they
return a whole |18t of values, The prefix operator I8 mapped onto
the |lst, with ¢the operator applled to each element [n it, This
snables many complexexpressionsto be written oconclise|y, Vector
orefixes may also Operate on atoms (sca|ars) |[nstead of |[sts,

MLISP SEMANTICS = SECTION 3,4

Examp |8 of prefix gperators!

30

(ATOM (FOO X Y (PLUS Z 12)))
(TERPR] (PRINT (CAR L)))
(AND (NOT A) (NOT 8) (NOT C©))

*X - X R

=X » (MINUS X)

Y - {NOT X)

NOT X - (NOT X)

NOT(X) 3 (NOT X)

ATOM FOO(X,Y 2 ¢ 10) -

NULL CDR L - (NULL (CDR L))
TERPR] PRINT CAR L -

LENGTH L + 10 - (PLUS (LENGTH () 19)
-4 K =B A «f -

NUMBERP X v =-ATOM X - (OR (NUMBERP X)

E g

NOT ATOM X & READ()
NOT ATOM X & READ()
NOT ATOM X CONS READ()

& &

Veotor prefixes!

Suppose L = (A B (C D) NIL E),

(NOT CATOM X))

(NOT (ATOM (SET@ X (READ))))
(AND (NOT (ATOM X)) (READ))
(CONS (NOT (ATOM X)) (READ))

ATOMe | ® (TT NIL T T)
NOTe ATOM. L) (NILNILT NIL NIL)
e | L] (NIL NIL NIL T NIL)
LENGTHe | a (g 020@)
e ’(1 2 3 &) s (1 23 4)
w0 '’(1 2 3 4) s (=] =2 =3 =4)
NUMBERPe (1 2 3 4) s (TTITMn
ADDi1e (1 2 3 4) = (2 345)
=0 SUBle ‘(1 2 3 4) 3 (B =1 =2
ATe “(THIS™ ™IS™ A" "LIST" "OF"™ "STRINGS™)

. s (THISIS4 LIST OF STRINGS)
ATe "STRINGS" 3 STRINGS
AT “STRINGS" s STRINGS
STRe “(MORE STRINGS) = ("'MORE™ "STRINGS")
STR "(MORE STRINGS) = "WORE STRINGS)"
ATOMe 10 s T
ATOM 12 a T
NUMBERPe 192 z T
NULLe 10 s NIL

CAR. ‘((A 1) (B 2) (C 3)) _

CDR. '((A 1) (B 2) (C 3))

CADRe "((A 1) (6 2) (C 3))

NUMBERPe CADRe /((A 1) (B 2) (C 3))

uH owon o

(A B C)
(€1) (2) (3))
(12 3
(Y TN

MLISP SEMANTICS = SECTION 3,5 31
« SEMANTICS = SECTION 3,5

Each of the remalining sube=sectlions {n SECTION 3 explains anexample
of a simple expressjon, -

<block> tis BEGIN
(<declaration> j)*
(<expression> })«
{(Cexpression>)
END

<declarat|on> 112 NEW <identifler_|Ist>
| SPECIAL <ldentifler_IIst>

<identifler_|Ist> 11is Cldentifler> (, <identiflerd>)»
| <ampty>

A block Is the reserved word BEGIN, Tfollowed by any number of
declarations separated by semicolons (1), foljowed by any number of
expressions separated Dby semlcolons, followed by the reserved word
END, The last expresslon need not have a aemloolon after Ilt, A
declaration |s elther of the reserved words NEW or SPECIAL, feollowed
by an ldentifler |lst, An ldentifler I |8t |s any number of
[dentifiers (possibjy none) separatedpby commas,

A block Is transiated Inte a PROG, Any varlables (|dentiflers)
declared using the NEW deciaration become the PROGvarimables. Check
your LISP manual to see whether or not PROC variables are
automatically Initiallzed to NIL In your versionof L|SP,6 The scope
of NEW varlables |s the scope of the PROG, |,e., yntl! the matching
END, NEW varlables mayalso be declared SPECIAL. FEach expression
tollowling the deciarations untl|the END bescomes 5 statement {n the
PROG, There should be a semicolon after saoch expression, with the
® xocrptlon that the last semicolon |s optional, END closes off the
PROG,"

SPECIAL declarations are somewhat unlgue In that they have no
transiation} Instegd they have an effect on the transiator. A flag
for the LISP 1,6 complier Is put on the property 1|lst of eaoh
variable decjared SPECIAL, Tthisflagenables the compller to oomplle
free varlables and global variabjes correct|y,

SPECIAL deciarat|ons have the effect of declaring thelr variables
SPECIAL throughout the entire program, regardiess of the physical
location of thedec|aratiorn In the program, This enables the user to
mark variabjes SPECIAL wherever It |s convenlent to do so. and
simultaneousiy prevents the compl|er (and user) from getting confused

MLISP SEMANTICS = SECTION 3.5 32

whenvariables are sometimesSPEC]AL and sometimes not, It Is a good
ldea to make SPECIAL varlab|e names distinet from other variable
names as a way of keeplng track of them, For example, an excl|amation
mark (!) could be Included In each SPECIAL varlable name; SPECIAL A,
!B, IC, I ngeneral, the fewer variables that have to be declared
SPECIAL, the better} the ocode for SPECIAL varlables runs somewhat
slower than that for non<SPECIA(ones,

For the wuser’s reference, the fo|lowingsection Is reproduced from
Quam’s LISP 1,6 manual (Quam, 1969),

In compijed functlions, any varlable which |s bound in a

LAMBDA or PROG and has a free ococurrence eisewhere must

be declared SPECIAL, CA varlable Is sald to have a free

occurrence If It not bound In any LAMBDA or PROG

contalning the occurrence,] (Also,] varlables which are

used Iin a functlonal ocontext must be decjared SPECIAL or

else the compjler wi|l mistake them for undefined EXPR’'s,
Sim|lar restrioctions hold for many other LISP compllers, [t |8 UP to
the user to make sure he understands fully the conventlons fat
eompllirng In hls LISP system, For the MLISP user, there {8 one
further restriction: varlables In the Ileft-hand slde of a
decompoesition assignment expression (SECTION 3,111 must be declared
SPECIAL ITf theexpressionls to work correctly,

AS wlith PROG’s, a value may be returned for a block by uslng the
RETURN function, Labe|s may be transferred to using the GO function:
labe|s are decliared py following the label Immediagte|y with a
semlcojon (e,g, L}), not with a colon. However, the |teration
"meta~expressions" descr |l bed In following sectionsare to be much
recommended over |ape}s and GO transfers,

MLISP SEMANTICS = SECTION 3,5 33
Exampieg of bjlocks!

BEGIN - (PROG NIL)

END

BEGIN - (PROG NI L

Li X *« READ()} L (SETOX (READ))

IF X EQ Y THEN RETURN TRUE
ELSE PRINT <X,Y>;
GO L3

END

BEGIN N E W X1.,X2,X%X3} -
SPECIAL X3,Y,23
2 « NILJ
X1 « READ())
X2 + 10%X1 + 13
IFFOO(X1,Y,2)8X33L T HEN
PRINTSTR("ANSWERS" CATY)?

ELSE X3 e X2 + X113
RETURN X3

END

BEGIN -

ExPR MAx (x)Y)i
IF X2Y THEN X ELSE Y3

EXPR MAX-LIST (L,M)}
IF NULL L THEN M ELSE
M A_XLIST(CORL,MAX(M,CAR L))}

PRINT MAX_LIST(READC(),2)}
END

(COND ((EQ X Y) (RETURN TRUE))
(T (PRINT (LIST X Y))))
(GO L))

(PRQG (X1 X 2 X3)

(SETQ 2 NIL)

(SE1Q@ x | (READ))

(SETQ X 2 (ADD1 (TIMES 18 X1)))

(COND

(CAND (FOO x iy 2)(EQUAL X 31))
(PRINTSTR

(CAT (QUOTE "ANSWER=®™")Y)))
(T{SETQ X3 (PLUS X2Xx1)))
(RETURN X3))

(PROG NI L

(DEFPROP MAX

(LAMBDA (XY)

(COND ((GEQUAL X Y) X) (T Y)))
EXPR)

(DEFPROP MAX_LIST
(LAMBDA (L M) (COND
(CNULL L)Y M)
(T (MAX LIST (CDR L)
" (MAX M (CAR LM
EXPR)

(PRINT (MAX_LIST(READ)2)))

M ISP SEMANTICS « SECTION 3,6 34
, SEMANTICS = SECTION 3,6

<functlion_definlition> ti1s eEXPR, FEXPR, LEXPR, MACRO:, <ldentifler>
(<iambda_|dentifler_I(Ist>); <expression>

<LAMBOA _expression> i1 AMBDA
(<lambda_ldent|fler_|Ilst>)ij<expression>

<jambda_jidentifler_|ist> iz (SPECIAL) <ldentifler>
(s (SPECIAL) <identiflerd>)«
| <empty>

A fynctlon deflnltlon |s one of the functlon types: EXPR, FEXPR,
LEXPR, MACRO, Tfollowed by an identifler (the name of the funetlion),
followed by a LAMBDA varlable [Ist and LAMBDA body, A LAMBDA
expressjon Is essentially the same thing, belng the reserved Word
LAMBDA followed by a LAMBDA varlabje |Ist and LAVMBDA body, A LAMBDA
identifier 1Ist Is any numbar of |dentifiers (possibjy none)
separated by oommas, Each |dentif|er may be preceeded by the word
SPECIAL, Thls and the SPECIAL declaration In blocks are the two ways
the user may declare varlab|es to be SPECIAL, (SECTION 3,5 dlscusses
SPECIAL varjabjes,)

When the MLISP +translator encounters a function definitlon, the
fol lowing three steps ogecur?
(1) The complete function deflnltlon |8 translated,

(2) The funmetlion Is then !mmediate|y deflined (l,e, the deflnltlon Is
carrlied out), without walting for the rest of the program to be
translated,

(3) NIL Is returned as the transiatjon for the expression,

Notethatsincestep (2) |s carried out In the middle of ths
transiation of the proaram, the user might accidentally redefine some
LISP er MLISP function that wou|d cause the rest of his program to be
translated {In¢orrectiy, To guard agalinsttnhis, each functlion name Is
tirst checked to see |f It already has a function definition of any
type} IFf It does, a warning message Is printed, If thls happens,
echange the name of the funetlon and recompi|e the program,

Usually a program consists of a BEGIN-END palr enclosingaseriesof
function definltlons and other expressions, Fynctlon definlitions are
not executable at run timej thelreffect occurs at transjation time,

In step (2) above, As step (3) states, NIL wli| be returned as the
trans|ation for function definitions, All exectuable expressioens
witl have non-NIL transjations, |In transjating a program, all NIL

transliatlons are thrown out and only non=NIL ones retalined,

MLISP SEMANTICS = SECTION 3,6 35

Examp|es of functlon definltions!

EXPRNOTHING ()5 PRINTSTR" T H | S ISN/T MUCH OF A FUNCTION"}
EXPRREV (L)} IF NULLLTHEN NIL ELSE REV(CORL)®CCARLD}
FEXPR OPEN(X)$ EVAL <’'INPUT,’DSK1,CAR XD}

MACRO NOT_MEMBER(X)) <'NOT, <’MEMBER,X[2],X[31>>}

EXPR FOOBA2(X, SPECIAL Y)}
BEGIN
NEw Al -
IF X ®REy(x) THEN A e« y
ELSE BEGIN
OPEN(FO0O0)}
NOTHING ()}
CLOSE(FO00);
END}
RETURN <A, REy(A)>}
END3 .

EXPRINNER_PRODUCT (V,W)PEVAL ('"PLUS CONS V +el)}
% this takes the inner producto f t w ovectors(iiats), X

E X P RINNER_PRODUCT(V,W)} FOR NEWVIN V FOR NEW w INWIPLUS vow)}
% So does this, %

L MLISP SEMANTICS =« SECTION 3,6 36
txamples of LAMBDA expressionst

Assume that ""00" represents a function whleh has bean deflned to be
the same as the LAMBDA expression In each of the following examp|es,

EXAMPLE 1,
m|ispt MAPCAR(FUNCTION(LAMBDA (X)3 X CONS NIL), ‘(A B C))
|1sp! (MAPCAR (FUNCTION (LAMBDA (X) (CONS X NIL))) (QUOTE (A B C)))

equivalentiys MAPCAR(FUNCTION(FO0), (A B C),

EXAMPLE 2,

mlispi LAMBDA (X,Y};
IF X EQ Y THEN PRINTSTR "THEY ARE THE SAME"™ ELSE
IFNOT ATOM X THEN PRINTSTR "FIRST IS NOT AN ATOM"
ELSE PRINTSTR("X 2" CAT X)j
L (READ(), READ())

| 1sp ((LAMBDA (X Y)
(COND
((EQ X y) (PRINTSTR (QUOTE "THEy ARE THE SAME™)))
((NOT (ATOM X)) (PRINTSTR (QUOTE "FIRST IS NOT AN ATOM™)))
(T (PRINTSTR (CAT (QUOTE "X ") X)))))
(READ)
(READ))

squivalentlyt FOO(READ(), READ())

EXAMPLE 3,

milsp? LAMBDA (X,Y,SPECIAL Q)3
LAMBDA (2)}
IFFOO(X) THEN PRINT 2 ELSE PRINT Q;
(<X, YD)}
(AyB+1, NIL)

| Isp? ((LAMBDA (X Y Q)
(CLAMBDA (Z) (COND ((FOO X) (PRINT 2)) (T (PRINT @)))) (LIST X Y))
A
(ADD1 B)

NIL)
equivalentiy? FOO(A, B+1, NIL)

ML1SP SEMANTICS =SECTION 3.7 37
+ SEMANTICS = SECTION 3,7
CDEFINE_expression> jis DEFINE <OEFINE_clause> {, <DEFINE_claused)e

CDEFINE_olause> tts CDEFINE_symbo|> PREFIX
| <DEF INE_symbo|> (PREF]X)}<alternate_nrame)
| <PDEFINE_symbo|> (pREFIX) (<alternate_name>)
<integer> <integer>

CDEFINE_symbo|> Iis <ldentifler>
| <any oharaotsr except™ or %>

<alternate_name) 1is <ldentiflerd>
| <any character except ", X, } Or ,>

A OEFINE expressionls onr or more DEFINE e¢lauses sgeparated b y
commas, A OEFINE c|ayselisan identifler or any oharacter except "

or ¥ (theDEFINE symbol), Tollowed by any or all oft (L) ths word
PREFIX, (2) an alternate name (abbreviation) for the DEFINE symbol,

and (3) two Integers representing left and right bindingpowers for
the DEFINE symbol, A n alternatename Is an |dentjflerorany
character except ", X, semjcolon (3) or oomma (,),

The OEFINE ® xpreaslon provides g versat|le means of communlcating
with the MLISP transjator, As with functlon definitions, the
transiatlon of OEFINE expressions |s NIL, Instead of atransjation,
the DEFINE expression has an effeot on the translator. The effeot |s
to assign certaln properties to the OEFINC symbol whieh the
transiator wil| make uss of In the rest of the program, The DEFINE
expression wili be explalned by exampjes,

Examples 0o f DEFINE expressionss
(4) DEFINE FOO PREFIX

This Informs the translator that hereafter In the Program the
function FOO Is to be treated |lke aprefix (SECTION 3,4), This
means that FOO may be used without parentheses around |ts argument,
and It may be used as a vsotor operator, Only Identiflers whigch are
the namss of one-argument functlions should be defined to be prefixes,.

(2) DEFINE UNION u

This Informs the transjator that ths symbol Y I8 to bs considered as
an abbreviation for the functlion UNION, After this DEFINE expression
has besn translated, whenever the Scanner encounters u, | fwill

MLISP SEMANTICS =« SECTION 3,7 38

Immediately convert 1t to UNION, The effect of writing v wil| be
exactly the same as iIf UNION had been wrltten, The alternate name
may be an Ident|fler!

DEFINE CAR a

would eonvert every subsequent occurrence of a Into CAR, Also, the
DEFINE symbol [tselft may be a speclal character:

DEFINE 3 ,
would¢transiatea|| commas |n the rest of the program Into

semicolons,
DEFINE 3 STOP

would translate every suybsequent occurrence of the word STOP fnto a
semicolon, to || iustrate this, conslider the following example?}

BEGIN - (PROG NIL
DEFINE CAR a, CDR d, NULL n,
IF |f, THEN =, ELSE e|se}
(DEFPROP rev

EXPR rev (1) (LAMBDA ()
It n 1l =»nily CCONDCCNULLIY NIL)
eise re,(d |) @ <a |> (T (APPEND (rey, (COR 1)
END (L1§T (CAR |
EXPR)Y)

(3) DEFINE UNION 36g 370

This specifles that the 1left and rlght binding powers Tfor the
function UNION are to be 360 and 370 respectively, BIndling powers
areexplalnedinthesection on Infix operators (SECTION 3,3, The
value3 abovewou|dg|ve UNION a precedence of between 4 and % In the
precedence system for Infix operators (¢,f, SECTION 3,3), Only
Ildentiflers representing one~ and two-argument functions (prefixes
and Infixes) shou|d be glven binding powers,

(4) DEFINEUNIONvV 368370

This def|nes u to Dbe an abbreviatlion for UNION and s!muftanmeous|y
sets up left and rlght bindingpowersforUNION,

)
NN

MLISP SEMANTICS « SECTION 3,7 39
(5) DEFINE FOO PREF]Xa

This specifies t h a t thefunctionFOOist obetreateda Saprefix,
and that the symbol ais to be consldered an abbreviation for %,

(6) OEFINE NOT PREFIX -=110080

Thisspecifles that the funetionNOT Is tobetreateda 8a prefix,
that the symbol « Is to be consjdered an abbreviation for iIt, and
that Its loft and right binding ©powers are to be =1 and 1p@0
respectively, T he eaulvalent of this expressionhas already been
executed for all one-argument LISP and MLISP functions,

(7) DEFINE UNION u 360 370, INTERSECTION n 380 390, RETURN PREFIX =1 O0;

~

After thls DEFINE expressionnas been trans|ated,
RETURN A8 B uC@®eDnE®F
would bo transiated

(RETURN (UNION (APPEND A 8) (INTERSECTION (APPEND C D)(APPENDEF)))),

exactly as Ifithad been written

RETURN ((A® B) u ((C e D) n (E @ F))),

UNITON 18glven lower binding powers than INTERSECTION, and both of
them have lower bindlngpowers than the 400 and 452 bind|ng powers of
(@) APPEND (SECTION 2,5), Seting the rightbindingpowerof RETURN
to @ Insures that an entlire expression (In th|s case! A ¢ B vCcnDe

E) wllil b e transjatedas (8 argument, rather than Just aslimple
expression a8 would normally be the case(since RETURN 8a prefix).
This Is because ;| binding powers | nMLISPare|arger than#@3

therefore, allInfix operators wlilb | n dup thelr arguments before
RETURN does, In faot, anythlng with a right binding Power of 0 wilil
gobble #*~ @ vowthbg umtl| then e x texpression-stopper (reserved
wordy ")"y, ™1™, ete,),

MLISP SEMANTICS = SECTION 3,8 40
, SEMANTICS <~ SECTION 3,8

C]F_expression> 1!z |IF <expression>
THEN <oxpressiond> (ALSO <expressjond)*
(ELSE<expression> (ALSO <expresgiond)+)

An IFtor conditlional|) expression Is the reserved word IF, fo|lowed
by any expression, fTollowed by the reserved word THEN end another
® xores!Uon, optlona|ily followed by any number of ALSO clayses, This
Is optionajly followed by the reserved word ELSE and & third
expression, agaln optionaliy followed by any number of ALSO c¢|auses,
An ALSO clause |s the reserved word ALSO followed by any expression,

Condltlonal expressjons get transjated |nto LISP COND’S, In LISP 1.6

there may pe more ghan one expression after the predlcatejexample:
(COND (P1 E1) (P2 E2 E3) (P3 E4 ESE6))

Is a legal LISP 1,6 conditional expression, Where there |s more than

oneexpression, the expresslons are evajuated from left to rlghts the

value OfF the |ast one becomes thevalueofthe COND,

In the following, E1, E2, E3 ,,, represent any expressions,

IFElI THEN E2 - (COND (k1 E2) (T NIL))

IF EI THEN E2 ELSE E3 . (COND (EI E2) (T E3))

s

IF EI THEN E2 ALSO E3 (COND (E1 E2 E3) (T E4 ES £6))

ELSEE 4ALSOE 5ALSOES6

IF El THEN E2 ELSE o (COND (E1 E2) (E3I E4) (T ESB))
IF E3 THEN E4 ELSE ES

Nesting of conditionals |s permitted to any degree of complex!ty,
Each ELSEterm |Is matched upwlth the nearest preceeding THEN, un|ess
parentheses are used to group the terms differently.

IF E1 THEN - (COND (E1 (COND (E2 E3) (T E4)))
IF €2 THEN E3 ELSE E4 (T NIL))

IF El THEN - (COND (E1 (COND (E2 E3) (T NIL)))
(IFE2 THEN E3) (T E4))

ELSE E4

IF EI THEN - (COND (El (COND (E2 E3) (T E4)))
IFE2 THEN E3 ELSE E4 (T ES))

ELSE ES

MLISP SEMANTICS

Examples of IF expressions!

IFx= 10 THEN PRINT Y .

IF X #148 THEN PRINT vy .
ELSE PRINT2

IFAEB&8CED . THEN -
IF XeL THEN PRINT “MATCH
ELSE PRINT *NO_MATCH

ELSEIFFO0(A,B)&-C THEN
| F <X>¢L THENPRINTT
ELSE PRINT NIL

ELSE PRINT “OH WELL

IF X & 100 THEN b
Y « 22X ALSO CO L
ELSE YeX+1 ALSO RETURN <X,Y>

» SECTION 3,8

41

(COND(CEQUAL X 1@) (PRINT YN (T NIL))

(CONO ((NEQUAL X 18) (PRINT Y))

(T (PRINT 2)))

(COND
(AND A BCD)
(COND ((MEMBER
(T(PRINT
(CAND (FOO A B) (
(COND((MEMBER(
(T (PRIN
(T(PRINT (QUOT

(COND
((LEQUAL X128) (S
(T(SETO Y (ADD1 X

XL)

(Q

N

L
T

€

ET
)Y (

U
0o

(
oT
I

ST
NIL))
OH_WE

Q
R

PR
C)

E NO_MATCH)))))

-

Y (T
ETU

|
R

T (QUOTE MATCH))

M
N

ES
(L

2
I

X
S

)
T

)

(
X

X)L)(PRINTTJ)
))
L

G
Y

0

)

)

)

L
)

MLISP SEMANTICS =« SECTION 3,9 42

» SEMANTICS - SECTION 3,9

<FOR_expression> (it (FOR_clause> ({FOR_clayse)+
eD0, COLLECT, ; <identifler>> <{expresslion>
(UNTIL <expression>)

C¢FOR_clause> 112 FOR (NEW) <ldent|flar> <IN, ON> <expression>
| FOR (NEW) <identifier> . <expression>
To <expression> (BY <expression)

A FOR expression |3 any number of FOR o | auses, followed by the
reserved word 00, the reserved word COLLECT, or a semicojon (})
together with an Identifler which 18 a two-argument functlon name.
This I8 followed by an ® [XI@QJI ++@[JM (the "body" of the FOR=|oop), Which
Is optlonmally followed by the reserved word UNTIL and another
expression, A FOR oclause Is the reserved word FOR, optlonally
tollowed by the reserved word NEW, fol (owed by an ident]fler (the
oontrol varlable), and followed by elthert! (a) the reserved word IN
or the reserved word ON, and an expression whichevalutes to a |ist
(poss|bly NIL)) or «(b)ajeft arrow («), followed by an expression
which evajuates to a number (the J|ower 11imit), TFTollowed by the
reserved word TO and another expression which evaluates to a number
(the upper |Imit), This la optlonally followed by the reserved Word
BY and a third expressjon which evaluate8 to a number (the
Increment),

The FOR exprassion (FOR-loop) 18 the most powerful meta=-expression In
MLISP, Itls designed to facilltate deaiing wlth Indlividyal elements
In |I1sts, The MLISP FOR expression carries the development of LISP’s
MAPLIST and MAPCAR functlions to thelr loglcal conciusion, Extensive
work has gome |nto the design and Implementation of FOR expressions,
Used thoughtfully, they can greatly simplify manipulating |Ists, The
FOR expression |8 not Just one, but many expressions; there I8 an
unboundod number of possible expressions that may be bul|t up fror
its syntax,

FOR expressions provide the abl ||ty to!
(A) Step through allst, dea|ing with eaoh element In It Individually
(use IN),

(B) Step through a |ist, dealling with the whoje IIst, the CDR of it,
the CDDR of It, the CDDOR of It, etec., (use ON),

(C) Step through a numerlcal range (e.g. from 1 to 1@) usling any
numerical Increment (use «), There are no restrictlons on the
numbers Involved (lowsr |imit, yoper Iimit, Increment),

(D) Step through any number of |lsts and/or numerical ranges In
paral|e| (use more than one FOR elause),

MLISP SEMANTICS = SECTION 3.9 43

(E) Make the controjvariables loca to the body of the FOR-lobp (use
NEWor to preservethelrvalueswhen theFOR=|joopexits,
Control varlablrs should bespecifled to be NEW whenever
possible, becayse the LISP oode for NEW varlables |s more
effielent, Unless you are Interssted In the value of a oontrol
varlable after the FOR-loop exlts, decliare It NEW,

(F) Control the value returned by the FORexpression, The value
usingDOisthe value of the FOR=|oop body the last time through
the |oopy the value wlth COLLECT Is a list formed by APPEND’Iing
together the values of the FOR=|oop body each time through the
joop, Ajternative|y, any two-argument function may be uysed to
gonerate a FOR=exppression value! the first time <through the
loops the value of theFgR=lo0oPbodybecomesthe valueofthe
loop) each succeeding time through, the two-argument funetlon|s
appilled to the previous vaue of the loop and %o the eurrent
value of the FOR=|oop body toylelda new value for the 1o0p,

(G)Terminate . xeo&lon of the loop at any time (use UNTIL),

Examp|e?
FOR NEW I IN X@Y FOR N«1 TO 1@ BY 2 DO PRINT <N,I> UNTIL ! EQ =STOP

In this example, "FOR NEW | IN X®Y" yrnd "FOR N«31 TO L@ BY 2" ape "FOR
clayses”,] and N are "contro | yarlables”, |is "loca|" to the body
of the FOR-loop by virtue of 1ts belng deolared NEWiNlIe not local.
The expression "xeyYn {APPEND X Y) should evaluate to allsts | will
step through that |1st, belng set to the CARof It, the CADR OF 1%,
the CADDR of I t, ete, The control varlable N steps ¢through a
numerloal range (1=12) In Increments of 2, The ® xprosirlon "PRINT
C<I'N>" | 8 the “body” of the FOR-100ps T he UNTIL conditlonls"lEQ
‘STOP”, Since DO |s used, the valuye of the FOR-loop Is the value of
"PRINT <I,N>" the Jast timeltwas executed,

The exscutlon of FOR expressions proceeds as follaowss

(1) The 118t or numerlocal range for each FORclause |s checked, If
any {Istla NIL, or If any numerica| range la exhausted, then the
FOR-loop exlts returning 1ts current value (inltlajly NIL).
Before @ xIttn), eaoh e¢lauas |s examined, Ifany olause ha8 a
oontrol varlable whfoh was deolared NEW, that oontrol variablela
reset to the value |t had when the loop was entered, | f any
olause has acontro|varlablewhloh wa8 not deolared NEW, and If
the |Ist or range for that olause Is exhausted, then that egentrol
varjable|ssettoNI1 L, Otherw|se, the control varlable |s left
set to the value 1t ha-d the last tIme through the foop} thismay
be useful for determining whloh |ists or ranges were exhausted,
and how many times the loop was executed.

ML ISP SEMANTICS = SECTION 3,9 44

A numerical rangelssaldt ob e "exhausteg"!f (a) the Inorement
s posltive and the Ilower Iimit> tha upper tiImit, or (B) the
Inarement |snegativeand the |ower|imit< the upper (Imlt. An
Increment of O |s, of oourse, Illegal,

(2) Next, eaoh oontrol varlabjels assigned a value, Thls value s
(a) the CAR of Its |Ist if IN I8 used, (b) the entireilst If On
Is used,or (¢) the lower |Imitlf anumerical range |3 used.

(3) Then the body of the FOR-|oop s executed, and a value |s
computed for theloop asexplalnedi n(F)above,

(4) Fimally, the UNTIL expression (I|f any) |s evaluated., If Its
value Is truer the FORe|oop ex!ts Immediately, No oontro |
variables are reset except the ones decjiared NEW, whichare set
to the valuer, they had when the loop was entered, Thus all
non-NEW contro|variableswlii|remain set to the vajues they had
when the UNTIL condlition became true. This |s sometimes wuseful
for testing how many times the |oop was exeguted,andf o r
determining the cause of termination., Example: In

FOR 1 IN L DO PRINT 1 UNTIL ! EQ 'STOP,
when theloopexits | wiil be set to NIL If It got all tho way
through the |1st L wlthout encountering the atom STOP) otherwise
It will be set to STOP,

(5) IT the UNTIL expression was false (or none-ex|stent), the | Ists
and numerica| ranges are advanced as follows: (a) each |istls
set to the CDR of Itself: (b) In each numerical range, the
Increment Is added to the lower |iIm|t to yield a new jower |Imit,

(6) Then step (1)Isexecuted again,

Contlnulng the example above, suppose X = “(A 8 C) and Y = (D)} then
executing!

FOR NEW 1 IN X@Y FOR Ne«i TO 18 BY 2 DO PRINT ¢N,I> UNTIL | EQ *STOP

would

(a) print (1 A
(3 B)
(5 C)
(7 D)

{b) return a valueof(? D), and

(c) leave N set to 7,

MLISP SEMANTICS = SECTION 3,9

The FOR expression
FOR NEW IINX@YFORNe4 TO 10 BY 2 DO PRINT <N,I1> UNTIL

Is equivajentt o the following block!?

BEGIN NEW v.Li,L2, 1
L « X @ Y’
Le = 1;

LOOP3} | FN UL LLLIILZGREATERP 1 0 THENGOEXITS

| « CAR L1}

N L2}

* PRINT <N, >}

YF | EQ 'STOP THEN RETURN Vi

LI«CDRLLS

L2 « L2+ 21}

GO LOOP}

EXITHIF NULLL2THEN N «NIL}
RETURN V;
END3

] EQ 'STOP

45

MLISP SEMANTICs = SECTION 3,9 46

Examples of FOR exprassions! Suppose I. = ‘(A (B,C) D),
FOR NEW I IN L DO PRINT I ‘ would print A
(B.C)

D
and return D

FOR IINL DO PRINT] would print A
éB.C)

set 1 to NI
and return D

FOR NEW I ON L DO PRINTI! would orint (A (B,C) D)
(¢<8,C) D)
(D)
and return (D)

FORNEWI | NLCOLLECTPRINTKI> would print (A)
((g,C))

(D)
and return (A (B,C) D)

FOR! IN L COLLECT PRINT <<I>> would print (¢A))
(¢(B,C))
(¢<D))

set! to NIL

and return ((A) ((B.C)) (D))

FOR NW I ON L COLLECT PRINT 1} would print (A (B,C) D)
(¢(8,C) O
(D)
and return (A (B,C) D (B,C) 0 O

FOR NEW 1 ON L 3 APPEND PRINT I would have exactly the same effect
as the preceeding FOR expbression,

MLISP SEMANTICS « SECTION 3,9 47

FOR 1IN L DO PRINT ! UNTIL NOT ATOM 1 would print ﬁB -
]
setl to (B,C)
and return (B,C)

FOR IONLDO PRINT I UNTIL NOT ATOM CAR 1
would print (A (B,C) D)
(¢g,Cr» D)
set!l to ((B,C) D)
and return ((B,C) 0)

POR NEW IIN L COLLECT PRINT <I>UNTIL NOT ATOM |
would print (A)
- (¢8,C))
and return (A (B,C))

FOR 1 ON L COLLECT PRINT] UNTIL NOT ATOM CAR !
would print (A (B,C) D)
t¢<8,C) D)
set Ite ((B,C) D)
and return (A (8,C) D (8,C) D)

FOR NEW 11 T04DO PRINT 1 would print ;
3
4
and return 4
FOR NEW lei TO 100 BY 30 DO PRINT | woulld print 1
31
61
91
and return 91
FOR NEW le1@ TO =318 BY <5 DO PRINT 1 would print 10
5
0
-5
-10

and return =10

-

MLISP SEMANTICS = SECTION 3,9

FOR 1#3,14 TO 8,69 BY 0,002 DO PRINT I UNTIL I 2 3,2
would print

set I to &,2
and return 3.2

FOR NEW 1 IN I. FORNEW Jel TO 18 COLLECT PRINT <1.,J>

would print

and return

-

FORNEWIINL FOR J*1 TO 10 COLLECT PRINT <<1,d>»
would print

set J to 3
and return ((A

FOR J*1 TO 18 COLLECT would print

FOR 1 IN L COLLECT PRINT ¢lsJ>
UNTIL NOT ATOM I
UNTIL J=3
set | to (B.C)
set J to 3
and return (A 1 (B,C) 1 A 2 (B,
DECK e
FOR NEW gylt IN ‘(gPADE HEART DIAMOND CLyB) COLLECT

FOR NEW N«31 TO 13 COLLECT
<CSUITIN>>S

would ret DECK =
((SPADE 1) (SPADE 2) 4.

48

[R- R R
- ® o =
[o N ¢ 0 8

N pa

(A 1)
(¢8,C) 2)
(0 3)

(A1(8,C)20D3

))
Cy 2))
)

(CA 1
(¢(B.
(¢D 3

1) <(B,C) 2) (D 3N

(A 1)
((B,C) 1)
(A 2)
((8,C) 2)
(A 3)
(¢8,C) 3)

€)2 A 3 (B.C))

(SPADE 13) (HEART 1) (HEART 2) ,.,)

ML ISP SEMANTICS = SECTION 3,9 49

As was stated In (D) above, more than one|ist or numerical range may
b estepped through lnparallel, Below are some exampies of parajlle]
FOR"s (#)1

EXPR PAIR-UP (VECTOR1, VECTOR2)})
FOR NEW X1 IN VECTOR1 FOR NEW X2 IN VECTORZ2 COLLECT <X1 CONS X2>}

‘(A BC) PAIR_UP (1 35 7 9, R ((A.1) (B,3) (C,5))
"(""JOHN" COR) PAIRUP " ("SMITH™ (X)) . (("JOHN® nSMITH™) (CDR X))

Vector operations a|so providea ninterestingwayt o accompllsh this:

"(ABC) CONS® (1 3 57 9) a ((A.1) (B,3) (C,8))
("JOWN® CDR) CONS ‘("SMITH" (X)) z C("JOHN" ,nSMITH") (CDR X))

EXPR STRIP (ITEMS, VECTOR))
BEGIN NEW Vi
FOR V ON VECTOR FOR NEW I IN ITEMS OO NIL UNTIL ! NEQ CAR Vi

RETURN V
END}
‘(a b x) STRIP ‘(a b ¢ d ®) s (c d e)
‘(x b ¢) STRIP ‘(a bc d ®) s (a bede)
'a b 6 def) STRIP '(abcde) a NIL

EXPR ‘WHERE_IN (X, VECTOR)}
BEGIN NEW V,N3
FOR V IN VECTOR FOR Ne1 TO 20@2 00 NIL UNTIL V = X}

RETURN IF NULL V THEN @ ELSE N

END3
'‘a WHERE_IN (b c a d) s 3
'z WHERE_IN (b 0 a d) =z 0

(«) 1 ar |ndebted to Larry Tesler for suggesting these examples,

-~

ML ISP SEMANTIcS =« SECTION 3,10 50
 SEMANTICS « SECTION 3,10

<WHILE expression> :i13 WHILE <expression> <D0, COLLECT> <(expression>
<UNTIL_expression> it= DO, COLLECT> <expression> UNTIL <expression>

A WHILE expression is the reserved word WHILE, followed by any
® xpresslon, followed by elther of the reserved words DO or COLLECT
and another expression (the "body" of the WHILE=|oop), An UNTIL
expression Is elther of the reserved words 00 er COLLECT, foll|ewed py
any expression (the "body" of the UNTIL=loop), followed by the
reserved word UNTIL and another expression,

WHILE amd UNTIL expressions are two more of the MLISP
"meta-expressions", They have no dlrect counterparts In LISP, They
are translated Into LISP PROG’S, Their executioninvolves iteration;
it does not |nvo|ve recursion, Therefore, these loops may be
executed any number of times wlth no danger of overflowlng the
pushdown |1lst,

The execution of WHILE expressions |s carrled out as fol|ows.

(1) The express|on after the WHILE Is evaluated, If Jts value s
NIL, then the loop exlts returning its current value (Inltlally
NIL),

(2) Then the body of the WHILE~|oop Is evaluated and anew value for
the |oop Is computed, As with FOR expressions, DO and COLLECT
control how the value of the WHILE=|oop Is bulltup, with DO,
each time the body of the |oop |s executed, the value thet
results becomes the value of the WHILE-loop; wlth COLLECT these
valyes are APPEND’ed together, Then step (a) Is carried out
agajin,

UNTIL expressionsare very simijar to WHILE expressions, The only
difference Is that I n WHILE=|oops the test for the terminating
condltlon Is made first and then the body 1Is exeeuted} whereas In
UNTIL=loops It Is made second, after the body has been executed,
This means that In UNTIL-loops, the body of the |oop is syre to get
executed at least once; but In WHILE=|oeops It may not be executed at
all, Togetadescription of UNTILe=loops, just Interchange steps (1)
and (2) above In the description of WHILE-loops,

As an examp|e of thepower Oof wusing COLLECT wlth WHILE=-{oops and
UNTIL=loops, suppose an Input fl|e contains a sequence of |Ists In
the form!

(DEFPROP <tunction_name> <lambda_body> <functlon_type>),

ML ISP SEMANTICS = SECTION 3,18@ 51

whieh Is a standard form for LISP 1.6 function definitions,Suppose
It Is desired to assemb|e all the funotlon names In the f)|e Into a
1isty printing out each function name as |t |s read, Each of the
following two expressjons does this, - Conclse statements of complex
expressions such as this Is one of <the primary purposes of MLISP.

L « WHILE NOT ATOM X«READ() COLLECT <PRINT XC23>3
X « READ()} L « COLLECT <PRINT XC21> UNTIL ATOM X«READ()j

Examples o f WHILE expressions:
WHILE AsB DO A«FO0Q(A,B)

WHILE ATOM X«READ(3 00 PRINT X
WHILE X#1@ COLLECT PROG2(X + X+1,<F00(X,Y)>)
WHILE =(X € L) DO X«READ()

WHILE =STOP 00
BEGIN

NEW IX,Y} SPECIAL Ix}

IX « READ()}

Y . FOO(!X,READ(),READ())}

IF IX EQ "STOP THEN S$TOPeT ELSE PRINT Y
END

Examples of UNTILexpressjions!

DO A+FOO0(A,B) UNTIL A#B

00 PRINT X UNTIL NOT ATOM X«READ()

COLLECT PROG2(X & X+1,<FO0(X,Y)>) UNTIL X=1@
DO X«READ() UNTIL X e L

DO BEGIN

NEW !X,Ys SPECIAL 1Xi

X « READ()]

Y « FOO(!X,READ(),READ())}

IF 1x €0 "SToP THEX sron.% ELSE PRINT Y
END
UNTIL STOP

MLISP SEMANTIcS = SECTION 3,11 52
. SEMANTICS -~ SECTION 3,11

<assignrent_expression> tta <regular_assignment>
| Carray_ass|gnment>
| <Index_assignment>
|

{decomposition>

<regular_assignment> tte Cjdentifier> + <expressiond
<artfy-aasl9nmont> itz Cldent|fler> (<argument_Iilstd) « <expression>
<|ndex_ass | gnment> tis Cldentifler> [<Cargument_II18td>) « <(expressiony
<decompos|tion> 11z Csimple_expression> «e <Cexpression>

The asslignment expression !s one of the most powerful expressions In
MLISP, With It, one can change the value of avarlabje, store into
an array, change a slingle element In a |ist leaving the other
elements untouohed, o r decompose allist accordingto a "tempjate",
In all cases, the value of an ass|gnment expression Is the vallof of
the expression on the right=hand side,

Making an assignment aexpression a <simple_expression> has an
Interesting propertyt It removes the assignment operator (e) from the
normal realm of Infixoperators, In particular, when

ATOM X « READ()
Is encountered, It [s reducedas Tollows:
ATOM X . READ()
<profix_;oﬂrntor> <ldentifler> « <expression>
<prOFIX-§nirator> <assignment_expression>

<prefix_operator> <simp|e_expression>

¢

<simp|e_expression>
¢

<expression>

and so the prefix wl|| modify the entire assignment aexpression.
However, for Infix operators, when

ATOM X & READ()

MLISP SEMANTICS = SECTION 3,11 53
is encountered, |t |s reduced as!

ATOM X [READY()
‘ "
<prefix_operator> <identifler> <Inflix_operator> <expressiond

¢)

<pref|x_operator> <simple_axpression> <|Infix_operator> <expressiond
¢

¢simple_expression> <Inflix_operator> <expression>

, s
<expression>

and.so the prefix wil| modify only the Identifler, The assignment
operator scts Ujke 1t has an extremely high Iloft bindlng power
(binding powers are d[scussed In SECTION 3,3), and an extremely 1low
right blilnding power, which It doesi the |eft binding dower s 1801
and the rlght Is 0, In other word8, the |eft binding power of ¢ Is
stronger than any ~inflxorprefix, while the right binding power of «
|s weaker than any Intlx or preflix, Therefore,

ATOM X & READ() » (ATOM (SETQ@X(READ)))
whereas

ATOM X & READ() - (AND (ATOM X) (READ))

ATOM X CONS READ() - (CONS (ATOM X)(READ))

()

ML1ISP SEMANTICS = SECTION 3,11 54
Regular assignment

The regular ass|gnment I3 theal-molestoftheoptions, It Just
trans|ates Into SETQ., The|eftehand side must be an Identifler; the
right=hands|de may be any expression. Exampjes

X « Y +1 - (SETQ X (ADD1 Y))

Array assjignment

The array ® aslgnment |s the means for storing values Jntoarray
cells, LISP 1,6 permit8 1=5 dimensional arrays a8 a data structure,
The assignment operator 18 here translated Into STORE, The left-hand

side must be a call on an array} the right-hand slde may be any
expression, Example!
ACL,) » Y + 1 - (STORE (A 1 J) (ADDL YD)

Index assjignment

The Index assignmentprovidesamoans for changingasingie slement
In allst, |leaving the other elements untouohed, This faclllty I s
not readl ly available In LISP, The left-hand slde must be an
fdent!fler whose vajue Isalist, followed by an Index ||st as In
Index expressions (SECTION 3,131; the rlght=hand slde may be any
express|on, The Index |Ist Is used to reference the looation In the
llst whieh Is to be changed, Into thls location Is placed the value
of the rlight=hand side, xample! If

L= (A B(CDIEF),

then
- L03)1) & ¢

would ohange the value of L to

1tis permissible to placevalues Into c¢ells which did not ex!ist In

the original |ists In this case,NILIspiaced Into any looatlons
that hadto be created, Example!
LL3,5) « 1

would ehange the value of L to

L= (AB(D NIL NIL 1) EF),

MLISP SEMANTICS = SECTION 3,11 53

Decomposition assignment

The decomposition ass)gnment I8 the most powerful In MLISP, It
provides & means of decomposing & |[|8st according to a "template",
Theleft=hand side js a simple expression whloh OShould evaluate to an
seexpressjon (the template)! the right-hand slde may bg any
axpression, The temp|ate Is an s=expression composed of varlables,
sach of which |s to be set +tthe element In the corresponding
location of the rlght=hand side, hereafter cajled the "RHS",

One ward of cautjont If the decompos|tion assignment expression |s
used In a compl|ed program, all the varjables in the temp|ate must be
dec |ared SPECIAL, Otherwise, the varjablies wlll not bs aet
oorrect|y,

Example:

'(X Y 2) e® (A B (CD)EF)

would set

X to A
Y to B
2 to (C D),

Regular ass|gnment expressions are a sybset of decompoesition
lss'ﬂﬂm.ﬂt llpr.sslons. Any rogular agsl/gnment, such ag!

X &Y +1
may be written as a trivia| decomposition ass|gnment!

'Y o0 Y 4 1

provided X Is decjared SPECIAL,

The deoompogltlon assignment expression ralggg the Interesting
possibl|lty that some yarlablesmay fall to get set because the
template structure In whloh they oceur dogs notcorrespond to the
structure of the right=hand side (RHS), Any suoh varlable which
cannot be set to an RHS value 19 set to NIL, A tempiate variable
will always be set to an RHS vajue |f thg temptiate positien In whloh
It oocurg Is "compatlible" with the corresponding RHS pasltiom, The
only "Incompatible® case |8 when the template pesition Is a

MLISP SEMANTICS = SECTION 3,11 56

non=atomlc s=expresslonr a n d the corresponding RHS pesltion | s an
agom, Il n thigcage, a 1 1 vaplableg oceupylng the |pcompatible

template position wi|| be sot to NIL,.. Eyample!
r((X Y)) ¢ “(A B(CD)EF)

would set

X,YtoNIL Because the first template position Is a
I1st, (X Y), whereas the fIirstRHS pesition
Is an atom, A, Thus the flrst template
position Is "incompatible" with the f|IpStRHS
position, and the varlables |In it are set
to NIL,)

2 to B Because the second template position Is

"compatible” with the second RHS positlon,

The COR of the RHS may be obtalned by a dotted pair In the template:
(XY , 2)« "(A B ((CDYEPF)

would 9set

X to A
Y to B
2 to ((C D) E F),

Sunéose L =¢(A B (CDYEF), The jistL Itself could be used as the
templatel

L »e7(12¢(3 4 5 67)(89))

would set

A to 1 In thiscase A: B, C)D,E and F must al b e
B to 2 deciared SPECIAL,

C to 3

Dte 4

E to (8 9)

F to NIL,

ML ISP SEMANTICS = SECTION 3,11 37

Finally, a "match anyth|ng" symbol la aval|able for wuse In the

tempiate! an underbar (), This symbol wilimateh any amount of |ist
structure necessary to make the template match the RHS, Examp|e!

r(_ X) & (A B(CD)EF)

would set

X to F Because the template specifies that the value
for the varlable X should eceur as the last
® lam8nt In the RHS, The underbar matches
(A B(CD)E) In thi|s case,

Usirg the underbar symbol In a temp|ate causes the evaluation of the
decorposition assignment expression to proceed dlifferentiy:
previousiy, any varlable would be set |t It was In a template
position ocompatible wlith ¢the corresponding RHS position, Using
underbars, however;, may reaulre that the template strugcture match
EXACTLY the RHS strycture, Conslider the example above Inwhich X and
Y falled to get set, We could now write:

(. (X Y) 2 _) «0 (A B (CD)EF)

whieh would set

X to C
Y to D
Z to &,

Note! nejlther ‘(. (X Y) &) nor ‘((X YY) 2 _) would work, because In
the firstcasethe RHS would have to be In theform(.,.(es)s),
which 1t |snt) and In the second case It would have to be In the
form ((s ») &)y whilchIt also Isn’t,

Theuser should exper|ment with the decomposition asaignment to make
sure -ho understands Its operation,

-

MLISP

SEMANTICS « SECTION 3,11 50

Examples of assignment expressionst

Regular ass|gnments:

X « A ¢+ 10
X eY ¢« 2« NIL
X . A+ B e« 1§
X e A B « (C ¢ D
NOT ATOM X « READ()
NOT ATOM X & READ()
NULL A e B . FOO(X)
NULL A | B | FOO(X)
NULLCA | B | FOO(X))
A « BEGIN
NEy TEMP}
TEMP ., READ()};
PRINT (START}
RETURN TEMP
END

Array assjgnmentsi

X(1) = A + 10

A(I,J) « FOO(X)

o o A(L) =« NIL
X(1) « A + B(0) . 12
A(],FOO(J))K*1) « T

A(1,2,3,4,5) « 'FIVE_D
NOT ATOM X(1) = READ()
NOT ATOM X(4) 8 READ()
NULL A¢4) « B « FQO(X)
NULL A€¢1) 1 B | FOO(X)
NULLCACL) 1 B | FOO(X))

Index assjignments;

Suppose L 3 (A 8 (C D) E F),

LC1J = 1 woulld
LC2) = 1 would
LC3) . 1 would
LE3,1] «1 would
L{8] «1 would
LL2,3,2]) ¢« 1 woulld

& 4 3 4 8 & 4 3 s

3 & 3 ¢ 3 3 & 3 3 8 3

sot
set
set
set
sot
set

(SETQ X (PLUS A 18))
(SETO X (SETO Y (SETQ Z NIL)))

(SETQ X (PLUS A (SETQ B 12)))

(SETQ X (TIMES A (SETQ B (PLUS C D))))
(NOT (ATOM (SETQ@ X (READ))))

(AND (NOT (ATOM X)) (READ))

(NULL (SETQ A (SET@ B (FOO X))))

(OR (NULL A) B (FOO X))

(NULL (OR A B (F00 X)))

(SETQ A (PROG(TEMP)
(SETQ TEMP (READ))
(PRINT (QUOTE START),
(RETURN TEMP)))

(STORE (X 1) (PLUS A 18))

(STORE (A1 J) (FOO X))

(STORE (A @) (STORE (A 1) NIL))
(STORE (X 1) (PLUS A (STORE (B 2) 12)))
(STORE (A I (FOO J) (ADDL1 K)) T)
(STORE (A 123 45) (QUOTE FIVE_D))
(NOT (ATOM (STORE (X 1) (READ))))
(AND (NOT (ATOM (X 1))) (READ))

(NULL (STORE (A1) (SETQ B (FOO X))))
(OR (NULL (A 1)) B (FO0O X))

(NULL (OR (A 1) B (FOO X)))

L = (1 8(CD)EF)
L ® (A 1 (CD)EF)

L=(AB1EF)

L =(AB (4 D) E F)

L = (ABI(CD)EF NIL NL 1)

L = (A (NIL NIL (NIL 1)) (C D) E F)

ML1SP SEMANTICS = SECTION 3,11 59

Decomposition ass{gnments!
Suppose L = (A B (C D) E F),

would set
L« (1 23 A=l
B = 2
o-onmuﬂuzur

L »0 (1 2 (3) 4) A s
B s 2
C =3
E = 4
D=2 F = NIL
L «0 (1 2 (3 4) 5-6) A s}
B =2
C=*3
D s 4
E 5
F 3 6
' Y 2) 7 ‘(A B (C D) EF) X 3 A
tox Y 2 _) e t¢a B (CD)EF) Y = B
XY & Q) ee ‘(A B (C D) EF) 2 = (CD)
_ XY 8) e (A B (C D) EF) X = (C D)
Y =
Z s F
(. (x _) Y Z) o (A B (C D) EF) X = C
Y = E
2 s F
G | o ‘(A B (C D) EF) X = F
(LX) J) ee '(AB(CD)EF) X =D
(X .Y e '(AB(CD)EF) X ® A
Y = F

Agaln, 1 wish to emphasize that |f a decomposition assignment
expression |s used [n a complied proagram, all the varlabjes In the
template (the |eft-hand side) must be declared SPECIAL,

MLISP SEMANTICS = SECT]ION 3,12 60
, SEMANTICS = SECTION 3,12

<functlon_cali> tta <identifler> (<argument_||ist>)
| <LAMBDA _express|on> 1 (<argument_||st>)

Cargument_I|st> 12 <expression> (, <expressiond)s
! <empty>

A functioncall Is an |dent|fler (a function name) or & LAMBDA
expression (a function body) followed by an argument |18t encjosed In
parentheses, An argument |ist |s any number of expressions, possibiy
none, separated by commas,

Little need be saldabout this, Essentialiytheonly difference
between thls and the LISP way of wrlting functionm cajis |s that the
function name has been brought outs|de the parentheses, Also the
arguments arc SsebParated by oommas, The arguments may be any
arbitrary expressions,

Examples of fungtion calls!

FOO(X) . (FOO X)
FOO(X,Y,2) - (FOO X Y 2)

FOO() - (FO00)

FOO(A+B, C) - (FOO (PLUS A B) C)
FOO(IF A THEN B ELSE €) » (FOO (COND (A B) (T C)))

Thée same function cal|s, writtenas LAMBDA expressions:

((LAMBDA (L) (F0O L)) X)

1]

LAMBDA(L)) FOO(L); (X)

LAVBDA- (A,B,C)}

FOO(A,B,C)} - ((_AMBDA (A B C)(FQ0 A B C)) X Y 2)
(XY, 2)
LAMBOAC) FOOC()) () - ((LAMBOA NIL (FOO0)))
LAMBDA (X,Y,2))

FOO(X+Y, 2); . ((LAMBDA (X Y) (FOO (PLUS X ¥) 2)) A B CI
(A,B,C)
LAMBDA (L)} FOO(L); = CCLAMBDA (L) (FOO L)) (COND (A B) (T C)))

(IFA THEN B ELSE C)

MLISP SEMANTICS « SECTION 3,13 61
, SEMANTICS = SECTION 3.13
<|ndex_expression> 1= <simple_expression> [<argument_|lst>)

<argument_|Ist> 11s Cexpression> (, <expression>)#
| <empty>

An Index expression ls a simple expression, followed by an argument
jlst enclosed In sauare brackets (), An argument lIst |s any number
of expressions (possibly none) separated by commas,

The MLISP Index expressionfl|is a oriticaldefliciency | n LISPI there
Is no easy way to referenceanarbitrary cell In a llst, CAR will
obtain the flrst element, CADR the #second, CADDADODDR the third
element In the f{fth olement of the |ist, ete, But CADDADDDDOR Is

nelther (1) very understandable, not (2) variable, The latter |Is
Important sinece It occaslionally happen8 that the user does not know
untl| run=time which element of allst ho willl wish to access,

The MLISP Index expression e|iminates these obJections, L{3,3] Is
the same as CADDADDDDR, but It Is a good deal more readable,
Furthermore, the Index arguments may contalnvariables,In Tact
expressions! LCN1, LCI,J/K3» LLC2oN], etc, The Index expression,
then, I1sageneraljzed version of CAR, (A goneraljzed versjon of CDR
also exists (SUFLIST) and Isexplalpediy SECTION 5.2)

When Index ® xpresslons are comp|led, they are expandedby macros Into
highly pgim'aed codel

LLS5, 31 (CADDAR (CDDDOR L))
Tﬁ}s jneures that the* executjon of Index oxornss|onnmpl be very
efflecie,t In coMplled pro9rams, In Ipterpreted programs, |t Is mgre
efficlent to Issye a call on a ryn=time f ,nction,

Examples of Index expressiens!

Suppose L = (A B (C (D E) F) G H),

LC1d s A - (CAR L)

Lc2] = B - (CADR L)

LC3] = (C (D E) F) = (CADDR L)

LC3,1)} s C 4 (CAADDR L)

LC3,2,11] s 0 - (CAAR (CDADDR L))

"(A BC)L3I) 3 C - (CADDR (QUOTE (A B €)))
GET(X,'VALUE)([2) - (CADR (GET X (QUOTE VALUE)))

(L1 & L2)(C1,2] - (CADAR (APPEND L1 L2))
(FOR NEW 1 IN L COLLECT <CAR 1>)C2eN, M/3 + 1]

MLISP SEMANTICS = SECTION 3,14 62

, SEMANTICS = SECTION 3,14

Clist_oxpressjon> iz < <Capgument_|Ist> >

<argument_|[st> 113 <expression> (, <expressiond>)e

| <empty)
A llistexpressionis a |eft angled bracket (<), followed by an
argument 1lst, fo|lowedbya rlight angled bracket (>), An argument
list Is any number o f expressions, npossibjy none, separated by
commas,

This |8 the MLISP equivalent of the LISP LIST functiont <A,B,C> 1Is
transliated Into (LIST A BC),<A,B,<C,D>,E,F> INtO(LIST A B (LIST C
D) E F), ete, Angled bragketsare used to make |lstsconclise and to
cut down Tfurther® on the number of parentheses needed, As with
function calls, the arguments Inside the |1st brackets may be any
arbitrary expressions,

Exampl|es O fl|st expressions!

< (LIsT

2ia (LIST &)

<A,B,C> (LISTA B C)
<A,,C> (LIST A (LIST B) C)

¢’'AyB CONS C CONS D>
<X+18, <<Y>>, NIL>
<]F A THEN ELSE ©>

(LIST (QUOTE A) (CONS B (CONS C D))
(LIST (PLUS X 12) (LIST (LIST Y)) NIL)
(LIST (COND (A (LIST B)) (T C)))

$ 40 8 8 3 o

MLISP SEMANTICS = SECTION 3,15 63

SEMANTICS = SECTION 3,15
Cquoted_expression> 1tz ¢ <Cgeexpressiond

{s=expression> {1 <atom>
| ()
| (<s=expression> , <s=sxpression>)
| (<s=sxpression> ({,) <s=expression>}+)

A aquoted expression |s the quote mark (')} followed by an
s-expressjon, An MLISP s=expression IS Just the same as a LISP
s~expression, except that each |dentifler In It myst be a lega| MLISP
Tdentifier, | n particular, any speciaj characters (characters whloh
are not MLISP letters or digits) must have the LIliterally character
(?2) In front of them,

-~

Note that thare Is one fewer level of parentheses needed wlththe
MLISP quoted @ xprarsion than with the LISP QUOTE functlon, This Is
part of the effort to cut down on the numbep of parentheges requlped.

Examples of quotedexpressionss

'A - (QUOTE A)

"NIL - (QUOTE NIL)

"0 - (QUOTE NIL)

‘A B €) - (QUOTE (A B C))

*(A,B,C) - (QUOTE (A B C))

"(abe) - (QUOTE (a b ¢))

*{A,B)] (QUOTE (A,B))

“(A B 7#C3» O E) - (QUOTE (A B #*Ce D E))
*(Ay 16,8, (E,F)y, 0) - (QUOTE (A 16.2 (E.F) 0))
‘(A (8,C) 230, E) - (QUOTE (A (B,C) =« D |, E))

MLISP SEMANTICS = SECTION 3,16 64
+ SEMANTICS =« SECTION 3,16
<ldentifler> 118 Cletterd (c<|attar>, <diglitda)=

8 cA, B, Corove B85 @) Dy Coryen Zy _o b o

Cletter) :
<llterajly_character> <any_character except %>

<|Ttera||y_character> $i3 2

An ldentifier Is an MLISP |etter followed by any numberof MLISP
letters or digits, An MLISP letter IS gny of the upper or |owsr ogSe
jetters of the alphabet, or an underbar (_), colon (%) or exc|amation
polnt (1), or amy character except X preceeded by the Iiterall|y
character, The |iterally character |Is a question mark (2), The
comrent character (%) may not be Inejuded because LISP 1.6 won"t
ajlow It to beusedasanythlng except the start or end of a comment.

Underbar, colon and exciamation point are considered to be letters so
that the user can easliy create unusual names for varlables, The
Ifterally character Is a flag to the translator to take the next
character |ltera|ly and consider It to be a jetter, even It the next
character would ordimarily have a d|fferent meaning to MLISP, This
enables the wuser to Ineclude virtuajiy any character except %X In
var|lable names, However, the user must be surethat his LISP systenm
won"t obJeett Oany o f the characters|n his identifiers, Notela| |
of the funetions and varlablenames used by the MLISP ¢transiator
begin with an ampersand (&), solt |s unwise to use such names,

Exampies of |dent|flers:

X ~ X

X1 . X1

AVERYLONGSTRINGOFLETTERS - AVERYLONGSTRINGOFLETTERS
A_VERY_LONG_STRING_OF LETTERS = A_VERY_LONG _STRING_OF LETTERS

X - x

x1 o X1

averylongstringofietters * averyjongstringofjetters
a_very_long_string_of_letters a_very_long_string_of_|etters
UPPER _and_lower_case JDENTIFIER = UPPER_and_lower _case_ [DENTIFIER
DSK - OSK |

TTY! - TTYS

ISYSTEM_VARIABLE_357a Z ISYSTEM_VARIABLE_357a

33 ?

7) .)

71 - 1 (an ldentifler, not a number)
AB?#C7#DE - AB#C#DE

180 2 _28207°9222(0)202)2<D> L1 _BeS2(ICICO

MLISP SEMANTICS « SECTION 3,17 65

» SEMANTICS = SECTION 3,17

<number> tizs < | nteger>
| OCTAL <octal_Iintager>
| <reai|>
<|nteger> t1a <digltd (<diglt>)s
<dlgle> t1= e2,1,2,3,4, 3, 6, 7, 8, 9>

Coctaj_integer> 111z <octa|_diglt> (<octa|_dlglit>)»
Coctal_dliglt> itz e@,4,2, 3, 4, 3, 6, 73

<real> ‘1 <|nteger> <exponent>
| <integer> , <integer> (<exponent>)

Cexponentd> ttz E (c¢, «3) <Integer)

Three types of numbers are permltted In MLISP! Integers (base 12),
Integers oreceeded py the reserved word OCTAL (base 8), and real
numbers (base 10 agalin), An Integer It anyseguence of dlgits, A
teal number |s efther an Integer TfTollowed by an exponent or two
Integers separated by a decimal point, optlionaily Tollowed by an
exponent, An exponent |8 the letter E, optionally followed by 4plus
or minus slgn, followed by an Integer, There should neverbe Spaces
between any of the parts of 4number, except after the word OCTAL,

All number8 are taken to be deeimal numbers unless preceeded by the
word OCTAL, Octa| numbersare Included because they are used In many
oomputer applications, Exponents provide 4 compact way of
rapresenting very large or Vvery small rea| numbers, Only Integer
exponents are allowed, but they may be elther pos|tive or negatlive,

Plus.(*)and minus (=) signsare not part of tho 9yntax +tar numbers
(except In the exponent), Plus and m|nus signs are de|imiters, and
they are treated as either prefix or inflx operators by the
translator,

MLISP SEMANTICS = SECTION 3.17 66

Examples of numbers:!

1 - 1

10 - 10

145968 - 145968

987,005 - 9.87005E2

13E+4 - 1,35

g.1 - 1,0E=}
¢,002123E-5 - 1,23E«9

OCTAL 12 - 8 (decima|)
OCTAL 144 - 100 (decima|)

3

OCTAL 777777 262143 (decimal)

“145,12 - (MINUS 1.4512E2)
X=145,12 . (DIFFERENCE X 1,4512£2)
+98765,43210 - 9,87654321E4

x+98765, 43210 . (PLUS X 9,87654321E4)

Note! 1 Is not allowediuse 2,1 Iinstead,

MLISP SEMANTICS = SECTION 3.18 67
+ SEMANTICS - SECTION 3,18

<string> 1tz "(<any_character oxcqpt " oor X>)s "

A string Is a string quote ("), folliowed by any sequenceof
characters except the string aquote or %, followed by 4 second string
auote,

Strings are a specia| MLISP data structure Introduced primarlily to
facl|ltate Input/output, Severa| string manipulation features are
Inctuded In MLISP to make strimg hand|Ing easy, These are described
in SECTION &-1% However, MLISP 1Is not a stringemanipulation
fanguage} Itis a ||st=processing and symbo|=manipulation language.
Most of the string-nandiing routines a r efalrly time consuming,
requlring an execution ¢time proportional to the Ilength of the
string(s) Involved®; Therefore, IT possible |imlt string manipulation
to Input/output operations, or at least to operations which are not
performed often, It It 1s necessary to do a lot of string
manipulating, the user should econsider wusing some other; more
sultable, language, slince MLISP processes strings Ineffloclentiy,

String are stored by LISP 1,6 as un<INTERNED (i,e, not onthe OBLIST)
atoms having a print name consisting of the characters In the string,
and Incjuding both string aquotes,

Examples of strings:

") (QUOTE "")
"THISIS A STRING" b (QUOTE "THIS IS A STRING™)
"This Isalsoa string,"= (QUOTE "This la alsoastring,")
"123,18CO() 2 =" . (QUOTE "123,:a¢>()7;+")
"

"

- (QUOTE ")

MLISP USER QPERATION OF MLISP = SECTION 4,1 68
+ USER OPERATION OF MLISP ~ SECTION 4,1

This sectionte||sthe userhowtoget a n MLISP programrunning,

(A) Trans|ating MLISP Programs

There are two verslons ofMLISP, both reslding on the system area of
the disk:

MLISP = a core Image contaling LISP and MLISP,

MLISPC = a core Image contajning LISP, MLISP, PPRINT (the
"oretty=print” funections), "and the LISP compl]er,

Thesecore Images may be loaded by typing!

R MLISP or R MLISP <core_slze>

and
R MLISPC or R MLISPC <core_slze>

The core size of MLISP |s 25K, and OFf MLISPC 35K, Thegse should be -
suff iclent to handje all but the iargest programs, I!f not, a larger
core slize will have to be specifled,

The MLISP ecore Image should be used |f the user wants te translate
hlg MLISP program and then execute It. The MLISPC verslon ghould be
used only |IFf the user want8 to translate his MLISP program and then
complie It or pretty=print out I%ts LISP translation, Feor large
(debugged) orograms, the most ® Tfflclent use of core Is achleved by
compl|!ng the MLISP program with MLISPC, and then reading the
compl|ed code Into a "fresh"LISP system (il,s, contalning nothing
else but LISP), Ceoempllling the program has the following advantages:

(1) The program runs about 10 times faster complled than Interpreted.

(2) MLISPC |ncorporates some elaborate macros whli¢ch expand FOR=|o0o0ps,
WHILE=|oopsy UNTIL=~|oops and |ndex expressions |[nto highly
optimjzed code, Thls further speeds ur thelirexecution, MLISP
Is very complier orlenteds by far the most efflclient execution of
MLISP meta-expresslions Is by compiled code,

(3) Compl |ed code requires less space than the <c¢orresponding
|Ist-structure Interpreted code,

(4) Functlon definltions don’t have to be marked by the garbage
col lector every time a garbage collection occurs (a signlficant
time savings for large programs),

MLISP USER OPERATION OF MLISP =« SECTION 4,14 69

To avoldoonfusion, two facts should be kept In mind when using

MLISP!

(a) In WRITING your oprogram, you wilibe communicating with MLISP.
All expressions in the proorem must be legal MLISP expressions,

(b) In RUNNING your program, Yyou wlll be communicating with LISP.
All expresslons to be executed, read or printed must be legal
LISP ® xpre88lons,

After the user ha8 loaded acorelmage by typingeoneof the two
oommands above, he may begintransiating his MLISP program by eallling
the top leve| function named,vouguessed |t, "MLISP", "MLISP" Is an
FEXPR whiech takes from 1 to 4 arguments, These arguments w!|!| be
explalned by examples, The full command Is?

(MLISP (<device>) <fije_name> (€T, NIL, NIL NIL2})

where () and e» mean "optiona|" and "alternatives" respectively, A
<device> |s e|ther a physlicaldevice |lke g diskor de¢ tape (e,9.
DSKt or DTALt)oraproJect=programmer palr representing a disk area
(e,g, (1,0AV) represents (1,DAVY),

MLISP USER OPERATION OF MLISP=SECTIONA4,1 70

Exarples of the too level function “MLISP":

«R MLISP
e(MLISP FO0O)

+R MLISP
s(MLISP DSK: FOQO)

+R MLISP
#(MLISP (1,04Y) F0O)

«R MLISPC
s (MLISP FOO T)

+R MLISPC
#(MLISP FOONIL)

«R MLISPC
«(MLISP FOO NIL NIL)

R MLISPC
#(MLISP DSK: FGO NIL NIL)

R MLISP
(MLISP (F00,BAz))

R MLISP
0 Té 0040X'0 DTALI(FOO,BAD))

«R MLISPC
s (MLISP MTAQ: (FOO,BAZ) T)

would translate and execute a program
on the disk file FOO

would do exactiy the same thing

would transjiate and execute a program
on DSK:FOO[1,DAV]

would translate a program on DSK:!FO0O
and complije 1t ontoDSKIFOQ,LAP

would trans|ate a program on DSKiFOQO
and pretty=print the LISP translation
onto DSK:FOO,LSP

would do the same thing, except that
the expans| on ofallkISP and MLISP
macro8 I8 Suppressed, Ordinarliy,
al)] macros (FOR~joopmacros, PLUS,
stc,)are expanded before oprinting,
which enables tha user to see exactly
what coda wll| be executed,

would do exactly the same thing

would trans|ate and exegute aprogram

would translate and execute a program
on DTALIFO0,BAZ

would trans|ate a program on
MTABIFQO,BAZ and c¢ompl|e It onto
DSKIFQO,LAP

MLISP USER OPERATION OF MLISP = SECTION 4,1 71
(B) Translat|ng Under Program Control

It |s somet|mes desireable to oall the MLISP trans|ator under program

oontrol, This |s made possible “pby the special MLISP function

“MTRANS”, a function of no arguments, Calling MTRANS ha8 the

followlng effeots:

(1) An MLISP <expression> Is road from the currently se|ected Input
device, The flrst character read should be theflrst character
In the expression, An MLISP <expression> differsfrom an MLISP
<program® only In that the |ast character need not bea perioed;
It may be any sultable expression=stopping character, usuaily a

semjeoion (})),

(2) The LISP transliatlon |8 returned asthe value of MTRANS,

The funotlon "MLISP" shou|d not be oal |ed From within aprogram,
since It hasseveral side @ ffeotr, whloh are generally undesireable In
a programj for example, the funotlon RESTART I8 redeflined, MTRANS
has no side effeots,

Note! It MTRANS Is caljed, the entire MLISP translator mysthb a
® vellabla, This means that programs using MTRANS should enly b® run

Interpreted,

=

MLISP USER OPERATION OF MLISP = SECTION 4,1 72
(C) Loading Compiled Programs

There Is a flle called UTILS on the system area of the dlsk
contaliningrun-time functions, Thisfilemustbeionded|f the user
has e|ther oompiled his MLISP program onto a .LAP fl|e or
pretty-printed |t ontoa +LSP flle, UTILS Isalready |eaded|nto
both the MLISP and MLISPC core Images, so that |f the user simply
wants to tramsliate and run hisMLISP program: the run-time TfTunotlbns
will be avallable,

To readinan MLISP program after If has been compiied by M_LISPC,set
up- a LISP system wlth suffliclentBinary Program Spacee to hold the
oomplled code;, and then type!

(INC (INPUT DSKi (<fl|e_name>,LAP) SYS:UTILS))

The flle UTILS should always be read In last sinoe one of the things
It does 18 set IBASE and BASE (thelnputandoutputradliclesfor
numbers) to 10 (l,e, decimal), Thereafter, all| numbers read or
written wl|l be Interpreted asdeecima| numbers, The user should be
careful to set IBASE te 8 (l,e,0ctal} |f he wants to read Im more
LAP code, since LAP expects |ts numbers to be inootal form, and then
reset [BASE to 10 afterwards,

the fojlowlng seauence would translate and compiiean M_LISPprogram
on the disk flle FOO, and then read In the complled code!

+R MLISPC

s(MLISP FOO T)

vee SMLISP and compjler typeoutd ...
#enEND=QF «RUN# & »

aeC .

+R LISP <cores|ze>

ALLOC? vy . <allocat‘°ﬂ>)

o (INC (INPUT DSK! (FOO,LAP) SYS! UTILS))

ve0 <LAP typeout> ,,.

MLISP USER OPERATION OF MLISP = SECTION 4,2

This seotlionison | yfor those hardy souls attempting to
MLISP on aLISP1l,6system,
necessary to reassembie
In SECTION 4,3)sijsted the contents of the

fi |8,

To Reconstryct MLISP!I

R LISP 24

ALLOC? Y

FULL WDS=20020
BIN,PROG,SP38000
SPEC.POLs_

REG, PDLs_
HASHS

AUXILIARY FILES?Y
SMILE?

ALVINE?

TRACE?,

LAP?Y

DECIMAL?_

#«(INC (INPUT DSK:
(MLISP,LAP)
(RUNFN1,LAP)
(RUNFN2,LAP)

MINIT
_ SETAS))

v <type out>,,,

«(SCANNERIINIT)
#aSCANS

LOADER 1K CORE

o (SCANNERZINIT)
NIL

eeC

+ SAVE QSK MLISP

Below

USER OPERATION OF MLISP = SECTION 4,2

To Reconstruct MLISPC:

+RLISP 34

ALLOC? Y

FULL WOS=3802
BIN,PROG,SPs23000
SPEC,POL3_

REG, POL=

HASH= _

AUXILIARY FILES?Y
SMILE?.

ALVINE?

TRACE?,

LAP?Y

DECIMAL?.

*(INC (INPUT DSK1?
(MLISP,LAP)
(MACROS,LSP)
(MACRO1,LAP)
(RUNFN2,LAP)
(PPRINT,LAP)
(COMPLR,LAP)
MINIT
SETQS))

v $type out>,,,

* (SCANNERLINIT)
s#SCANS

LOADER 1K CORE

¢ (SCANNERRQINIT)
NIL

L X 2o}

+SAVE OSK MLISPC

_reconstryct
is the sequence of commands
both theMLISP and the MLISPC core Images.

various

ML 1SP USER QPERATJON OF ML{SP - SECTION 4,2 74

The correct oore Imageg wlill now be gaved ynder "MLISP" and "MLISPC".
A 1ittie explanation about thess two segquences Is necessary, The
underbar (_) In the flerst foew |ines represents a space’l thls merely
Instructs LISP to use the standard allocatlon, The |ine reading!

(INC (INPUT DSK: (MLISP,LAP) ,,,)

assumes that all of the LAP fijes ||sted have been compljed by the
LISP comp| ler, The f]|je COMPLR should be the LISP compijer |tself,

The {Ine **SCAN% (% stands fTor ALTMODE) loads the MLISP scanper
package, whioh must have been compiled Dby MACRO and be Im REL
format,

It the machine language scanner Is not to be used, then the LISP
scanner |[sted In SECTION 7,3 should be compljed by the LISP compller
and read In with the other LAP flles, Note! all LAP fl|les must be
read before the f| |e SETQS, because SETQS changes IBASE, the Input
radix :or numbers, from 8 (oeta}|) to 18 (decimal), LAP expects IBASE
to be 8,

If the LISP scanner |s ysed, the following |Ines should be omitted:

«(SCANNERLINIT)
«uSCANS

LOADER 1K CORE

« (SCANNERZINIT)
NIL

MLISP USER OPERATION OF MLISP = SECTION 4,3 75
, USER OPERATION OF MLISP = SECTION 4.3

This Is areference f|le of the MLISP source fl]es,

Fl18 Contents

MLISP TheMLISP translator funetlons —— In LISP

MINE Inltlalizatlon for tho MLISP translator (reserved
words, abbreviations, nrecedences, stc,) —- In LISP

SETQS Inltlallzation of the MLISP globa|ly~defined atoms --
in LISP

RUNFN] &FOR, &D0, QWHILE,&INDEX —— |mn LISP

RUNFN2 PRELIST, SUFLIST, STR, STRP, STRLEN, AT, CAT, SEQ,
SUBSTR, PRINTSTR, NEG, NEQUAL, LEQUAL, GEQUAL -- In
LISP

MACROS &4FOR, 800, SWHILE, &INDEX, NEQ, NEQUAL, LEGUAL,

GEQUAL == all macros:, In MLISP

MACRO1 Macro=axpanding functions for the flle 'MACROS! - In
MLISP

PPRINT Functlons Tfor pretty=printinglLISP expresslons == |n
MLISP

MEXPR LISP=to«MLISP convertor -- In MLISP

UTILS RUNFN2,LAP, SETQS -- This may be asssemb|ed by
compliing the fl|e RUNFN2 and adding the flle SETQS
to 1t,

SCAN,MAC The machine language scanner for MLISP == [n DEC

MACRO

X

ML ISP RUN=TIMg FUNCTIONS = SECTION 5.1 76

+ RUN=TIME FUNCTIONS « SECTION 5,1

This section describes the string=handling functions of MLISP, Other
run=time functlions avall|able to the user are described In the next
section, Stringsapedescribed In SECTION 3,18} they ® xlIst primariijy
to facll|tate Input/output, To make string handilingeasy,MLISP
Includes the following set of primitives,

STR (sexp) <= Y"STRINGIFY"
This takes one argyment, which may be any s=expression, and
returns a string contalning the charactors In that s=expressjon
{Including spaces and parentheses)”

STRP (sexp) = "STRING PREDICATE"
This takes one argument, whlech mry be any s=sxpressjion, Returns
TRUE |f the s=oxpression Is a string, NIL otherwise,

STRLEN (string) = "STRING LENGTH"
Thls takes one ® rqumentc a string, and returns an Integer egual
to the number of characters In the string (not countlng the
string quotes),

AT (string)= "ATOMIZE"
This takes one argument, a string, and returns an atom having a
printname made up of the character8 In the string (not Ineluding
the string quotes),

CAT (stringl, string2) = "CONCATENATE"™
This takes two arguments and returns astring made up of thelr
conoatenatlon, The arguments need not bestrings, |If elther
argument Is not a string, It Isflirst converted to one, and then
the concatenation s carrled out, CAT, beling a function of two
arguments, may be used as an Inflix!
stringl CAT string2,

SEQ (stringl, string2) = ""STRING EQUAL"
This takes two arguments, both strlngs, and returns T |t they are
identical, NIL otherw|se, The LISP functlon EQ@ cannot be used
because strimngs are atoms whighare not on the OBLIST, Aswith
CAT, SEQ may be used as an Inflix?
stringl SEQ string2,

SUBSTR (string, start, |ength) = "SUBSTRING"
This takes three arguments, the first beingastrlng and the
other two belng Integers, It returns a substring of the flrst

MLISP RUN-TIME FUNCTIONS = SECTION 5,1 77

argumgnt beglnning with the ¢haracter in pos|tjon "start”
(counting from 1) and continuing for "jength" characters,
"length" neednotbeanumberiifit Is notr then the rest of the
stringls taken, ‘

PRINTSTR (string) = "PRINT STRING"
This takes one argument, a strlnmg, and prints It on the current
output devicewlthout the string quotes, fojljowed by a carrlage
return, Thevalue OF PRINTSTR 1Is the vajuyeof Its argument(the
sameas with PRINT),

Exarples of the string=hand|ing funotions!

STR "STRING 8 "STRING"

STR "STRING™ ~ . "STRING"

STR "(A (B,C) D) L) "(A (B, C) D"
STRP "THIS IS A STRING," = T

STRP *(TH]SISNOT ONE) » NIL

STRP " : T

STRLEN "THIS 1S A STRING," s 17

STRLEN STR "STRING . 6

STRLEN »® v 0

AT "STRING" ' STRING

AT "THIS IS A STRING," L TH1S/18/A/ STRING/,

AT 3 1 legal

STR AT "THIS IS A STRING," "THIS IS A STRING,”
AT STR 'THIS? 18? A? STRING?, THIS/ 1S/ A/ STRING/.

"THIS IS A " CAT "STRING," ? "THIS 1S A STRING,"
"THIS IS A " CAT *STRING?, 2 "THIS 1S A STRING,"

"A PERIOD " CAT "(,)" L) "A PERIOD ¢,)"

"A PERIOD "CAT’(?,) s "A PERIOD (.)"

“A PERIOD " CAT <PERIOD> e "A PERIOD ¢.)"

"STRING'™ SEQ "STRING" * T

"STRING"™ SEQ STR ¢STRING ® T

"STRING'™ SEQ "'STRING," ® NIL

SUBSTRV*THIS ISA STRING,",6,4) = "IS A"
SUBSTRVTHIS IS A STRING,",108,5) 3 "

SUBSTR("THIS IS A STRING,",5,102) = " IS A STRING,"
SUBSTR("THIS IS A STRING,",5,'REST) 3 " IS A STRING,"
PRINTSTR "A STRING,™ prints A STRING, value & "A STRING,”

PRINT "A STRING," pr Ints "A STRING," value = A STRING,"

.

MLISP RUN-TIME FUNCTIONS = SECTION 5,2 70

« RUN-TIME FUNCTIONS - SECTION 5,2

This section descripes some genera|=purpose routines that have been
Judged sufficlent|y usefyl to be Included In the set of ryn=time
functions avallabje to the MLISP user, All of these functlons are
short and have been complled, so that they requlrevery little binary
program space and almost no free storage, The functions NEQ, NEQUAL.
LEQUAL and GEQUAL are expanded by macros when the MLISP program In
which they occur Is complled, This makes uslng these functions In a
complied program very efflcloent,

PRELIST ()ilst, Integep) = "PREFIX OF LIST"
This takes t,o arguments, a |ist and an Integer, PRELIST returns

a |ist of the first "Integer” clements of Its first argument, If:

there are fewer than "Integer™ elements in It, PRELIST returns as
manyas |t can (1,8, the whole |Ist),
PRELIST may be abbrevlated ¢ (uparrow): PRELIST(L,6) & L*6

SUFLIST (|lst, Integer) = "SUFFIX OF LIST"
This takes the same two argumentsas PRELIST! a |lst and an
Integer, SUFLIST returns allst formed by taklng "Integer™ COR’s
of Its first argument, If It exhausts Its flrst argument before
It runs out of CDR’s, It stops at NIL(l.e. It wll| return NIL),

SUFLIST 1Is the "eompi|ment" of PRELIST In the sense that!
PRELIST(L,N) o SUFLIST(L,N) = L

foral I |lsts L and forall Integers N, SUFLIST Is =
generalizatlon of CDR!

COR L E SUFLIST(L,1)

COOR L g SUFLIST(L,2)

CODR CDDDDR L & SUFLIST(L,6)

SUFLIST Is more powerful than CDR because the seoond argument may
be a verlable(|ffact, any expression), therebypermitting the
user to defer untl|| run-t/me hls decision on how many COR’Ss to
take,

SUFLIST may be abbreviated + (down arrow); SUFLIST(L,6) = L6

MLISP RUN-TIME FUNCTIONS = SECTION 5,2 79

NEQ (sexpl, sexp2) - "NOT EQ"
This takes two arguments, which may be rny s-expressions, and
returns TRUE |ftheyare not EQ to each other, NIL otherw|se,
The LISP transiagtion OF X NEQ Y1
(NEQ X Y)
Is expanded by macros to!
(NOT (EQ X Y))
If 1t |s complled,

NEQUAL (sexpl, sexp2) = "NOT EQUAL"
-This takes two argumepnts) which may be apy s=expressions: apd
returns TRUE It they are not EQUAL to each other, NIL otherwise.
The LISP transiationofX NEQUAL Yi
(NEQUAL X V)
I8 expanded by macros to:
(NOT (EQUAL X Y))
If 1t lscomplled, NEQUAL may pe appreviateg # (not=eguai sign).,

LEQUAL (numberi, number2) = "LESS THAN OR EQUAL"
This takes two arguments, which should be numbers, and returns
TRUE If thr ¢lest argument Is loss than or equal to the 8econd
one, NIL otherwise, The LISP trrnsirtlon of X LEQUAL Y3
(LEQUAL X Y)

I's oxﬂ ﬁorb roa to!
(GREATE X Y
it Is comp| |ed, LEQUAL may be abbrev lated <

(less- than or--auel slagn),

GEQUAL (numberl, number2) <« "GREATER THAN OR EQUAL"

This |s the oconverse of LEQUAL, It takes two arguments, whloh
shou Id be numbers, and returns TRUE |f thefirstargument |s
greater than oregualto the second one, NIL otherwi/se, The LISP
trrnsirtlon of X GEQUAL Y!

(GEQUAL X Y)
Is w¥g Nded pymggros to!

(NOT (LESSP X Y))
It It Is compol|ed, GEQUAL may be abbreviated 2
(greater~than-or=equal sign),

S

MLISP

RUN-TIME FUNCTIONS = SECTION 5.2

Examples of theSe run~timg functions!

‘(A BCDE) PRELIST 3 5 (A B C)
‘(ABCDE)+3 5 (A B C)

‘(A B CDE)+ 10 n (A 8 CDE)

"(A 6 CDE) + @ F NIL

‘(A BC D E) SUFLIST 3 = (0 &)

‘(A BCDE) + 3 = (D E)

‘(A BCDE). 10 = NIL

"(A BCDE) + 0 s (ABCDR)

‘(A BCDE)*» 3 ®@'¢(aBcDE) s 3 = (A B C DE)
‘(A BCDE) +100 "(ABCDE) + 12 = (ABCD E)
"ABCDE) *» O e’(ABCDE) .+ 0 = (ABCOGR)
‘AB C D E)«p = ‘(A BCDE) = (ABCDE)
‘(A B C D E)el = COR (A B c D E) s(BC D E)
‘A B C D E)s2 = CDDR "(A B C D E) = (C D E)
‘A-B C D E)s3 = CODDR ‘(A B C D E) = (D E)
‘(A B CD E)sd =z CDDDODOR "(A 8 C D &) = (E)
‘A B C D E)5 = CDR CDDDOR ’(ABCD E) s NIL
“A NEQ "8 s T

"A NEQ "(A) = T

“A NEQ “A a NIy

(A" (B,C)) NEQUAL “(A (B (C)) z T

"(A (B,C)) # “(A (B C)) = T

‘A 2 (A = T

"(A (B.C)) 2 '(A (B,C)) z NIL

10 LEQUAL 20 = T

10 € 20 & T

10 < 190 = T

12 £ 0 » NIL

12 GEQUAL 20 = NIL

10 2 20 * NIL

10 2 10 = T

10 2 0 3 T

80

MLISP SAMPLE MLISP PROGRAM = SECTION 6.1 81

« SAMPLE MLISP PROGRAM = SECTION 6,1

BEGIN

X This program Is Included to provide an example of the MLISP
language, It examines severa| ways of writing the funetlon REVERSE
fm MLISP, REVERSE was chosen because It Isfaml|jar to most people:
It reverses the top level of a |Istt REVERSE ‘(A B C) = (C B A),

The function REVERSE may be written In many ways In MLISP, Some of
the . ways shown here are not too efflicient, but they do serve to
lllustrate different MLISP expressions, The method used Ineach
functlon Is explained In a comment Included with the functlon, %

XEBRRRBBARARRBBRERTUNUAREBURURVBRBRBRURHERURBURBRRARBARURBBBUNRRB AR RN
XERURRRY DEFINE ALL THE REVERSE [UNCTIONS HBBRRENNX
XKULERBEBBBRUBRARBUNRHURBRBERERBRARBRARBANBBRRRRUBRBBB BB RRRERRRURN

X REVERSE1 Just calls REVERSEla with the Ilst to be reversed and NIL.
The NIL Inltiallzes REVERSE1a’s second argument, ¥

EXPR REVERSE1l (L)} REVERSELa(L,NIL)}

% REVERSEla doe8 al| the work for REVERSE1, It uses an IF expression
and a recurs|ve cajjon Itse;f, The reverse of L la bul|t up In the
gecond a,gument RL, X

EXPR REVERSEla (L,RL)}
IF NULL L THEN RL ELSE REVERSE1a(CDR L,CAR L CONS RL);

% REVERSE2 also uses an IF expression and a recursive cal| on Jtse|f,
In this elever but Ineffliclent verslon, the reverse of the rest of
the |Ist L Is APPEND’ed (®) to a |Ist contaln|ing the first element, *

EXPR REVERSEZ (L)}
IF NULL L THEN NIL ELSE REVERSE2(CDR L) @ <CAR Lo

X REVERSE3 |8 an FEXPR}) the arguments to it are unevaluated, It uses
a FOR expression as follows: I Is set to each member of the |18t L
and then Is CONS’ed onto the reversed jist RL, REVERSEJ does not use
recursion, X

MLISP SAMPLE MLISP PROGRAM . SECTION 6,4 82

FEXPR REVERSE3 (L)}
BEGIN NEW RL3} X PROG vgprigbles gre initiallzed to NIL,X
RETURN FOR NEW ! IN L DO RL « I CONS RL}
END; '

X REVERSE4 Is an example of a FOR expression using a numerjeal
Inorement, In the operation of the l00p, 118 Inoremented frem 1 to
the length of L, For each value, thel’th element of L |s obtalned
by the lIndex expression LLIJ and thenis CONS’ed onto the reversed
Ilst RL, X .

EXPR REVERSE4 (L)}
BEGIN NEW RLS

ENDRETURN FOR NEW 11 TO LENGTH L DO RL « LCI) CONS RL;
] -

X PROG1 Is |jlke PROG2, except that PROG1‘’s value |s the value of its

first (rather than |ts second) argument, Thisls not a reverse
functlion, but |s used by reverse functions whiech follow, X%

EXPR PROG1 (A,B); A;

X REVERSE5 |s another FEXPR, |tusesaWHILE expression as follows:
whlle there I8 sti|| something Jeft in L, the next element Is taken
off and CONS’ed onto the reversed |ist RL, This doe8 not u8e
recursion, %

FEXPR REVERSE5 (L)}

BEGIN NEW RL}
. RETURN WHILE L DO PROGL(RL « CAR L CONS RL,L « COR L)}
ENDJ

¥ REVERSE6 wuses an UNTIL expression (PO-UNTIL), The operatlon of
this UNTIL=l0 op I's rouaghly the same a8 that of the WHILE-loop 1In
REYERSES, The one difference 18 that since the body of the loop gets
executed before testing If there Is anything In L, an Inftial test
must be Included to take carecfthe triviajcase where REVERSE6 1s
called with NIL as [ts argument, Thls does not use recurslon, %

-

ML ISP SAMPLE MLISP PROGRAM = SECTION 6,1 83

EXPR REVERSEG6 (L);
1F NULL L THEN NIL ELSE
BEGIN NEW RL3

ENDRETURN D0 PROGL(RL =« CAR L CONS RL,L « COR L) UNTIL NULL L}
}

X REVERSE7 wuses a standard LISP function, MAPCAR,together with a
LAMBDA expresslion, The operation of this Is verysimilar to that of
REVERSE3, X

FEXPR REVERSE7 (L)}
BEGIN NEW RL3
MAPCAR(FUNCTION(LAMBDA(I)s RL « I CONS RL?), L)
RETURN RL}
END3

¥ Of all the methods presented, REVERSES8 Is the most unlgueto MLISP,
]t uses a numer|cal FOR-loop, as does REVERSE4; In addition |t uses
Index expressjons on both the left and right slides of the asslgnment
operator («), The |Index expressjon on the left side retrieves the
I’th pesition In the reversed |lst RL, Into which Ispjaced t he
LEN=N+1’st element of L, LEN Is the length of L, The flirst index
expressjon |s used to obtaln a "cel|" or POSITION In RL, whl|le the
second Index expresslomiSused to obtaln the ELEMENT whigh occuples
a positionIintbk, %

EXPR REVERSES (L)}
BEGIN NEW RL,LEN]
LEN « LENGTH L}
FOR NEW Nei TO LEN pO RLLNJ = LCLEN=N+1];
RETURN RL}
ENDJ

X The LISP transjation of thils program Is Iisted In the following
section, It has been printed using a program called PPRINT, an
svexpression formatt|ing (pretty=printing) Program. Thls program Is
written In MLISP and Is Included wlth the MLISP system, (A| | of the
files In the MLISP system are |isted In SECTION 4,3,) Note that
FOR-loops, WHILE-loops and UNTIL=~|ocops have been expanded by macros
into In=||ne code, X%

END,

MLISP SAMPLE MLISP PROGRAM = SECTION 6,2 84
, SAMPLE MLISP PROGRAM « SECTION 6,2

(DEFPROP REVERSE3

Q;EXPR)

(DEFPROP REVERSES
T
*FEXPR)

(DEFPROP REVERSE?
T
oFEXPR) \

(DEFPROP REVERSE1
(LAMBDA (L) (REVERSE1a L NIL))
EXPR)

(DEFPROP REVERSEla

(LAMBDA (L RL)

(COND((NULL L) RL) (T (REVERSEla (COR L) (CONS (CAR L) RL)))))
EXPR)

(DEFPROP REVERSE2
(LAMBDA (L)
(COND ((NULL L) NIL)(¢T(APPEND (REyERSE2(COR L)) (LIST (CARLHIMIN
EXPR)

(DEFPROP REVERSE3
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (8V &LST1 I)
(SETQ &LSTL L)
LOOP (COND ((NOT &LST1) (RETURN &V)) (T NIL))
(SETQ | (CAR 8&LST1))
(SETQ &V (SETARL (CONS | RL)))
(SETQ &LSTL (CDR &LST1))

: (GO LOOP))))D)
FExPR)

(DEFPROP REVERSE4
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (&V &LST1 &UPPERY)
(SETO &LSTL 1,)
(SETQ8UPPERL (LENGTH L))
LOOP(COND ((@GREAT &LST1 &UPPER1) (RETURN &V)) (T NIL))
(SETQ [&LSTL)
(SETQ &V (SETQ RL (CONS (CAR (SUFLIST L (SuB1 1),) RL)))
(SETQ &LSTL(ADDL &LST1))

3

MLISP SAMPLE MLISP PROGRAM = SECTION 6,2 85

(GO LOOP)))))
ExPR)

(DEFPROP PROG1
(LAMBDA (A B) A)
EXPR)

(DEFPROP REVERSES
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (&V)
LOOP (COND (L (SETQ &YV
(PROGYL (SET@ RL (CONS (CAR L) RL))
(SET@ L (COR L)))))
(T (RETURN &V)))
(GO LOOP)))))
FEXPR) -

(DEFPROP REVERSE6
(LAVMBDA (L)
(COND ((NULL L) NIL)
(T (PROG (RL)
(RETURN
(PROG (&V)
LOOP (SETQ &y
(PROGy (SET@ RL (CONS (CAR L) RL))
(SETQ L (CLR 1.))))
(COND ((NULL L) (RETURN &V))

(T (GO LOOP))>>))))))
EXPR)

(DEFPROP REVERSE7
(LAMBDA (L)
(FROG (RL)
(MAPCAR (FUNCTION (LAMBDA (1) (SETQ@ RL (CONS I RL)))) L)
(RETURN RL)))
FEXPR)

(DEFPROP REVERSES
(LAMBDA (L)
(PROG (RL LEN)
(SETQ LEN (LENGTH L))
(PROG (8V &[ST1 8UPPERL N)
(SETQ &LST1 1,)
(SETG 8UPPERL LEN)

LOOP (COND ((#GREAT &8LST1 &UPPERL) (RETURN 8V)) (T NIL))
(SETQ N &LST1)

(SETQ &y
(PROGZ (SETQ RL
(&REPLACE RL
(LIST N)

ML1SP

EXPR)

SAMPLE MLISPPROGRAM « SEGTIONG, 2 86
(SETQ &MPR1

(CAR

(SUFLIST
L
(#DIF LEN N))))))

aMP21))
(SE7Q &LSti (ADDL &LSTL))

(GO LOOP))
(RETURN RL)))

MLISP THE: MLI1SP SCANNER =« SECTION 7.1 87
, THE MLISP SCANNER =SECTION7,1

The set of routlnes that returns the next "token" (ldentifier,
number, specla| ocharacter, string) In the Input stream |s generally
called the "scanner" for a language, It Is true of ajmost every
language that the majorlty of c¢ompllation time Is spent In the
scanner, since every character In a program has to be read In
Indlvidually and some seaquence of tests made on It, Thls Is the
pllghtefMLISP, and the best that can be done Is to make the scanner
as Tast and efflclent a3 npossible, Lynn Quam atStanford has
developed a super fast, tabje~drlven READ funotlon for LISP 1,6 . To
thls he has a«ddedaset of machine language functions whieh may be
used to specify the preclse syntax for a token returned by READ.
These routines actually mod|fy READ’s Interna| character tables, thus
giving the user a oomplete|y general table=-driven Sganner, The

scanner for MLISP was obtained In this way, It has Ingoreased
transi|at|on speed by a faotor of three (translation speed IS now
30004000 tiines/mingte), It has decreased thesize of the translator

aswell, since using READ does not reaulre any add!tlomal LISP
tunctions,

Since there Is no formal writeup onQuam’s READemodifying funetlons,
the fojilowling 1Is a reproduction of (parts of) Quam’s (mformal
description,

LISP now uges a table driven scanner, whose table may D3
modifled by the user for the ourpose of implementing
scanners for other languages, For simplliclty, ¢the
functlons for constructing the scannar tabje Inltlally
glve an ALGOL type scannmeri that IS. the ALGOl
definitions for ldentifieprs, strings and numbers, The
ALGOL table may be deviated from by using addltlonal
functions t o Imelude add!tlonal gharacters In
Identiflers, and to specify delimiters for strings,

(SCANINIT ocomment_start comment-end 8tring_start string_end |Iterally)
SCANINIT sets up the LISP scanner to be an ALGOL-type
scanner with the, speclal deiimiters tot comments and
strings, MLISP oalls (SCANINIT % % " " 23,

(LETTER x)
LETTER specifles t o the scanner that X Is an
extra=letter, and thus allows x to be in an Ildentifier,
MLISP call3 (LETTER _)» (LETTER), (LETTER {),

(IGNORE x) -
IGNORE specifjes to the scannerthat x I3 not to be
returned as a dejimiter from SCAN, but instead wl||| be

ML ISP

(SCAN)

THE MLISP SCANNER = SECTION 7,1

lgnored, However, x will stlil fupnctlion as a separator
betyeen |dentiflers and nymbers, MLISP oalls (IGNORE
BLANK), (IGNORE CR), IGNORE LF).» (IGNORE FF), (IGNORE
VT), (IGNORE TAB), (IGNORE ALTMODE),

SCAN reads an atom or delimiter and sets the value of the
oloba| varlable SCNVA_ to the value read, and retyrns a
?umber corresponding t o the syntactic type read,a 8
ollowss

Syntactic Type Vajlye of SCAN Value of SCNVAL

<identifler> 2 the uninterned Identi?ier
<string> i the string
<number> 2 the value
<de|Im|ter> 3 the ASCII numeriocalvalue
= of the delimiter
(SCANSET)

SCANSET mod|f|es the LISP scanner In READ according te
the user speciflcations.

(SCANRESET)

SCANRESET unmod|fles the LISP scanner +to | t®8 normal
state, and myst be called before REAP wli|!| work properi|y
onoe SCANSET |s used,

88

X 7

MLISP THE MLISP SCANNER <« SECTION 7,2 89
, THE MLISP SCANNER = SECTION 7,2
BEGIN

X fhls program presents a set of functlons whijeh Is equivajent to the
MLISP scanner, Itls for the reference of users wanting to (mp|ement
MLISP on a LISP system wlthout Quam’s READemod!ifyling funct Ilons, In
ardor to use these funetlions, the funotlon &SCAN In the MLISP
translator should be replaced by the &8SCAN funetion below, and the
other funetlions added where c¢onvenlient, The functions be|ow are
wrltten In MLISP, so thelr LISP transjations would sctual|y be used,

The scanner below places only two restrictlions on the LISP system!
(1) There must be a READCH functlon, which reads the next c¢haracter
In the Input stream and returns that character as |ts value,

(2) There must be a READLIST funoctlion, which takes as Its argument a
I1st of single characters and concatenates them, to ferm an atom,

These two functlions are taken to be orimltives, and they are used
below wlthout further explanation, 4&4SCAN sets the globa| variables
8SCANTYPE and &SCANVAL as fol lows;

Syntactic Type Value of &SCANTYPE Value of &SCANVAL

Cldentiflier> 0 the ldent|fier
<string> 1 the str Ing
<number> 2 the number

3

<dalilimiter> the delimjter

INEXT_CHAR |Is ajways set to the next character In thr |nput stream
after the current token has been obtained,

%
SPECIAL ‘$NEXT_CHAR,?8SCANTYPE, 78SCANVAL,28X?&)

EXPR 74SCAN ()3
[F NUMBERP INEXT_CHAR THEN SCAN_NUMBER() ELSE
IF LETTERP(INEXT_CHAR) THEN SCAN_IDENTIFIER(NIL, INEXT_CHAR) ELSE
[F INEXT_CHAR EQ DBQUOTE THEN SCAN_STRING(KDBQUOTE>,READCH()) ELSE
IF IGNOREP(!NEXT_CHAR) THEN

PROG2¢(DO NIL UNTIL =IGNOREP(!NEXT_CHAR « READCH()), 7?&8SCAN()) ELSE

IF INEXT_CHAR EQ PERCENT THEN

PROG2(DO NIL UNTIL READCH() EQ PERCENT & !NEXT_CHAR«READCH(),?&8SCAN())

ELSE SCAN_DELIMITER()]

MLISP THE MLISP SCANNER = SECTION 7,2 90

EXPR SCAN_IDENTIFIER (L,NEXT)}
IF NUMBERP NEXT | GET(NEXT,‘LETTER) THEN
SCAN_IDENTIFIER(NEXT CONS L, READCH()) ELSE

IF NEXT EQ *?? THEN X The MLISP Iltorg!lly ohgr |ct.r (?7) %
SCAN_IDENTIFIER(READCH() CONS SLASH CONS L, READCH())

ELSE BEGIN
78SCANTYPE « 03 X ldentifier type, %

78SCANVAL « READLIST REVERSE L}

IF 7&8X%X78 & GET(784SCANVAL,’7&4TRANS) THEN

BEGIN X This sympol %% vwwh DEFINE' 3¢ a8 somethling else. X
28SCANTYPE « GET(?&4SCANVAL, ‘78 TRANSTYPE)}
78SCANVAL « GET(?2&8SCANVAL,'78TRANS))

END3

INEXT_CHAR « NEXT) X Advanor !NExT_CHAR, X

ENDJ

EXPR SCAN-STRING (Lt ,NEXT)}
IF NEXT NEQ DBQUOTE THEN SCAN_STRING(NEXT CONS L, READCH())
ELSE BEGIN
28SCANTYPE « 1} X String type, X%
?28SCANVAL « READLIST REVERSE(DBOUOTE CONS L)}
INEXT CHAR « READCH()} % Advance !NEXT CHAR, %
END} - -

EXPR SCAN_DELIMITER ()}

BEGIN
78SCANTYPE « 3} XDelimiter typo. X
78SCANVAL « INEXT CHAR) X% Set ?78SCANVAL to the def|Imlter. %
IF 78%78 8 GET(?28SCANVAL, ' 28TRANS) THEN
BEGIN %X Thls sympol hgs been DEFINE‘ed as something else, %

78SCANTYPE « GET(?&SCANVAL.'7&TRANSTYPE)1

c 78SCANVAL « GET(?&SCANVAL,’78TRANS)
ND}
INEXT_CHAR « READCH()} X Advance !NExT_CHAR, %

ENDI

EXPR LETTERP (CHAR)}; GET(CHAR, 'LETTER) | CHAR EG ’?7}
EXPR IGNOREP (CHAR); GET(CHAR, ' IGNORE)}
EXPR SREAD ()3 PROG2(?&SCAN(),SREAD1())}

EXPR SREAD1()}
I F ?78SCANVAL EQ LPAR & ?8SCANTYPE 3 3 THEN X ¢ X%
PROG2(?7&SCAN(),SREAD2())
ELSE ?8SCANVAL)

L/ MLISP THE MLISP SCANNER = SECTION 7.2 9.1

EXPR SREAD2 O;
[F 28SCANVAL EQ RPAR 8 ?8SCANTYPE = 3 THEN NIL)X
ELSE BEGIN NEW X3}
X « SREAD1()}

78SCAN()}
RETURN(X CONS SREAD3())
END}
EXPR SREAD3 ()1
IF 78SCANVAL EQ PERIOD & ?&4SCANTYPE = 3 THEN X, X
BEGIN NEW Xj X We have adotted pglr (A,B) X
X « SREADL()) X Got the "B" pgrt, %
. 74SCAN() X Get rid of the) %
RETURN X
END

ELSE SREAD2():

MLISP THE MLISP SCANNER « SECTION 7,2 92
%¥ Scanning numbers, X
EXPR SCAN-NUMBER ()3

BEGIN NEW }IVALUE,!ILENGTH,N,X3 = SPECIAL !IVALUE, !ILENGTH}
SCAN_INTEGER(INEXT_CHAR, 0, 2)} X Stan an Integer, X

N « 1 IVALUE; XSave It, X
IF INEXT_CHAR EQ PERIOD THEN %X We have a decima| number, ¥
BEGIN

SCAN_INTEGER(READCH(), O, @)} X Scan the decima| part, X
N » N + 'IVALUE/EXP(12,0, ! ILENGTH)}

END3
IF {NEXT_CHAREQ "E THEN X There |s an exponent, ¥
BEGIN

INEXT_CHAR « READCH()} XSee|f there 1Is a + or =.%

IF INEXT CHAR EQ PLUSS THEN % ¢ %
PROG2TXe1P,8, !NEXT_CHAR®READCH()) ELSE
IF INEXT_CHAR EQ DASH THEN % = %
PROG2(Xe@,18, INEXT_CHAR«READCH())
ELSE X*«10,0}
SCAN_INTEGER(INEXT_CHAR,2,0)3 X Now get the exponent, X
N o N ® EXP(Xs1IVALUE)}

END;
% Now we’ve got the whole number, X
78SCANTYPE « 2} XNumbertype, %
7&8SCANVAL « NI % Value of the number, %
X INEXT_CHAR Is ajready set, X
END}
EXPR SCAN-INTEGER (NEXT,N,LEN)} X Scan an Integer, %

IF NUMBERP NEXT THEN SCAN_INTEGER(READCH(), N#IBASE+NEXT, LEN+1)
ELSE BEGIN

{IVALUE « N} XValueofthelnteger,X%
VILENGTH « LEN} X # digits In the Integer, X
INEXT_CHAR . NEXT} X Advanoe INEXT_CHAR, X
END) -
EXPR EXP (X,N)} X An exponent funotion, %
IF N3 O THEN 1,8 ELSE X The exponentis O, X%
IF N = 2#(N/2) THEN EXP(X#X, N/2) %Itls an even number, ¥

ELSE X & EXP(X#X, (Ne1)/2)} % Blse odd, X%

ML]SP THE ML]ISP SCANNER = SECTION 7,2 93

¥ Calling the following fumgtion wlll 9et UP the propertylists
meaded by the funotion above, %

EXPR SCANINIT ()3

BEGIN
FOR NEW CHAR IN

'tABCDEFGH] JKLMNOPQRQRSTUVHWHYXYZ
abegdefghl| JkiImnopagrstuvwxyzz, 4 1)DO
PUTPROP(CHAR, T, 'LETTER)}
FOR NEW CHAR IN <BLANK,CR,LF,FF,VT,TAB,ALTMODE> DO
PUTPROP(CHAR, T, IGNQRE)}
INEXT_CHAR « BLANK)} 4 Start the scannar out wlth a blank, %
END:
EXPR SCANSET ()3 NILS % Dummy definitions. X
EXPR SCANRESET ()3 NTL:
¥ The LISP translation of thls program Is Ilsted im the following

sectlion, It has been printed using a Program called PPRINT, an
s~expression formatting (pretty=printing) program. Thisprogram | s
wre |l tten In MLISP and Is included with the MLISP system, (Al| of the
files In the MLISP system are Ilsted Im SECTION 4,3 ,) Not. that
FOR~=joops, WHILE-Jpops andUNTIL-loops have been expanded by macros
Into In~|ine code, %

END,

MLISP THE MLISP SCANNER = SECTION 7,3 94

« THE MLISP SCANNER « SECTION 7,3

(DEFPROP !NEXT_CHAR
T
SPECTAL)

(DEFPROP &SCANTYPE
T
SPECIAL)

(DEFPROP &SCANVAL

.
SPECIAL)

(DEFPROP &X&

T
SPECIAL)

(DEFPROP }IVALUE
T
SPECIAL)

(DEFPROP JILENGTH
T
SPECIAL)

(DEFPROP 8SCAN
(LAMBDA NIL
(COND ((NUMBERP !NExT_CHAR) (SCAN_NUMBER))
((LETTERP INEXT CHAR) (SCAN IDENTIFIER NIL INEXT CHAR))
((EQ INEXT_CHAR™DBQUOTE) (SEAN_STRING (LIST DBQUBTE) (READCH)))
(¢IGNOREP INEXT_CHAR)
(PROG2 (PROG (2V)
LOOP ¢ COND
((NOT (IGNOREP (SETQ !NEXT_CHAR (READCH))))
(RETURN &V))
(T (GO LOOP))))
(8SCAN)))
(CEQ !NEXT_CHAR PERCENT)
(PROGo (PROG (8V)
LOOP (COND
(CAND (EQCREADCH) PERCENT)
(SETQ INEXT_CHAR (READCH)))
(RETURN &V))
(T (GO LOOP))))
(&SCAN)))
(T (SCAN_DELIMITER))))
EXPR)

(DEFPROP SCAN_IDENTIFIER
(LAMBDA (L NEXT)
(COND

MLISP THE MLISP SCANNER = SECTION 7.3 95

((OR (NUMBERP NEXT) (GET NEXT (QUOTE LETTER)))
(SCAN_IDENTIFIER (CONS NEXT L) (READCH)))
((EQ NEXT (QUOTE 7))
(SCAN_IDENTIFIER (CONS (READCH) (CONS SLAsH L))(READCH)))
(T (PROG NIL
(SETQ &SCANTYPE 0,)
(SETG &SCANVAL (READLIST (REVERSE L))
(COND
((AND 8x& (GET &SCANVAL (QUOTE &TRANS)))
(PROG NIL
(SETQ &SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))
(SETQ &SCANVAL (GET &SCANVAL (QUOTE &TRANS)))))
(T NIL))
(SETQ INEXT_CHAR NEXT)))))
EXPR)

(DEFPROP SCAN-STRING
(LAMBDA (L NEXT) -~
(COND
((NOT (EQ NEXT OBQUOTE)) (SCAN_STRING (CONS NEXT L) (READCH)))
(T (PROG NIL
(SETQ &SCANTYPE 1.,)
(SETQ &SCANVAL (READLIST (REVERSE (CONS 0BQUOTE L))))
(SETQ INEXT_CHAR (READCH))?)))
EXPR)

(DEFPROP SCAN_DELIMITER
(LAMBDA NIL
(PROG NIL
(SETQ 8SCANTYPE 3,)
(SETQ &SCANVAL INEXT CHAR)
{COND -
(CAND &x8&8 (GET &SCANVAL (QUOTE &TRANS)))
(PROG NIL
(SETQ &SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))
Nl (SETQ &SCANVAL (GET 8SCANVAL (QUOTE &TRANS)))))
(T NIL))
. (SETQ INEXT CHAR (READCH))))
EXPR)

(DEFPROP LETTERP
(LAMBDA (CHAR) (OR (GET CHAR (QUOTE LETTER)) (EQ CHAR (QUOTE %))))
EXPR)

(DEFPROP]GNOREP
(LAMBDA (CHAR) (GET CHAR (QUOTE IGNORE)))
EXPR)

(DEFPROP SREAD
(LAMBDA NIL (PROG2 (&SCAN) (SREAD1)))

EXPR)

ML1SP THE MLISP SCANNER = SECTION 7,3 96

(DEFPROP SREAD1
(LAMBDA NIL

(COND
((AND (EQ &SCANVAL LPAR) (EQUAL &SCANTYPE 3,))

(PROG2 (&8SCAN) (SREAD2)))
(T 8SCANVAL)))
EXPR)

(DEFPROP SREAD2
(LAMBDA NIL

(COND
((AND (EQ 8SCANVAL RPAR) (EQUAL &SCANTyPE 3,)) NIL)

T (PROG (X)
(SETQ X (SREAD1))
(&SCAN)
(RETURN (CONS X (SREAD3)))))))

EXPR)

(OEFPROP SREAD3J
(LAMBODA NIL

(COND
AND (EQ &SCANVAL PERIOD) (EQUAL &SCANTYPE 3,))

(¢
(PROG (X) (SETQ@ X (SREAD1)) (2SCAN) (RETURN X)))
(T (SREAD2))))
EXPR)

(DEFPROP SCAN-NUMBER
(LAMBDA NIL
(PROG (31 AL UE !ILENGTH N x)
(SCAN_INTEGER INEXT_CHAR 0, @,)
(SETQ™N tIVALUE)
(COND ((EQ INEXT CHAR PERIOD)

(PROG NIL-
(SCAN-INTEGER (READCH) 2, 0,)
(SETQ N
(*PLUS N
(*QUO $IVALUE
(EXP 18,8 LILENGTH))))))
(T NIL))
(CONO ((EQ {NEXT_CHAR (QUOTE E))
(PROG NIL
(SETG INEXT_CHAR (READCH))
(COND

((EQ INExT_CHAR PLUSS)
(PROG2 (SETQ X 128.8) ,
(SETQ INEXT_CHAR (READCH))))
(CEQ INEXT_CHAR DASH)

(PROG2 (SETQ X 2,10000000)
(SETQ INEXT_CHAR (READCH))))

(T (SETQ X 18,2)))
(SCAN INTEGER INEXT CHAR O, @,)
(SETQ"N (#TIMES N (EXP X tIVALUE)))))

- ML1SP THE MLISP SCANNER = SECTION 7,3 97

(T NIL))
(SETQ &SCANTYPE 2,)
(SETQ &SCANVAL N)))
EXPR)

(DEFPROP SCAN_INTEGER
(LAMBDA (NEXT N LEN?
(COND ((NUMBERP NEXT)
(SCAN INTEGER (READCH)
(*PLUS (*TIMES N IBASE) NEXT)
(AJD1 LEN)))
(T (PROG NIL
(SETQ !IVALUE N)
(SETQ!ILENGTH LEN)
(SETQ !NEXT_CHAR NEXT)))))
EXPR)

(DEFPROP EXP
(LAMBDA (X N)
(COND ((EQUAL N 2,) 1,0)
((EQUAL N (#TIMES 2, (*QUO N 2,)))
(EXP (#TIMES X X) (#QUO N 2,)))
L (T C*TIMES X (EXP (*TIMES X X) (*QUO (SUB1 N) 2,))))))

EXPR)

(DEFPROP SCANINIT
(LAMBDA NIL
(PROG NIL
(PROG (&V &LSTL CHAR)
(SETQ &LST1
(QUOTE
(ABCODEFGHI] JKLMNOPQRSTUV WX
abgescgdgefaohl Jkimnonarstuvwx
v
LOOP (COND ((NOT &LST1) (RETURN &V))J (T NIL))
(SETQ CHAR (CAR &LST1))
(SETQ &V (PUTPROP CHAR T (QUOTE LETTER)))
(SETQ &LST1 (CDR &LSTL))
(GO LOOP))
(PROG (8V &LST1 CHAR)
(SETQ &LST1 (LIST BLANK CR LF FF VT TAB ALTMODE))
LOOP (COND ((NOT &LST1) (RETURN &V)) (T NIL))
(SETQ CHAR (CAR &LST1))
(SETQ &y (PYUTPROP CHAR T (QUOTE IGNORE)))
(SETQ &LST1 (COR &LSTL))
(GO LOOP))
(SETG INEyT_CHAR BLANK)))

Y 2
y z

EXPR)

Y (DEFPROP SCANSET

(LAMBDA NIL NIL)
ExPR)

MLISP THEMLISP SCANNER =SECTION 7.3 90

(DEFPROP SCANRESET
(LAMBDA NIL NIL)
EXPR)

ML1SP BIBLIOGRAPHY = SECTION 8 99
BIBLIOGRAPHY = SECTION 8

Enea, Horace, MLISP, Teochnical Report No, CS=92, Computer Sclence
Department, Stanford Unlversity, 1968,

Hearn, Anthony C,, STANDARD LISP, Stanford Artificia| Intel|lgence
Laboratory Memo No, Al=90, Stanford Unlversity, 1969,

Hearn, Anthony C,, REDUCE, A PROGRAM FOR SYMBOLIC ALGEBRAIC
COMPUTATION, Proe, SHARE XXXIV, 1970,

McCarthy, J,» Abrahams, P,, kdwards, D,, Hart, T., Levin, My, LISP
1,5 PROGRAMMER"S MANUAL, The Computation Center apd Research
Laboratory of E|ectronlcs, Massachusetts Jnstitute of Technology,
MIT Press, 1965,

Quam. Lynn, STANFORD LISP 1,6 MANUAL, Stanford Artificial
Intel|jligence Laboratory Operating Note No. 28,3, Stanford
University, 1969,

Welssman, Clark, LISP 1,5 PRIMER, Dickenson Publlishing Company, Inc.,
. Bajyront, Cajltornla, 1967.

