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PREFACE

The purpose of the work reported here has been to develop a
conputer program for manipulating signature trees as a gen-
eral research tool for exploring machine |earning and pattern
recognition. Application of the program to speech recogni -
tion was done sinply to test its effectiveness for a specific
problem Oher areas of potential utility are visual pattern

identification and tine series analysis.

A signature tree is a binary decision tree used to classify

unknown patterns. At any node in the tree, the decision to
take a particular branch is determned by a single feature in

the unknown pattern. The tree is autonatically generated

during the Yearning" phase of the program and during the

"identification" phase, the tree conpletely controls feature

extraction procedures.

The signature tree nmethod was devised in an attenpt to genera-
lize and extend the signature table machine |earning technique

devel oped by A L. Sanuel for checker playing.

The program may be viewed as a nmeans of testing of hypotheses

about characteristic features of patterns. This is acconplished
by program selection of a small set of features from a user
supplied list. In a manner of speaking, the user "suggests"

a set of features that may be sufficient for recognition and

then the program selects the "nost useful” suggestions and
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applies themin the proper order to achieve the recognition
in the fewest nunber of steps. Just how the program deter-

m nes which user supplied suggestions are, in fact, the "nost
useful", is determined by the heuristics associated with the
signature trees. The nost useful trees in terns of speed and
accuracy are trees with the smallest nunber of nodes as is ex-

plained in the main test.

Several notions from my personal philosophy of artificial in-

tel ligence have guided the devel opnent of the program

(1) Hyperplane selection, data base analysis, and
tree generation are all acconplished through a

singl e recursive procedure.

(2) The program accepts "advice" through the user

suppl i ed hypothesis |ist.

(3) Cenerality and flexibility are innate since the
program can process any data bases stored
in reasonable formats and since the program
forces the user to supply his own feature ex-

tractors.

(4) Although time has not permtted the inplenentation
of a signature tree |language, this is the intended

next step.
The author has found that the system can be quite
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hel pful in identifying functional sets of fea-
ture extractors. It effectively elimnates re-
latively useless feature extractors while pre-
serving the useful ones. It also circunmvents

the need to explicitly consider the order of
application of the extractors since the signature

tree heuristics determ ne the ordering.






| NTRODUCTI ON

Limted speech recognition by adaptive signature trees is be-
ing investigated. Mbtivation for this work cones fromthe
success of the signature table method as enployed by Sarruel1

in his research on nachine |earning using the gane of checkers.

The signature tree heuristic requires a data base of known
"template" patterns stored in an array which we shall here-
after refer to as the lexicon. By applying feature extractors
to all the patterns, the lexicon can be reordered to place
patterns with simlar features in the sane portion of the |exi-
con. This reordering reduces search tine for finding an entry

in the |exicon when used with an appropriate indexing schene.

On one extrenme, the existence of a single feature value (or
lack of it) can be used to order the utterances in the |exicon
so that all utterances in a specified portion of the |exicon
have (or do not have) that feature value. Existence of the
feature in an unknown utterance reduces the length of the lexi-
con search but does not elimnate the need for a search. On
the other extreme, the one of primary interest here, a suffi-

. cient nunber of features can be utilized to elimnate the need

for a search entirely.



Significant increases in speed of |exicon searches can be
obtained by utilizing the signature tree indexing heuristic.
This increase in speed results from elimnating redundancy
as Wil be explained shortly. kbmé&er, since redundancy is
often useful to correct identification, there can be a cor-

respondi ng decrease in accuracy.

The nethod has been applied to conputer recognition of human
speech. It has achieved an identification rate of 5 utter-
ances per second (not including preprocessing tine) with 90%
correct identification for short lists on a DEC PDP-10. This
is quite fast but the accuracy is not especially good. How
ever, machine learning is the subject of greatest interest
here and the method does very well in this respect. For
example, training on a list of twenty-two different utter-
ances, each spoken once, enables the machine to correctly
predict only 50% of the words spoken again by the sane speaker.
But when the training data consists of four exanples of each
_utterance (for a total of 88 utterances), the percentage
correct rises to 90%.. When an exhaustive search is nade of
the-lexicon rather than using signature tree indexing, the
score rises to between 95% and 100%  However, the exhaustive

search is about 30 times slower in this exanple.

Wiile it was originally intended that Samuel's form of the

signature tables be preserved in the speech work, prelimnary
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studies carried out by Samuel and Astrahan and independent-
ly by the author indicated that significant nodifications in

the method were needed for speech.

The author made at least four"(4) major nodifications in the
met hod: (1) The size of an individual signature table was
reduced to two entries indexed by a single input paraneter

(2) The selection of the single input parameter to a table
became dynami cally adjustable during program execution (which
means that the interconnections between tables became dynam -
cally determined). (3) The termnal nodes in the signature
table tree pointed to entries in a data base. (4) The genera-
tion of signature tables was done by a recursively defined
function. These changes and others led to basic departures
from signature table approach to machine learning. In fact,
the changes culmnated in new heuristic methods which are

collectively known as the signature tree heuristics.

Special attention will be paid to Samuel's approach after a

description is given of the present technique.

1.1 Feature Space: Let the lexicon contain M different

pattern classes, e.g., Mdifferent words. Let there
be N feature extractors. The N feature extractors re-
turn feature values that allow the pattern classes to
be represented in an N dinmensional feature space. An
exanple of a feature extractor is a subprogram that
measures the area under a curve or counts the nunber

of maxima in a 'curve.



Let fij be the integer value returned by feature ex-
tractor j when applied to a pattern of class i. For
exanpl e, f18 m ght be the integer returned for the
utterance nunber 1, e.g., "HeJ:lo", by subprogram 8 that
perhaps counts the nunber of syllables. (Note well
that "feature extractor" is used here to mean a subpro-
gram that returns an integer not real, value for the
neasured feature.) F. = f, + £, V. + . ..£ ¥V

| l 1 i2"2 iN N
where 1= i = M. The vi s are nutual ly orthogonal

i .. . A’: 4 Vl : \\. . o ..
unit vectors, i.e., Vl 3 (Jlj JlJ stands for

the ensenbl e average of fii_ that is:

Gyt 5, o

wher e ki i's the nunber of times a pattern belonging to
class i appears in the |exicon and fij(n) is the integer
value returned by feature extractor j for the nth oecur-

rence Of a pattern in class i.

1.2 Pattern Cassification by Mninum Absolute Difference

Error: The absolute difference error, ei (F), for any

~vector F, is defined by

N
o) = ), (fik - fk) l = (ﬁl) - F
Suppose that the arrayofij has been filled for all i

and j values. Then the class of an unknown pattern G
can be identified as that value of k for which e, (?37 S

mnimzed where 1=%kx<= M For a point of reference,
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this is what would be done in an exhaustive |exicon
search if the lexicon contained only average feature
val ues for each class. Since the expectation of an
exact match between an unknown pattern and any of the
tenplates is nearly zero, the entire |exicon would be
searched for the best, though not perfect, fit. The
best match woul d be defined to be the one that. produces

the smal |l est absolute error.

The m ninum absolute error criterion for identifying
patterns has a geonetrical interpretation which goes

as follows:

The cluster center of a pattern i in the N dinensiona

feature space is |ocated by’F; wher e

~ N ~
Ey 2
j=1
The problem of identifying an unknown pattern is solved
by finding the cluster center closest to the feature
space point of the unknown. The nearest cluster center

o~

to the unknown is that value of k that mnimzes e, (G).

This method, which is based on the utilization of average
feature values, inproves its performance as the nunber

of sanples increases, since the nmean feature values are
inproved. This provides an alternative to an exhaustive
search of a lexicon containing every sanple as a unique

point in feature space. Surprisingly the large increases
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in | ookup speed and savings in core storage obtained
by averaging are acconpanied by little |oss of accu-
racy. (The conditions under which a |exicon of aver-
age feature values is just as accurate as the full
parent lexicon are not well defined. This should be
investigated. However, we do not attenpt to do so

here.)

So far, no explanation has been nade of signature tree
heuristics, but we are now in a position to consider

t hem

2.1 Signature Trees: Signature trees are binary decision

trees used to partially or totally identify patterns.
Distinctive features of an unknown pattern are used
one at a time to index the sequence of nodes which com
pose the tree. The termnal nodes of the tree point

to lexicon entries that either identify the pattern or
restrict the nunmber of candidates. Automatic genera-
tion of the "best" tree, the tree with the greatest
expectation of correctly identifying new patterns, is

a primary goal of this research

Before tree generation can start, a nunber of represen-
tative patterns, appropriately identified, nust be
available in the lexicon. Al gorithnmc feature extrac-

tors can then be applied to all patterns in the |exicon
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to produce neasurenents of features.

2.2 Introduction to Tree Ceneration: Let Smbe a subset

of mintegers selected without replacenent from the
set Sof the first Mpositive integers 1, 2,...M, 1
<m<M. Asinplified version of the signature tree
method is based on the follow ng hypothesis: G ven
the array f.ij, 1=i=M 1< 3£ N for some ‘specific

value of j, call it k, the following is true:
/e N\
(ray <« )

where-y is any elenment of the set Sm and h is any one
of the remaining elenents in S—Sm Restated, there
exists a feature k that serves to partition the set of
all pattern classes into two nonempty subsets where

one subset is conposed of all pattern classes that have
average feature values less than x and the other subset

is the conplinment of the first.

Restated again, all pattern classes do not return the
same average value for feature k and so we may choose

a nunmber x such that some average feature values wll

be larger than x and some will be smaller. This fact
can be used to reorder the entries in the |exicon of
average feature values. For instance, all patterns in
Sm coul d be placed bel ow those in Sy, the conplinment

o Sm. O the pattern classes in Smcreated by fea-
ture extractor k, there will be some that can be separ-
ated further by another feature extractor. This process
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can be repeated until there is only one pattern class
left in the specified |exicon range at which time the
process ends. The process is recursive and can be
easily programmed for conputef execution. The end re-
sult is a tree structure, a signature tree, the nodes
of which contain the nunbers x and k to identify the
appropriate feature extractor and test value. The
term nal nodes point to locations in the |exicon where

a particular pattern class is stored.

The generation of a signature tree can be a good deal
more sophisticated than suggested above. As it stands,
the resulting tree is needlessly liable to produce
errors in recognition. In particular, an unknown
pattern which does not yield feature values exactly
equal to its average feature values can take the wong
branches in the signature tree. In order to mnimze
the taking of wong branches, the tree generator could
consi der probablistic distribution functions of patterns
in the lexicon. It would search for test feature val ues
~that separate different pattern classes and in so doing
affect the other classes so as to separate a m ni mal
nunber of elenments from other elements of the same
class. This heuristic which perhaps seens intuitively
clear has an information theoretic justification which

i's given bel ow.
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2.3 Trees that Extrem ze Entropy: A definition of an "op-

timal" set of hyperplanes can be given in terns of
mnimzing and/or maximzing entropy (or the inforna-
tion theoretic H. Mximzing H the information con-

tent, is the sane as mnimzing entropy, S

Let the information in the lexicon serve to determne
p(k,£i5)., the probability density of £55 for ail i and
j. The integer k is a dummy index that runs over the

range of values allowed for f£; (Feature val ues, the

fij‘s, are integers that typicilly range fromO to 15.)
If we-restrict the value of a particular feature and
allow all the other feature values to remain free, we
have specified a hyperplane in the N dinensional space.
Let this plane be defined by HP(B,b) where B is the
paranmeter nunber and b is the value of the parameter
P;(f,5,< b) is the probability that pattern i has feature

values less than b for feature B.

b-1
P.fin < b) = ), pk(fip)
iviB K20 iB
and
bmax(fiB)
Piftg = b) kZb plk.fip)
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b __ (£,

max' 1B

define the entropy, S, of the hyperplane HP(B,b) as

) is the maxi mum value permitted for £,. W

M

S = -Z P;(f;g = b) In Pj (fjg = b)
i=1
M

- ), Piffig < ) In Pj (fig < b)
i=1

The hyperpl ane that produces the mniml entropy, S,
which is the maxinum information H is defined to be
the "best" hyperplane for discrimnating between differ-
ent patternclasses. This is the hyperplane that would
be used at the node in the signature tree. Hyperpl anes
that yield the mininal entropy tend to split a mninal
nunber of class clusters and those classes that are
split have a mninal nunber of elenents split fromlike
el enents.  Trivial hyperplanes that separate no classes
but do yield mniml entropy values must be thrown out:
The criterion for hyperplane acceptance is that clusters
centers nmust lie on both sides of the hyperplane. A
sinple verbal statement of the entropy mnimzation ar-
gunent is as follows: The goal is to separate a m nimal
number of like points in feature space wth hyperplanes

that separate different points.

We have just defined the entropy of a single node in a
tree. But what about the entire tree? |s the entropy

of the entire tree sinply the sum of the node entropies?
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The answer is no. Moreover, mnimzing the entropy of
entire tree is not necessarily the thing to do. Mnimz-
ing the entropy of the entire tree would tend to produce

| ong skinny trees. But short fat trees can be just as
accurate as the skinny ones and in addition have a shorter
mean traversal tine. So entropy extremzation for the
entire tree and entropy extrem zation at nodes are opera-

tionally dealt with independently.

For the sake of conpleteness, a recursive fornula is
given for the entropy of a tree branch. Fromthis the

entropy’ of the entire tree may be generated.

Let the level of tree nodes be | abeled so that the root
node level is 1; the next node level is 2, etc. Choose

a node at level n. s__. (n,i) is the entropy of this

node for pattern class i. s%(n,i)is the total of the
branch
node entropy for pattern class i, S (n,i), and all

node
other contributions from the nodes bel ow that node that

are on the k branch, where superscript k indicates
that the branch that contains the node n is the right or

| eft branch fromthe node at n - 1.

Sllgranch(n) = ; Sgranch(n’i) N Z Snode(n’i) + E P(fiB < bn) Sgranchmﬂ’i)
1 i
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Returning to the topic of entropy extrem zation, note
that hyperplanes that |ie between a nmaximal nunber of
different pattern classes tend naximze tree entropy.
The entire hyperpl ane sel ecti on process could thus be
based nn an entropy mini-max principle. However, we

shall not pursue this possibility now.

2.4 Tree Shape, Accuracy and Speed: |If there are M pattern

classes to be separated, then the snallest binary tree
that can produce this separation has M| nodes, regard-

| ess of shape.

Proof: It is required that exactly M pointers to group
identification lists be produced by a tree of
bi nary nodes. Let there be M binary nodes. Each
node has one input channel and two output channels.
Al'l but one of the nodes have their input channels
connected to other nodes, so ml| of the 2M out put
channel s are used for internode connections.
This neans that m+l channels are available for
pointers to group identification lists. Hence
m+l =M Thus the snallest nunber of binary
nodes that can separate M groups is MI regard-

| ess of the way they are interconnected.

|f the tree has one termnal node, then the tree is a
linear list (and it is quite "skinny"). The nean nunber

of nodes traversed before locating a specific pattern
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class is, therefore, (M1)/2.

If every tree node points to another node wherever
possible, then the resulting tree is as "fat" as possSi-
ble. If M= 2%, where M is the nunber of classes to be
separated, then there are M2 termnal nodes, and the
number of nodes traversed in locating a pattern is exactly

X.

Al trees have shapes between the above two extrenes

(fat and skinny). If T is the nmean nunber of nodes

traversed, then In M€ T< M2 for any binary tree
2 )

using the mninal nunber of nodes.

It is conjectured that maximzing tree entropy (as dis-
tinct from node entropy) as mentioned at the end of
section 2.3, mininmzes T, the mean nunber of tree nodes
that need to be traversed to find a specific pattern
(provided that the maxim zation proceeds under the con-
straint of utilizing only those hyperplanes that pro-
duce a mnimal nunber of nodes). It may be possible to
rigorously prove. this in sone sinple way but to do so

I's not attenpted here.

The plausibility argument goes as follows: M ninizing
tree entropy tends to create skinny trees and nmaxim z-
ing tree entropy tends to create fat ones. W have
just seen that fat trees have smaller T values than

skinny ones. Therefore, maximzing tree entropy tends
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to mninmze T.

In summary, the shape of the tree has no relation to its
di scrimnatory power but doesaffect the nmean nunber of

nodes that nust be traversed in pattern classification

2.5 Sizes of Trees: In section 2.4, we found that the snall-

est nunber of nodes in a binary tree with Mterm nal
branches (pointing to M pattern classes) is MI. Achiev-
ing this mninal tree size is the desired goal but not

al ways attainable. The actual tree size is determ ned
by the feature space. |If different classes do not tend
to occupy different portions of feature space then dis-

crimnation is difficult and the tree size is |arge.

Figure 1 shows two exanples of patterns in a two dinen-

sional feature space.

B, B,

I I

Fig. 1. Two hyperplanes are available, b,and h
In case |, Dbl is sufficient to_dlscrimiﬁate
between patterns A and B. But in case |
both bl and b2 nust be used.
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For the sake of illusration, we assune that only two
hyperplanes are avail able, H(Bj,b3) and H(By,b2). The

| exi con contains four pattern elenents, two of class A
and two of class C  In case | of Figure 1, a single
node tree using H(B1,b1), is all that is needed to separ-
ate class Afromclass ¢c. But in case Il, both hyper-

pl anes are needed. The corresponding trees are shown

in Figure 2.
H (Bz, bz)
A A
L -~ L
H(B,,b,) E H(B,,b,) E
14Dy A X K L’/f’ N ¢l x
— | |
c Al C
C
node o) \\\\\ yd o]
N | N
C ~ ¢
H(821b2)
I T
Fig. 2. Tree structures and |exicons used to
separate patterns A and C as shown in
Figure 1.
The point of the illustrations in Figure 1 and Figure 2

Is that the feature space representation of patterns
directly determnes the tree size. |f we assune that

none of the n pattern classes exist such that
li ke class elenents are nearest neighbors to each other

in the feature space,then it i s possible that the nunber
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of hyperplanes required for total discrimnation could

be as large as n-I. But n-I is an upper limt.

Exanple: A lexicon of 1000 utterances containing
only 22 different words could require as
many as 999 hyperplanes. On the other
extrene, it could achieve total discrimna-

tion with only 21 hyperpl anes.

In general, the maximum nunber of signature tables

possible is x where:

1) x is one less than the nunber of sanples in the

| exi con, or

2) x = 2P where b is the nunmber of bits used

to represent a point in feature space.

Case 1 applies if the nunber of sanples is less than
zb; otherwi se case 2 applies. For exanple, if there
are 10 feature values, each ranging between 0 and 7,
thus using 3 bits, then the nunber of bits, b, used to
“represent a point in feature space is 30. If there are
104 sanple patterns in the lexicon then case 1 applies

4
because 23°> 10°.

omjectare: The effectiveness of the feature space in
classifying patterns is reflected in the
size of its optimal signature trees: the

smaller the trees, the better the space.
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This can be understood as follows. Let the total

vol une of feature space be partitioned first into

n subvol umes and then into m subvol umes where ne» n.
On the average, a randomy located feature point in
the m space will be closer to a partition than a ran-
domy located feature point in n space. Thus any
"noise", fluctuations, in the location of the feature
point is nore likely to carry it across a partition
boundary in m space than in n space. |f the subvol umes
are created by the hyperplanes of the signature tree,
then the larger subvolunes created by smaller trees
are clearly less susceptible to error producing noise.

This fact gives rise to the follow ng heuristic:

The primary goal of the signature tree method is to
guide the construction of a feature space that mni-
mzes the tree size, and, if possible, produces a
tree with only M1 nodes where Mis the nunber of

pattern classes.
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3. DATA BASES AND LEXI CONS

The data base is a conputer file containing relatively unre-
fined data conpared to a lexicon which is a nore conpact ver-
sion of the same file. The lexicon exists explicitly for the
purpose of identifying patterns and is usually constructed

after sone sort of preparatory analysis of the data base.

3.1 Data Base: In the research on speech reported here, the
data base is a one-dinensional array containing M utter-

ances, for a total of 25*M words of array storage.

The first word in each 25 word block is reserved for a
pattern |abel which is identification number or synbol.

(This is sonetimes called the "key" by other witers.)

The next 16 words contain digitized anplitude and zero
crossing values for an utterance.(3) Anplitude and zero
crossings are recorded every 10 mlliseconds with averag-
ing over the 10 mllisecond intervals by a hardware pre-
processor. A typical utterance is "How are you?" and
| asts about one second. However, nost utterances can

. still be recognized when averaging is increased to cover
much longer tinme intervals. For instance, an entire
utterance regardless of its length can be scaled to fit
into 32 time units for our work with no apparent |oss of
key features. There are three zero crossing and three
anpl i tude neasurenments per tine unit, each using three

bits, for a total of*18 bits. PDP-10 conputer words
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have 36 bits. Consequently, the entire utterance is

stored in 16 conputer words.

The remaining 8 words in each 25 word bl ock are used

for storage of global features of the utterance. @ o-
bal features are nmeasured as required during growth of
a signature tree and stored within a byte field of one

of the 8 words.

3.2 Lexicons: The lexicon used for identification of utterances
could be the entire data base, or it could consist of the
utterance |abel and one or nore of the eight words of
gl obal feature values; or it could be nothing nore than
the utterance label. The reason that the |exicon can be
nothing nore than pattern labels is that the information
for discrimnation is contained in the signature tree
structure. Significant savings in storage can result
fromusing a |lexicon of utterance |abels and the appro-
priate signature tree, in place of the full data base.

For example, let there be a list of 22 words each spoken
4 tines for a total of 88 utterances. Let n be the nunber
of data base words per pattern and M be the nunber of
classes. In this case M= 22. Let the nean nunber of
sanpl e patterns per class be m In this exanple, m = 4.
It is possible to reduce the storage requirenents from
n*mtm for the full data base to (M-1)*2+M. The (MI)*2
term comes fromthe fact that each of the (MI) nodes in

the signature tree uses two conputer words. The Mterm
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is the nunber of conputer words required by the |exi-
con of utterance |labels. The storage reduction is
M(n*m-3)+2. |f we set m= 25, then the storage require-
ment could be reduced from 2200 to 64, which is | mpr es-
sive. Achieving this maximum reduction depends upon

the feature extractors and the hyperplanes they generate.
But the maxi mum reduction noted in this exanple is fre-
quently attained in the applications reported in section
6.

The savings-in storage is one of the nost interesting
and potentially useful aspects of the signature tree
met hod especially for large vocabularies and/or a large

number of different speakers.
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4,  FEATURE EXTRACTORS

A feature is defined to be anything in a pattern that can be
measured. A feature extractor is a subprogram that neasures
a feature and returns an integer value. (The restriction to
Integer feature values is not a universal convention; it is
used here because the feature values are used for array index-

ing nore than anything else.)

For exanple, let the pattern be a two-channel tine series.

The features could include: nunber of nmaxinma and m ni my;

sl opes greater or smal | er than x:; areas under curves; ratios
of areas; distances between adjacent mnim; second deriva-
tives; noving averages; fourier power spectra averaged over

a given frequency range: autocorrelations; cross correlations;
the kitchen sink. Feature extractors would return scaled in-

teger values for each of these features.
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5. SAMUEL'S SI GNATURE TABLES

The signature table technique is a perceptron-like(Z)

pattern
classification method. It is based on a sequence of table

| ook-up operations where each table is a multi-dinmensiona
array. An individual signature table can be viewed as an n
di mensi onal hyperplane in an m dimensional feature space,
where n i s equal to the nunber of input paranmeters to the
table and mis the total nunber of parameters available to
all the tables. The array indexes for any given table are
specified by previous tables or by feature neasurenments per-

fornmed directly on a pattern.

Sanmuel uses signature tables to evaluate the relative nerit

of various board positions in the game of checkers. A small

set of board paraneters, e.g., 12, are used as input variables.
A typical arrangenment mght have three first |evel tables, each
table having four input parameters, wth each input paraneter
comng froma board feature measurement (such as "piece count").
Each | evel one table would contain integer values that would
serve to index one or nore of the tables at the next level. At
"l evel two", one or two tables would operate in the same way

as level one tables except that their input would cone from

| evel one tables. Their output would index yet another table
whi ch woul d contain the "score", where the score gives the re-

| ative value of the board pattern being exam ned.
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Initially, the signature tables are enpty. They are filled
during the "learning" stages of the program The data used
in learning can be discarded once it has been processed since
the nunber of tinmes a pattern projects onto a hyperplane is
recorded in a cell on the hyperplane at the point of inci-
dence. For this method to have any hope of success, the
different training patterns projected on a hyperplane nust
tend to fall on different portions of the hyperplane. Qher-
wi se, when an unidentified pattern falls on a point on a
hyperpl ane, no information could be gained to help identify
it. Wwen the user does not possess a preconceived notion

for the appropriate hyperplanes, and he usually does not,
then the real problem becomes one of finding appropriate
groupi ngs of input paraneters, It was precisely this pro-
blemthat led to the signature tree system The signature
table nethod provides no nmeans of automatically connecting

i ndi vidual tables dynanmically. And not having this flexibi-
lity severely limts the application of the technique to re-
search problens. This shortcomng is elimnated in the

signature tree techni que developed in this paper.
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6. APPLI CATION TO SPEECH HECOGNI TI ON

Moder ate success has been attained in the application of the signature
tree nmethod to speech recognition. An accurécy of around 90% was obtai ned
for the twenty-two different utterances used in the training runs. For
such a short list of utterances this accuracy is not particularly good, by
itself; but it becomes interesting when the speed, "learning" properties,

and flexibility of the program are considered.

Speed:  The through-put identification rate is five to ten times faster
than the excellent programs of Astrahan(3); and Vicens and Reddy.‘®) (How
ever, their programs identify word lists three to five tines |onger and
with higher accuracy than this one. |f the present program were used on

the longer lists, its speed advantage woul d be somewhat di m nished.)

Learning: An inprovenment in the correct identification rate of nearly 40%
is observed as the number of exanples of each utterance increases from one
to four. This is probably the npost outstanding success of the program
Flexibility: New hypotheses and changes in data base formats can be en-
tered in only a few nminutes, the time it takes to type in a subroutine.
This should increase the fabrication rate of good feature extractors and

ultimately lead to superior speech recognition.

A few of the SAIL procedures used to assist in feature extraction are as

follows (their names give the flavor of their intended function):
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TOTAL ENERG _PER TIME UNIT, FIND MAJOR CHANGES_IN_TOTAL ENERGY,
ALL, CH_ARE ZERO, ALL_CH_HAVE_ENERGY, FIND_MINI_MUM_IN_ENERGI_ PER-
CH, MOVING AVERAGE, ENERGI BETWEEN M NI MA, TOTAL_E_AROUND- MAX-
PEAK, FIND RANGE_OF VOVWEL, COUNT_MAXIMA, FORM CHANNEL- RATI CS,

COWMPACT- UTTERANCE, and GCENERATE- TEMPLATE.

The entire programis witten in PDP-10 SAIL. In the actual runs, to

avoi d disc storage problens, the entire data base of 10 speakers was sel dom
used; nost experiments were done with the five pronunciations of the utter-
ance list by Lee Erman. This required DATA BASE core array storage of 2750

thirty-six bit conputer words.

A typical nachine "learning" experinment is carried out as follows: The
first 550 DATA BASE words, which contains the first 22 utterances, is pro-
cessed. Various feature extractors are applied in the order determined by
the user through a list prepared with the STOPGAP text editor. Wen a fea-
ture value is found that serves to separate one or nore of the 22 utter-
ances fromthe rest, then atree node is created and the nunber of the fea-
ture extractor is stored in the node: Also stored in the node are pointers
to the top and the bottom of the DATA BASE sublists created by the feature

val ue (see Figure 3).
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Fig. 3. Termnal tree node that separates utterances one and
. two from utterances three through twenty-two.

Since there is only one data point for each utterance class, finding
hyperplanes that lay between different utterance classes is virtually
assured. In practice, the resulting signature trees nearly always have
only 21 nodes (as would be predicted). Wen tested on utterances 89
through 110, which is the fifth set stored from 2225 through 2750 in

DATA BASE, the scores are usually 50% correct. \Wen the systemis fur-
ther trained with utterances 1 through 44, a 21 node tree usually results
and its scores are centered on 68% correct when tested on utterances 89
through 110. Learning on utterances 1 through 66 gives 77% correct, and
| earning on utterances 1 through 88 gives 86% correct. This is always

acconplished with fewer than 30 nodes per tree.

Plotted in Figure 4 are average scores for the tree method and the ab-

solute mninum error nethod.
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Fig. 4. Average percent correct plotted vs. the number of training
sanples for each utterance. Absolute mininum errors are
"0"'s; trees are" "o

The 100% score for the tree method on sanple set 5 is a consequence of the

fact that the same utterances were used in training as were used in identi-

fying the utterances.

As a point of conparison, the mean feature values were tabulated for the
.~ first 22 utterances determned, and utterances 89 through 110 were then

processed as unknown utterances, and predictions were made using the | east
absolute error criterion. Scores ranges from 85% to 95% for several sets
of feature extractors. Sinmilarly mean values were tabulated for 44, 66,

88 and 110 utterances and then tested on utterances 89 through 110. The
result is shown in Figure 4. The nmininum absolute error approach was nore
accurate sinply because it incorporated more redundancy. But the speed ad-
vantage of the tree nethod stood out clearly; the mninmm absolute error

approach took between 20 and 30 times longer in the identification phase
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than the tree method did

The values plotted in Figure 4 are averages obtained from ordering the
trial feature extractors differently and/or omtting certain feature ex-
tractors. However, these results represent optimal overall performance

conbi nati ons of features.

Table 1 is conputer output which shows the 22 utterances given in the

data base along with response of the program for a particular run. The
program correctly identified 19 of the 22 utterances, it used a tree with
22 nodes (signature tabrés); 88 utterances were used in growing the trees
(four exanples of each utterance); a maxi num of 400 hyperpl anes were avail -
able to the program fromwhich it selected 22 to grow the tree. The four
col ums of nunbers show which utterances were put in the same hypercell by
the tree hyperplanes. For exanple, the cell that is pointed to by the key
features of utterance 89 in the data base, which happens to be the "make"
in colum one, is a cell containing four 1's. Consequently, utterance "1",
which is the numeric identifier for "make", is predicted and "make" is

witten in colum two.

If the cell contained nmore than one utterance class, e.g. 1 1 1 2, then
the utterance which occurs the greatest number of tines is predicted; in
this exanple, utterance 1 would be predicted. However, a cell with nore
than one utterance class will occur only when there are no hyperplanes to
separate the classes. In the case shown in Table 1, all the cells (there
are 23 of them) contain only one utterance class each. Furthernore, only

utterance 22 failed to lie totally in one cell.
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Tabl el

THE TOTAL NUMBZR OF SIGNATURE TABLES =272

THE TREE STRUCTURE AND DATA BASE ARE FROMFILE TREZH
THE NUMBER OF UTTERENCES I N THE TRAINI NG SAMPLE=388
THE BEGINNING UTTERENCE NUMBER 1S 89

THE ENDING UTTERENCE NUMBER IS 110

THE MAXIMUM DEPTH PERMITTED IN TRAINING = 400
GIVEN UTTERENCE UT PREDICTED

KAKE MAKE 1 1 i 1
UNITE UNITE 2 2 2 2
DELETE DELETE 3 N 3 3
ONE ONE 4 4 4 4
EIGHT EIGHT 5 5 5 5
THREE ~ GELETE 3 3 3 3
WHOLE WHOLE 7 7 7 7
GCTAL OCTAL 8 8 8 8
EXCHANGE EXCHANGE 9 9 9 9
CORE CURE 1 18 18 10
MULTIPLY MULTIPLY 11 11 11 11
SIX SIX 12 12 12 12
SUBTRACT UNITE pa 2 2 2
SCALE MAKE 1 1 1 1
CIRECTIVE DIRECTIVE 15 15 15 15
QUTPUT OUTPUT 16 16 16 16
[ NTERSECT INTERSECT 17 17 17 17
REGISTER REGISTER 18 18 18 18
FINE, THANK YOU FINE, THANK YOU 19 19 19 19
GOOD  MORNING GOOD MORNING 20 20 20 20
HOW ARE YOU HOW ARE YOU 21 21 21 21
EXCUSE ME EXCUSE ME 22 22 22
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A tree that contains only one utterance class per cell wll correctly
identify all utterances used in the training set. If the tree of this run
had been used to identify utterances 1 through 110, it would have m ssed

only 3 utterances, the sane nunber it nissed on utterances 89 through 110.

Geat effort was expended optimizing the speed of the program and with

good success. For exanple, to grow the tree for this run, which required
testing sone 400 hyperplanes and 88 utterances, required only one nminute
PDP-10 conpute time. The identification of the twenty-two utterances, 89

through 110, required about 10 seconds.

Many variations on this basic scheme were tried; one in particular yielded
91% correct prediction scores. The trick here was sinply to sinmultaneous-

ly enploy three or nore signature trees grown on the sane training data

but forced to use different hyperplanes. This provided sonmething of a "re-

dundancy" check; it helped to elininate the effects of "noisy" neasurements.
Figure 5 shows a typical utterance that has been conpacted for storage in

tﬁe DATA BASE. There are six variables A, Z, Ay, Zy, Ay, Zg, each of

whi ch can assune eight values between 0 and 7.
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Fig. 5. Anplitude and zero crossing versus tine for each of the
three speech preprocessing filters for the utterance
"register".

No normelization was attempted. The original array which typically con-

tained x=200 tine units was reduced to a 32 tinme unit array by averaging
over x/32 + 1 tinme units at once and storing the result in a single tinme

unit and repeating 32 tines.  Conpaction of the speech data in this

fashion, as crude as it is, preserved enough information for interword

di scrimnation
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CONCLUSI ONS

Wen the nunber of |abeled patterns available to train an
automatic recognition systemis small, the predictive accu-
racy of a signature tree systeﬁ1is poor; a mnimumerror cri-
terion using as many features as possible can be much nore
accurate. \Wen enough data is available to establish proba-
bility distributions of feature values for pattern classes,
the signature tree method allows a | arge increase in speed
of the recognition system over the mninmum error approach

with little degradation of accuracy.

The signature tree method selects a mniml set of feature
extractors froma large set supplied by the user. In this
fashion, the man-machine unit "learns" which features are
the nost useful in pattern discrimnation. For particular
types of patterns, e.g., those arising in speech or vision
research, general "front end" feature extractors wll pro-
bably be discovered that will greatly increase the overal

power of the signature tree nethod.

Present|ly under devel opment are two nmmjor additions to the

- signature tree heuristics repertoire: a linear discrinnant
preprocessor which forns |inear conbinations of feature
extractors,and a technique for copying noisy patterns into
both of the sublists created by a feature value. Formng

i near conbinations of input parameters increases the nunber

of hyperplanes avail able for creating tree nodes. As the
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system stands, it only uses hyperplanes perpendicular to

the coordinate axes. Linear combinations of features wll
create "skew" hyperplanes. The other addition, that of
duplicating patterns so to nake them appear on both branches
froma node, is expected to greatly reduce errors resulting

from "noise" (random fluctuations) in paraneters.

The spectacular learning rate (a 40% increase in the nunber

of correct identifications in the course of increasing the
number of exenplary sanples per utterances from one to four)

is somewhat artificial. By utilizing a conbination of the
mnimum error criterion and the signature tree technique (in-
stead of sinply using the signature tree), a nuch higher

score could have been obtained at the outset, thus |essening
the range for possible inprovenent. In this case, a shift

in enphasis from score optimzation to speed optimzation
woul d be appropriate. Using the mnimum error criterion

slows the identification rate significantly but inproves
accuracy. Increasing the nunber of sanples in the training

set allows the signature trees to function nore accurately,
thus allowing the trees to replace the mnimumerror criterion
mhiéh results in an overall increase in speed. So, the "learn-
ing

optim ze speed or accuracy depending on how it is used.

aspect of the signature tree nethod can be applied to
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Autonatic Control Systes® theory is closely related to the signature

tree method. |n particular, the control systems field has produced a number

of algorithnms for generating "decision surfaces" in hyperdimensional fea-
ture spaces, e.g. linear, polynonial and statistical discrininant functions.
Wiile the signature tree heuristics presented here offer little help in
generating binary discrimnant functions —control theory offers little help
in combining a large nunber of binary decisions. However, an ideal total
system is possible with the binary discrimnant functions serving to supply
trial hyperplanes to a signature tree generator. A sypbiotic union of
automatic control systems with signature trees seens likely and is being

investigated by the author.
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