
' STANFORD ARTIFICIAL INTELLIGENCE PROJECT .
MEMO AIM-139
COMPUTER SCIENCE DEPARTMENT
REPORT Nd. STAN-CS-71-189

MATHEMATICALTHEORYOF PARTIALCORRECTNESS

BY

ZOHARMANNA

JANUARY1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

MATHEMATICAL THEORY OF PARTIAL CORRECTNESS *-I

bY

Zohar Manna

Computer Science Department

Stanford University

ABSTRACT: In this work we show that it is possible to express

most properties regularly observed in algorithms in

terms of 'partial correctness' (i.e., the property that

the final results of the algorithm, if any, satism some

given input-output relation).

This result is of special interest since 'partial

correctness 1 has already been formulated in predicate

calculus and in partial function logic for many classes

of algorithms.

J* The resesearch reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
(SD-183).

A preliminary version of this work was presented under the
title "Second-Order Mathematical Theory of Computation" at the
ACM Symposium on Theory of Computing (May 1970).

.

Introduction

We normally distinguish between two classes of algorithms: deterministic

algorithms and non-deterministic algorithms. A deterministic algorithm

defines a single-valued (partial) function, while a non-deterministic algorithm

defines a many-valued function. Therefore, while there are only a few

properties of interest (mainly, termination, correctness, and equivalence)

for deterministic algorithms, there are many more (determinacy, for example)

for non-deterministic algorithms.

In this work, we show that it is possible to express most properties

regularly observed in such algorithms in terms of the rpartial correctness'

property (i.e., the property that the final results of the algorithm, if

any, satisfy some given input-output relation).

This result is of special interest since 'partial correctness' has

already been formulated in predicate calculus for many classes of deterministic

algorithms, such as flowchart programs (Floyd (1967 a) and Manna (196~))~

functional programs (Manna and Pnueli (1970)), and Algal-like programs

(Ashcroft (1970)); and also for certain classes of non-deterministic algorithms,

such as choice flowchart programs (Manna (1970)) and parallel flowchart

programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).

Similarly, Manna and McCarthy (1970) have formulated 'partial correctness'

of functional programs in partial function logic.

1. Deterministic Algorithms

An algorithm P (with input variable x and output variable z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping Dx (the input domain) into D
Z

(the output domain).

.
That is, for every EeDX , P(t) is either undefined or defined with

P(E) ~~~ .

Examples: In the sequel we shall discuss the following four deterministic

algorithms for computing z = x! where Dx = DZ = fthe non-negative integers1 .

(a) The flowchart programs Pl (Figure 1) and P2 (Figure 2). Here

(YpY*> + (Y1-1,YyYJ Y for example, means that yl is replaced

bY Y1-1 and Y* is replaced by yl*y2 , simultaneously.

(b) The functional programs

P3: z = F(x) where--

F(y) <= if y = 0 then 1 else y*F(y-1) ;

and

q+: z = F(x,O) where

F(x,y) <= if y = x then 1 else (y+l)*F(x,y+l) .P -

Here ' <= ' stands for 'is defined recursively by' (see McCarthy (1963)).

(YpY& + (y1-LY1*Y2) z+Y2
I

Figure 1: The flowchart program Pl for computing z = x!

(y,JY,> + (y1+1, (yl+l) l y,> Z+Yt 2

F I

Figure 2: The flowchart program P2 for computing z = x!

3

Let Jl(x,z) be a total predicate over DxxDZ (called the output

predicate), and let bDX . We say that

1. (i) (PA) is

either P

partially correct with respect to $ if

(6) is undefined, or P(s) is defined and $

(ii) (P,E) is totally correct with respect to q if P(E)

(5,m)) = T ;

is

defined and \c'(s,P(s)) = T ;

(iii) (P,!) is defined if P(E) is defined.

Let Pl and P2 be any two comparable deterministic algorithms,

i.e., algorithms with the same input domain DV and the same output

domain

2. (i)

()ii

3. (i)

(>ii

II

DZ l

We say that

(p1'5) and P2t 0 are partially equivalent if either P,(E)

or P,(E) is undefined, or both P,(E) and P,(E) are defined

and Pl(5) = p,(E) ;

(p,Y El and (P,,!) are totally equivalent if both P$)

and P2(E) are defined and Pi(E) = P,(E) .

(p,, 5) is an extension of 05 5) if whenever P2(E) is
defined, then so is P,(E) and P,(t) = P2(s) ;

(p,, 5) and P2’ E> are equivalent if either both P,(E) and

p,(e) are undefined, or both P,(E) and P,(t) are defined

and p,(t) = P2(t) .

Our main purpose in this section is to show that all these properties

can be expressed in terms of partial correctness as described in the

-I*following theorem.

-I* For abbreviation, we use -q to define the predicate which is T
exactly for those values where $ is F , V* to mean "for every
output predicate J, . ..". and 3$ to mean "there exists an output
predicate q such that . .." .

4

THEOREM1

(4 (PYE> is totally correct w.r.t. $ if and only if (P,!) is not

partially correct w.r.t. N 9 ;

w (PY El is defined if and only if (IQ) is not partially correct

w.r.t. F (false);

(c) (P@) is parCa1l.y equivalent to (P,,!) if and only if VJI [(P,,EJ

is partially correct w.r.t. 9 or (P
2'

E) is partially correct

w.r.t. -Jr1 ;

(d) (p,,E) is totally equivalent to (P2,S) if and only if ‘dJI [(p,,E)

is not partially correct w.r.t. $ or (P
2'

EJ is not partially

correct w.r.t. -$I ;

(4 (p,, E) is an extension of 4, 5) if and only if VJr [(P,,g) is

partially correct w.r.t. \cI implies (P2,Q is partially correct

w.r.t. q] ; and finally

(f) (p,Y 9 is equivalent to (P2A) if and only if VtrJI [(Ply!) is

partially correct w.r.t. q if and only if (P,,!) is partiany

correct w.r.t. $1 .

Proof of Theorem 1. The proof of (a) is straightforward. 04 is a

special case of (a) since by definition (p,, EJ is defined if and only

if it is totally correct w.r.t. T (true). (c), (d) and (e) are best proven

by considering the corresponding contra-positive relations and using the

fact that P,(E) and P2(E) are defined and P,(E) # P,(t) if and only

i f P,(E) and p2(E> are defined and 3$[JI(!,P,(S)) # J'(SyP2(E))] . .

-

(cl) (Ply!) is not partially equivalent to (P,,k) (i.e., both P,(t)

and P,(g> rare defined and f,(g) # P,(g)) if and only if 3*[(~,,5)

is not partially correct w.r.t. 9 and (P&l is not partially correct

w.r.t. +I ;

5

(d') (Pl,E) is not toally equivalent to (P2,E) (i.e., either p,(t)

Or p,(E) is undefined, or both P,(t) and P,(E) are defined and

plw f K(E))

and (P,, ;)

if and only if 3$[(Pl,F,) is partial1y correct w.r.t. $

is partially correct w.r.t. - $1 ; and

(e’> (Pl’k> is not an extension of (P2, E> (i.e., either P,(E) is

defined and P,(E) is undefined, or both P,(E) and P,(E) are defined

and P,(E) # P,(E)) if and only if 3q[(P,,g) is partially correct

w.r.t. 9 and (P2’ El is not partially correct w.r.t. $1 .

(f) follows directly from (e) since (P,,k) is equivalent to (p,,Q

if and only if (Ply!,) is an extension-of (P2,E) and (p,,~) is an

extension of
(p,YE) l

Suppose for a given deterministic algorithm P (mapping integers

into integers) we wish to formulate properties such as being total and

monotonically increasing (i.e., x > xr = P(x) > P(x')). Unfortunately,

our definitions of partial and total correctness are not general enough to

include such simple properties in a natural way. However, we can include

them by introducing more general notions of partial and total correctness.

Let Pi (1 < i < n) be n deterministic algorithms with input- -

variables x
i' output variables z

i' input domains D
x. y

and output
1

domains DZ , respectively. Let T(x z
1' 1 Y l *-, Xn� q be any total predicate

. i
over D xD x...xDx xDZ

x1 z1
and let SieDx (1 < i < n) . We say that

n n i --

4. (i) (P,,E,),(PnyEn) are partially correct w.r.t. 3 if either

at least one of the Pi(gi) is undefined, or each Pi(Ei) is

defined and ~(ElyPl(~& -&.,,I?,(5)) = T sn

.(ii) (py El>, l l 0, (p,, En> are totally correct w.r.t. S if each

Pi(5i) i s d e f i n e d and ~(Sl~Pl(~l)yo~~ySn~Pn(~n)) = T l

6

Note that for n = 1 we obtain properties l(i) and l(ii) as special

cases of properties k(i) and 4(ii), respectively. For n =2 and

~(Xl’Z1YX2’ z2>: x1 =x 3z2 1 = 22 , properties 4(i) and 4(ii) reflect

properties 2(i) and 2(ii),respectively. For n = 2 and

~(Xl,Z1~X2yz2): x1 > x2 =) z1 > z2 where p1 and P2 are identical to P ,

we obtain the above monotonicity property.

It is interesting that these general notions of correctness can

still be expressed just by means of the usual partial correctness, as

described below.

THEOREM 2

(4 (p,, QY l l �Y (p,Y En) 82-e

3Jr,. l .34&E p,(E,> is

mei p2(S2) is

.

.

.

and Pn(Sn) is partially correct w.r.t. qn

and Vyl...VYnN$pY1) and . . . and *J&'Yn> implies ac+YIY---YSnYYn) 13 ;

04 <P,Y S,>, l l l Y <P,Y 6,) are totally correct w.r.t. 7 if and only if

w,. l .vv☺
p,(E,) is

ami P2(S2) is partially correct w.r.t. q2

.

.

m-xi P,(E,> is partially correct w.r.t. qn

partially correct w.r.t. 9 if and only if

partially correct w-r-t. ql

partially correct w.r.t. JI,

partially correct w-r-t. $l

implies 3~~. . �3~~~~,(+y,> ad l - l ad lfn(tny~☺ and S(E ,Y1 1� l --Y nf n6 Y>l].

Proof of Theorem 2. It is straightforward that the right-hand side of (a)

implies the left-hand side. To prove that the left-hand side implies the

right-hand side, choose 31i in such a way that Si(&,qi) = T if

- and only if Pi(Si) is defined and vi = Pi(Ei) . (b) follows from (a)

since (p,YE& l --Y <p,Y tn> are totally correct w-r-t. $ if and only if

<p,Y s,> Y l l l Y o&Y En> are not partially correct w.r.t. -5.
7

2. Formulation of Partial Correctness of Deterministic Algorithms

The above results imply that if one knows, for example, how to

formulate partial correctness of a given deterministic algorithm in

, predicate calculus , the formulation of many other properties of the algorithm

. in predicate calculus is straightforward. As a matter of fact, partial

correctness has already been formulated in predicate calculus for many
.

classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

' Let us consider, for example, a flowchart program P of the form

described in Figure 3, with a given output predicate q(x,z) over DxxDZ .

Here, input(x) maps D
X

into D
YJ

is a predicate overtest(x,y)

DxxD Y
Y

DxxDoperator(x,y) maps
Y

into D
YY

and output(x,y) maps

Dx x D
Y

into D
z l

.-

START7
l *

Y + input(⌧)

r

Y' operator (x,y)
l

.
z .- output(x,y)

b

4 *
O-

B w-------w - avd

Figure 3: The flowchart program P

8

We associate a predicate variable (unspecified induction hypothesis)

Q(XYY) with arc a and the given output predicate Jr(x,z) with arc 6 ,

and construct the following formula W,(x,Jr) :

3Q(Q(x,input(x)) --- initialization

A VY[&(XYY)

A VY[&(XYY)

or equivalently,

3Q(Q(xyinput

A -test&y) 2 Q(x,operator(x,y))]

h test(x,y) 3 4+boutput(xy~>> I]

(1)X

*A VY[&(XYY)=> IF test(x,y) THEN

ELSE

--- induction

--- conclusion

--- initialization

Here, IF A THEN B ELSE C stands for

J!+GoutPut(xYY)) --- conclusion

Q(x,&rafm(x,y)) I) l --- induction

A 2 B) A (-A 1 C) . Note that\

D 3 IF A THEN B ELSE C is logically equivalent to (D A A 2 B) A (D A -A 1 C) .

The key result is that for any given input EeDx , (PY 0 is partially

correct w.r.t. \1/ if and only if W,(5,*) is true (Manna (1969)).

Example 1: In particular,

it follows that:y

for the flowchart program Fl (Figure l),

(PIJ 6) is partially correct w.r.t. z = x! if and

only if W
Fl

(e,z=x!) is true, where W
pl

(k,z=x!) is

3Qt Q(5,W)

A VY,~TY,[Q(~YY~YY~)~IF yl=O THEN Y,=!! ELSE Q(S,Y~-~,Y~-Y~)~~ l

Note that for Q(~,y,,y,> being the predicate y2.yl! = 5! , the formula

in braces {] is true.

J* Here, Dx=DZ = {the non-negative integers] , Y= (YlYY2) I and

-
Dy= {all pairs of non-negative integers) .

9

m.:* , I.

Example 2: For the flowchart program P2 (Figure 2), it follows

similarly that: (p,, 5) is partially correct w.r.t. z = x! if and only

if W ([,z =x!) is true, where W
F2 F2

(E,z=x!) is

3Q[Q(W,l)

A VY~VY~[Q(~YY~YY~)=TF Yl =E THEN y2 =C ELSE Q(~,Y,+~Y(Y~+~).Y~)]~ l

Note that for Q(~,yl,y2) being the predicate y2 = yl! , the formula in

braces f 1 is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)--

else operatorl(x,y,F(x,operator2(x,y))) ,

with a given output predicate $(x,z) over DxxDZ . Here, input(x)

maps Dx into D test (XY Y)
YY -

is a predicate over DxxDy Y outPut(xYY)

maps DxxD into D
Y z y operator1 maps DxxDyxDZ into DZ , and

operator2 maps Dx x D into D .
Y N

we associate a predicate variable (unspecified induction hypothesis)

Qh~,z) with F(%Y) Y and construct the following formula W,(x,+) :

3Q{ VdQ(xyinput(x)yz) 1 *(XYZ) 1 -- conclusion

A Vy[IF-test(x,y) THEN Q(x,y,output(x,y)) -- initialization

ELSE Vt[Q(x,operator2(x,y),t)

~Q(x,y,operatorl(x,y,t))]]} -- induction

The key result is that for any given input EeDX , (PA) is

partially correct w.r.t. $ if and only if W,(E,JI) is true (Manna and

Fnueli (1970), see also Park (1970)).

-

10

Example 3: For the functional program P
3

:

z = F(x) where

F(y) <= if y = 0 then 1 else y-F(y-1) ,

it follows that: (p,, 0 is partially correct w.r.t. z = x! if and

only if WP (E,z =x!) is true, where W (E,z=x!) is
3 p3

3Q{ VdQ(S,z) 3 z=E!l

A Vy[IF y=O THEN Q(y,l) ELSE Vt[Q(y-l,t) 3 Q(YYY-~)]]) l

Note that for Q(y,z) being the predicate z = y! the formula in

braces '{ 1 is true.

Example 4: For the functional program P4 :

z = F(x,O) where

F($y) <= if y = x then 1 else (y+l)-F(x,y+l),

it -follows that: @4YE> is partially correct w.r.t. z = x! if and

only if W
p4

(E,z=x!) is true, where W
p4

(E,z=x!) is

3Q{ VdQ(E,O,z) 2 z = E!]

A Vy[IF Y = 5 THEN Q(t,y,l) ELSE Vt[Q(~,y+l,t)=,Q(5,y,(y+l)-t)]]) .

Note that for Q(E,y,z) being the predicate z-y! = 5: , the formula

in braces (1 is true.

The formulas constructed here are independent of the syntax of the

language in which the algorithms are expressed, and, therefore, we can

use our results to formulate in predicate calculus the equivalence of

algorithms defined by different languages. From part (f) of Theorem 1

it follows, for example, that for every input 5 , (p,Y 0 and (p,, 5)

are equivalent if and only if VJr[WPl(~,Jr) = WP (.$II/)] is true.
3-

11

The reader should realize that the flowchart program P (Figure 3)

can be represented equivalently (see McCarthy (1962)) by the functional

program Pr :

.
z = F(x,input(x)) where

F(x,y) <= if test(x,y) then outputm- (x,y) else F(x,operator
hYY>) l

.
However, wpf (XYJI) is

3Q(vz[Q(xy input(x), z) => 9(x, z) 1

A VY[IF test(x,y) THEN Q(x,~,output(x,~))

ELSE Vt[Q(x,operator(x,y),t) 3 Q(x,Y,t) 113 ;

while WP(x,Jr) was

3Q{ QbNnput(x))

A Vy[Q(x,y) I I F test(x,y) THEN ~(x,o~tqu-t(x,y)) ELSE Q(xyopera-tor(xyy))l] .

Although both WP(x,@) and WPr(x,$) essentially formulate partial

correctness of 0% 4 w.r.t. 9 , they seem to be quite different.

Intuitively, the difference between the two formulations is that Q(x,y)

in W,(x,Jr) represents all current values of (x,y) at arc a during

the computation of P , while Q(x,y,z) in WP,(x,JI) represents the

final value of z when computation of P starts at arc a with initial

values (XYY) l

(C) Functional Programs and Partial Function Logic

Consider again a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)--

else operatorl(x,y,F(x,operator2(x,y))) ,

with a given output predicate $(x,z) .

12

We construct the following formula $,(x,+) :

3F([*F(x,input(x)) 3 ~(x,F(x,inpu~(x))) 1

A Vy[F(x,y) r if test(x,y) then output(x,y-- 9
else operatorl(x,y,F(x,operator2(x,y)))]) .

Here, " 3F " stands for "there exists a partial function F mapping

DxxD into D
Y Z

such that . ..". " *F(x,input(x)) " stands for the

total predicate (mapping Dx into {T,Fj) " F(x,input(x))is defined";

*
and = is just the natural extension of the usual equality relation,

definedeas follows: A 2 B if and only if either both expressions A

and B are defined and represent the same element (of DZ , in this case)

or both expressions are undefined.

The key result is that for every given &DX , 05 5) is partially

correct w.r.t. $ if and only if $(t,q) is true (Manna and McCarthy (1970)).-.

Example 5: For the functional program P4 :

z = F(x,O) where

F(x,y) <= if y = x then 1 else (y+l).F(x,y+l) ,

it follows that: (P4YE) is partially correct w.r.t. z = x! if and

only if i
p4

(Et z=x!) is true, where v
p4
(E,z=x!) is

3F{ [*F(t,O) 1 F(W) = E!l

A Vy[F(E,y) r if y = 5 then 1 else (y-t-l).F(E,y+l) I]
lP -

Note that for F(E,y) being the partial function

c

C/Y!
F(SYY) =

if Y_<!

undefined if y>E

the formula in braces { 1 is true.-

3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-

deterministic algorithms rather than deterministic algorithms.

An algorithm P (with input variable x and output variable z) is

said to be non-deterministic if it defines a many-valued function w Y

mapping elements of Dx (the input domain) into subsets of D (theZ

output domain); that is, for every &DX , P(E) is a (possibly empty)

subset Z of DZ , where each @Z is the final result of some

computation of P with input 5 .

Examples: We first describe three non-deterministic programs for computing

z = x! , making use of the deterministic programs
Y4 introduced in

Section 1.

(a) Parallel flowchart program: In Figure 4 we have described a simple

parallel flowchart program P
5

for computing z = x! . The program

includes a 'BEGIN-END' block which consists of two branches, the left

branch being the body of program Pl and the right branch being the

body of program P2 , after changing the test statements to yl = yi

in both.

14

Figure 4: The parallel flowchart program P
5

for computing z = x!

15

The program is executed as follows. First statement. a is

executed. Entering the block either the statements in @ or the

statements in 7 are executed, chosen arbitrarily. The execution

proceeds asynchronously, i.e., between the execution of two consecutive

B’s Y we may execute an arbitrary number of 7's ; and conversely,

. between the execution of two consecutive 7's we may execute an

arbitrary number of /3's . B and 7 cannot be executed at the

same time. Therefore, one can consider execution to be performed

with a single processor switching between the two branches. We exit

' from the block and execute statement 6 when either of the two branches

reaches the END node. Such parallel programs are discussed in detail

in Ashcroft and Manna (1970).

(b) Choice flowchart program: In Figure 5 we have described a choice

flowchart program for computing z = x! . A branch of the form
A

is called a choice branch. It means that upon reaching the choice
-

branch during execution of the program, we are allowed to proceed with

either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b).

Note that for any given input x both P
5

and P6 yield the

same set of computations. For x = 3 , for example, there are

exactly 8 different possible executions of each program. In general,

for every non-negative input x , there are 2x different possible

computations of each program.

16

(YlY Y;‘Y2) + CxY OY l>

Figure 5: The choice flowchart program P6 for computing z = x!

(c) Choice functional program: Consider the following choice functional

program P
7

:

z = F(x,O) where

F(y,y') <= if y = y' then 1 else choice(y.F(y-l,yT),(yr+l).F(y,yr+l)) .

The choice function here has the same meaning as the choice branch

in p6 ; it corresponds to McCarthy% (1963) amb (ambiguous) function.

For every non-negative input x there are again 2x different possible

computations of
p7 l

17

In this section we shall discuss several properties of non-

deterministic algorithms. For non-deterministic algorithm P and

input teDx we say that

l.(i) 0% El is R-defined

with input 5 (or,

(ii> Py E> is V-defined

is finite;

(iii) (IQ) is partially determinate if all finite computations of

P with input E yield the same final result (or, equivalently,

if there exists a finite computation P

equivalently, m + fl 1;

if every computation of P with input 5

m is either empty or a singleton);

(iv) (Py 5) is totally determinate if all computations of P with

input E are finite and yield the same final result.

Let $(x,z) be a total predicate over DxxDz , and let &DX .

A finite computation of P with input 5 is said to be correct w.r.t. $

if for its final value 5 , $(E,c) = T . We say that

2.(i)

(1ii

(iii)

(1iv

(P,E) is partially 3-correct w.r.t. JI if either there exists

an infinite computation of P with input E , or there exists a

finite computation of P with input 5 which is correct w.r.t. $;

(8 0 is totally +correct w.r.t. $ if there exists a finite

computation of P with input 4, which is correct w.r.t. \I, ;

(P,!) is partially V-correct w.r.t. @ if every finite computation

of P with input 5 is correct w.r.t. $;

PY a is totally V-correct w.r.t. $ if every computation of P

with input E is finite and is correct w.r.t. $.

Let Pl and P2 be any two comparable non-deterministic algorithms,

i.e., algorithms with the same input domain D
X

and the same output domain DZ .

- We say that

18

3-(i)

(1ii

4.(i)

()ii

5. (i-1

(1ii

(p,, E> and (p,, 6) are partially determinate-equivalent if all

finite computations of Pl and P2 with input E yield the

same final result (or, equivalently, P,(t) IJ P,(E) is either

empty or a singleton).

(p,Y 9 and. (p,, 9 are totally determinate-equivalent if all

computations of Pl and P2 with input 5 are finite and yield

the same final result.

(P,,k) partially extends (pp 5) if, for every finite computation

of P2 with input 5 , there exists a finite computation of Pl

with input 5 that yields the same final value (or, equivalently,

p,(G r> p,(E> 1;

(Pl,E) totally extends (P2,E) if (Ply!) partially extends

03 9 Y and if there exists an infinite computation of P2 with

input E , then there is also an infinite computation of Pl with

input E .

(p,, E) and 4, El are partially equivalent if (P,,E) partially

extends (P2Y 6) and conversely (or, equivalently, p,(G = P,(E> 1;
(p,, 5) and (P,,E) are totally equivalent if (Pl,E) totally

extends 49 El and conversely.

Our main purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

namely partial 3-correctness and partialv-correctness.

19

THEOREM 3

(4 (PA) is

w.r.t. F

W NJ is

w.r.t. F

(4 NJ is

partially

w.r.t. A

(4 (PA) is

' partially

w.r.t. -

(4 (WJ is

partially

(0 (PA) is

partially

3-defined if and only if (P, E) is not partially V-correct

(false);

V-defined if and only if (P, E) is not partially X-correct

(false);

partially determinate if and only if V$[(P,E) is

V-correct w.r.t. $ or (P,EJ is partially V-correct

44 ;

totally determinate if and only if Vq[(P,E) is not

3-correct w.r.t. * or (IQ) is not partially 3-correct

$1 ;

totally 3-correct w-r-t. q if and only if (P,e) is not

V-correct w.r.t. - 9 ;

totally V-correct w.r.t. $ if and only if (P,E) is not

Y-correct w.r.t. - $;

(4 (p,Y 5) and (P2& are partially determinate-equivalent if and

only if VN(P,A) is partially V-correct w.r.t. \1/ or (pp E)

is partially V-correct w.r.t. -3rl ;

04 (PlY 6) and 4, E> are totally determinate-equivalent if and only if

WI (p,, 9 is not partially Y-correct w.r.t. * or (p,, E> is not

partially 3-correct w.r.t. - Jr] ;

(i) (P,,c> partially extends (P2,S) if and only if V$[(Pl,E) is

partially V-correct w.r.t. Jr implies (P,,g> is partially

V-correct w.r.t. *] ;

(j) (P$) totally extends (P,,E) if and only if Vq[(P,,E) is

partially 3-correct w-r-t. 31 implies (Pl,EJ is partially

q-correct w.r.t. $1 ;

20

04 (p,., 9 and (p,, 5) are partially equivalent if and only if '

w (p,, E> is partially V-correct w.r.t. q if and only if (P2,5)

is partially V-correct w.r.t. Q] ;

a> P~Y5) and (P,,E) are totally equivalent if and only if VJr[(Pl,E)

is partially ';T-correct w.r.t. 'ICI if and only if (P&J) is

partially 3-correct w.r.t. q] .

Proof of Theorem 3: WY WY (4 and (f) are straightforward by

definition. (4, WY k>Y 04, WY and (j) are best proved by

considering the corresponding contra-positive relations. 04 and 0)

follows from (i) and (j), respectively.

4. Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate

NXY 4 , we would like to construct two formulas W3(x,Jr) and W'(x,Jr)

in predicate calculus, such that for every given input value EED :
X

(0 0% 5) is partially 3-correct w.r.t. $ if and only if W3(E,$)

is true, and

(ii> (8 El is partially V-correct w.r.t. @ if and only if WV@,*)

is true.

Then, using the formulas W"(x,$) and W'(x,q) , the formulation of the

other properties of P in predicate calculus is straightforward.

Following Ashcrof't and Manna (1970), one can formulate properties of

the parallel flowchart P
5

by first translating it to the equivalent choice

flowchart program P6 and then make use of the formulas W3 (x,$) and

WV wf>
'6

'6
. We shall therefore illustrate the construction of W3(x,$) and

1..
’ ‘,I ,

W (x,9) Only for the choice flowchart program P6 (Figure 5) and theV

choice functional program P . The main idea behind this formulation is
7

that the effect of the choice branch is represented by an 1 v r connect:iv-c

in W"(x,Jr) , while it is represented by an 'A ' connective in Wv(x,$)

(see Manna (1970)).

* To construct WV (E, z =x!) , associate the predicate variable
1 ‘6

Q(sYY1YYiYY2) with arc CI in Figure 5 and the predicate variable z = x!
*

with arc p . Then WV (E, z =x!) is
‘6

3Qt Q(bS,O,l)

A VYlVYiVY2[Q(S'y1'yI,Yi,Y2) 1 IF Yl = Yi THEN ~2 = 5:

ELSE [Q(E,Yl-l>Yi>Yl*Y2) A Q(5,Yl,Yi+l,(Yi+l).~g) II} l

The reader can verify easily that for every non-negative integer 5 , the

formula WV (5, z =x!) is true for Q(e,yl,yi,y2) being the predicate
‘6

Y2.Yl! = s!'yi! 0 'w* (6, z =x!) is similar with the 'A r connective
6

replaced by ' V ‘.

To construct WV (E , z =x!) , associate the predicate variable
p7

Q(y,yT,z) with the function variable F(y,y') . Then WV (5, z =x!) is:
p7

3Q{ 'ddQ(E,O,z) 1 z = VI

A VYVY'[IF Y = Y' 'J?Hm Q(YYY'Y~)

ELSE Vt[Q(y-Ly'tt) 2 Q(YYY'YY-t) 1

A vt☯Q(y,y�+l,t) 3 Q(Y,Y'Y (y'+l) l t> 113 l

i The reader can verify easily that for every non-negative integer 5 , the

formula WV (E , z =x!) is true for Q(y,yr,z) being the predicate

1 p7 3z-y -y!.1: - wp (6, z =x!) is similar with the r A r connective replaced
I 7

. bY 'v '.

Acknowledgments: I am indebted to Edward Ashcroft and Stephen Ness for many.

stimulating discussions and also for their critical reading of the manuscript

- and subsequent helpful suggestions-

22

References

E. A. ASHCROFT (1970), "Mathematical Logic Applied to the Semantics of
Computer Programs," Ph.D. Thesis, Imperial College, London.

E. A. ASHCROFT and Z. MANNA (1970), "Formalization of Properties of
Parallel Programs," in Machine Intelligence 6 (Ed. Meltzer and Michie),
Edinburgh University Press.

D. C. COOPER (1969 a), "Program Scheme Equivalences and Second-Order
Logic," in Machine Intelligence 4 (Eds. Meltzer and Michie),
Edinburgh University Press, 3-15.

D. C. COOPER (1969 b), "Program Schemes, Programs and Logic," Computation
Services Department f University College of Swansea, Memo No. 6.

R. W. FLOYD (1967 a), "Assigning Meaning to Programs," in Proceedings of
Symposia in Applied Mathematics, American Mathematical Society,
~01. ip, 19-32.

R. W. FLOYD (1967 b), "Non-deterministic Algorithms," JACM (October 1967).

z* MANNA (196PL "The Correctness of Programs," J. of Computer and System
Sciences, Vol. 3, No. 2.- -

Z- MANNA (1970), "The Correctness of Non-deterministic Programs,"
Artificial Intelligence J., Vol. 1, No. 1.

Z. MANNA and J. MCCARTHY (1970), "Properties of Programs and Partial
Function Logic," in Machine Intelligence 5 (Eds. Meltzer and
Michie), Edinburgh University Press, 79-98.

Z. MANNA and A. PNUELI (1970), "Formalization of Properties of Functional
Programs," JACM, Vol. 17, No. 3.

J. MCC ARTHY (1962), "Towards a Mathematical Science of Computation,"
Proc. IFIP Congress 62, North-Holland, Amsterdam.--

J. MCCARTHY (1963), "A Basis for a Mathematical Theory of Computation,"
in Computer Programming and Formal Systems (Eds. Braffort and
Hirshberg), North Holland, Amsterdam. --

D. PARK (1970), "Fixpoint Induction and Proofs of Program Properties,"
in Machine Intelligence 5 (Eds. Meltzer and Michie), Edinburgh
University Press, 59-78.

23

