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Abstract: It is shown that the isonorphism problem for triply connected planar graphs can
be reduced to the problemof mininizing states in a finite automaton. By making
use of an n log n algorithm for mininizing the number of states in a finite
automaton, an algorithm for determ ning whether two planar triply connected graphs
are isonorphic is developed. The asynptotic growth rate of the algorithm grows

as nlogn where n is the nunber of vertices in the graph,
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I ntroduction

The graph isonorphism problemis to determine if there exists a one-to-one mapping of the vertices of a
graph onto the vertices of another which preserves adjacency of vertices. At present there is no known
algorithm for determining if two arbitrary graphs are isonorphic with a running time which is asynptotically
less than exponential. Gotlieb and Corneil [ 1] have exhibited an efficient algorithm for a large class
of graphs, namely those graphs with no k-strongly regul ar subgraph for |arge k .

The i sonor phi sm probl em for planar graphs is of interest in the study of chemical structures.

Weinburg [ 5] has exhibited an algorithm with asynptotic running tine of n2 for isomorphism of triply
connected graphs where n is the nunber of vertices in the graph. The reason for restricting attention to
triply connected graphs is that a triply connected planar graph has a unique representation on a sphere.

In this paper we show that isonorphism of triply connected planar graphs can be tested in tinme proportional
tonlog n. The algorithm makes use of an n log n algorithm[ 2] which was devel oped for nininizing
states in a finite automaton. The basic idea is to recognize that nmininizing states in finite automaton is
really a process of dividing states into equivalence classes. Thus, the algorithm can be applied not only
to state minimzation but to a wide class of partitioning problems of which the isomorphismof triply

- connected planar graphs is a menber. As a by product of this approach we can associate with each planar
triply connected graph a unique reduced graph which in the case of a highly symetric graph provides a

conpact encoding of the graph.

Definitions and Notation

A graph G is an ordered pair (V,E) where

(1) Vis a finite set of vertices and

(2) Eis a finite set of unordered pairs of vertices called edges.
Two vertices w and v are said to be adjacent if the edge (u,v) is in E. Two graphs are said to be
i sonorphi ¢ if there exists a one-to-one mapping of the vertices of one graph onto the vertices of the other
whi ch preserves adjacencies. For isonorphismof triply connected planar graphs it suffices to consider only
regul ar degree three graphs with labelled edges. The reason for this is that a vertex of degree d >3can
be expanded into a d-gon and the edges of the d-gon labelled to indicate that they were originally a single
vertex. Since the sum of the degrees of the vertices in a planar graph is at nost én-12 the number of

vertices in the expanded graph is at nost 6n-12.



A finite automaton M is a S-tuple (S,I,5,1,0) where
(1) s is afinite set of states
(2) 1T is afinite set of input symbols
(3) & is a mapping of SxIinto S
(4) X is a mapping of Sinto 0 and

(5) 0 is afinite set of output synbols.

Let |* be the set of all finite length strings of symbols from | including the enpty string ¢ . The
*

mapping & is extended fromSxI to SxI in the usual manner [4 ]. Guven tw finite automata

M o= (Sl,I,Sl,xl,o) and M, = (S2,I,62,%.2,0) , states g in 8 and p in s, are said to be

equivalent if for each x in I*

A (8y(a,x) « My(By(a,x))

The finite automata M1 and M2 are said to be equivalent if for each state g in S_.L there exists at

| east one equivalent state p in S2 and vice versa.

Hoperoft [ 2 ] has given an algorithm for partitioning the states of a finite automaton into equivalence
classes of states. The algorithm can be used to test the equivalence of two finite automata by treating
them as a single automaton, partitioning the states, and checking each block in the partition to verify that

it contains at least one state fromeach of the original automata. The asynptotic running tine of the

algorithm 4s n log n . Thus we need only show how to associate with each planar triply connected regul ar
degree three graph G, a finite automaton MG such that Gl and G, are isonorphic if and only if
M(Gl) is equivalent to M(G2) . This will be done in the next section. The conversion tine is |inear and

the number of states in the resulting finite automaton is four times the nunber of edges in the graph.

Transformation of a Graph to a Finite Autonmaton

let G = (V,E) be a regular degree 3, planar, triply connected graph with labelled edges. Assune
Gis drawn on a sphere. W construct a finite automaton MG from G as follows.

MG = (s, {R,L},S,)\,O) wher e
(1) s = {[w,v],[v;ul/(,v) <E}

(2) For each (uw,v) in E, &(lu,vl,R) = [v,w] and &([u,v],L) = [v,x] where the incident edges

at vertex v in clockwise order are (u,v) (v,x) and (v,w)

(3) Mlu,v]) = [i,3,2] where i and j are the nunber of edges in the faces to the right and left

of the edge (u,v) when transversed fromu to v and where fis the |abel of the edge [u,v] .

(4) 0 = IxIx {set of |abels)

Intuitively, the states of MG correspond to the edges of G along with a direction. If Mis in a

state corresponding to an edge into vertex Vv , then on the next input, M wll enter the state corresponding



to the edge leaving v which is on the right or on the left depending on whether the input is Ror L

respectively.
Since a planar triply connected graph drawn on a sphere has a parity (that is, left and right depend

on whether the graph is viewed from inside or outside the sphere) we define fd(G) to be MG with L

and R reversed.

Techni cal Lemma

This section contains a technical lemm used in the next section. The proof of the lemm is not

essential to the understanding of the renainder of the paper.

Lemma 1: Let G be a biconnected planar graph. Let (vl,ve),(ve,vj),‘ oy (vn_l,vn) be a sinple path p
in 'G. Then there exists a face having an edge in common with the path which has the property that the
set of all edges common to both the face and the path form a continuous segment of the path. Furthernore,

when traversing an edge of the face while going from vy to v, along the path, the face will be on the

right.

Proof : If the set of edges common to sane face and to the path consists of at |east two discontinuous sets

of edges from the path, in both cases the face being on the right of the path, then all faces adjacent to the

path from the right between the two sets of edges are adjacent only on the right. Select one such face.

Either it satisfies the conditions of the lemm or its edges intersect the path in at |east two discontinuous

sets of edges. By repeating the process of selecting a face eventually a face satisfying the lemma is

sel ect ed.
Thus assunme that every face which is adjacent to the path on the right is also adjacent to the path on
the left. No face can be adjacent to the path on both the right and the left at the same edge since the

graph is biconnected. Select a face. Assume that the edge closest to v at which the face is adjacent on

the right is closer to vy than the edge closest to v at which the face is adjacent on the left. Then

each succeeding face adjacent to the path on the right towards v, nust have the same property. But the

face adjacent to (vn_l,vn) on the right cannot have this property. Hence a contradiction. Thus there

exists a face satisfying the conditions of the |emm.

Maj or _Resul t

In this section we show that two planar triply connected graphs C-l and G2 are isonorphic if and only

if M(Gl) is equivalent to either M(Gg) or f((G2) .



Theorem Let GJ. and Gy be regular degree three triply connected planar graphs with labelled edges.

Then G, is i.somorphic to '(}2 iff either
(1) M(Gy) equivalent to M(Ge) , or

(2) M(G equivalent to f/I(GE) .

1)
Proof : (only if) Assume G; and G, are isonorphic. Cearly for M = (81 R L},&l,hl,ol) and

My = (82,[R,L},62,>\2,02) , sl = s2 5 Ol = o2 and )\l = >\2. (W assune that names of corresponding

nodes in the two graphs are the same. Thus sl = 52 .) I't remains to be shown that for each q ,
Sl(q,R) = Bg(q,R) and 81(q,L) . 82(q,L) . Since G; and G, are triply connected, their representations

on a sphere are unique [6]. That is, the order of edges around a vertex is conpletely specified once a

1
left-right orientation is established. The only if portion follows immediately.

(if) Wthout loss of generality, assume M(Gl) equivalent to M(Ge). For each state of M(Gl) there
exists at least one state of M(c-2) equivalent to it. Select a state from Sl and an equival ent state

from 82 . Since each state corresponds to an edge and a direction, we can identify an edge and a direction

in Gy with an edge and a direction in G, . Furthernore, the vertices at the endpoints can be identified.

Assume state g has been identified with state p and that the corresponding edges with their respective
directions have been identified. Then consider states 6l(q,L) and 52(15,1,) . These two states nust be
equivalent. W identify the corresponding edges and endpoints. W continue on in this fashion always using
input L , if possible, to obtain new states to identify. CQherwise we use input R .

The above procedure wiii eventually map each edge and corresponding endpoints in Gl to an edge and

its corresponding endpoints in Gy unless a conflict arises. A conflict arises when we try to identify a

vertex v, in one graph with a vertex v, in the other which has already been identified with sone Vs F vy

We now prove that if M(Gl) is equivalent to M(Ge) , such a situation is inpossible.

Assune a conflict arises. Consider the first such instance. One of the edges in the Last pair identified
nust have conpleted a cycle. Wthout |oss of generality, assume a cycle was conpleted in Gl' Then the

corresponding edge in Ge either did not complete a cycle (the end vertex of the edge in G2 was not

previously identified with a vertex of Gl) or it conpleted a different cycle (the end vertex of the edge

in G) was previously identified with a vertex in Gl other than the end vertex of the edge in Gl) . In

the latter case, the cycle in G, is of different Iength than the cycle in Gy - If there are cycles in both

graphs, let ¢ be the shorter of the two cycles. |If there is a cycle in only one graph let ¢ be that cycle.
Let p be the path in the other graph corresponding to the vertices on the cycle ¢ . Note that the first

and last vertex-of p correspond to the same vertex in ¢ . Wthout loss of generality, assume c is in Gy -

Since there is a cycle in @ which is mapped to a sinple path in Gy select that cycle ¢ in Gy

which would map to a sinple path p in G, but for which no cycle in Gy other than c containing only

vertices from ¢ and its interior would map to a sinple path in G, . By Lemma 1 sone face in Gy is

adjacent to p on the right and all edges of the face which are common to p form a continuous segment of p .

Star: identifying the edges around this face in G, with edges in Gy - If a closed cycle is conpleted in



Gy prior to the canpletion of a closed cycle in G, | then there would be a cycle in Gy cont ai ni ng

only vertices from ¢ and its interior which would map to a sinple path in G, a contradiction. If a
closed cycle is conpleted, in Gy prior to the conpletion of a closed cycle in Gy then a face with,

say i edges in c-2 , would map to a path with i edges in Gl . This is a contradiction since each state
has encoded in its output the nunber ofedges in the face, nanely i . But in Gl the face has at |east
i+l edges. Thus we can assume that both paths are conpleted sinultaneously and that two identical faces
have been identified. This inplies that the vertex at which the path in G, terninates was previously
identified with the vertex at which the path in G, terminates. Now c has been divided into two cycles

1

e, and c Assunme cycl e ey is the face mapped to the face in G2 . Cycle ¢, is then mapped to a

1 2'

path in Gy, a contradiction. Since all possibilities lead to a contradiction, we are forced to conclude

"that no conflect can arise and that Gy and G, are i ndeed i sanorphic.

Concl usi ons
Since the transformation from a graph to a finite automaton is such that graphs Gl and G, are

isomorphic if and only if M(C—l) and M(G2) are equivalent we can use the state reduction algorithm to test
for isomorphism of planar triply connected graphs in n log n steps. Note that one need not actually
transform the graphs. The state reduction algorithm could be nodified to handle graphs directly. It is
anticipated that the algorithmwill be programmed and this latter approach will be used. Also, it should be
noted that there exist algorithns [ 3] to deternine if a graph is three connected in linear tine and to
deternine if a graph is planar in n log n tine. The planarity algorithm determnes the ordering of the

edges about each vertex. Thus, we can start with a list of edges for each graph, rather than the representation

on a sphere, and still deternine isomorphism in n log n steps.
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