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Abstract

There are several very fast direct methods which can be used to
solve the discrete Poisson equation on rectangular domains. W show that

these nethods can also be used to treat problens on irregular regions.






1. | ntroducti on. Wthin the past few years, several very fast and accurate

direct methods have been devel oped for solving finite difference approxi mtions

to the Poisson equation,

f in R :}
g on R .

These nethods can usually be applied only on rectangul ar regions, although the

Au

u

differential operator and boundary conditions can be nore general than those in
the Poisson equati on. In this paper, we wll show how these algorithns for
rectangul ar domains can also be used effectively on irregular regions. The
approach used is simlar to that enployed by Hockney [ 16, 17], Buneman [ 71,

and George [14]. W also nention the work of Angel [1- 4], Angel and Kal aba [ 51,
Collins and Angel [ 9], Kal aba [20], and Roache [22] on the use of direct methods
for problens in irregular regions.

W will not discuss the details of any specific direct nethod. A survey
of these procedures is given in [II], and in particular we cite the recent work
of Buneman [6], Buzbee, Golub, and N elson [ 8], and Hockney [ 16].

VW will also not consider the derivation of the finite difference equations
that approximate the partial differential equation. This subject is treated in
detail by Forsythe and Wasow [13], and we assume that the probl em has been
reduced to finding the solution of a matrix equation Ax =y . The matrix A
is frequently very large and sparse, but its structure does not permt the
application of the most efficient direct methods. For our conputational procedure,
we alter certain rows of Ato obtain a matrix B, and we will show how to
define a nodified right-hand side z so that the solution x also satisfies the
equation Bx =z . The matrix B is chosen so that these equations can be

solved by the direct nethods.



This nethod is conputationally advantageous when we are solving a
sequence of equations Ax. =y, . This situation frequently arises in

time-dependent partial differential equations, in nonlinear problens, and in

l'inear problens where the right-hand side is varied but the region and
differential operator remain the sane. After some initial conputation, each
sol ution x., ~can be obtained in approximately twice the tine required for
the solution of an equation Bx =z .

In Sections 2 and 3 we derive this algorithmin a general form W

describe a number of applications of the method in Sections & and 5, and in

Section 6 we present sone conputational results.



2. Method of Solution if detB £ 0. Suppose that we are given an n by n

matrix A and an integer p with 1 £ p ¢ n. Ve wsh to mdify p rows of A
to obtain another matrix B. Wthout |oss of generality we assume that the
first p rons of A are to be changed, since we can achieve this situation
by multiplying A by a suitable pernutation natrix. However, we enphasize
that this multiplication should not be done explicitly in the conputational
procedure. Rather, the rearrangenent of rows should be done inplicitly by
indexing. The direct nethods nmentioned |ater in the paper require that B
has a particular structure, which could be altered by the pernutation
transformation.

Partition Ain the form

where Al is a p by nmtrix and A, is an (n-p) by n matrix. % then

wite
B
B= s
Ay
where B, is ap by nmatrix. For the remainder of this section, we

1
assune that detB # 0.

Suppose we are given a linear equation Ax =y . W partition yin

the sane way as A, and wite

]
"

K



Let i be any vector of the form

1<)
il
2

i

If Wis an arbitrary nonsingular p by p matrix, we define an n by p

matrix W by

=|
i

Define the p by p matrix C by

*
Fol | owi ng Hockney [16], we call C the capacitance matriIT/ Assune that there

exists a p by 1 Vector B that is a solution to the equation

CB=y, -A B'l’i . (1)

Since Aand B differ only in the first p rows, it is easy to verify that

a solution x to the equation Ax_=y_is gi ven by

x = Bfl(g-r EB) .

V¥ first showthat this nethod of obtaining the solutiof x will be valid
whenever the original systemAx =y is consistent.

Theorem |f detB £ 0 , then

(det_A) (det_w)
det B

detC:

¥/ Hockney actual |y refers to ¢! as the capacitance matrix. Si nce C may
be singular in our development, We have adopted the present notation.

L



If the system Ax = y is consistent, then Eq. (1) is also consistent,

Proof. Partition Bl in the form

1
4 Bl Dl Bl D2 I 0
B B = = [
A2 Dl A2 D2 0 I
and
-1 Al Dl L.L D2 Al Dl A1 DE
AB " = =1
A2 Dl A2 ]J2 0 I
Thus we have
-l gd
C = Al B W= A1 Dlw ’
and so

det C

det (A, D) detW

det (AB™") detW

_ (et A) (det W)
= det B .

To prove the consistency statement, suppose cT ry = 0, Write

-1

CwW El

0 I

AB

}
-



and define an n by 1 vector y by

=
0
TN
=
SN——

\¢ then have

Y o\
w2z - | N, )

\5 1/ \=Hy

Since the system Ax =y is assumed to be consistent, we therefore have
-~T
Y

~

y = 0, vhich is the same as IT.(Zl'Elza)"o' But then

T -1= T -1-
r(m 4T (- R - B

which is the' consistency condition for Eq. (1).

The Woodbury formula [18, pp. 123-12:]fOr, the inverse of a matrix

(B + FG)isS
-1 A
(B + FG) - 3t (1 -F(T+ GB‘lF) GB‘l) .

Thi s equation has been used in direct nmethods for solving the Poisson equation

by George [14], and for the biharmonic equation by Golub [15]. If A is non-

singular we wite

- A=B+FG ,



where F =W, and G is the p by n matrix given by
6= Wla - B)

For the case in which A is nonsingular, the al gorithmwe have derived is
equival ent to using the Woodbury formula for A'l.

Suppose that we have a very efficient method for solving equations of
t he formB£= w . The solution of the equation Ax =y then proceeds in

~

the following steps:
" (1) Compute C = AlB"
(2) Compute §~= B'l: ,
(3) Sol ve the equation Cg = y, - A._Lg’

]

The Sol ution x_can then be obtained fromthe fornul a

X = B-l(i+ﬁ£) . (2)

If it is possible to store the vector x and the natrix ¥ = g~1% then x

can also be computed from

X =
~

T

+ ﬁg . (3)

The decision whether to use Eq. (2) or Egq. (3) would be made on consideration
of storage requirenents, and on the-relative speed of solving the systemin
Eg. (2) versus nultiplying by the matrix in Eq. (3). For problens arising
from el liptic difference equations, it is frequently better to use Eq. (2)
because B hes a band structure, but the matrix B maybe full.

The type of application we have in mind for this nmethod is one in which
we have to solve a mmber of equations Ax, =y; . In this case, we compute
the capacitance matrix and factor it as part of a preprocessing stage. The

solution of each equation Ax, =y, IS then approximately as fast as the tinme



it takes to solve two equations Bz = w .

~

To be specific, let o(n) denote the mmber of arithmetic operations

necessary t 0 solve a systemBz = W . Then to compute C and form jts LU

decomposition i N a preprocessing Stage requires approxi nately
2 3
pe(n) + k,pn o+ kP

operations (cf. [19, Sec. 2.11). In many cases the matrix Al is sparse,

and this estinate i s

pe(n) + 1:3;;:3 - (&)

operations. To compute the solution to aparticular equation A =y using

Eq. (2) takes an additional.

26(n) + kpn + k5p2

operations. If Aj is sparse and we let W= I, this estimate can be repl aced

by

20(n) + k6p2 (5)
operations. Toconmpute a particular solution using Ea. (3) requires
0(2) + k.pn + kg’ (6)

operations. In general this estimate cannot be reduced, because the matrix

B may be full,



3. Method of Solution if rank(B) = n-1 . The nethod derived in Section 2

gives a procedure for finding a p by 1 vector & such that a solution x

to Ax =y also satisfies the equation
o)
0
If Bis singular, it may not be possible to find such a vector 5. To show

this, suppose B'v = 0 but v #0 . Inorder for B to exist, we nust

satisfy the consistency condition
z(y~+26.e.):o : (7)

| f vTe:.L =0for 1<i <p and va;éO , It is not possible to satisfy
Eq. (7). However, if Ais nonsingular this difficulty does not arise,
because then the only vector v satisfying B'v = 0 and vle, = 0 for

1<i<p is v=0.

VW will now describe an algorithmwe have used when rank(B) = n-l1 and
A is nonsingular. There are two advantages in treating this particular case.
First, the construction is quite sinple, and it is easy to see how the nethod
could be extended to a nore general matrix B . Second, the case rank(B) = n-|
has a special significance in the solution of partial differential equations,
because this condition is satisfied by the matrix corresponding to the

Neunann problem For sinplicity, we assume that the matrix Wof Section 2

is the identity matrix.

Theorem 2. Assume that A is nonsingular and rank(B) = n-1 , and let u
T

and vae. two_non-zero vectors satisfying Bu =Bv =0 . Then there exists an

T .
integer k with 1<k <p suchthat v*ek;éo. Define a constant




and let x be a solution to

- - T -~
Bx = y - (@v y)ek

For 1<i<p and i # k let T, be a solution to

T
= - (&
B =gy - (Ore) g

~

and et m =u. Let Che thg p by p matrix whose i-th colum is

t he vector A; 1M, - Then Cis nonsingular,-and, if_p is_the solution to

the solution x to Ax =y is given by

- b
x=x+z By Ty
~ o~ e TR
Proof . If we partition v in the sane way.as y , we have
T T T T T T i P
AX—Ale+A2lrgand B'v = By vy + Ay v, Thus if Bz—gand
v, = 0 we would have AV-0. Since Ais nonsingular and v £ 0 this

cannot happen, and hence vy £0 .

To prove that C is nonsingular, we show that Cg = O impliesp=10 .

P
Suppose p is an arbitrary vector such that Cg =0 . Then X = i;l Bs T

satisfies Ax = 0, and hence x = 0 . This inplies that Bx =0, or

P (f o )
B. e, = q B. v e, )€
z 1 ~L i=ll ~ ~L "‘k

10



Thus Bi =0 for 1<i<p and i #k , and the condition x :NOthen

inplies that B, =0 . Thus p =0, and so C is nonsingular.

Remark. As we discussed in Section 2, the conputation proceeds in the follow ng
steps:

(1) Conpute (and factor) C

(2) Conpute }'cN

(3) Solve for ~B.

Thesol ution x can then be obtained from the formul a

x=i+§5. ..
AW

However, if the problem arises froma partial differential equation, it is nore

efficient conputationally to obtain x in the form

~

tBu ,

14

X =
~

where X is a solution to

Y
~ - T - T
Bx =y - (@v y) e + 121 Biles - (@7 &gy
itk
and
é:[uT}-c+ By w ‘ni-uT ﬁ][uTu]-l.

11






b, Applications to Partial Differential Equations by Imbedding. Suppose we

axe given a two-dinmensional bounded region Rin the x-y plane, and we w sh

to find a solution u to the Poisson equation,
Av =17 in R ’
u=g on OR .,
W ass-me that this differential equation is approximated by a finite differ-

ence equation (cf. Forsythe and Wasow [13 ]), Tms we have a finite set of

unknowns A l1<i g no} whi ch approximate the solution u at the grid
points. |If we denote by Ah a finite difference approximation to the Laplacian

operator A by Ry the discrete interior of the grid, and by aRh the discrete
boundary of the grid, then the discrete Poisson equation can be witten in the

form

U=°f i n »
% k } (8)

U=g onBRh.

Let Rt'1 be a discrete rectangular region such that R C R}; and
aRhCRI; U BR{l s and le‘l‘.sh = BRh n Rt" . Extend the functions f and g

to the regions Rﬁ andanhuaaﬁ respectively, and consider the equation

AU = £ in R -8,
U=g on shuaRl; o }

W will solve Eq. (9), and the solution U will then also satisfy Eg. (8).

Equation (9) is a linear equation in the unknowns {Uillf-i <n .

Cbserve that we may have i ncreased the nunber of unknowns by the imbedding

process, so that By £ N. W wite Eg. (9) as a matrix equation AU =E,

12



and the matrix A can frequently be chosen to be block tridiagonal wth
tridiagonal matrices as the non-zero blocks (cf. [13]).

Let p be the mmber of grid points in 8 . Ve modi fy the p rows of

A and Vv corresponding to the equations

U=¢g onSh ’

and replace them with the equations

AhU=f on S .

This defines a new matrix B and a new right-hand side_V. An equation

BU = ¥V corresponds to the difference equation

it

f inRI;
g onaRt'1

AhU

U

(10)

i

Since Rﬁis a rectangul ar region, we have very fast nethods for solving
Eq. (10). V¥ can now apply the method of Section 2 to solve the equation
AIJ‘:'L/ by using the nodified matrix B.

To illustrate this construction, let R be a rectangular region wth
an interior rectangle renoved, such as that shown in Figure 1. For sinplic-
ity, we assune that the discrete boundary BRh is a subset of oR. The
imbedding rectangle is R]; =R U s, ULy . The only function extension re-
quired for this exanple is that f be defined (arbitrarily) in 5 U T, .

To define this extension, we can set f =0 in Sh U.Th, or we can define f
so that it is contimwous in all of Rl; The advantage of using a continuous
f is that the solution to Eq, (10)is then snooth. However, the direct

met hods used to sol ve Eq,(10) are so accuratethat the snoothness of the

sol ution does not appear to influence the computational results. Therefore,

13



in the exanples we have considered, we extend f by setting f =20 in
ShU’.I.‘h .

If we let W= 1 in the method of Section 2, this algorithmis closely
connected with the discrete Geen's function for the region R‘; (cf. [13,
pp. 314-318]). In fact, the nethod is then equivalent to adding suitable
mul tiples of the discrete Greents function for the points on 8, SO t hat
the boundary conditions on 8 will be satisfied. Since we have Dirichl et

boundary conditions on S » by a proper ordering of the unknowns we can wite

Al=(I . 0)

Since B is positive definite and

c=(I o)n'1<1) ,
0

we see that Cis also positive definite in this case. This is advantageous
because Cholesky decomposition can then be used to conpute an 11’ deconposi -
tion of C (cf. [12, Chap. 23]).

2

If the grid on Rk; has N points on a side, we have n = N". In that

case, we can solve the system BU =E in approxi mtely

e(N) =5N2 logeN
operations (cf. [11, p. 260]). The preprocessing then takes

3
51)1‘12 1og2N + kjp

operations (cf. Egq. (4)). To solve Eqd.(8)foraparticular choice of f

and g by using Eq. (2)with W= | takes anadditional



2 2
10N logeN + k6p

operations (cf. Eg. (5)). If we use Eq. (3) tO compute the sol ution, it

takes an additional

5N 1og, N + k, DN +kgp°

operations (cf. Ea.(6)). Thus if p > log N it is faster to use Ea. (2)
t0 compute the solution. W also observe that for this problemthe matrix
8 lis full (23, p. 851, so to store B in using Eq. (3) would require pN°
locations. Thus for large values of pand -Nit is both faster and nore
economcal in ternms ofstorage to use Eg. (2) to compute the solution to a
particular equation.

It should be clear that the imbedding procedure can be applied to other
elliptic difference operators with other types of boundary conditions. To
be'a practical procedure, Wwe sinply require that we have a fast nethod for

solving the inbedded problemin the rectangular region.

As another exanple, consider the region shown in Figure 2. This problem
arises in the time-dependent study of a rotating fluid [10], and the fluid surface

is noving slowy. W are given Dirichlet boundary data on S and Neumann

o
boundary data on aRh-sh .The» i mbedding rectangle is R{l =R US UT , and
we use Neunann boundary conditions on BR}; . Thus B corresponds to the Neumann
problemon R/ , and the rank of Bis n-I . The nethod of Section 3 can then
be applied, and direct methods for solving the rectangul ar Neumann problem are
given in [8].

For an exanple with the Poisson operator in another geometry, consider

the region in the z -r plane shown in Figure 3. This problemarises in the

15



ti me-dependent study of a plasma [21], and a Poisson equation nust be sol ved

at each time step. The boundary conditions are Dirichlet

on BR£1> .

2 k) : .
Dirichlet boundary conditions on BRQ() and 531;( for the imbedding

on S, and Neunann
1 /(3)
W use Neumann boundary conditions on aRfl) and SR’ and

i L The elliptic difference equation in R’ is sol ved
region R, =R US UT, . p q h

by the nethod of matrix deconposition [8].

16






5. Applications to Partial Differential Equations by Splitting. There are

many problems for which the imbedding approach is not an economcal algorithm
For exanpl e, imbedding the region in a rectangle may introduce an excessively
| arge mmber of additional unknowns that are not necessary to the solution of
the original. problem Another instance is one in which the differential oper-
ator or the mesh size changes in different parts of the region. In this
section, we give two such exanples. In each case, the method of Section 2

can be used to split the probleminto two rectangul ar problens, which can be
solved by the usual direct methods.

Consi der the elongated L-shaped region in Figure 4, and the equation

f in R >
g onBRh .

AhU

U

Ve assune that points on the line marked T, are all grid points. To define

the matrix B, we replace the equations

LﬁxU =f on Th

by the equations

U= g on Th ’

where g has been (arbitrarily) extended to T,. The solution of an equation

BU - ilnow consists of solving the two rectangul ar problens

AU =f in Rﬁi) ,
Uizg on Bf;hi,

for i =1, 2. W can then apply the method of Section 2 to solve the origina

17



problem This algorithmis sinilar to one devel oped in [ 8, Sec. 9] for
non-rectangular regi Ons.
As another exanple, consider the multiple-material problem shown in

Figure 5. The differential equation is

5% (a(x) %%>+ BB_y_ (T(Y) %%) = f(x,y) ,
and

in R(l)

b

a(x) =

0, (x)
} in R(z)

a,(x)

The functions o, (x), o (x), and «(y) are assuned to be smooth. Dirichlet
data i s givenon 9R,and We require that o;%‘be continuous across the
boundary between R(l) and R(e). The computational procedure iS essentially
the same as that for the L-shaped region. The only difference is that in
formng the mtrix B we replace the equations for the contimity of a%—";

across the line T, by the equations
U= g on T, .

As before, the equation BU = V -corresponds to the two rectangul ar problens

~

du du,
g"";(oi(x) —5—,{3) v = (f(w ;—Y—) sfx,y  in &Y,
u (x, v) =8z, ¥) on 3,

for i =1, 2. These problens can be solved directly by the nethod of matrix
decomposition [ 8, Sec. 8]. A sinilar nmethod can be used for the case in

which +(y) i s only piecew se snoot h.

18



It is clear that this splitting method can be applied to the Poisson
equation in regions such as that in Figure 5 when different nesh sizes are
used in R and r(2) . The nethod developed in [8, Sec. 8] can also be

adapted to include rectangular problems with irregular meshes.

19






6. Conputational Results. In Table 1 we have tabul ated some conputational

results for two regions of the formof Figure 1. In each case, a square
with sides of length 1 has a symmetrically |ocated square removed fromits
center. For region 1 the inner square has sides of |ength %;-, and for
region 2 the inner sides are of |ength -ﬁ— W& sol ve the Poisson equation
with Dirichlet boundary conditions for the function u(x, y) =xD + y"?.
This function was selected because there is no truncation error, and all of
the measured error is due to inaccuracies in the solution of the difference
equations. Al of the conputations were perforned on a CDC 6600 conputer.

The iterative nethods used are:

SCR: point successive over-relaxation [23, p. 58],

SLOR  successive line overrelaxation [23, p. 801,

ADI : Peaceman-Rachford alternating direction inplicit iteration

(24, Chap, 6].

The iteration paraneters used are those for the imbedding rectangl e R}:, and
for ADLl the paraneters for cycles of length four are calculated by the
Wachspress al gorithm (24, chap.6]. The initial guess is identically zero,
and the iterations are terminated when the maximum difference between iterates
is less than 1072

The direct nethod used is variant one of the Bunemen al gorithm([8, Sec. 11l,
Preprocessing tinmes are given in Table 2. Conputational results for a simlar
probl emare given in [14],

The problem described in Section 4 for the region in Figure 2 has been
treated by Daly and Nichols [10]. The mesh used has 23 x 40 = 920 points.
Using the direct nethod of matrix deconposition, a particular solution requires

about 30 - 504 of the tinme required for a point Gauss-Seidel iterative procedure.

20



The probl em discussed in Section & for the region in Figure 3 has been
treated by Mrse and Rudsinski [21), The mesh used has 52 x 98 = 5096
points, and the preprocessing time is approxinately 150 seconds. The region
and differential operator are very sel dom changed, so the factored capacitance
matrix is stored on magnetic tape. Thus there is essentially no preprocessing
time for the execution of the program To solve for a particular sol ution
requires about 2 seconds, which is approximately 4% of the tine required for

a successive line overrelaxation iterative procedure.

21



Table 1. Computational results for solving the discrete Poisson equation.
Regi on h P Met hod Maxinmum Conput at i on Scal ed
Error Time (Sec.) Computation
Ti me
SR 5.02 (- 6) 3.586 21. 866
-5-15 16 SLOR 7.63 (-6) 2.654 16. 183
ADL 2.3 (-6) 1.128 6.878
1 Di rect 4.44 (-13) 0.164 1.000
SOR 8.12 (- 6) 29. 388 43.994
a | %2 | swm 7.95 (- 6) 21,424 32,072
AD1 3.41 (- 6) 5,642 8.446
Direct 1.90 (-12) 0. 668 1.000
SR 2.35 (-6) 3.570 21. 250
$2 | 32 | swm 6.48 (-6) 2,558 15.226
AD1 211 (-6) 0.870 5.179
2 Direct 3.77 (-13) 0. 168 1. 000
SOR - 2,02 (-6) 29,624 43. 565
1
& | & | sum 9.96 (- 6) 20.510 30. 162
AD1 3.57 (- 6) 5.332 7.841
Direct 1.54 (-12) 0.680 1,000

22



Table 2. Preprocessing time for the direct

method results in Table i.

Regi on h Preprocessing
Time (Sec.)

) 1,062

1
ék 8.670
b 2.188

2
pare 17.698

L
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