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Abstract

There are several very fast direct methods which can be used to

solve the discrete Poisson equation on rectangular domains. We show that

these methods can also be used to treat problems on irregular regions.





1. Introduction. Within the past few years, several very fast and accurate

direct methods have been developed for solving finite difference approximations

to the Poisson equation,

Au = f in R,

U =g on 8R . >

These methods can usually be applied only on rectangular regions, although the

differential operator and boundary conditions can be more general than those in

the *Poisson equation. In this paper, we will show how these algorithms for

rectangular domains can also be used effectively on irregular regions. The

approach used is similar to that employed by Hackney [ 16, 171, Buneman [ 71,

and George [14]. We also mention the work of Angel [1- 41, Angel and Kalaba [ 51,

Collins and Angel [ 93, Kalaba [20], and Roache [22] on the use of direct methods

for problems in irregular regions.

We will not discuss the details of any specific direct method. A survey

of these procedures is given in [ll], and in particular we cite the recent work

of Buneman [6], Buzbee, Golub, and Nielson [ 81, and Hackney [ 161.

We will also not consider the derivation of the finite difference equations

that approximate the partial differential equation. This subject is treated in

detail by Forsythe and Wasow [13], and we assume that the problem has been

reduced to finding the solution of a matrix equation Ax = y . The matrix A
H

is frequently very large and sparse, but its structure does not permit the

application of the most efficient direct methods. For our computational procedure,

we alter certain rows of A to obtain a matrix B, and we will show how to

define a modified right-hand side z so that the solution x also satisfies theCI

equation Bx = z . The matrix B is chosen so that these equations can be
e OI

solved by the direct methods.



This method is computationally advantageous when we are solving's

sequence of equations ei = YJ ' This situation frequently arises in

time-dependent partial differential equations, in nonlinear problems, and in

linear problems where the right-hand side is varied but the region and

differential operator remain the same. After some initial computation, each

solution x.
-1

can be obtained in approximately twice the time required for

the solution of an equation Bx = z .c1

In Sections 2 and 3 we derive this algorithm in a general form. We

describe a number of applications of the method in Sections 4 and 5, and in

Section 6 we present some computational results.
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2. Method of Solution if detB & 0. Suppose that we are given an n by n

matrix A and an integer p with 1 c; p L n. We wish to modi* p rows of A

to obtain another matrix B. Without loss of generality we assume that the

first p rows of A aze to be changed, since we can achieve this situation

by multiplying A by a suitable permutation matrix. However, we emphasize

that this multiplication should not be done explicitly in the computational

procedure. Rather, the rearrangement of rows should be done implicitly by

indexing. The direct methods mentioned later in the paper require that B

has a particular structure, which could be altered by the permutation

transformation.

Partition A in the form

A = 9

where Al is a p by n matrix and A2 is an (n-p) by n matrix. We then

write

where Bl is a p by n matrix. For the remainder of this section, we

assume that detB f 0.

Suppose we are given a linear equation AZ = x . We partition E in

the same way as A, and write
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Let 7 be any vector of the formN

If W is an arbitrary nonsingular p by p matrix, we define an n by p

matrix $ by

Define the p by p matrix C by

C =AIB-lv .

*
Following Hockney h61, we call C the capacitance matrixf. Assume that there
exi&s a p by 1 Vector p that is a solution to the equationN

Since A and B differ only in the first p rows, it is easy to verif'y that

a solution x to the equation Ax = y is given byN N -

.

We first show that this method of obtaining the solution x MU. be validcy

whenever the original system Ax = y is consistent.N N

Theorem. If detB f 0 , then

det c = @et A) @et W)
detB

.

.
3i
y Hackney actually refers to C

-1 as the capacitance matrix. Since C may

be singular in our developent, we have adopted the present notation.
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If the system Ax = y is consistent,  then Eq. (1) is also consistent.N
Proof. Partition B-"1 in the form

B-l = Dl( D2 t)

J@XX is n by P and D, is n by (n-p). It then follows  that

and

B1D2 I

)C

r

A2D2 0

0

1

t
I

a, D2

)

.

I

Thus we have

-l-C=AIB W=%DIW,

and so

detC =det(AID1)detW

= d&(AB'l) detW

= (detA)(detW)
detB .

To prove the consistency  statement, suppose CT ;5 = 0 . WriteN

AB'l = 9
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and define an n by 1 vector i by

We then have

Since the system Ax = y is assumed to be consistent, we therefore haveN N
-T
L z=o,

TWhich is the same as z (zl - El%) = 0 . But then

-l-

3= 0 Y

which is the' consistency condition for Eq. (1).

The ~oodb~ry fornniLa 118, pp. 123-1&l for, the inverse of a matrix

(B + FG) is -

-1
.

This equ&on has been used in direct methods for solving the Poisson equation

by George [lb], and for the bihnrmmr-t c equation by Goldh 13.51. If A is now

singular we write

A- =B+FG ,
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where F = w', and G is the p by n matrix given by

G = W-l+ - Bl) .

For the case in which A is nonskgular,  the algorithm we have derived is

equivalent to using the Woodbury formula for A-1 .

Suppose that we have a very efficient method for solving equations of

the form Bz = w . The solution of the equation Ax = y then proceeds inN N N N

the following steps:

' (1) Compute C = AIB'lf ,

-(2) CoenFpute z = B-l: tIy

(3) Solve the equation C@ = 3 - %" .N

The solution x can then be obtained from the formulaN

z= B'l(i+Fe) . (2)N

If it is possible to store the vector z and the matrix 5 = B
-10W, then x

N

can alsobe cauputedfrom

x=F+E$ . (3)
N N N

The decision whether to use Eq. (2) or Eq. (3) would be made on consideration

of storage requirements, and on the-relative speed of solving the system in

Eq. (2) versus multiplying by the matrix in Eq. (3). For problems arising

frcun elliptic difference equations, it is frequently better to use Eq. (2)

because B hasabandstructure,butthematri.x E maybe full.

The type of application we have in mind for this method is one in which

we have to solve a mmiber of equations Ax.
#l

=Y& l In this case, we compute

the capacitance matrix and factor it as part of a preprocessing stage. The

solxrtion of each equation AIC~ = 3 is then amrnxitely as fast as the time
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it takes to solve two equations Bz = w .cy N

To be specific, let 0(n) denote the number of arithmetic operations

necessazyy to solve a system Bz = w . Then to ccqnrte C and form its LU
N cy

decoqmsition in a preprocessiaq stage requires approximately

Pe(n) + klp2n + k2p3

operations (cf. 119, Sec. 2.11). In many cases the matrix Al is sparse,

andthis estimate is

P8b) + 4p3 - (4)

operations. To coqnrte the solution to a particular equation Ax t E usingN

Eq. (2) takes an additional.

29(n) + $pn + kp
2

operations. If % is sparse andwelet W = 1,this estate canbe replaced

-(n) + k6P
2

operations. TO compute a particular solution using EQ. (3) requires

ks P
2

operations. In general this estimate cannot be reduced, because the matrix

~meyb&'ull.



3. Method of Solution if rank(B) = n-l . The method derived in Section 2

gives a procedure for finding a p by 1 vector 6 such that a solution x#e

to Ax = y also satisfies the equation

Bx
N

6

=y+

- (r)
0

If B is singular, it may not be possible to find such a vector 6 . To show

this, suppose BTv = 0 but v # 0 . In order for 6 to exist, we must
CI c1 H N

satisfy the consistency condition

T .P
v (y + c Ei c) = 0 .
c1 N i=l

(7)

T
If v,ei = 0 for l_< i 5 p and vTy # 0 , it is not possible to satisfy

E+ ;71

GIN

. However, if A is nonsingular this difficulty does not arise,

because then the only vector v satisfying B v = 0 and vTeT = 0 for
N Y - 3

lli_<p is v=O.
- N

We will now describe an algorithm we have used when rank(B) = n-l and

A is nonsingular. There are two advantages in treating this particular case.

First, the construction is quite simple, and it is easy to see how the method

could be extended to a more general matrix B . Second, the case rank(B) = n-l

has a special significance in the solution of partial differential equations,

because this condition is satisfied by the matrix corresponding to the

Neumann problem. For simplicity, we assume

is the identity matrix.

Theorem 2. Assume that A is nonsingular

and v be two non-zero vectors satisfying- -N
T

Bu = BTv = 0 . Then there exists an- -N N H

integer k with 15 k 5 p such that 0 . Define constar&- - lA~k h 2
-

that the matrix W of Section 2

and rank(B) = n-l , and let u- - CI



Cl!= -1
(Tek) ,

and let

For l<-

2 be a solution to
N - -

i < p-

BG = y - (avTY)
N N

and i # k let \

,ek

be

.

a- solution to

B~i = pi - (avT_ei)_ek ,

/ and let- - % CI= u . Let C be the p by p matrix whose i-th column is- v. m

I the vector Al'$. Then C is nonsingular,-and,  if B is the solution to- - - -N

! cB=y,-Al: ,

i
! the solution x to Ax = y is given by

m- N - - ~-

Proof. If we partition v in the same way.as y , we have

T T T
A ,v = Al 1l + A2 :2 and "BTv T T -

- = Bl IJ+ A2 ,v2 . Thus if TB ,v = ,O and

,v1 N
= 0 we would have TA v = 0 . Since A is nonsingular and v f 0 this

m

cannot happen, and hence :po*-.

To prove that C is nonsingular, we show that Cg = 0 i,mplies @ = 0 .
CI N CI m

P
Suppose 8 is an arbitrary vector such that Cg = 0 . Then x=

h) m c1 'i 3i

satisfies Ax = 0 , and hence x = 0 . This implies that Bx = 0 , orm c1 OI

P

c
l=l

'i ,"i = a (f
Bi yT zi

i=l >
zk .
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Thus pi = 0 for l_<ilp and i # k , and the condition x = 0 thenN

implies that &, = 0 . Thus p = 0 , and so C is nonsingular.

Remark.

steps:

0)

(2)

(3)

As we discussed in Section 2, the computation proceeds in the following

Compute (and factor) C ,

Compute 2 ,
m

Solve for @ l

M

Thesolution x can then be obtained frcxn the formula
m

However, if the problem arises from a partial differential equation, it is more

efficient computationally to obtain x in the form

xc;+
hr m

where fi. is a solution to
CI

iu Y

and

; = [UT
CI-

ii+- E Bi uT Ii - TUT f;][u u]
-1

.
i=l - H N m CI
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4. Applications to Partial Differential Equations by l3nbeddfng. Suppose we

axe given a two-dimensional bounded region R in the x-y plane, and we wish

to find a solution u to the Poisson equation,

Au=f inR t

u=g 0naR.

We ass-me that this differential equation is approximated by a finite differ-

ence equation (cf. Forsythe and Wasow [13 1). Thus we have a finite set of

unknowns [Ui 1 1 c i 5 no] which approximate the solution u at the grid

points. If we denote by Ah a finite difference approximation to the Laplacian

operator A, by Rh the discrete interior of the grid, and by aRh the discrete

boundary of the grid, then the discrete Poisson equation ten be written in the

form

42 U=f in % Y

u=g 0na% . >

Let g be a discrete rectangular region such that Rh c Rh and

aRhcRhuaRi,andlet  Sh=a%nq. Ektendthefunctions f and g

t0 the regions Rh Eind a% U as respectively, and consider the equation

4lU=f in l$-Sh 9

U =g on suaq: l 1

We will solve Eq. (9, and the solution U will then also satisfy Eq. (8).

.r Equation (9) is a linear equation in the unknowns {U, 11 c i s n) .

Observe that we may have increased the number of unknowns by the Mbedding

e . process, so that 120 1 n. We write Eq. (9) as a matrix equation AU = z,N-

03)

(9)
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and the matrix A can frequently be chosen to be block tridiagonal with

tridiagonal matrices as the non-zero blocks (cf. [131).

Let p be the Timber of grid points in Sh. We modify the p rows of

A and z corresponding to the equations

u=g on Sh t

and replace them tith the equations

4lU=f on Sho

This defines a new matrix B and a new right-hand side v. An equationN

BU = 7 corresponds to the difference equationN N

43U=f in '%
.

U =g on ?Mh
1

Since %' is a rectangular region, we have very fast methods for solving

Rq. (10). We can now apply the method of Section 2 to solve the equation

A?i N= V by using the modified matrix B.

To illustrate this construction, let R be a rectangular region with

an interior rectangle removed, such as that shown in Figure 1. For simplic-

ity, we assume that the discrete boundary aRh is a subset of 8R. The

embedding rectangle is Rh = Rh U Sh U Th. The only function extension re-

quired for this example is that f be defined (arbitrarily) in Sh U Th .

To define this extension, we can set f 5 0 in Sh U,Th, or we can define f

so that it is contirruaus in all of %'. The advantage of using a continuous

f is that the solution to Eq, (1O)is then smooth. However, the direct

methods used to solve F&(10) are so accurate that the smoothness of the

solution does not appear to influence the crrmmrt;ational results. Therefore,
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I in the examples we have considered, we extend f by setting f s 0 in

If we let W = I in the method of Section 2, this algorithm is closely

connected with the discrete Green's function for the region '?dcf. c13,

pp. 314-3181). In fact, the method is then equivalent to adding suitable

multiples of the discrete Green's function for the points on Sh so that

the boundary conditions on Sh will be satisfied. Since we have Dirichlet

boundary conditions on Sh, by a proper ordering of the unknowns we can write

Al= _(1 0) l

Since B is positive definite and

C = (1

we see that C is also positive definite in this case. This is advantageous

because Cholesky decomposition can then be used to compute an LLT decomposi-

tion of C (cf. c12, Chap. 231).

If the grid on s
2

has N points on a side, we have n = N . In that

case, we can solve the system BU = 7 in approximatelyN N

e(N) = 58 log2N

operations (cf. kl., p. 2601). The preprocessing then takes

5pbs2N + 5ps

operations (cf. Eq. (4)). To solve EQ, (8) for a particular choice of f

and g byusing Eq. (2)with W= I takes anadditional
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10N2 log2N+ k6p
2

operations (cf. Eq. (5)). If we use Eq. (3) to cOmpute the solution, it

takes an additional

5N210g2N + vpti+ k8p2

operations (cf. ~q. (6)). Thus if p >> log2N it is faster to use Eq. (2)

to compute the solution. We also observe that for this problem the matrix

B-l is full k3, p. 851, so to store g in using Eq. (3) would require pN2

locations. Thus for large values of p and -N it is both faster and more

economical in terms of storage to use Eq. (2) to cwte the solution to a

particular equation.

It should be clear that the Mbedding procedure can be applied to other

elliptic difference operators with other types of boundary conditions. To

be'a practical procedure, we simply require that we have a fast method for

solving the imbedded problem in the rectangular region.

As another example, consider the region shown in Figure 2. This problem

arises in the time-dependent study of a rotating fluid [lo], and the fluid surface

is moving slowly. We are given Dirichlet boundary data on Sh , and Neumann

boundary data on %+h l _
The imbedding rectangle is R.h = Rh U Sh LJ Th , and

we use Neumann boundary conditions on . Thus B corresponds to the Neumann

problem on Rh , and the rank of B is n-l . The method of Section 3 can then

be applied, and direct methods for solving the rectangular Neumann problem are

given in [8].

For an example with the Poisson operator in another geometry, consider

the region in the z -r plane shown in Figure 3. This problem arises in the

-
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time-dependent study of a plasma [21], and a Poisson equation must be solved

at each time step. The boundary conditions are Dirichlet on Sh and Neumann

on he). We use Neumann boundary conditions on al?p and &$ (3) and

Dirichlet boundary conditions on
&$a and 3%(4) for the imbedding

region s = Rh LJ Sh U Th . The elliptic difference equation in Ri is solved

by the method of matrix decomposition [8].
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5. Applications to Partial Differential Equations by Splittin&. There are

many problems for which the imbedding approach is not an economical algorithm.

For example, wedding the region in a redme may introduce an excessively

large xnmiber of additional unknowns that are not necessary to the solution of

the original. problem. Another instance is one in which the differential oper-

ator or the mesh size changes in different parts of the region. In this

section, we give two such examples. In each case, the method of Section 2

can be used to split the problem into two rectangular problems, which can be '

solved by the usual direct methods.

Consider the elongated L-shaped region in Figure 4, and the equation

%
U=f in % 9

u=g onaRh.

We assume that points on the line marked Th are all grid points. To define

the matrix B, we replace the equations

4lU=f on Th

by the equations

.u= 8 on Th 9

where g has been (arbitrarily) extended to Th. The solution of an equation

BU = 7 now consists of solving the two rectangular problemsLy Iy

4l 'i =:f in (0
51 9

'i 'Q ( )on 8si $

- for i = 1, 2. We can then apply the method of Section 2 to solve the original
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problem. This algorithm is similar to one developed in c 8, Sec. gf for

non-rectangulaz regions.

As another example, consider the multiple-material problem shown in

Figure 5. The differential equation is

and

I

Q1(X) in R(1)
9

a(x) =

44 in R(2) .

The f+unctions al(x), 02(x), and I(Y) are assumed to be smooth. Dirichlet

hdata is given on aR,and we require that Q'X be continuous across the

boundaxy between R(1) (2)andR . The coenrputational procedure is essentiaJJy

the s-e as that for the L-shaped region. The only difference is that in

hl
forming the matrix B we replace the equations for the continuity of Q'X

across the line Th by the ewtions

U =g on Th .

As before, the equation BU = v -corresponds to the two rectangular problems

a
'x ai 2) r 8W (T(Y) >) = f(x 9 Y) in Rti) 9

ui(x’ Yl = dx 9 Y) (i>onaR ,

for i-1,2. These problems can be solved directly by the method of matrix

decoqosition C 8, Sec. 81. A similar method can be used for the case in

wl$.ch 7(y) is only piecewise smooth.
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It is clem that this splittiing method can be applied to the Poisson

equation in regions such as that in Figure 5 when different mesh sizes are

usedin R and R .(1) (2) The method developed in [ 8, Sec. 81 can aJ.so be

adapted to include  rectangular problems with irregular meshes.





6. Computational Results.

results for two regions of

In Table 1 we have tabulated some computational

the form of Figure 1. In each case, a square

with sides of length 1 has a metrically

center. For region 1 the inner square has

region 2 the inner sides we of length -j$.

located square removed from its

sides of length -&, and for

We solve the Poisson equation
n n

with Dirichlet boundary conditions for the function u(x, y) = xc + yc .

This function was selected because there is no truncation error, and all of

the measured error is due to inaccuracies in the solution of the difference

equations. All of the computations were performed on a CDC 6600 computer.

The iterative methods used sre:

SOR : point successive over-relaxation [23, p. 581,

SLOR: successive line overrelaxation lI23, p. 801,

AD1 : Peaceman-Rachford alternating direction implicit iteration

124, chap. 61.

The iteration parameters used are those for the embedding rectangle s, and

for AD1 the parameters for cycles of length four are calculated by the

Wachspress algorithm C24, chap. 61. The initial guess is identically zero,

and the iterations are terminated when the maximum difference between iterates

is less than 10 -5 .

The direct method used is variant one of the ~uneman algorithm C8, Sec. ~1.

Computational results for a similarPreprocessing times are given in Table 2.

problem are given in WI.

The problem described in Section 4 for

treated by Daly and Nichols [lo]. The mesh used has 23 x 40 = 920 points.

the region in Figure 2 has been

Using the direct method of matrix decomposition, a particular solution requires

about 30 - 50% of the time required for a point Gauss-Seidel iterative procedure.
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The problem discussed in Section 4 for the region in Figure 3 has been

treated by Morse and Rudsinski [211, The mesh used has 52 x 98 = 5096

points, and the preprocessing time is approximately 150 seconds. The region

and differential operator are very seldom chmged, so the factored capacitance

matrix is stored on magnetic tape. Thus there is essentiaUy no preprocessing

time for the execution of the program. To solve for a particul.~ solution

requires about 2 seconds, which is approximately 40$ of the time required for

a successive line overrelaxation iterative procedure.
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Table 1. CmputationaJ. results for solving the discrete Poisson equation.

I

Region h P Method Msxilxum Computation Scaled
Error Time (Sec.) Computation

Time

SOR 5.02(-6) 3.586 21.866
1
32 16 SLOR 7.63 t-6) 2.654 16.183

AD1 2.j6 (-6) 1.128 6.878

1 Direct 4.44 (-13) 0.164 1.000

SOR 8.12(-6) 29.388 43.994

& 32 SLOR 7.95 (-6) 21.‘& 32.072

AD1 3.41(- 6) 5.642 8.446

Direct 1.90 (-12) 0.668 1.000

SOR 2.35 (-6) 3.570 21.250

132 32 ~LOR 6.48 (-6) 2.558 15.226

AD1 2.~ (-6) 0.870 5.179

2 Direct 3.77 (-13) 0.168 1.000

SiXI - 2.02 (-6) 29.624 43.565

zk 64 SLOR 9.96 C-6) 20.510 30.162

AD1 3a57 C-6) 5.332 7.841

Direct 1.9 (-12) 0.680 l.ooo

22



Table 2. Preprocessing time for the direct method results in Table i.

Region h Preproces8ing
Time (Sec.)

132 1.062
1 ,

17z 8.670

132 2.188

2
1 17.698

I 1
i;G

.
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