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Abstract

An efficient algorithm is presented for determining whether or not

a given graph is planar. If V is the number of vertices in the graph,

the algorithm requires time proportional to V log V and space proportional

to V when run on a random-access computer. The algorithm constructs

the facial boundaries of a planar representation without backup, using

extensive list-processing features to speed computation. The theoretical

time bound improves on that of previously published algorithms. Experimental

evidence indicates that graphs with a few thousand edges can be tested

within seconds.
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PLANARITY TESTING IN V log V STEPS:

EXTENDED ABSTRClCT

John Hopcroft
. .

Robert Tarjan

Stanford University, Stanford, California

Introduction

The problem of embedding a graph in a plane arises in several fields.

In engineering, discovering whether a given circuit may be laid out in a

plane is of interest in integrated circuit design; in chemistry, determining

isamorphism of chemical structures may be made much easier if the structures

are planar. The earliest characterization of planar graphs was given by

Kuratowski [5], who showed that every non-planar graph contains a subgraph

which upon removal of degree two vertices is isomorphic to one of the graphs

in Figure 1. However, searching for such subgraphs directly may require

an amount of time at least proportional to Vb , if not much worse, where V

is the number of vertices in the graph. It is clear that more efficient

procedures are needed to analyze large graphs.

The planarity problem has attracted numerous researchers and many

algorithms have been described in the literature [l, 2, 3, 6, 71.

Surprisingly little work has been directed toward a rigorous analysis of

their running times, however, and algorithms which are obviously inferior

to previously published algorithms continue to be published. Shirey [7]

has grouped a number of the better methods into what he calls the'Goldstein

approach. Using list processing and programming tricks, he has proved an

asymptotic time bound of v5 for his variation of the algorithm. The only

other competitive algorithm is due to Lempel, Even, and Cederbaum [6].
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Shirey indicates a probable time bound of V3 for their algorithm, although

neither he nor the originators discuss implementation. Tarjan has programmed

the L.E.C. algorithm, giving a time bound of v2 , although without proof [8].

We now have a proof of this time bound, and we also believe that GoldsteirPs
-.

algorithm, if implemented optimally, will run in time 3 . However, our

proposed algorithm is even faster, and it includes several procedures for

graph manipulation which are interesting in their own right.

Figure 1: Kuratowski subgraphs

General Description

m
Let G = (Y,E) be an undirected graph, where Y is a set, called

the vertices, and & is a set of unordered pairs of vertices, called the

edges. Let V be the number of vertices, and E the number of edges.

We assume that G contains no loops and no multiple edges. Let G be

planar, and suppose it is drawn in the plane. The connected sets of points

in the plane formed when the edges and vertices of G are deleted from this

representation are called the faces F of the graph. If there are F faces,

then V+F = E+2 [4]. It follows from this familiar result that any planar
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graph satisfies the inequality E 5 3v- 6 . Thus we may restrict our

consideration to graphs having 3V- 6 or less edges; other graphs may

be immediately classified as non-planar.

The planarity algorithm operates by dividing G into biconnected
-.

components, and attempting to construct a planar representation for each

biconnected component (G is planar if and only if all of its biconnected

components are planar [&I). Given a component, the facial boundaries of

a planar representation are constructed in the following manner: first a

cycle (a simple closed path) is found. All the points on this cycle are

marked as old, and a planar representation of the cycle is constructed.

Next a simple path joining two old points is found and added to the

representation. The new path either divides a face of the current represen-

tation into two new faces, or else makes

are added until the entire component has

which may not be added is found.

the graph nonplanar. New paths

been represented or until a path

We encounter one difficulty in adding paths to a partially constructed

representation; namely, we may find it possible to put a path into the

interior of several different faces. If a choice is made arbitrarily for

such a path, then at some later time we may find a path which cannot be

added to the current representation, but may be added if a different choice

had been made at a previous step. If the algorithm is to be efficient, this

. possibility of alternate choices must be eliminated. A special part of the

algorithm is designed to look ahead to discover which selection is necessary

in order to represent the graph in the plane, if such a representation is

possible. Thus a path is not added to the representation until either the

face it must divide is known exactly, or the decision is known to be

arbitrary.
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One more step is crucial in decreasing the running time of the algorithm.

Each path is selected to start from a vertex of small degree in the current

representation; in particular, from a vertex of degree five or less. If no

such new path exists (because all edges from vertices of degree five or less

are already used) then a vertex of degree five or less and all adjacent

edges are marked as deleted. This device decreases the running time of the

algorithm from k$ to k V log V .

List processing techniques are used extensively to speed the algorithm.

The graph is represented as a set of lists of edges. A list of adjacent

edges is given for each point; in addition, since each edge appears twice,

both occurrences of an edge have pointers to each other. This facilitates
-w_

deletion of edges from the graph. We will consider separately and in

detail the various parts of the algorithm, but due to space limitation we

omit complete proofs of correctness and of the time bounds. These will

appear in a Stanford Computer Science Technical Report. The parts are the

routine for finding biconnected components, the routine for finding paths,

the routine for deciding where to add a path, and the routine for building

a planar representation. The total time required by each of these algorithms

_ except the last is proportional to the number of edges in the graph. The

representation-building algorithm requires time proportional to V log V .

Thus the total algorithm has a theoretical time bound of k V log V

for some k . Further, the storage space required by the algorithm is

proportionalto V .



Finding Biconnected Components-

We break a graph into its biconnected components by performing a

depth-first search along the edges of the graph. Each new vertex reached

is .placed on a stack, and for each vertex a record is kept of the lowest

vertex on the stack to which it is connected by a path of unstacked vertices.

When no new vertex can be reached from the top of the stack, the top vertex

is deleted, and the search is continued from the next vertex on the s,tack.

If the top vertex does not connect to a vertex lower than the second vertex

on the stack, then this second vertex is an articulation point of the graph.

All edges examined during the search are placed on another stack, so that

when an articulation point is found the edges of the corresponding

biconnected com$onent may be retrieved and placed in an output array.

When the search is exhausted, a complete search of a connected component

has been performed. An unreached vertex is selected as a new starting point

and the process is repeated until the entire graph has been examined.

Isolated vertices are not listed as biconnected components, since they'have

no adjacent edges. They are merely skipped. The details of the algorithm

are given in Figure 2. Note that the flowchart gives a non-deterministic

algorithm, since any new edge may be selected in block A. The actual program

e
is deterministic; the choice of an edge depends on the particular representation

of the graph. The algorithm requires less than k max(V,E) steps, for

Isome suitable k , since only a finite amount of manipulation is performed

with each vertex and each edge. Since E ,< 3~6 for planar graphs, the

time bound is klV for a suitable kl . The amount of space required is

also proportionalto V .



0Start.
Choose a startpoint.

I I

Empty stack of vertices. Number
startpoint and m-t it on stack.

4

No Is there an edge out of top vertex on stack?

t
Yes

*

Delete edge from graph. Pzt on stack of edges.

a Is--.head of edge a new vertex?

I No
c

Check to see if number of head
of edge is lower than LOWPOINT
of top vertex. If so, set
LOWPOINT of top vertex equal to
that number.

I Yes

r a
Add new vertex to stack of
vertices. Number it. Set
LOWPOINT of the vertex to
equal the number of the
previous top of stack.

Yes

Is LOKFOINT of the top vertex

Yes
vertex on the stack?

Let it be the new Set LOWPOINT  of the next Form a new biconnected
vertex equal to LOWPOINT component by deleting
of the top vertex if it edges from edge stack
is less. until finding one which

connects to a vertex below
the next vertex on the
stack.

Remove top vertex from

Figure 2: Flowchart for Biconnected Components Algorithm.
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Finding Paths

The path finding algorithm finds the paths used to build the graph

in the plane. The starting vertex for each successive path may be chosen

arbitrarily; in fact, the initial edge of each successive path may be. .

selected arbitrarily from the set of unused edges. The algorithm is highly

dependent on the graphs being biconnected. In order to find a new path,

the initial edge is selected and the head of the edge is checked. If this

vertex is old, the path consists of a simple edge. If the vertex has never

been reached before, a depth-first search is begun which must end in a

path since the graph is biconnected. The search generates a tree-like

structure; specifically, it is a tree with extra edges connecting some nodes
-=.

with their (not necessarily immediate) ancestors. (We will visualize the

tree drawn so that the root, which is an ancestor of all vertices, is at the

bottom of the tree.) Enough information is saved from this tree so that if

a vertex in it is reached when building another path, the path may be

completed without any further search.

The flowchart (Figures 3 and 4) gives the details of the algorithm.

It is divided into two parts: one for the depth-first search process and

one for path construction using previously gathered information. Let us

consider path generation using depth-first search; that is, suppose the

algorithm is applied and that the head of the first edge selected is
.

previously unreached. Referring to the flowchart, we see that the search

process is very similar to that used in the biconnectivity algorithm.

A search tree is generated, and each edge examined is either partof the

tree or connects a vertex to one of its predecessors in the tree. LOWPOINT

is a variable which gives the number of the lowest vertex in the tree

reachable from a given vertex by continuing out along the tree and taking
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Put edge in paths-tack. Let POINT be head

(No path exists

c of the edge.

Is there an unsearched edge from POIN!l??

No Yes

w 4
Set backward edge ofPOINT
to edge on pathstack. Set
pastpoint to tail of edge.
If LOWPOINT of POINT less
than LOWPOINT of past- Is head of edge unreached?
point, modify LOWPOINT  and
forward edge of pastpoint No

to indicate edge to POINT.
IS head of edge old

Yes

Set POINT to pastpoint.
Delete edge from pathstack.

Figure 3: Flowchart for Pathfinding Algorithm (I)
*
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a

P

No
Is LOXPOINT ofPOINT less than

Is POINT old? Is I)OIJJT old?

Is number of POINTless than

Figure 4: Flowchart for Pathfinding Algorithm (II)



one edge back toward the root. The forward edges point along this path,

while the backward edges point back along the tree branches. The depth-

first search used here is exactly the same as in the biconnectivity algorithm

and because the graph is biconnected, LOWPOINT of a given vertex must point

to a node which is an ancestor of the immediate predecessor of the given

vertex. In particular, LOWPOINT of the second vertex in the search tree

must indicate an old vertex which is not the startpoint. Therefore the

algorithm will find a path containing the initial edge. Note that all

vertices encountered during the search process must either be old or

unreached, since every vertex reached in a previous search either has had

all its edges examined or has been included in a path.
--.

Let us now suppose that the head of the first edge has been reached

previously but is not marked old. Then the forward and backward pointers,

. along with the LOWPOINT values, allow the algorithm to construct a path

without further search. There are several possible cases. First, if the

number of the head of the initial edge is less than the number of the

startpoint, then following backward edges will certainly produce a simple

path, since the numbers of vertices along such a path decrease and the root

of every search tree is an old vertex. If the initial edge is part of them

search tree and the startpoint is the predecessor of the second vertex,

then LOwpOII?JT of the secondvertex must be less than the number of

startpoint. Following forward edges until reaching a vertex lower than the

startpoint and then following backward edges will produce a simple path.

The last case to consider occurs when the initial edge is not part of the

search tree but points from avertex to one of its descendents  in the tree.

In this case somevertex  in the tree between the startpoint and the second

vertex of the path must have a LOWI'OINT value less than the number of the
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startpoint. If we follow backward edges until reaching the first such

vertex, then follow forward edges until a vertex numbered less than the

startpoint is reached, and finally follow backward edges until an old

vertex is reached, we will generate a simple path.
. .

To derive a time bound for the algorithm, we assume that one vertex

is marked old initially, and a different vertex is selected as the initial

startpoint. The algorithm is then run repeatedly with arbitrary startpoints

until all edges are used to form paths. Each execution of the algorithm

produces a simple path, if the graph is biconnected. Since each edge is

examined at most once in the search section of the algorithm, and since each

edge is put into a path once, the time required to execute the algorithm
--.

until no edges are unused is proportionalto E . Since E ,< ~-6 ,

for some k , the time required is less than kV . The space used is

also proportionalto V .

Resolving Ambiguity in Adding Paths

Xn this section we describe the algorithm which determines the vertices

from which new paths should be started and which supplies the representation

building algorithm with a sequence of paths along with sufficient information

to resolve ambiguities as to which face should be divided. First a cycle

is found and then a path pl is found connecting two vertices on the cycle.

The cycle is then considered to consist of two paths between the two vertices.

The following sequence of steps is repeated until every edge'of the

graph lies in some path or the graph is found to be nonplanar. (In the

process a pushdown store is maintained of all paths which may divide more

than one face along with a list of paths found but not yet given to the
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representation building algorithm. Along with each path on the pushdown

store is a pointer to a copy of the path in the list of paths not yet

given to the representation building algorithm.)

The path finding algorithm is asked for a path pi from a
-.

vertex v. .1
Let Gi denote the last vertex in path pi . A check is

made to see if there exists a path already found containing both vi

and G
i*

(Vertices on paths, with the exception of the first and last

vertices, are numbered sequentially so that this test can be performed in

a finite number of steps per path independent of path length.) If there

is no path containing both vi and ci , then the path pi divides a

unique face. If the pushdown store is empty, the path is given to the
-=.

representation building algorithm. Otherwise the path is placed on the list

of paths since even though it divides a unique face we must first put in

. all previously found paths and one of these is waiting on the pushdown

store since it divides more than one face. In either case, the paths

containing v. and ? are divided in two at the vertices v. and ?
1 i 1 i'

If on the other hand the path starts and ends at vertices on the same

path, then an ambiguity as to which face should be divided exists.

Whenever such a situation arises, the algorithm immediately tries to resolve-

the ambiguity. Assume path pi starts at vertex v. and ends at
1

vertex 6i where v. and G
1

i are both on path p. .
J

Then the path pi

is: stored on the pushdown list and the path finding algorithm is directed

to start paths from vertices on path pi or vertices between vi and vi

on path p. .
3

Let the next path found be pk . One of four situations

arises.
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i> The last vertex of path pk is on the same path as the first

vertex of pk . In ,this case, a new ambiguity exists and pk

is added to the pushdown list. The process of resolving the

ambiguity of pi is interrupted and the algorithm starts to
-.

resolve the ambiguity of pk .

ii) The last vertex of path pk is on a path other than pi or pj .

In this case the endpoint of pk uniquely determines the face to

be divided by pi and is called the resolving point of path pi .

The path pi is removed from the pushdown store. If the pushdown

store is empty, then all paths on the list of paths can be given

to the representation building algorithm. If the pushdown store

is not empty, then the top path is a path which we were trying to

resolve but were interrupted in the process. We return again to

this process.

iii) If pk connects pj to a vertex on pi between vi and Gi ,

then Pk divides a unique face but does not resolve the.

ambiguity of pi . We simply place pk on the list of paths

and continue trying to resolve pi .

iv) If pk ends at a vertex on pi but outside the portion of the

path from vi to Gi , then the situation is similar to case iii

but the set of vertices from which we can start paths to resolve

'i
must be extended.

Space does not permit a more detailed analysis and many details have

been omitted. For example, the test whether there exists a path ‘containing

both vi and ci takes time proportionalto the degree of the vertex vi .

This would add an additional factor of V to the running time were it not

for the fact that the computation is arranged so that all paths are started

from vertices which appear to be of degree 5 or less. The interested reader
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is referred to the more detailed treatise of the algorithm along with

its ALGOL implementation and an analysis of the running time which

will appear in a Stanford Computer Science Technical Report.

. .

Building a Planar Representation

We store the part of the graph which has been examined as a set of

cycles, one corresponding to each face of a planar representation of the

graph. Each cycle is a doubly linked circular list of the vertices on the

boundary of the face. Corresponding to each vertex is a list of cycles in

which the vertex appears. The cycle-building process, when given a path

starting from a vertex of degree five or less, and when also (possibly)

given a resolving point for the path, searches the five (or less) cycles

containing the startpoint of the path, in both directions, looking for the

endpoint of the path. The resolving point is also noticed if found. If.

the endpoint is not found in any of these cycles, the graph is nonplanar.

If the endpoint is found, the cycles in which it appears are searched for

the resolving point, if such a search is necessary to resolve ambiguity

e concerning which cycle should be divided. The selected cycle is then split

at the start and end points of the path, the path is added to each piece,

and the construction of the new cycle is complete. If a resolving point

is used, its location is saved until it is an endpoint of a path, so that

unnecessary searches are not made. In addition, cycles which are known to

need no further dividing are removed from the vertex lists. Such cycles

occur when points are deleted because they have five or fewer incident edges,

all of which have been added to the planar representation.
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The theoretical execution time of the planarity algorithm is dominated

by the time necessary to search the cycles containing the startpoint of a

path for the endpoint and resolving point. We consider the time necessary

to search the particular cycle containing the endpoint and the resolving
-.

point. Since the same amount of time is spent searching each cycle

containing the startpoint, the total time is at worst five times this

quantity. To bound the time we will consider searching for endpoints and

resolution points separately. The time spent searching for both

simultaneously must be no greater than the time spent in separate searches.

We need a lemma, the proof of which is omitted.

Lemma: (a) --,x log x + y log y + min(x,y) 5 x + y log(x+y) 1 ,< aYx>Y

(b) (x+a) log(x+a)  + (~+a) log(P )a +min(x,y) ,< (x+y+2a) log(x+y+za)

(c) (x+a) log(x+a)+y log y 5 x log x+ (y+a) log(y+a) if x 5 y l

Consider the time spent looking for endpoints. Assume that at some

step we have cycles of length al, . ...1, and that k vertices do not yet

appear in cycles. Suppose lm 2 ai for all l,< i Lm-1 . We claim that

the search time from this step on is bounded by

m-l
T(fl,P2,  l drn,k) = >I ai log ii+ (am+2k) lo&,+ 2k) .

i=l

Since m = 0 and k = V initially, this will give a total time bound

. of v log v . (To simplify matters, we neglect constants of proportionality

throughout this discussion.) We can prove the bound by induction on k .

For fixed k , we use induction on m .

Assume a path of length a is to be added to the representation.

Without loss of generality, we may assume that the endpoint being considered

is either in cycle 1 or in cycle m. Suppose it appears in cycle 1 and the
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cycle is to be broken into two pieces of lengths 11-b and b and the

path added to each piece to form two new cycles. Then the time from this

step is

T' = min(ll-b,b) + T(il-b+a,a+b,a 2,43*** mYa k-a)

,< T4d2, l 4,,k)

since

min(al-b,b)+  (Ll-b+a) log(ll-b+a)+ (a+b) log(a+b)+ (1,+2k-2a) log(lm+2k-2a)

,< (Qt2a) log(Pl+2a) + (lm+2k-2a) log(Pm+2k-2a)

5 1, log RI+ (em+2k) log(em+2k)

-=.

by Lemma 1.

If the endpoint appears in cycle m, then either Lm-b+a ,> li for

l_< i <m or there exists j such that fj > dm-b+a and Lj ,> Ii for

lli<m. In these cases we may prove TT ,< T as above, using Lemma 1.

Thus we have the desired time bound, since T after the last stop is 0 .

Now consider the time necessary to find resolving points. After

finding a resolving point, we do not search for another until a path which

has this resolving point as one of its endpoints is added to\the representation.

_ Then a path not in the original cycle exists between the startpoint and the

resolving point. Thus the original cycle is by ,this time divided at the

startpoint and resolving point . The analysis above thus also gives a time

bound on searching for resolving points. Thus the total time required to

construct a planar representation is k V log V , for some constant k ,

The representation-building algorithm also uses space proportional to V .
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Experimental Results

The planarity algorithm has been programmed in ALGOL W for the

Stanford 360/67 and tested on a number of graphs. Experimental evidence

indicates that memory space is the"limiting  factor and the algorithm must

be reprogrammed if it is to handle graphs with more than 2000 edges. The

current version of the algorithm consists of 985 lines of ALGOL. Graphs

with 100 edges are handled in less than one second. A planar graph with

1000 vertices and 2000 edges was run in 12.7 seconds. Nonplanar graphs

may have somewhat smaller running times since the algorithm stops as soon

as a nonplanar subgraph is discovered.
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