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Abst r act

An efficient algorithmis presented for determning whether or not
a given graph is planar. If V is the nunber of vertices in the graph,
the algorithmrequires time proportional to V log V and space proportional
to V when run on a random access conputer. The algorithm constructs
the facial boundaries of a planar representation wthout backup, using
extensive |ist-processing features to speed conputation. The theoretical
time bound inproves on that of previously published algorithms. Experimental
evidence indicates that graphs with a few thousand edges can be tested

w thin seconds.

This research was supported by the Advanced Research Projects Agency of
the Office of the Department of Defense, the Atonic Energy Conmission,

the Hertz Foundation, the National Science Foundation, and the COfice of
Naval Research under grant nunber N-0001k-67-A-0112-0057 NR Okk-L02.






PLANARITY TESTING IN V | og V STEPS:

EXTENDED ABSTRACT

John Hopcroft

Robert Tarjan
Stanford University, Stanford, California

[ ntroduction

The problem of enbedding a graph in a plane arises in several fields
In engineering, discovering whether a given circuit may be laid out in a
plane is of interest in integrated circuit design; in chemstry, determ ning
isomorphism of chem cal structures nay be made nuch easier if the structures
are planar. The earliest characterization of planar graphs was given by
Kur at owski [5], who showed that every non-planar graph contains a subgraph
whi ch upon removal of degree two vertices is isonorphic to one of the graphs
in Figure 1. However, searching for such subgraphs directly may require
an anount of tinme at |east proportional to Vg, if not nuch worse, where V
is the nunber of vertices in the graph. It is clear that nore efficient
procedures are needed to analyze large graphs

The planarity problem has attracted numerous researchers and nany
al gorithns have been described in the literature [1, 2, 3, 6, T7].
Surprisingly little work has been directed toward a rigorous analysis of
their running tines, however, and algorithms which are obviously inferior
to previously published algorithms continue to be published. Shirey [7]
has grouped a nunber of the better methods into what he calls the Goldstein
approach. Using list processing and programmng tricks, he has proved an
asynptotic time bound of v for his variation of the algorithm The only

ot her conpetitive algorithmis due to Lenmpel, Even, and Ceder baum [6].



Shirey indicates a probable time bound of v’ for their algorithm although
neither he nor the originators discuss inplementation. Tarjan has programmed
the L.E.C. algorithm giving a time bound of v", although without proof [8].
W& now have a proof of this tine bound, and we also believe that Goldstein's
algorithm if inplenented optimally, will run in tine v However, our
proposed algorithmis even faster, and it includes several procedures for

graph manipulation which are interesting in their own right.
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Figure 1: Kuratowski subgraphs

CGeneral Description

Let G = (Vv,€) be an undirected graph, where v is a set, called
the vertices, and € is a set of unordered pairs of vertices, called the
edges. Let V be the nunber of vertices, and E the number of edges.
We assune that G contains no |loops and no multiple edges. Let G be
planar, and suppose it is drawn in the plane. The connected sets of points
in the plane forned when the edges and vertices of G are deleted fromthis
representation are called the faces ¥ of the graph. If there are F faces,

then V+tF = E+2 [4]. It follows fromthis famliar result that any planar



graph satisfies the inequality E < 3v- 6 . Thus we may restrict our
consideration to graphs having 3v- 6 or |ess edges; other graphs may
be imediately classified as non-planar.

The planarity algorithm operates by dividing G into biconnected
conponents, and attenpting to consfruct a planar representation for each
bi connected conponent (G is planar if and only if all of its biconnected
conponents are planar [4]). Gven a conponent, the facial boundaries of
a planar representation are constructed in the following manner: first a
cycle (a sinple closed path) is found. Al the points on this cycle are
marked as old, and a planar representation of the cycle is constructed.

Next a sinple path joining two old points is found and added to the
representation. The new path either divides a face of the current represen-
tation into two new faces, or else makes the graph nonplanar. New paths
are added until the entire conponent has been represented or until a path
which may not be added is found.

V¢ encounter one difficulty in adding paths to a partially constructed
representation; nanely, we may find it possible to put a path into the
interior of several different faces. |If a choice is nmade arbitrarily for
such a path, then at sone later time we may find a path which cannot be
added to the current representation, but nay be added if a different choice
had been made at a previous step. |If the algorithmis to be efficient, this
possibility of alternate choices nust be elimnated. A special part of the
algorithmis designed to | ook ahead to discover which selection is necessary
in order to represent the graph in the plane, if such a representation is
possible. Thus a path is not added to the representation until either the
face it nmust divide is known exactly, or the decision is known to be

arbitrary.



One nore step is crucial in decreasing the running time of the algorithm
Each path is selected to start froma vertex of small degree in the current
representation; in particular, froma vertex of degree five or less. If no
such new path exists (because all edges from vertices of degree five or |ess
are already used) then a vertex of degree five or less and all adjacent
edges are marked as deleted. This device decreases the running tinme of the
al gorithm from KV to k V log V.

Li st processing techniques are used extensively to speed the algorithm
The graph is represented as a set of lists of edges. A list of adjacent
edges is given for each point; in addition, since each edge appears twice,
both occurrences qf an edge have pointers to each other. This facilitates
deletion of edges fromthe graph. W wll consider separately and in
detail the various parts of the algorithm but due to space limtation we

onit conplete proofs of correctness and of the tinme bounds. These will
appear in a Stanford Conputer Science Technical Report. The parts are the
routine for finding biconnected conponents, the routine for finding paths
the routine for deciding where to add a path, and the routine for building
a planar representation. The total time required by each of these algorithns
_except the last is proportional to the nunber of edges in the graph. The

representation-building algorithmrequires time proportional to Vlog V.
Thus the total algorithmhas a theoretical tine bound of k VIog V
for sone k . Further, the storage space required by the algorithmis

proportionalto V .



Fi nding Bi connected Conponents

W break a graph into its biconnected conponents by perfornming a
depth-first search along the edges of the graph. Each new vertex reached
is placed on a stack, and for each vertex a record is kept of the |owest
vertex on the stack to which it is connected by a path of unstacked vertices.
Wien no new vertex can be reached fromthe top of the stack, the top vertex
is deleted, and the search is continued fromthe next vertex on the stack.
If the top vertex does not connect to a vertex lower than the second vertex
on the stack, then this second vertex is an articulation point of the graph.
Al'l edges exam ned during the search are placed on another stack, so that
when an articulation point is found the edges of the corresponding
bi connect ed component may be retrieved and placed in an output array.

Wien the search is exhausted, a conplete search of a connected conponent
has been performed. An unreached vertex is selected as a new starting point
and the process is repeated until the entire graph has been exam ned.

Isolated vertices are not listed as biconnected conponents, since they' have

no adjacent edges. They are nerely skipped. The details of the algorithm

are given in Figure 2. Note that the flowchart gives a non-determnistic

al gorithm since any new edge may be selected in block A The actual program
is determnistic; the choice of an edge depends on the particular representation
of the graph. The algorithmrequires |ess than k max(V,E) steps, for

_some suitable k , since only a finite amount of nanipulation is perforned

with each vertex and each edge. Since E <3V-6 for planar graphs, the

time bound is k,V for a suitable L The anount of space required is

al so proportionalto V .
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Figure 2. Flowchart for Biconnected Conponents Al gorithm



Fi ndi ng Pat hs

The path finding algorithm finds the paths used to build the graph
in the plane. The starting vertex for each successive path may be chosen
arbitrarily; in fact, the initial edge of each successive path may be
selected arbitrarily fromthe set of unused edges. The algorithm is highly
dependent on the graphs being biconnected. In order to find a new path,
the initial edge is selected and the head of the edge is checked. If this
vertex is old, the path consists of a sinple edge. |If the vertex has never
been reached before, a depth-first search is begun which nust end in a
path since the graph is biconnected. The search generates a tree-|ike
structure; sgecifically, it is atree with extra edges connecting some nodes
with their (not necessarily immediate) ancestors. (W wll visualize the
tree drawn so that the root, which is an ancestor of all vertices, is at the
bottomof the tree.) Enough information is saved fromthis tree so that if
a vertex in it is reached when building another path, the path may be
conpl eted without any further search.

The flowchart (Figures 3 and L) gives the details of the algorithm
It is divided into two parts: one for the depth-first search process and
one for path construction using previously gathered information. Let us
consi der path generation using depth-first search; that is, suppose the
algorithmis applied and that the head of the first edge selected is
previously unreached. Referring to the flowchart, we see that the search
process is very simlar to that used in the biconnectivity algorithm
A search tree is generated, and each edge exanmned is either part-of the
tree or connects a vertex to one of its predecessors in the tree. LOWPOINT
is a variable which gives the nunber of the |owest vertex in the tree

reachable from a given vertex by continuing out along the tree and taking
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one edge back toward the root. The forward edges point along this path,
while the backward edges point back along the tree branches. The depth-
first search used here is exactly the same as in the biconnectivity algorithm
and because the graph is biconnected, LOWPOINT of a given vertex must point
to a node which is an ancestor of the immediate prédecessor of the given
vertex. In particular, LOWPOINT of the second vertex in the search tree
nmust indicate an old vertex which is not the startpoint. Therefore the
algorithmwill find a path containing the initial edge. Note that all
vertices encountered during the search process nust either be old or
unreached, since every vertex reached in a previous search either has had
all its edges exanmined or has been included in a path.

Let us now suépose that the head of the first edge has been reached
previously but is not marked old. Then the forward and backward pointers,
along with the LOWPOINT val ues, allow the algorithmto construct a path
without further search. There are several possible cases. First, if the
nunber of the head of the initial edge is less than the nunber of the
startpoint, then follow ng backward edges will certainly produce a simple
path, since the nunbers of vertices along such a path decrease and the root
of every search tree is an old vertex. |If the initial edge is part of the
search tree and the startpoint is the predecessor of the second vertex,

t hen LowpoINT of the second vertex nust be |ess than the nunber of
startpoint. Following forward edges until reaching a vertex lower than the
startpoint and then follow ng backward edges will produce a sinple path.
The last case to consider occurs when the initial edge is not part of the
search tree but points fromavertex to one of its descendents in the tree.
In this case somevertex in the tree between the startpoint and the second

vertex of the path must have a LOWPOINT val ue |ess than the nunber of the
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startpoint. If we follow backward edges until reaching the first such
vertex, then follow forward edges until a vertex nunbered |ess than the
startpoint is reached, and finally follow backward edges until an old
vertex is reached, we will generate a sinple path.

To derive a tine bound for thé algorithm we assune that one vertex
is marked old initially, and a different vertex is selected as the initia
startpoint. The algorithmis then run repeatedly with arbitrary startpoints
until all edges are used to form paths. Each execution of the algorithm
produces a sinple path, if the graph is biconnected. Since each edge is
exam ned at nost once in the search section of the algorithm and since each
edge is put into a path once, the tine required to execute the algorithm
until no edg‘é‘s are unused is proportionalto E. Since E <3V-6,
for some k , the tinme required is less than kv . The space used is

al so proportionalto V .

Resol ving Anbiquity in Adding Paths

In this section we describe the algorithm which determnes the vertices
from which new paths should be started and which supplies the representation
building algorithm with a sequence of paths along with sufficient information
to resolve anbiguities as to which face should be divided. First a cycle
is found and then a path Py is found connecting two vertices on the cycle.
The cycle is then considered to consist of two paths between the two vertices.

The foll owi ng sequence of steps is repeated until every edge of the
graph lies in some path or the graph is found to be nonplanar. (In the
process a pushdown store is maintained of all paths which may divide nore

than one face along with a list of paths found but not yet given to the

11



representation building algorithm Along with each path on the pushdown
store is a pointer to a copy of the path in the list of paths not yet
given to the representation building algorithm)

The path finding algorithmis askgd for a path p; froma
vertex v., . Let Gi denote the last vertex in path P, - A check is
made to see if there exists a path already found containing both vy
and Gi . (Vertices on paths, with the exception of the first and |ast
vertices, are nunbered sequentially so that this test can be performed in
a finite nunber of steps per path independent of path length.) If there
I's no path containing both V. and Gi , then the path D, divides a
unique face. If the pushdown store is enpty, the path is given to the
representation bui?ding algorithm Qtherwise the path is placed on the |ist
of paths since even though it divides a unique face we nust first put in
all previously found paths and one of these is waiting on the pushdown
store since it divides nore than one face. In either case, the paths
containing v.. and Gi are divided in two at the vertices v, and Gi .

If on the other hand the path starts and ends at vertices on the same
path, then an anbiguity as to which face should be divided exists
_ Wenever such a situation arises, the algorithm inmediately tries to resolve
the ambiguity. Assunme path p; Starts at vertex v, and ends at
vertex 6i wher e v and Gi are both on path p.J . Then the path P,
is' stored on the pushdown list and the path finding algorithmis directed
to start paths fromvertices on path p; or vertices between v, and Gi
on path P Let the next path found be p, . One of four situations

arises

12



i) The last vertex of path p, is on the same path as the first
vertex of Py - In this case, a new anbiguity exists and Py
is added to the pushdown list. The process of resolving the
anmbi guity of Py Is interrupted and the algorithm starts to
resolve the ambiguity of P -

i) The last vertex of path Py is on a path other than p; or Py -
In this case the endpoint of P uniquely determnes the face to
be divided by Py and is called the resolving point of path D; -
The path p; is removed from the pushdown store. [|f the pushdown
store is enpty, then all paths on the list of paths can be given
to the representation building algorithm If the pushdown store
fé not enpty, then the top path is a path which we were trying to
resolve but were interrupted in the process. Ve return again to
this process.

i) If P connects P, to a vertex on P bet ween vy and Gi,
then p, divides a unique face but does not resolve the
anbi guity of p, . W sinply place p_ on the list of paths
and continue trying to resolve p; -

iv) If py ends at a vertex on 1N but outside the portion of the
pat h fromvi to Gi , then the situation is simlar to case iii
but the set of vertices from which we can start paths to resolve

s must be extended.

Space does not pernit a nore detailed analysis and nmany details have
been omitted. For exanple, the test whether there exists a path ‘containing
bot h \ and Gi takes time proportionalto the degree of the vertex vy o
This woul d add an additional factor of V to the running time were it not

for the fact that the conputation is arranged so that all paths are started
fromvertices which appear to be of degree 5 or less. The interested reader

13



is referred to the nore detailed treatise of the algorithm along with

its ALGOL inplenmentation and an analysis of the running time which

will appear in a Stanford Conputer Science Technical Report.

Building a Planar Representation

W store the part of the graph which has been exam ned as a set of
cycles, one corresponding to each face of a planar representation of the
graph. Each cycle is a doubly linked circular list of the vertices on the
boundary of the face. Corresponding to each vertex is a list of cycles in
which the vertex appears. The cycle-building process, when given a path
starting froma vertex of degree five or less, and when also (possibly)
given a resolving point for the path, searches the five (or less) cycles
contai ning the startpoint of the path, in both directions, looking for the
endpoint of the path. The resolving point is also noticed if found. If
the endpoint is not found in any of these cycles, the graph is nonplanar.

If the endpoint is found, the cycles in which it appears are searched for
the resolving point, if such a search is necessary to resolve anbiguity
concerning which cycle should be divided. The selected cycle is then split
at the start and end points of the path, the path is added to each piece,

and the construction of the new cycle is conplete. |If a resolving point

is used, its location is saved until it is an endpoint of a path, so that
unnecessary searches are not made. In addition, cycles which are known to
need no further dividing are renmoved from the vertex lists. Such cycles
occur when points are deleted because they have five or fewer incident edges,

all of which have been added to the planar representation.
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The theoretical execution time of the planarity algorithmis dom nated
by the tine necessary to search the cycles containing the startpoint of a
path for the endpoint and resolving point. W consider the time necessary
to search the particular cycle containing the endpoint and the resolving
point. Since the sane anount of ti.me is spent searching each cycle
containing the startpoint, the total time is at worst five tines this
quantity. To bound the time we wll consider searching for endpoints and
resolution points separately. The tine spent searching for both
simul taneously nust be no greater than the tinme spent in separate searches.

Ve need a |emm, the proof of which is omtted.

Lemm: (&) xlog x +y logy + mn(x,y) <x +y log(x+y) 1 <axy
(b) (xta) log(x+a) + (y+a) log(y+a) +min(x,y) < (x+y+2a) log(xty+2a)

(c) (x+a) log(x+a)+y log y < x log x+ (y+ta) log(yta) if x <y.

Consi der the tine spent |ooking for endpoints. Assume that at sone
step we have cycles of length PRI and that k vertices do not yet
appear in cycles. Suppose f > f. for all 1<i <m-1 . W claimthat

the search time fromthis step on is bounded by

|
i, 0 S005E0 >1 15 109 1+ (1,+26) log(t,+ 2)

Since m=0 and k = Vinitially, this will give a total time bound
of viogv . (Tosinplify mtters, we neglect constants of proportionality
throughout this discussion.) W can prove the bound by induction on k .
For fixed k , we use induction on m.

Assune a path of length a is to be added to the representation.
Wthout loss of generality, we may assume that the endpoint being considered

is either incycle 1 or incycle m Suppose it appears in cycle 1 and the
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cycle is to be broken into two pieces of lengths £,-b and b and the
path added to each piece to formtwo new cycles. Then the time fromthis

step is
Tt = min(zl-b,b) + T(ll-b+a,a+b,£2,23...lmk—a)

<2

[ ol 1)

since
min(ll-b,b) + (zl—b+a) log(ll-b+a) + (a+b) | og(a+b)+ (zm+2k-2a) log (£m+2k-2a)

< (zl+2a) log(£l+2a) + (.em+2k-2a.) log(lm+2k—2a)

<4y log £+ (zm+2k) log(£m+2k) by Lemma 1.

[f the endpoint appears in cycle m then either L -bta > £, for
1<i <mor there exists j such that zj > 1 -bta and £j >, for
1<i<m. In these cases we may prove T'< T as above, using Lenma 1.
Thus we have the desired time bound, since T after the last stop is 0 .

Now consider the time necessary to find resolving points. After
finding a resolving point, we do not search for anotrer until a path which
has this resolving point as one of its endpoints is added to.the representation.
_Then a path not in the original cycle exists between the startpoint and the
resolving point. Thus the original cycle is by this tine divided at the
startpoint and resolving point . The analysis above thus also gives a tine
bound on searching for resolving points. Thus the total time required to
construct a planar representation is k VlogV, for some constant k ,

The representation-building algorithmalso uses space proportional to V.

16



Experinental Results

The planarity algorithm has been programmed in ALGOL W for the
Stanford 360/67 and tested on a nunber of graphs. Experinental evidence
indicates that menmory space is the limiting factor and the al gorithm nust
be reprogranmmed if it is to handle graphs with nmore than 2000 edges. The
current version of the algorithm consists of 985 lines of ALGOL. G aphs
with 100 edges are handled in less than one second. A planar graph with
1000 vertices and 2000 edges was run in 12.7 seconds. Nonplanar graphs
may have somewhat smaller running times since the algorithm stops as soon

as a nonpl anar subgraph i s discovered.
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