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FETE

A FORTRAN EXECUTION TIME ESTIMATOR

Daniel H. H. Ingalls

Introduction

If you want to live cheaply, you must make a list of how much money is spent on each thing every day.

This enumeration will quickly reveal the principal area: of waste. The same method works for saving computer

time. Originally,  one had to put his own timers and counters into a program to determine the distribution

of time spent in each part. Recently several automated systems have appeared which either insert counters

automatically or interrupt the program during its execution to produce the tallies. FETE is a system of the

former type which has two outstanding characteristics: it is very easy to implement  and it is very easy to

use. By demonstrating such convenience, it should establish execution timing as a standard tool in program

development.

FETE is a three-step process. The first step accepts any FORTRAN (IV) program such as the example

in Figure 1 and produces an edited file with counters. The second step executes  the modified program, but

retains the source file. After execution, the third step re-reads the modified source and correlates it,

with the final counter values to provide the listing shown in Figure 2. Here the executable statements

have been collected and appear beside the exact number of executions  and approximate computation time.

The number of TRUE branches of logical IFS is tallied on the right, and subtotals appear at the end of

each routine  timed. =.

The Value of Execution Time Profiles

. The second section of this paper will show how such a format for execution  time feedback may be

.

easily achieved. This first section jumps ahead to treat the implications of this tool for computer

programming in general. The style may follow that of a patent medicine dealer describing his special

brand of panacea, but the enthusiasm ccmes mainly from watching sceptical programmers using FETE for

the first time.

Execution-time profiles are of value in three main areas of programming: improving  old programs,

writing new programs and educating programmers. In improvement  of old programs it most often happens that

the programmer initially  does not know what the program does. Even when improving one's own program, much

of the original scheme has probably faded from memory (and we all know how much the comments will help).

The results of the appendix show that frcan a typical program, approximately 3 percent of the code constitutes

50 percent of the execution time. In some sense, then, we may conclude that if a naive programmer sets

out to improve a program,  he will work 30 times more effectively if he has a FETE (or similar) listing in
e

front of him. Two words describe the prograzmners  I have watched looking at their FETE runs: focussed

attention. The human mind's most powerful tool is selective  attention, but the selection requires an

awareness  about the environment  which in this situation  is f'ilrnished by a source-level presentation of

execution time distribution.

Since FETE became operational,  I have changed my own approach to programming. My three steps to

&eating a program used to be:

1 Think how I want to do it.

2 Write it up in the best way.

3 Debug it.

The numbers at the left are not to indicate order but are an estimate of how long the steps take. My new

recipe is more like the following:



1 Think how I want to do it.

Write it up in the quickest  way.

1 Debug it.

0 Get a FETE listing.

1 Rewrite and debug the important  parts.

The writing time is less because you assume that none of the program needs to be efficient  (remember  that

only 3 percent does). The debugging time is less because the code you have to debug is really simple.

The time to rewrite the important  sections is low because although you try to write very efficient code,

there is very little which needs this attention. The result is a program written in 2/3 the time, and

which is much easier to understand because it is simply written. On top of that, it probably runs faster,

because the inner loops have been specially  written. The first run of FETE upon itself led to a twofold

increase in speed!

The instructional value of execution-time awareness must be great. For one thing, the programmer will

learn to recognize inefficient  algorithms. Moreover,  the reinforcement from FE;TE enhances  the aesthetic

enjoyment  of writing a good program. The nicest reward which came from finishing  FETE was being able to

run it on itself, in part because it was fun to improve, and part because it was clear when the job was

finished. Many people point out that good programs come from good algorithms,  yet the implication is often

that only programmers such as the critic are capable of choosing good algorithms.  My feeling is that much

mediocre programming comes about only because the programmer is lost in his program and can't see what is
--.

important. He would choose better methods  if he had better perspective, and that is exactly what FETE and

similar  systems can provide.

The current approach to higher level languages  aims at liberating the programmer from petty (hardware

and archaic software) considerations. This

petty consideration. APL is a good example

is a

of a

laudable goal,  but one must not include  computation as

liberating language, but it also masks the huge amount

a
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processing behind much of its vocabulary. The risk of conciseness is that a bad algorithm may fit on one

line,  and never be noticed. Incorporation of execution-time tallies into the new languages offers a solution

to this problem, by maintaining the awareness  of the programmer at the same level as the power of the

language. Those contemplating new compilers  would do well to include  execution  time profiles as an option

for users.

Implementing Source-Level Execution Profiles-

As summarized in the introduction,  FETE is a three-step procedure. Since the second step runs as a

normal FORTRAN job it entails no effort other than job-control organization. The bulk of this section  is

devoted to describing the details of the first and third phases of FE!TE.

Figure 3 shows the modified source produced from the program of Figure 1 during FETE's first step.

The annotations (a) through (1) refer to Figure 3. The first insertion (a) is a labelled common declaration

for the counter  array. The dimension 2003 is adequate for most programs up to 6000 statements  in length.

The common declaration is inserted in all subprograms  immediately following any SUBROUTINE,  FUNCTION,  or

IMPLICII  statements. The names KOUNT.1, KOUNV,  etc., are unlikely to conflict  with users' names as they

spelled with a zero,  not an 0 . Initialization of the counters (b) occurs immediately before the first

"noticeably"  executable statement  (a non-arithmetic executable statement).  FETE makes no attempt to

recognize statement  functions  because of the difficulty of inserting counters  for them, and hence must

assume that the first arithmetic statements  might have been function definitions. The first counter must

then be inserted (c) to tally the executions of any preceding arithmetic statements.  From here on,

counters  need only be inserted  where control branches and where logical ifs occur. For instance, we need

counters immediately after a DO statement  (d) because there is an implied loop entry at that point. Now

note what became of statement  10. FETE removes each statement  label (except those which terminate DO-

loops), and attaches  it to an inserted counter (e). In this way, each time control  branches  into the main

2



line of code,  the extra executions will be recorded. If a CONTINUE statement is stripped of its label

in this way,  it will be deleted from the source, and a flag set in the counter so that it may be recreated

for the final listing.

When FETE encounters a logical IF, it first strips off the target statement  and replaces it by a

counter. The resulting IF statement  is then inserted (f) above the original. Thus even if the original

IF would cause a branch out of line, the fact that the branch was taken will be recorded by the counter.

Usually the editing of IFS can be done on one line , as is the case in our example; however, when the IF

clause is too long (typically less than 5 percent of the time), appropriate continuation cards are generated

for the IF-counter. Most of the time, FETE does not insert counters after IF statements.  Almost all

target statements  of IFS are either arithmetic or GO TOs. In the former case, the main-line execution count

will be unchanged; in the latter, it must be decreased by the value of the IF counter (i.e.,  the number of

branches crJt of line). The analysis  routine  which reads the counters  can determine which was the case by

examining the sequence-column flags (q.v.). In indeterminate cases, such as a CALL with multiple returns,

or a READ with ERR return, FETE inserts a counter after the IF to be safe.

Note (g) of Figure 2 indicates  a labelled statement  which has not been modified in the manner of the

other labelled statements. The terminal statement of a DO-loop presents a special  problem to execution

tallying. On the one hand we need a labelled counter  before the statement  in question for the tallies

and so that transfers to the labelwillwork  properly;  yet that would end the DO-loop above the statement
,

,

originally labelled, and exclude it from the loop. Fortunately, though, we have enough extra information

to solve the dilemma. The following simplified code segment illustrates the situation:

. . .

K(n)  = K(n)+1

DO 10 I = 11,12

K(n+l) = K(n+l)+l

. . .
* i 10 P(1)  = F

K(n+2) = K(n+2)+1

. . .

One thing we know for sure: K(n+l) would have the correct tally for statement  10 if there were no branches

out of the DO-loop. In fact if we could subtract  from K(n+l) the number of branches out of the DO-loop,

then we would have the answer. Now we note that the only way for K(n)  to be stepped without K(n+2)

increasing  also is if there is a branch out of the loop. Thus we obtain our result that P(1)  = F must

have been executed K(n+l)-K(n)+K(n+2) times. The interested reader may deduce the result for a statement

which terminates two nested DO-loops with the same end-label.

When FETE encounters  a STOP (or CALL EXIT or RETURN in the main program) it inserts a call (h) to the

analysis  routine (KKXURTl) which goes back to correlate the modified source with the counter contents.
e Provision is also made for termination in an IF statement  such as

IF (NCARD.E&.L~ST)  STOP

Here the IF clause will be repeated three times; once with a counter, once with the CALL, and a last time

.with the STOP.

FETE handles  SUBROUTINES and FUNCTIONS in the same manner as the MAIN, except that no counter

'initialization  is inserted and a RETURN is not treated as a STOP. We move on now to deal with the

sequence-column flags before summarizing the task of the analysis  routine.

The sequence  column fields of Figure 3 are denoted i,j,k,l . Field j is a two digit code for the

statement  type (1 = arithmetic, 2 = DO, 3 = IF, 4 = GO TO, etc.). Since logical IFS are flagged in the

i-field, their j-field is used to give the classification of the target statement.  The k-field is a two-

digit index of the depth of DO-nesting. Actually,  this value does not increase with every DO encountered,

but only when the D3 refers to an end-label not yet used in previous DOS. The convention economizes on

stack space, and yet gives enough information to the analysis  routine. The !-field gives the "cost" of
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each statement, and is responsible for the 'dirty' in FETE's designation as a quick-and-dirty system.

FETE determines cost by a linear scan of each executable statement  which looks for operators,

parentheses, etc., charging a reasonable fee for each. Another base cost is derived from the statement

Wee, and the operator cost is then added on. In statements such as WRITE or FUNCTION,  a further charge

is levied for each comma encountered to reflect the extra argument overhead. At each left-parenthesis

a check is made to see if the preceding identifier  was a FORTRAN internal function name,  and if so the

appropriate cost is added on from a table.
. .

Most of the cost of a CALL is put into the corresponding SUBROUTINE statement.  The justification is

a human engineering consideration, to suggest to a programmer the possibility of writing his subroutine

in line to save time. To evaluate  that suggestion, the programmer really wants to see the total cost of

the subroutine linkage in one number, rather than in five calls scattered throughout his program. The

same convention is especially appropriate for FUNCTION statements, because FETE's lack of a symbol table

precludes detection of the implied calls,  yet the tallies in the function code will be correct.

Future versions of FETE will use a more elegant cost assessment,  but this crude scheme has been

remarkably successful. The source editing is performed in one pass without scratch files,  and takes

roughly l/5 as long as the FORTRAN compilation.

The analysis  routine, which comprises  FETE's third phase, is linked in during the FORTRAN step,  so

that it may be called just  before the program would have come to a STOP. This phase rereads the modified

source and correlates the executable statements  with the counter values and prints the FETE listing in one

pass.

The i-field

--.
of the sequence-column flags was originally intended as a coded column of useful facts

for the analysis  routine.  However, as that routine took shape, it became clear that these numbers worked

as op-codes  for an analysis-machine. This is one of several instances  where I have found new insight into

a problem by considering its data-to-program relationship to be a form of program-to-machine  relationship.
I have chosen to lay this on the reader by roughly  outlining  the order code of the analysis  machine in Table

and inviting  him to simulate  the analysis  of this sample program.

1

As the analysis  routine proceeds through the file, it maintains subtotals  and totals of executions

and cost and prints these for the programmer to use for judging relative importance of different  parts of

the listing. Percentage cost is not given for two reasons. First is the necessity for an extra pass

through the source file (or a smaller  file with static costs only). Second is the observation that people

using FETE simply scan the cost colmn  visually for the number of digits, a process  for which FETE's large

integers  are ideally suited. A simple statistic  which I included out of curiosity is the running total

of the executions  and costs squared. From these and the normal totals, the r.m.s. values may be compared

with the mean values to give an idea of how "pesky" the execution  and cost are. All of these statistics

e are currently printed out in a table for instrumentation curiosity, and some results  gathered frcm 17

sample programs appear in the appendix.

The FETE approach to determining actual timing is a very coarse one, but has proved to be 93 percent

effective  in giving programmers what they want. Other workers have developed compilers  incorporating the

whole execution-timing process, and that is obviously the proper approach. With the symbol table available,

the timing of Input/Output statements  can be assessed, the code-generator can give exact timings for the

other statements  and the insertion of counters  is efficient, both in placement and in code generated.

Furthermore, the ccmpilerts  run-time  routines can usually pick up the pieces after a program dies or runs

out of time, and the FETE enumeration of executions  would be informative in such cases.

FETE has proved to be very useful at Stanford. A version  to work with WATFIV allows inexpensive  timing

for use on the level of student programming assignments. The morality of enhancing  FORTRAN may be suspect,

but hopefully the optimistic results described here will inspire  availability of execution time profiles

- . .

in all languages before any damage is done.



APPENDIX -- Program Localization

A phenomenon of considerable interest is the manner in which programs tend to spend all their time

in a very small portion of their total code. The first version of FETE included instrumentation for

investigating the effect, and this appendix describes the results.

Let us suppose that we have an N-statement program of which only k statements are significant,  and

these are equal in cost. The fraction of statements  required to make up 50 percent of the execution  time

of this program would be k/2N . Letting c(j)  be the cost of the j-th statement, we can define a mean

cost M and a root-mean-square cost, as

MZ$
N

q
c(j)

j=
R =&pk

where the summations  are over all statements  of the program. For our hypothetical program, we may let

c = T/k for k of the statements and c = 0 for the other N-k statements,  so that M = T/N and

R=T/fi. I now tentatively  define the Ingalls factor I = M2/2R2 , which should give the number

of statements  making up 50 percent of execution time. Such a definition for I is motivated  by the

observation that r.m.s./mean measures how 'pesky' a function is over the interval considered.

Figure Al shows a plot of the tentative I-factor against the actual 50 percent factor for 17 randcmly

selected  programs. These varied in size from 100 to 3500 cards and in content  from numerical integration

to a meta-compiler. Both the linearity and the uniformity of the points over the sample programs are

striking. Departure of the slope from unity is due to the invalid assumption that all significant  statements

have equal weight. Redefining the I-fact as I = 0.4 M2/R2 , we have an empirically good measure of

program localization. =Moreover, the plot shows a value of 3 percent to be typical.  Without a more

detailed study of program graphs, this statistic  does not imply much about how programs should be

partitioned. However,  the 3 percent figure does demonstrate the enormous  potential  of source-level

timings for focusing attention on inner loops.

FETE grew out of a research project in programming languages  led by Donald Knuth and supported  by

IBM Corporation,  Xerox Corporation and ARPA. I am also indebted to Dick Sweet at Stanford for the

FORTRAN statement  classifier used in FETE.
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