
.’

A FORTRAN EXECUTION TIME ESTIMATOR. .

BY

DANIEL H. H,. IGjALLS

STAN-CS-71-204

FEBRUARY, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD” UNJVERS ITY

FETE

A FORTRAN EXECUTION TIME ESTIMATOR

Daniel H. H. Ingalls

Introduction

If you want to live cheaply, you must make a list of how much money is spent on each thing every day.

This enumeration will quickly reveal the principal area: of waste. The same method works for saving computer

time. Originally, one had to put his own timers and counters into a program to determine the distribution

of time spent in each part. Recently several automated systems have appeared which either insert counters

automatically or interrupt the program during its execution to produce the tallies. FETE is a system of the

former type which has two outstanding characteristics: it is very easy to implement and it is very easy to

use. By demonstrating such convenience, it should establish execution timing as a standard tool in program

development.

FETE is a three-step process. The first step accepts any FORTRAN (IV) program such as the example

in Figure 1 and produces an edited file with counters. The second step executes the modified program, but

retains the source file. After execution, the third step re-reads the modified source and correlates it,

with the final counter values to provide the listing shown in Figure 2. Here the executable statements

have been collected and appear beside the exact number of executions and approximate computation time.

The number of TRUE branches of logical IFS is tallied on the right, and subtotals appear at the end of

each routine timed. =.

The Value of Execution Time Profiles

. The second section of this paper will show how such a format for execution time feedback may be

.

easily achieved. This first section jumps ahead to treat the implications of this tool for computer

programming in general. The style may follow that of a patent medicine dealer describing his special

brand of panacea, but the enthusiasm ccmes mainly from watching sceptical programmers using FETE for

the first time.

Execution-time profiles are of value in three main areas of programming: improving old programs,

writing new programs and educating programmers. In improvement of old programs it most often happens that

the programmer initially does not know what the program does. Even when improving one's own program, much

of the original scheme has probably faded from memory (and we all know how much the comments will help).

The results of the appendix show that frcan a typical program, approximately 3 percent of the code constitutes

50 percent of the execution time. In some sense, then, we may conclude that if a naive programmer sets

out to improve a program, he will work 30 times more effectively if he has a FETE (or similar) listing in
e

front of him. Two words describe the prograzmners I have watched looking at their FETE runs: focussed

attention. The human mind's most powerful tool is selective attention, but the selection requires an

awareness about the environment which in this situation is f'ilrnished by a source-level presentation of

execution time distribution.

Since FETE became operational, I have changed my own approach to programming. My three steps to

&eating a program used to be:

1 Think how I want to do it.

2 Write it up in the best way.

3 Debug it.

The numbers at the left are not to indicate order but are an estimate of how long the steps take. My new

recipe is more like the following:

1 Think how I want to do it.

Write it up in the quickest way.

1 Debug it.

0 Get a FETE listing.

1 Rewrite and debug the important parts.

The writing time is less because you assume that none of the program needs to be efficient (remember that

only 3 percent does). The debugging time is less because the code you have to debug is really simple.

The time to rewrite the important sections is low because although you try to write very efficient code,

there is very little which needs this attention. The result is a program written in 2/3 the time, and

which is much easier to understand because it is simply written. On top of that, it probably runs faster,

because the inner loops have been specially written. The first run of FETE upon itself led to a twofold

increase in speed!

The instructional value of execution-time awareness must be great. For one thing, the programmer will

learn to recognize inefficient algorithms. Moreover, the reinforcement from FE;TE enhances the aesthetic

enjoyment of writing a good program. The nicest reward which came from finishing FETE was being able to

run it on itself, in part because it was fun to improve, and part because it was clear when the job was

finished. Many people point out that good programs come from good algorithms, yet the implication is often

that only programmers such as the critic are capable of choosing good algorithms. My feeling is that much

mediocre programming comes about only because the programmer is lost in his program and can't see what is
--.

important. He would choose better methods if he had better perspective, and that is exactly what FETE and

similar systems can provide.

The current approach to higher level languages aims at liberating the programmer from petty (hardware

and archaic software) considerations. This

petty consideration. APL is a good example

is a

of a

laudable goal, but one must not include computation as

liberating language, but it also masks the huge amount

a

o f
- ., ,

processing behind much of its vocabulary. The risk of conciseness is that a bad algorithm may fit on one

line, and never be noticed. Incorporation of execution-time tallies into the new languages offers a solution

to this problem, by maintaining the awareness of the programmer at the same level as the power of the

language. Those contemplating new compilers would do well to include execution time profiles as an option

for users.

Implementing Source-Level Execution Profiles-

As summarized in the introduction, FETE is a three-step procedure. Since the second step runs as a

normal FORTRAN job it entails no effort other than job-control organization. The bulk of this section is

devoted to describing the details of the first and third phases of FE!TE.

Figure 3 shows the modified source produced from the program of Figure 1 during FETE's first step.

The annotations (a) through (1) refer to Figure 3. The first insertion (a) is a labelled common declaration

for the counter array. The dimension 2003 is adequate for most programs up to 6000 statements in length.

The common declaration is inserted in all subprograms immediately following any SUBROUTINE, FUNCTION, or

IMPLICII statements. The names KOUNT.1, KOUNV, etc., are unlikely to conflict with users' names as they

spelled with a zero, not an 0 . Initialization of the counters (b) occurs immediately before the first

"noticeably" executable statement (a non-arithmetic executable statement). FETE makes no attempt to

recognize statement functions because of the difficulty of inserting counters for them, and hence must

assume that the first arithmetic statements might have been function definitions. The first counter must

then be inserted (c) to tally the executions of any preceding arithmetic statements. From here on,

counters need only be inserted where control branches and where logical ifs occur. For instance, we need

counters immediately after a DO statement (d) because there is an implied loop entry at that point. Now

note what became of statement 10. FETE removes each statement label (except those which terminate DO-

loops), and attaches it to an inserted counter (e). In this way, each time control branches into the main

2

line of code, the extra executions will be recorded. If a CONTINUE statement is stripped of its label

in this way, it will be deleted from the source, and a flag set in the counter so that it may be recreated

for the final listing.

When FETE encounters a logical IF, it first strips off the target statement and replaces it by a

counter. The resulting IF statement is then inserted (f) above the original. Thus even if the original

IF would cause a branch out of line, the fact that the branch was taken will be recorded by the counter.

Usually the editing of IFS can be done on one line , as is the case in our example; however, when the IF

clause is too long (typically less than 5 percent of the time), appropriate continuation cards are generated

for the IF-counter. Most of the time, FETE does not insert counters after IF statements. Almost all

target statements of IFS are either arithmetic or GO TOs. In the former case, the main-line execution count

will be unchanged; in the latter, it must be decreased by the value of the IF counter (i.e., the number of

branches crJt of line). The analysis routine which reads the counters can determine which was the case by

examining the sequence-column flags (q.v.). In indeterminate cases, such as a CALL with multiple returns,

or a READ with ERR return, FETE inserts a counter after the IF to be safe.

Note (g) of Figure 2 indicates a labelled statement which has not been modified in the manner of the

other labelled statements. The terminal statement of a DO-loop presents a special problem to execution

tallying. On the one hand we need a labelled counter before the statement in question for the tallies

and so that transfers to the labelwillwork properly; yet that would end the DO-loop above the statement
,

,

originally labelled, and exclude it from the loop. Fortunately, though, we have enough extra information

to solve the dilemma. The following simplified code segment illustrates the situation:

. . .

K(n) = K(n)+1

DO 10 I = 11,12

K(n+l) = K(n+l)+l

. . .
* i 10 P(1) = F

K(n+2) = K(n+2)+1

. . .

One thing we know for sure: K(n+l) would have the correct tally for statement 10 if there were no branches

out of the DO-loop. In fact if we could subtract from K(n+l) the number of branches out of the DO-loop,

then we would have the answer. Now we note that the only way for K(n) to be stepped without K(n+2)

increasing also is if there is a branch out of the loop. Thus we obtain our result that P(1) = F must

have been executed K(n+l)-K(n)+K(n+2) times. The interested reader may deduce the result for a statement

which terminates two nested DO-loops with the same end-label.

When FETE encounters a STOP (or CALL EXIT or RETURN in the main program) it inserts a call (h) to the

analysis routine (KKXURTl) which goes back to correlate the modified source with the counter contents.
e Provision is also made for termination in an IF statement such as

IF (NCARD.E&.L~ST) STOP

Here the IF clause will be repeated three times; once with a counter, once with the CALL, and a last time

.with the STOP.

FETE handles SUBROUTINES and FUNCTIONS in the same manner as the MAIN, except that no counter

'initialization is inserted and a RETURN is not treated as a STOP. We move on now to deal with the

sequence-column flags before summarizing the task of the analysis routine.

The sequence column fields of Figure 3 are denoted i,j,k,l . Field j is a two digit code for the

statement type (1 = arithmetic, 2 = DO, 3 = IF, 4 = GO TO, etc.). Since logical IFS are flagged in the

i-field, their j-field is used to give the classification of the target statement. The k-field is a two-

digit index of the depth of DO-nesting. Actually, this value does not increase with every DO encountered,

but only when the D3 refers to an end-label not yet used in previous DOS. The convention economizes on

stack space, and yet gives enough information to the analysis routine. The !-field gives the "cost" of

3

each statement, and is responsible for the 'dirty' in FETE's designation as a quick-and-dirty system.

FETE determines cost by a linear scan of each executable statement which looks for operators,

parentheses, etc., charging a reasonable fee for each. Another base cost is derived from the statement

Wee, and the operator cost is then added on. In statements such as WRITE or FUNCTION, a further charge

is levied for each comma encountered to reflect the extra argument overhead. At each left-parenthesis

a check is made to see if the preceding identifier was a FORTRAN internal function name, and if so the

appropriate cost is added on from a table.
. .

Most of the cost of a CALL is put into the corresponding SUBROUTINE statement. The justification is

a human engineering consideration, to suggest to a programmer the possibility of writing his subroutine

in line to save time. To evaluate that suggestion, the programmer really wants to see the total cost of

the subroutine linkage in one number, rather than in five calls scattered throughout his program. The

same convention is especially appropriate for FUNCTION statements, because FETE's lack of a symbol table

precludes detection of the implied calls, yet the tallies in the function code will be correct.

Future versions of FETE will use a more elegant cost assessment, but this crude scheme has been

remarkably successful. The source editing is performed in one pass without scratch files, and takes

roughly l/5 as long as the FORTRAN compilation.

The analysis routine, which comprises FETE's third phase, is linked in during the FORTRAN step, so

that it may be called just before the program would have come to a STOP. This phase rereads the modified

source and correlates the executable statements with the counter values and prints the FETE listing in one

pass.

The i-field

--.
of the sequence-column flags was originally intended as a coded column of useful facts

for the analysis routine. However, as that routine took shape, it became clear that these numbers worked

as op-codes for an analysis-machine. This is one of several instances where I have found new insight into

a problem by considering its data-to-program relationship to be a form of program-to-machine relationship.
I have chosen to lay this on the reader by roughly outlining the order code of the analysis machine in Table

and inviting him to simulate the analysis of this sample program.

1

As the analysis routine proceeds through the file, it maintains subtotals and totals of executions

and cost and prints these for the programmer to use for judging relative importance of different parts of

the listing. Percentage cost is not given for two reasons. First is the necessity for an extra pass

through the source file (or a smaller file with static costs only). Second is the observation that people

using FETE simply scan the cost colmn visually for the number of digits, a process for which FETE's large

integers are ideally suited. A simple statistic which I included out of curiosity is the running total

of the executions and costs squared. From these and the normal totals, the r.m.s. values may be compared

with the mean values to give an idea of how "pesky" the execution and cost are. All of these statistics

e are currently printed out in a table for instrumentation curiosity, and some results gathered frcm 17

sample programs appear in the appendix.

The FETE approach to determining actual timing is a very coarse one, but has proved to be 93 percent

effective in giving programmers what they want. Other workers have developed compilers incorporating the

whole execution-timing process, and that is obviously the proper approach. With the symbol table available,

the timing of Input/Output statements can be assessed, the code-generator can give exact timings for the

other statements and the insertion of counters is efficient, both in placement and in code generated.

Furthermore, the ccmpilerts run-time routines can usually pick up the pieces after a program dies or runs

out of time, and the FETE enumeration of executions would be informative in such cases.

FETE has proved to be very useful at Stanford. A version to work with WATFIV allows inexpensive timing

for use on the level of student programming assignments. The morality of enhancing FORTRAN may be suspect,

but hopefully the optimistic results described here will inspire availability of execution time profiles

- . .

in all languages before any damage is done.

APPENDIX -- Program Localization

A phenomenon of considerable interest is the manner in which programs tend to spend all their time

in a very small portion of their total code. The first version of FETE included instrumentation for

investigating the effect, and this appendix describes the results.

Let us suppose that we have an N-statement program of which only k statements are significant, and

these are equal in cost. The fraction of statements required to make up 50 percent of the execution time

of this program would be k/2N . Letting c(j) be the cost of the j-th statement, we can define a mean

cost M and a root-mean-square cost, as

MZ$
N

q
c(j)

j=
R =&pk

where the summations are over all statements of the program. For our hypothetical program, we may let

c = T/k for k of the statements and c = 0 for the other N-k statements, so that M = T/N and

R=T/fi. I now tentatively define the Ingalls factor I = M2/2R2 , which should give the number

of statements making up 50 percent of execution time. Such a definition for I is motivated by the

observation that r.m.s./mean measures how 'pesky' a function is over the interval considered.

Figure Al shows a plot of the tentative I-factor against the actual 50 percent factor for 17 randcmly

selected programs. These varied in size from 100 to 3500 cards and in content from numerical integration

to a meta-compiler. Both the linearity and the uniformity of the points over the sample programs are

striking. Departure of the slope from unity is due to the invalid assumption that all significant statements

have equal weight. Redefining the I-fact as I = 0.4 M2/R2 , we have an empirically good measure of

program localization. =Moreover, the plot shows a value of 3 percent to be typical. Without a more

detailed study of program graphs, this statistic does not imply much about how programs should be

partitioned. However, the 3 percent figure does demonstrate the enormous potential of source-level

timings for focusing attention on inner loops.

FETE grew out of a research project in programming languages led by Donald Knuth and supported by

IBM Corporation, Xerox Corporation and ARPA. I am also indebted to Dick Sweet at Stanford for the

FORTRAN statement classifier used in FETE.

Bibliography

Cerf, V. G. "Measurement of Recursive Programs." Ph.D. Thesis, School of Engineering and Applied Science,
University of California, Los Angeles, California, Report 70-43, May 1970, 106 pp.

Conrow, K. and Smith, R. 'QEATER2:
PP. 669-675.

A PL/I Source Statement Reformatter." E, Vol. 13 No. ll (ly70),

e

Darden, Stephen C. and Heller, Steven B.
(October 1970), 29-33.

"Streamline your software development." Computer Decisions 2

Russell, E. C., Jr. "Automatic Program Analysis."
University of California, Los Angeles,

Ph.D. Thesis, School of Engineering and Applied Science,
California, Report 69-12, March 1969, 168 pp.

.Satterthwaite, E. "Source Language Debugging Tools." Ph.D. Thesis, Stanford University, in preparation.

5

4 0 u
0

\
0904
362
z119
Q8ZI

86
8IEZ

W
I

6StrL
6618
69Z
8SS
Z'I:ZZ

3
m
u

l
S
O
3

l

p
a

A
e

(d
s

lp
’a

J
e

s
~

u
a
w

a
~

e
~

s
 a

(q
e
J
n

a
a
x
a

 A
lu

o
‘p

a
w

!~

w
eJ%

O
Jd

a
ld

M
?

S
‘Z

a
ln

q
j

‘I‘T:86239
zt19
O

tlL
116
'116
691
691
T'I:I1:

:S
lV

lO
l

f
S
l
N
3
W
W
0
3

E
'X3-NON

Z

'
3
1
9
v
1
n
3
3
x
3

91:
+++++

0
0

-
3NllnOtJ

SlHl

IlOzl
S
l
V
1
0
1
8
n
S

ON3
d
O
l
S

S
3
W
l
U
d

(Ot'9)31ltiM

N
=

(X3aNI)S3WlIid

OE
02

01
OE)

1
+
1
-
Y

OE
01

09
(
(
~
)
S
3
W
l
~
d
'
3
1
°
N
1
0
n
b
l
)
J
)

01
01

09
(
N
0
b
3
'
N
1
0
n
~
1
*
(
~
)
S
3
W
l
~
d
~
J
I

o
i
)
S
3
W
k
i
d
/
N

-
NlOfItIl

OZ
z

-
)I

Z
+

N
-
N

01
o
o
V
w
3
a
N
i

0~.
oa

C
-
N

E
=

(Z)S3WlkId
z

=
U
)
S
3
W
l
U
d

S
l
N
3
W
3
1
V
l
S

3
7
8
v
l
n
3
3
x
3

co

I;
0

IZL
0

I
:
L
T0

9osz:

SE0

9041:

811:4
I;

Z
'
I
Z

T
ztil:

*
z

Z
-
I
I

E
Z
V
E
51+(9

8
Z
f
l
ESi+(S

6
Z
T
T

6
1
1
9

I:
z
3
'
I

z
Z
I
T
:

z
2
'
1
9S

z
z
z
t
500

1
V
E
T

z
‘['It

z
I
T
I
:

0
't

LZO0
-----1)---m

1
d
-
1

y
x

a
2

0

3

r
a

ja
l

'3133

itq

p
a
J
l!p

a

W
eJ%

O
Jd

a
(d

W
e
s

‘E

a
J
n

%
!j

ON3
d
O
l
S

u
N
n
O
)
l

llV3

(
(
O
I
i
8
/
)
l
~
'
,
:

3kiV
S
3
W
l
&
l

00-t

1
S
U
j

3Hl

I,)lVWtiOj

Oti
S3WltJd

(OQ'9)3lltlM
I+(L

)slNnO)I=(f
)
s
l
N
n
o
I

N
=

(X3aNI)S3Wltid
OI;

oz
01

00
1
:
+
)
I
=
o
l

OE
01

09
~
~
~
)
S
3
W
~
~
d
"
3
1
~
N
1
0
n
~
l
)
j
l

)slNno)l=(9
)
s
l
N
n
o
~

~~~~s3Wl~d'31°~Jlon~l)j~
01: 

01 
05) 

(
N
'
b
3
'
N
l
O
n
~
l
*
(
~
)
S
3
W
I
~
d
)
j
l

)SlNno)/=~s
)
s
l
N
n
O
Y

~
N
'
b
3
'
N
l
O
n
b
l
*
(
J
l
)
S
3
W
I
~
d
)
j
l
 

-
o
U
S
3
W
l
k
l
d
/
N
 
- 

NlOnbl
T+vl

)
S
l
N
n
O
I
=
(
B

)
S
l
N
f
m
i
 

oz
z 

= 
1

Z
+
N
=
N

T+(E
)slNno)I=(E

IslNnoY
 

OT
I+(Z

)
s
l
N
n
O
~
=
(
z

)
s
l
N
n
O
~

o
o
~
%
x
3
a
N
i
 
0s 

oa
l+(T:

)SlNT)O)I=('t.
)SlNfIOI

O
=
(
E
l
N
n
o
w
4
1
N
n
o
Y
 
86ZS8

o
o
o
z
'
~
=
s
l
N
n
o
~
 
3
6
z
s
8
 
oa

S
=
N

E 
=

(
Z
)
S
3
W
l
U
d

z 
=

('I)S3Wltld
(
O
O
T
)
S
3
W
l
U
d
 
U
3
9
3
1
N
l

ElNC1O~'~000Z)SlNn0~
 
/ZlNnOX/

 
N
O
W
W
0
3

0(a(P(3ts(e



. .

w

p.
13

F-
Y

0
cl.CJ.0

5
ct-

II

-F’

II

P
FJ-
mtn

3
F-
tn

H
Y

G.



.;* .*


