
1 1
f Ii

' STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-142

COM'PUTER SCIENCEDEPARTMENT
REPORT NO. CS-205 . .

AN ALGEBRAIC DEFINITION'OF&SlMUlATION BETWEEN PROGRAMS

BY ST ',,\- 1 c.5 ,,,' - - 'L

ROBINMILNER!I

FEBRUARY1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO NO. AIM-142

FEBRUARY 1971

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS205

AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN PROGRAMS

by: Robin Milner

ABSTRACT: A simulation relation between programs is defined which
is quasi-ordering. Mutual simulation is then an
equivalence relation, and by dividing out by it we
abstract from a program such details as how the sequencing
is controlled and how data is represented. The equivalence
classes are approximations to the algorithms which are-*.
realized, or expressed, by their member programs.

A technique is given and illustrated for proving simulation
and equivalence of programs; there is an analogy with Floyd's
technique for proving correctness of programs. Finally,
necessary and sufficient conditions for simulation are given.

DESCRIPTIVE TERMS: Simulation, weak homomorphism, algorithm, program
correctness, program equivalence.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

This research was supported mainly by the Science Research Council,
Great Britain and in part by the Advanced Research Projects Agency of
the Department of Defense (SD-183) U.S.A.

1. INTRODUCTION

One aim of this paper is to make precise a sense in'which two

programs may be said to be realizations of the same algorithm. We can

say loosely that for this to be true it is sufficient though perhaps not

necessary that the programs do the same 'important' computations in the

same sequence, even though they differ in other ways: for example

(1) We may disregard other computations perhaps different in the two

programs, which are 'unimportant' in the sense that they are only

concerned with controlling the 'important' ones, (2) The data may flow

differently through the variables or registers, (3) The data may be

differently represented in the two programs. The program pairs in

Figures 1, 2, which are studied in detail in Section 4, illustrate points

(l), (3) respectively; a trivial illustration of (2) is the following pair

of programs:

read x,y read x,y

X : = x + y y:= X+Y

print x print y

Although the above prescription is vague, we give a relation of simulation

between programs which may fairly be said to match it. The relation

turns out to be transitive and reflexive but not always symmetric; however

mutual simulation is an equivalence relation, and it is the equivalence

classes under this relation which may be regarded as algorithms - at least

this is an approximation to a definition of algorithm.

We show also that there is a practical technique for proving

simulation in interesting cases - though unfortunately simulation between

programs handling the integers, for example, is not a decidable (or even

1

partially decidable) relation. Under a simple restriction simulation

ensures the equivalence (as partial functions) of the programs, so this is

also a technique for proving equivalence; however in general equivalent

programs will not satisfy the simulation relation.

I also claim that in order to prove by Floyd's [l] method the

correctness of a program A, in a case where data is represented unnaturally,

perhaps for efficiency's sake, the easiest and most lucid approach is

rather close to first designing a program B which is simulated by program

A and which represents the data naturally, and then proving B correct.

This was in fact the original motivation for studying simulation, and

is discussed in more detail in Milner [2], which--_

at the definition of simulation. The sequel [3]

and the current paper is a synthesis of the two,

contains a first attempt

generalizes the definition

and may be read independently.

2. NOTATION

We denote relational composition by juxtaposition; if

R z A x B, S C_ B x C then RS = {(a,c)l3b.(a,b)sR,(b,c)sS). The inverse

of R is R
-1

= f (b ,a) 1 (a,bbX) . We intentionally confuse a (partial)

function F: A -) B with the relation F = {(a,b)lb=F(a)l. R induces a
-
function ImR:2A + 2B; for S c_A, ImR(S) = (b’13a&.(a,b)cR). For a function F

we sometimes write F(S) for ImF(S). The domain of R&A x B is dom R

= I ImRcA), and the ran&e of R is ran R =I m
R-l(B)=

For any set A, IA

GA x A is the identity relation on A.

3. PROGRAMS AND SIMULATION

We first introduce a definition of program which enables

simulation properties to be stated and proved succinctly.

2

Definition. A program Q is a quadruple (D in' Dcomp,Dout,F)

where D
in'

D
ComP

,Dout
are disjoint domains and F:D -, D is a total

function (D=Din U Dcamp ' Dout
) with restrictions

(i) F(Din U D
camp)C_D camp ' 'out

(ii) The restriction of F to Dout is the identity ID
out

We call Din,D
camp

,Dout the input, computation and output domains of Q'.

Conditions (i) and (ii) ensure that starting with'a member of

Din and applying F repeatedly we get either an infinite sequence in

Dcamp'
or a finite sequence in Dcamp

followed by a single repeated

member of D
out l

We have (ii) merely to keep F total, which the

theory requires.

Why must the domains be disjoint? What about a program which

inputs an integer and outputs an integer ? Here one might argue that

Din
= Dout = [integers]; but we get into no trouble having two formally

disjoint domains with for example an injection or a bijection between them.

In fact, in practice we can distinguish between an input object and an output

object of a program; for example they occur on different media, or at different

spatial locations. We are concerned with a level of abstraction (i.e.

abstraction from real computers operating on physical data symbols) lower

than that in which a program is considered as for example a function from

integers to integers.

Definition. A computation sequence of Q' is a sequence fdili 1 O 3

where doeDin, di+l= F(di), i 2 0, and either disDcomp i > 0 01: for
Y

some k disD
camp,

0 < i < k and di=dksDout i 2 k.
Y

3

Definition. A program 0 determines its associated partial function

in an obvious way.

Often we would have D = N x E, where E is the set of
camp

possible state-vector values, and for non-recursive (flowchart) programs

N is the finite set of nodes of the flowchart while for recursive programs

N is the infinite set of possible states of a pushdown store.

Before dealing with simulation, we state without proof some

theorems concerning correctness and termination of programs. Theorem 3.1

embodies Floyd's [1] method of proving partial correctness of programs.

There is also a correspondence with Manna's work - for example in [4];

on Theorems 3.1 and 3.2 correspond to Theorems 1 and 2 of that paper.

However, Manna is concerned with the representability of verifications

(as defined below) in first order predicate calculus; we perhaps gain

in succinctness by stating results algebraically and ignoring the

question of representability.

Hence forward we assume that the suffix 'in' to a symbol denoting

a set implies inclusion in D.In'
Similarly for 'camp', 'out'.

- Definitions. fl is partially correct w.r.t. Sin, Sout if n"('in) C_ Sout*

Qis totally correct w.r.t. S
in'

S
out

if in addition 2 is

total on S
in.

S is a verification of 0 or S verifies fl, if S E D and

F(S) c, S.

Theorem 3.1

Given Sin, Sout

[Q partially correct w.r.t. S. Sout] CJIn'

[There is a verification S in ' 'compusout Of L71 cl

4

Theorem 3.2

Given Sin'Sout

[fl totally correct w.r.t. S
in'

Sout] f)
. .

[For every verification S!
in II sLomp u Siut of fl,

S
in n SW* soutn siut# $1 n

Corollary. (Set Sout = DoUt)

[Q total on S
in' cs

[For every verification S'in U ‘~nnp U “out Of n, ‘in n ‘fnf er “S~ut#Bl rz3

Now assume two programs, f7 = (Din,D
camp

,DoUt,F)

and 0' = @;n,J';;;pJ';ut ,+)a

Definition. Let R C_ D x D'. Then R is a weak simulation of Q by #if

(i) R C_ Dinx Din U D x D'
camp camp ' Dout x DLut

(1ii R F'c,F R.

Condition (ii) simply states that R is a weak homomorphism between

the algebraic structures (D,F\,(D',F'). This concept is used in automata

theory to define the notion of covering - see for example Ginzburg [7, p. 981.

a Now denote R n (Dinx "I,) by R.in'
and R

camp'
Rout similarly,

so that R = R
in

U R
camp u Rout

and these parts are disjoint.

Theorem 3.3.

If R is a weak simulation of Q by fl’ then

(i) Rin~f C_ n^ Rout

(>ii R-l is a weak simulation of fl' by a

(iii) R-l a^C_ 3 R,At
in

Proof (i) The condition R F' c F R may be restated

Vd,d'. (d,d')sR 9 (F(d),F'(d')ysR

Now suppose (do,dL,s Rin 2'. Then for some d:, (do,dA)s Rin and &(dA) =

$Y so there is a computation sequence d' d'0' 1
. , dl",......of fl'. Now

consider the computation sequence do,dl,....dk,.... of (1. We may prove

by induction using (*) that (di,d$ R, i 2 0. Hence dks Dout, (do,dk)s 8,

(dk,dl')s Rout and so (do,d$c: 6 Rout0

(>ii It is enough to show R-' F c_ F' R-l. But .this follows

easily from the fact that (*) is equivalent to RF' c, FR.

(iii) Follows directly using (i) and (ii). n

Theorem 3.3(i) says that the diagram

Din-DOUt

z

R
in

1 I

R
out

D'
in
- D'

2
out

semi-commutes (i.e. we have C_ not =). If we wish to be able to use

~7' to do the job of Q, we need more: we need the following to commute

DfnA
D'

out
AI
L?

i.e. we require 6 = Rin 2' R,:,. Theorem 3.4 below shows that for this

it is sufficient to require R to be a strong simulation of ~7 by d',

where

Definition. A weak simulation R of 6 by Q' is a strong simulation

if in addition R -
in'

R l
out

are total and single valued.

Note that R-l is not necessarily a strong simulation of Q'

by Q, so unlike weak simulation, strong simulation is not symmetric.

Theorem 3.4

If R is a strong simulation of fl by Q'
AI -1then $= Rin Q Rout.

Proof (2) Post multiply Theorem 3.3(i) by RiAt and use RoutRiLt C_ IDout

(R;it single valued).

(C_) Premultiply Theorem 3(ii) by Rin and use IDin s RinR;k

-=.

(Rin
total). 0

(Note that in the above we did not use the totality of Ro:t'
nor the

single valuedness of Rin).

Let us return to the discussion of algorithm in the introduction.

If there is a strong simulation of 67 by 0' we say (I' strongly

simulates 0 , and it is easy to show that this is a transitive reflexive

relation, i.e., a quasi-ordering. Mutual strong simulation is therefore

* an equivalence relation, and the equivalence classes may be thought of as

algorithms, each of which is realized by its member programs. Moreover,

if we divide out by this equivalence relation we obtain from the quasi-

ordering of programs a partial ordering of algorithms.

It is worth noticing that there is always a weak simulation

between any pair of programs - just take R = fi - so a similar definition

of "Q~ weakly simulates Q" is vacuous.

We finish this section with two simple results which exhibit the

close relationship between verifications and simulations.

7

-

Theorem 3.5

If

(1i

()ii

R is a simulation of Q' by 0' then

dom R verifies Q

ran R verifies f7'. . .

Proof In view of Theorem 3.3(ii) we only prove (i). Clearly domR E D,

and we only need show F(domR) c_ domR, i.e. vd. dsdomR 3 F(d)sdomR.

But ds damR 3 ad'. (d,d')sR

3 ad'. (F(d),F'(d'))sR

* F(d)s domR. El

This theorem says that simulation of Q by UC implies the
-=.

partial correctness of Q' w.r.t. domRin, domRout. However, normally we

are interested in partial correctness w.r.t. an S.
in'

Sout where S
out

is

much smaller than dam Rout; for example if Rout is total then dom Rout=

D and 0 is always partially correct w.r.t S.,S when S
out' in out out = Dout'

Theorem 3.6

If S verifies Q and R is a simulation of 0 by 6 then

ImR(S) verifies fl'.

Proof We require F'(ImR(S)) z ImR(s)e

But F'(ImR(S)) = bwds)

. & Im
FR (s) since RF' C_ FR

= Iqw)

s IrnR@) since F(S) s S. 0

Thus in a precise sense a proof of partial carectness of cf

may be factored into a proof of partial correctness of Q together with

a proof of simulation of 67 bY d*

8

4. APPLICATION TO FLOWCHART PROGRAMS

In this section, we show how we may demonstrate a simulation

between two programs in a manner which bears a close relation to Floyd's

method for proving correctness of a sing.le program. Of the two examples,

the first has the same data representation but different control in the

two programs.

Given a flowchart program with input domain Din, state-vector

domain E, output domain Dout and nodeset N, and given also an input

function fin.*Din+ E and output function foUt:E 3 Dout, it is a simple

matter to formalize it as a program according to our definition, with

D
camp

= NxE and l%D + D defined in terms of fin,fout and the tests

and assignments in the boxes. Alternatively, we may formalize it by

selecting a subset MS N so that every cycle in the flowchart contains

a member of M (we call such an M a cycle-breaking set) and define

D instead as MxE.
camp

The cycle breaking property ensures that

F : D + D is again total.

Now suppose in Q and dJ we have Dcamp
=MxE,

Diomp
= M'x E'.

fl and 0' may have been obtained by the above formalization from flow-

- chart programs, for example. If R is a simulation of Q by a', we

have Rcamp c_(M x E)x(M'x E'), and to exhibit Rcomp it is sufficient

to- exhibit RmmJ for each msM, m'sM' where
.

R =
mm' {<eye') I((m,e) ,(m',e'))g Rcmp).

In the following two examples we exhibit the Rm, and also indicate

how the proof of RF' c_ FR would go.

Example 1. (See Figure 1). Assume that inputs to each program are

.
9

PROGRAM Q

i: = i+l /

x: = g(x)

No YesI\
-j: = i+l

x: = g(x) 'L

I

PROGRAM 0'

I
i:=OQ

5: = i+l

x: = g(x)

A

I b

' i: =i+l

/', x: = g(x)

0

Figure 1

10

pairs (n,x), state vectors are triples (Ln,x), and only x is

output. The node-set (1,2] has been chosen to formalize Q, and

(1”2”3’l to formalize a'. So if J,R denote integers and reals
. .

we have

D
in

= Din =$x&

E E'= = $ x ,J x e; Dcomp = (1’2) X E; Diomp= (1',2',3'} X E;

D
out = Di.& = p

and F , the transition function for fly is given by

F (4 then (l,(O,n,x)) where (n,x) = d
in -

else if dsD-7 then let (m,(i,n,x)) = d;
-comP - -

if i + 1<3n then (m,(i + l,n,g(x)))

else if i + 1<6n then (2,(i + l,n,g(x)))

else d

F' for 0' is defined similarly.

We postulate a simulation R by giving Rin

for (m,m')c Cl,23 x (lf,2',3'], as follows:

e
R
in

= 1
Din'

' Rout = IDout; R13' = R21, = 551;

RllJ= r((i,n,x),(i,n,x))li< 2n]

R12 I= (((i,n,x~,(i,n,x~~l2n 2 i < 3n)

R22 /= [((i,n,x~,(i,n,xN~3n 5 i < 4n)

R23 J= ~((i,n,x),(i,n,x~~~4n 5 i < 6n)

For example, we may think of R12 J as containing all

Y and Rmm,

state-vector pairs

attained at the node-pair (WC) when fl,fl' are obeyed synchronously

starting from an input pair in R. .in
However, it contains also many other

11

l-i
?I

II

” . .
. .
s 53

I
I
I
I

.
:

ai I

I,

.
0cu

\.
cu
2 \

12

state-vector pairs (since there is no constraint on x in the definition

of R12J 9> and simulation will normally have this generous property.

R13f is here taken as the empty set, because the node pair (1’3’) i s

never reached. . .

To prove RF' C_ FR we must show that for all d,d'

(d,d'hR * (F(d),F'(d')hR

and this may be done by cases

Case 1: (d,d'hR

Case 2: (W'hRout

case jmmJ: (d,d’\ = ((m,e),(m~,e')~ where (e,e')sRmmr

which is a fairly--routine matter using the definitions of F,F', and

we leave it to the reader.

Now since R is a strong simulation, and indeed Rin,Rout are

identities, Theorem 3.4 entitles us to conclude 6 = 8'.

Example 2. (See Figure 2). This example illustrates simulation between

two programs with different data representation. We describe this

example in less detail, to save space. Each program is supposed to

input a string o, a character 5 and a string 7, and to output the

e

result of mbstituting 7 for 2 everywhere in o. Thus if S is the

alphabet of characters, D. = Df
in in

= S* x S x S* (where S* is the set of

strings over S) and Dout = Dtout = S*. Program Q handles strings

and characters directly, using the functions hd,tl,()(concatenation) and

the null string s* The three inputs are to the program variables oo,

5’ To respectively, and output is from the variable oo. On the other

hand, program f/' represents each string as a segment of an integer-

indexed character array; on input the two input strings are stored in arrays

s,t (indexed from 1) their -lengths + 1 in integer variables hl, kl and the

13

character in x, and output is the string SSP) ‘49ss(hh-1).

The flowcharts are formalized as programs (in our sense) with

node-sets (1,2'), (1',21], and we have Dcomp = {1,2} x (the set of possible

values for the program variable vector of fl), and similarly for Dbomp.
. .

F and F', the transition functions, are easy but tedious to define. We

now exhibit a simulation by giving Rin, Rout and the Rmmt for (m,m'h

(12) x (1’2’)’ using an auxiliary function seq: arrays x integers x integers 3

strings defined by
The string a(i),a(i+l),......a(j-1) if i sj

seq(a,i,j) =
Arbitrarily defined if i > j.

R =ID
in ; Rout = ID ; R12’ = R21~ = fi ;

in out

Rllf= ((bo 'mm'~"f('~0 Y 7) ,(s,h,hl,ss,hh,x,y,t,k,kl)) IQ);

where P
1
z 0, = seq(s,l,hl) ~a = seq(s,h,hl) A T, = seq(t,l,kl) A

cm = seq(ss,l,hh) A 5 =xr\lLh~hlr\l_<klAl~hh

and P2 5 Pl A T = seq(t,l,k) A 'f) = y A l< k 5 kl S

Now as in Example 1 the proof of RF! c_ FR must proceed by

- cases; it will use certain properties (or axioms) concerning the string

handling functions, the array and integer handling functions and the

function seq. We leave it to the reader again. Again, since Rin,Rout

are identities we have proved that a= Q .*t

There are some interesting points about this example.

(1) It seems that program Q is more natural than g', though this

asymmetry was not present in Example 1. In fact, program 0' is only a

slight modification of part of a real program written for use rather than

I

14

as an example. In the process of proving 0' correct using Floyd's

technique, I found that the assertions associated with parts. of the

program were most naturally expressed using the function seq, and that

the terms appearing in these assertions were precisely those which are. .

here related (in R
11

, and R
22'

) to the variables of a. In fact, (this

is discussed in more detail in [2]) the task of proving 0' correct

factored simply into two tasks - that of proving a correct (an easier

task since Q is more natural and closer to programmer's intuition)

and that of proving the simulation. This 'factoring' was made precise by

Theorem 3.6.

(2) Unlike in Example 1, the flowcharts here have identical shape, and-=

it is meaningful (and even true!) to say that under identical inputs the

programs follow the same path. In Example 1 such a statement would not

be meaningful, but in Section 5 we show that a similar statement has

meaning in cases more general then Example 2, and provides us with

necessary and sufficient conditions 'for the existence of a simulation

between two programs.

5. PARTITIONED SIMULATION

We now obtain necessary and sufficient conditions for the

existence of simulation between two programs a and a'.

Definition.
.

If J is any indexing set and flJ = (Cjl jcJ],T[; = (CiljEJ)

are partitions of D
camp'

D'
camp

respectively, then (flJ,$) is a

partition pair for D
camp' DAomp

(Of course any two domains can have a

partition pair, but we are only concerned with computation domains).

Definition. Computation sequences (d,} in a, [d;j in Q' agree for

(ri,,'ll~) if Vi,j. disCj <=> disc;.

15

Definition. A simulation R respects (n,,fl;\ if Rcmp E u (‘j x “;I

hJ

Theorem 5.1

(Weak Simulation Theorem). Given RXin C_ Din x Din and a

partition pair (lTJ,lT;) of Dcomp, DAomp, the following two statements

are equivalent:

(a) Computation sequences {d,) of a, (df) of csf for

which (4, ,dcf, eRr, always agree for (‘J ‘fl;) :

(b) There is a weak simulation R=RT U Rin camp u Rout Of fl

by a' which respects (flJ ‘fl;, ’

Proof (a) 3 (b)l It is enough to take

R =
c
(e,e')lThere are computation sequences Cd,) 0f a, [di) of a’ for

which (Q ,d,')eR;n and for some k e=dk,e'=dk
3

.

(b) 3 (a). Assume R. Take any computation sequences

[di], (d;] for which (d,,d,')sRin. Then we have Vi . (di,dl}eR since

R is a simulation, so either (di,di)sRIn U Rout or for some jsJ dicCj

and disCi since R respects (fiJ,fi;). Thus (a) follows. cl

e
Theorem 5.2

(Strong Simulation Theorem).G i v e n RTn C, Din x Din, RtUt C, Dout x

D&t
with K?in'

R*-1
out'

both single-valued and total, and (fl,,fli) a

partition pair of D
camp'

D'
camp'

the following two statements are equivalent:

(a) z= R:n 8 Rl;i, and computation sequences Cdi) Of a,

[d$ of 0' for which (&,d&Rin always agree for (fl,,$).

(b) There is a strong simulation R = R
.*
in ' Rcomp ' R*out Of

a by a' which respects (TIJ,$).

16

(a) j (b). By the correspondingProof

a simulation R'
in

U Rcamp U Rout which

which

proof in Theorem 5 .l there is

respects (flJ,$) , and for

(eYe’mout 3 For some (d,d')CRYin, e = J(d) and e' = a(d').

* *-13 (e,e')sR OUt, since a*= RYin 2 R.out and both

R*in
and 8 are single valued.

Thus Rout c_ R*out,
*

whence R
in URcamp ' R*out

is also a simulation

respecting (fl,,fl') and moreover a strong one, from the conditions of the Theorem.

(b) 3 (a). Take any &sDin, and # = RI,(&). This is defined

*
since R in is total. Then by Theorem 5.1 the computation sequences

--.
(di} , [df} agree for (fl,‘fl;).

It follows also from this that either

both or neither of a(&), a'(&) are defined. If neither, then neither
*

. of the functions 8, R in 4' R
't-1
out

is defined for 4. If both, then

for some k cdk Yd 'k) "R*out and dk = a(&), dk = a'(&). But dk = R;;:(d;o

and d'o
s-1

= Rm(&) so the functions d, R*in RRout both yield result

*c-1
dk for argument d,, since Rout is single valued.

*-1
It follows that $= R*in 8' Rout. cl

e (Note that this proof nowhere uses the totality of Rzi:)

Now the coarsest partition pair (rr,,n;) has
J a singleton,

and any simulation respects it. We therefore have the following corollary

to' Theorem 5.1.

Corollary 5.3. Given Rm there is a weak simulation R = Rtn u Rcamp ' Rout

of a by Q' if and only if computation sequences [di) in ~7, (d:] in a'

such that (6 ,dd)cR;n always have lengths either both undefined or

equal (the length of [di} is defined as min(kldksDout)). Cl

.

There is a corresponding corollary to Theorem 5.2, which we omit.

Finally, we give a corollary for flowchart programs.of the same

shape.

Corollary 5.4. Let D call N the node set
ComP

= N x E, D'
camp

= N x E';

(common to Q and 0'). Define fl, = (n) x ElnsN) , 'l't'i = ((n} x E'ineN] .

Then two computation sequences agree for (flN,fi&) exactly when they trace

the same node path, and so we have the following:

Given Rm, there is a weak simulation R = I$*in URcomp ' Rout Of

c? by a' which respects (flN,'lfi) if and only if every pair of computation

sequences Cd 3i
in 0, (dl] in a' such that &d&R:, trace the

same node path. --, D

Again, there is a corresponding corollary to Theorem 5.2. If

as in Section 4 we exhibit R
ComP

by exhibiting Rnn, c_ E x E' for

n,n'c N, then "R respects (flN,fli)" means R,,, = $, n # n'. This is

the situation in Example 2 of that Section.

6. CONCLUSIONS AND POSSIBLE DEVELOPMENTS

The idea of simulation, which is really an application of the

notion of weak homomorphism, is interesting in two ways: theoretically,

because it allows one to abstract some irrelevant detail from programs to

come closer to a definition of algorithm, and practically because there is

a manageable technique for proving simulation between programs, which in

sOme cases may make easier the task of proving a program correct.

There are two possible directions for development. First, we

have restricted to a single-valued, total transition function F. The

situation looks rather different when we relax these conditions - for

example we should consider computation trees rather than sequences.

Second, we should consider simulation of parallel programs, and treat

programs which perform the same computations but not necessarily in the

same sequence as serializations of the same parallel program - or of

mutually simulating parallel programs. These extensions may bear the same

relation to the work of Manna [5] and Ashcroft and Manna [6] on the

correctness of nondeterministic and parallel programs as the present

paper bears to Manna's earlier work on serial programs [4].

19

ACKNOWLEDGEMENTS

This work owes much to Peter Landin who largely pioneered

the algebraic approach to programs. This paper is in the spirit of

V31, although that paper is concerned with the structure of a single

program (as a product algebra) rather than relations between programs.

I also had profitable discussions with Peter Landin, Rod Burstall and

John Laski.

-=.

20

REFERENCES

[1] Floyd, R.W., "Assigning Meanings to Programs", Proceedings of
ymposia in Applied Mathematics,

fol. 19, 19-32 (1967).
American Mathematical Society,

[2] Milner, R., "A Formal Notion of Simulation Between Program&
Memo 14, Computers and Logic Research Group, University College
of Swansea, U.K. (1970).

[3] Milner, R., "Program Simulation: An Extended Formal Notion"
Memo 15, Computers and Logic Research Group, University College
of Swansea, U.K. (1971).

[4] Manna, Z., "The Correctness of Programs", J. of Computer and Systems
Sciences, Vol. 3, No. 2, 119-127 (1969).

[51 Manna, L "The Correctness of Non-deterministic Programs", Stanford
Artificial Intelligence Project, Memo AI+, Stanford University

(1969) l

--.

[61 Ashcroft, E.A., and Manna, Z., "Formalization of Properties of
Parallel Programs", Stanford Artificial Intelligence Project, Memo
AI-110, Stanford University, (1970).

. [7] Ginzburg, A., Algebraic Theory of Automata, Academic Press (1968).

[81 Landin, P., "A Program-Machine Symmetric Automata Theorytl,
Machine Intelligence 5, ed. D. Michie, Edinburgh University Press,

21

