E.

| |
} !

’ {

l |
" STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-142

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-205

AN ALGEBRAIC DEFINITION OF-SIMULATION BETWEEN PROGRAMS

ROBIN MILNER

FEBRUARY 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

STANFORD ARTI FI CI AL | NTELLI GENCE PRQIECT FEBRUARY 1971
MEMO NO. Al M 142

COVPUTER SCI ENCE DEPARTMENT
REPORT NO. €S205

AN ALGEBRAIC DEFINITION OF SI MULATI ON BETWEEN PROGRAMS

by: Robin Ml ner

ABSTRACT: A simulation relation between programs is defined which
is quasi-ordering. Mitual simulation is then an
equi val ence relation, and by dividing out by it we
abstract from a program such details as how the sequencing
is controlled and how data is represented. The equival ence
classes are approximations to the algorithms which are
realized, or expressed, by their nenber prograns.

A technique is given and illustrated for proving sinulation
and equival ence of prograns; there is an analogy with Floyd' s
technique for proving correctness of prograns. Finally,
necessary and sufficient conditions for sinulation are given.

DESCRI PTIVE TERMS: Sinul ation, weak homororphism algorithm program
correctness, program equival ence.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or inplied, of the Advanced Research
Projects Agency or the U S. Governnent.

This research was supported mainly by the Science Research Council,
Geat Britain and in part by the Advanced Research Projects Agency of
the Departnent of Defense (SD-183) U S A

1. | NTRODUCTI ON

One aim of this paper is to make precise a sense in' which two
prograns may be said to be realizations of the sane algorithm W can
say loosely that for this to be true it is sufficient though perhaps not
necessary that the programs do the same 'inportant' conputations in the
same sequence, even though they differ in other ways: for exanple
(1) W may disregard other conputations perhaps different in the two
progranms, which are 'uninportant’ in the sense that they are only
concerned with controlling the 'inportant' ones, (2) The data nmay flow
differently through the variables or registers, (3)The data may be

differently represented in the two progranms. The program pairs in

Figures 1, 2, which are studied in detail in Section 4, illustrate points
(1), (3) respectively; a trivial illustration of (2) is the follow ng pair
of prograns:
read x,y read x,y
XI =X+y yi=x+y
print x print vy

Al though the above prescription is vague, we give a relation of sinulation
between prograns which may fairly be said to match it. The relation
turns out to be transitive and reflexive but not always symretric; however
mutual sinulation is an equivalence relation, and it is the equival ence
classes under this relation which my be regarded as algorithns - at |east
this is an approximation to a definition of algorithm

We show also that there is a practical technique for proving
sinulation in interesting cases - though unfortunately sinulation between

progranms handling the integers, for exanple, is not a decidable (or even

partially decidable) relation. Under a sinple restriction sinulation
ensures the_equival ence (as partial functions) of the prograns, so this is
also a technique for proving equival ence; however in general equivalent
programs will not satisfy the simulation relation.

| also claimthat in order to prove by Floyd' s [1] method the
correctness of a program A, in a case where data is represented unnaturally,
perhaps for efficiency's sake, the easiest and nost |ucid approach is
rather close to first designing a program B which is sinulated by program
A and which represents the data naturally, and then proving B correct.
This was in fact the original notivation for studying sinulation, and
is discussed in nmore detail in MlIner [2], which contains a first attenpt
at the definition of sinmulation. The sequel [3] generalizes the definition

and the current paper is a synthesis of the two, and may be read independently.

2. NOTATI ON

We denote relational conposition by juxtaposition; if

Rc Ax B Sc Bx Cthen RS = {(a,c)|3b.(a,bYeR,(b,cYeS}. The inverse
of Ris RY!- f(b,a)|(a,b)er} . We intentionally confuse a (partial)

function F© A - B with the relation F = {(a,b}|b=F(a)}. R induces a

function ImR:2A - QB

we sometimes wite F(S) for ImF(S). The domain of Rc A x Bis domR

; for S cA, Im(s)={b]|JaeS.{a,b)eR}. For a function F

= | ImR(A), and the kange of Ris ran R = rq¥|(B): For any set A I,

CcAXx Ais the identity relation on A

3. PROGRAMS AND_ SI MJLATION

W first introduce a definition of program which enables

simulation properties to be stated and proved succinctly.

Definition. A program ¢ is a quadruple (Di N Dcomp,Dout,F>

where D. , D ,D are disjoint domains and F:D - Dis a total
in'" “comp’ out
function (D=Din U Dcomp U Dout) with restrictions
(1) F(Din U Dcomp> < Dcomp U Dout

ii icti is the identit I
(ii) The restriction of F to Dot y Doyt

W call D, _,D

o " the input, conputation and output domains of 4.
1

,D
comp’ ou
Conditions (i) and (ii) ensure that starting with' a nenmber of

D, and appl ying F repeatedly we get either an infinite sequence in

D

e omp® or a finite sequence in Dcomp followed by a single repeated

menber of DOut ' W have (ii) nmerely to keep F total, which the
theory requires.
Wiy nust the domains be disjoint? Wiat about a program which
inputs an integer and outputs an integer ? Here one might argue that
D = Doue = [integers]; but we get into no trouble having two fornally
di sjoint domains with for exanple an injection or a bijection between them
In fact, in practice we can distinguish between an input object and an out put
object of a program for exanple they occur on different media, or at different
spatial locations. W are concerned with a level of abstraction (i.e.

abstraction from real conputers operating on physical data synbols) | ower

than that in which a programis considered as for example a function from

integers to integers.

Definition. A conputation sequence of ¢ is a sequence {di]i =203
wher e doeDin’ di+1= F(di), i > 0, and_ejither dieDcomp,' > 0 or for
sone K dieDcomp,O <i <k and di=dk€Dout ! > k.

Definition. A program ¢ determnes its associated partial function

7. D D
a: in ~ “out
in an obvious way.
Oten we would have D = Nx E, where E is the set of
comp

possi ble state-vector values, and for non-recursive (flowchart) prograns
Nis the finite set of nodes of the flowhart while for recursive prograns
Nis the infinite set of possible states of a pushdown store.

Before dealing with sinulation, we state w thout proof sone
t heorens concerning correctness and ternmination of programs. Theorem 3.1
enmbodi es Floyd's [1] method of proving partial correctness of prograns.
There is also a correspondence with Manna's work - for exanple in [4];
on Theorens 3.1 and 3.2 correspond to Theorens 1 and 2 of that paper.

However , Manna is concerned with the representability of verifications

(as defined below) in first order predicate calculus; we perhaps gain
in succinctness by stating results algebraically and ignoring the

question of representability.

Hence forward we assume that the suffix 'in' to a symbol denoting

a set inplies inclusion in D, . Sinmilarly for ‘'comp', 'out

N
Definitions. ¢ is partially correct wr.t. S, ,S if a(Sin) c s

in’ “out out”’

. . Lo A
7 is totally correct wr.t. Sin' Sout if in addition @ is

total on Si N

Sis a verification of 7 or S verifies ¢# if S ¢ D and

F(S) c S
Theorem 3.1
G ven Sin’ Sout
[@ partially correct wr.t, S s_ .]&
[There is a verification Sin U Swmpusout of 7] O

Theorem 3.2

Gven S S

in’ out
[7 totally correct w.r.t. Sin' Sout] o
o : ; , ,
[For every verification Si‘n U SComp U SOut of 7,

I I's
Sip M S'—"£¢=’Soutﬂsout7émD

in
Corollary. (Set S_ . =D)

out

[@ total on Sin] o

e . , ’ ; ’
[For every verification Sin us U s’ e of 7 Sin N Sin% [

comp

Now assune two prograns, 7 = <Din’Dcomp’Dout’F>

7 on? P ’ A
and 7' = <Din’Dcomp’Dout ,F).

Definition. Let Rc Dx D. Then Ris a weak sinmulation of 7 by #°if

. ¥ 7
() Rg Dinx Din U Dcomp X Dlcomp U Dout X Dout

(ii) RF'cFR

Condition (ii) sinply states that R is a weak hononor phi sm bet ween

the al gebraic structures (D,F),(D’,F'). This concept is used in automata

theory to define the notion of covering - see for exanple G nzburg [7, p. 98].

7
Now denote R N (Dinx Din) by Ri and Rcomp, Rou

so that R = Rin U Rcomp U Rout

Theorem 3.3.

If Ris a weak sinulation of &by then

. A, A
(1) Rina ca Rout

(i) R™l is a weak simulation of a by d

-1 2 A -1
(iii) Rin dgﬂ’Rout

simlarly,

and these parts are disjoint.

Proof (i) The condition RF < F R may be restated
vd,d’. (d,d"deR = (F(d),F’(d’)%eR (*)
’ Ar) ’ Ny raey _

Now suppose (do,dk)e Rip @ - Then for some do, (do,do>€ R, and 7 (do) =
d{(, so there is a computation sequence Hé.d'l ’dllc"""'Of a’'. Now
consi der the conputation sequence do’dl"“'dk""' of »~. Ve may prove

. A
by induction using (*) that (di,di>e R, i > 0. Hence dke Dout, (do,d Ye 4,

A
4
and so (do,dk>e d R

/ 7
{dpsdide R, t

t
(ii) It is enough to show RLFcF rL. But this follous

easily fromthe fact that (*) is equivalent to RF < FR
(iii) Follows directly using (i) and (ii). X

Theorem 3.3(i) says that the diagram

Din —'—'A—') Dout
a
) R
In out
I
’ —_ ’
Dl‘ n Dout

~N

al
sem -comutes (i.e. we have ¢ not =). If we wish to be able to use

@’ to do the job of @, we need nore: we need the following to conmute

Dig— - Dout

N
a

Rin R_l

out

7’ q

1n————3 D out

&‘/

A

i.e. we require @ =R, a' R;l];t. Theorem 3.4 bel ow shows that for this
it is sufficient to require R to be a strong simulation of @ by @',

wher e

Definition. A weak sinulation R of & by @’ is a strong sinmulation

if in addition Ri " Ralut are total and single val ued.
Note that R-1 is not necessarily a strong sinulation of ¢

by @, so unlike weak sinulation, strong simulation is not symetric.

Theorem 3.4

If Ris a strong simulation of ¢ by ¢’ then Z=R._ 7R
y in out
- - -1 -1
Proof (o) Post multiply Theorem 3.3(i) by ROt and use RoutRout S IDout

(R;l]it single val ued).

. L. -1
(€) Premultiply Theorem 3(ii) by R;, and use IDin < R; RI;

-
(Rin total).
(Note that in the above we did not use the totality of R;tllt, nor the

si ngl e val uedness of Rin)'

Let us return to the discussion of algorithmin the introduction.
If there is a strong sinulation of ¢ by ¢ we say o strongly
similates ¢, and it is easy to show that this is a transitive reflexive
relation, i.e., a quasi-ordering. Mitual strong sinulation is therefore
- an equival ence relation, and the equivalence classes may be thought of as
al gorithms, each of which is realized by its menber prograns. Moreover,
if we divide out by this equivalence relation we obtain fromthe quasi-
ordering of programs a partial ordering of algorithns.

It is worth noticing that there is always a weak sinulation
between any pair of programs - just take R = ¢ - SO a simlar definition

of "g’ weakly simulates &' is vacuous.

W finish this section with two sinple results which exhibit the

close relationship between verifications and sinulations.

Theorem 3.5
If Ris a simulation of @ by ¢ then
(i) domR verifies @

(ii) ran R verifies &7 .

Proof_ In view of Theorem 3.3(ii) we only prove (i). Cearly domR ¢ D,
and we only need show F(donR) < domR, i.e. Vvd. dedomR = F(d)edomR.
But de domR = 3d’. (d,d")eR
= 3d’. (F(d),F'(d*))eR
=» F(d)e domR. O
This theorem says that simulation of ¢ by ¢’ inplies the

parti al correctness of a wr.t. domRin’ domROu . However, normally we

t

are interested in partial correctness wr.t. an S. .S wher e Sout is

in “out
much smaller than dom Rout; for exanple if Rout is total then dom Rout=

i , i . D .
Dout® and ¢ is a,Svays partially correct wr.t S;, when Sout = Dout
Theorem 3.6

If S verifies ¢ and R is a sinulation of ¢ by & then

Img(S) verifies 7’.

Pr oof Ve require F’(Imp(S)) ¢ ImR(S).

But F’(ImR(S)) = ImRF,(S)

c Imp (s) since RF ¢ FR
= Im, (F(8))
gImR(S) since F(S) cS. N

Thus in a precise sense a proof of partial coarectness of 7
may be factored into a proof of partial correctness of ¢ together with

a proof of sinulation of @ by &' -

4. APPLI CATION TO FLOACHART PROGRANS

In this section, we show how we nay denonstrate a sinulation
between two prograns in a manner which bears a close relation to Floyd's
met hod for proving correctness of a single program O the tw exanples,
the first has the same data representation but different control in the
two progranms.

Gven a flowhart programw th input domain D, s state-vector
domain E, output donain D ut and nodeset N, and given also an input
function fin:Din—» E and output function fout:E - Dout, it is asinple
matter to formalize it as a program according to our definition, with
D = NxE and FD - D defined in terns of f, ,f and the tests
comp in’ out
and assignnents in the boxes. Alternatively, we may formalize it by

selecting a subset MC N so that every cycle in the flowhart contains

a nmenber of M (we call such an M a cycle-breaking set) and define

Dcomp instead as M x E . The cycle breaking property ensures that
F . D-> Dis again total.
. - Vi - 1

Now suppose in ¢ and & we have Dcomp =MxE, Deomp Mx E.
@ and ¢ my have been obtained by the above formalization from flow
chart programs, for exanple. If R is a sinulation of ¢ by &', we
have R c(M x E)x(Mx E'), and to exhibit R it is sufficient

comp comp

to- exhibit R_ ., for each megM, m’eM’ where

an = {(e,e') |((m,e> ,(m” e e Rcomp}’

In the followi ng two exanples we exhibit the Rmm' and also indicate
how the proof of RF < FR would go.

Exanpl e 1. (See Figure 1). Assune that inputs to each program are

PROGRAM Q

i:=0
P E—
i < 3n?
Yes ? @
No Rll'//
//
=1i4+1 —
= g(x)
N
AN
N Ry,s
\12
L] ~N
i < én? *
No Yes. j -~
@ R22' -
-
~
=1i+1
= g(x) _
<
~
Figure 1

10

PROGRAM ¢’
i:=0
l
- »
i <2n?
@ es No
=1i+1
= g(x)
'N
i < kn?
@ Yes No
=1i+1
= 9g(x)
>
A i < 6n?
@ es NO
=i+1
= g(x)
v

pairs (n,x), state vectors are triples {(i,n,x), and only x is
output. The node-set {1,2} has been chosen to formalize ¢, and

{1’,2',5'} to formalize ¢'. So if g,p denote integers and reals

we have
Din :D£H=Jx/?;
E=E =4x &x @D = {1,2}xE Dl = {1/,27,3'IxE;
Dout = Dout = R
and F, the transition function for ¢, is given by
F(d) = if deD, , Lthen (1,(0,n,x)) where (n,x) = d
else if de?comp then let (m,(i,n,x)) = d;
if i +1<3nthen (m(i + l,n,g(x)))
else if i + 1<6n then (2,(i + l,n,g(x)))
else g(x)
else d

F’ for ¢ is defined simlarly.

Ve postulate a sinulation R by giving R, , R and Rom?

out

for (m,m’e {1,2]x{1’,2’,3'}, as foll ows:

Rin = IDi n'. Rout = IDout; le' = R21' = ;é[;
Ryp’= 10,0, (1,0,00) [1< 2n)
Ripr= {((1,0,%),(1,n,%)]2n < 1 < 3n)

R22l= {((i,n,x§,(i,n,x\)|§n <i < 4n)

R25’= {<<isn,X>,(i,n,X>>|ll-n i< 6n}

For exanple, we may think of R, @S containing all state-vector pairs
attained at the node-pair (1,2°% when g,7’° are obeyed synchronously

starting froman input pair in R‘i v However, it contains also nany other

11

state-vector pairs (since there is no constraint on x in the definition
of R12,), and simulation will normally have this generous property.
RlB' is here taken as the enpty set, because the node pair (1,30 i s
never reached.
To prove RFF < FR we nust show that for all d,d’

(d,d"YeR = (F(d),F’(d’)YeR
and this may be done by cases

Case 1: (d,d’yeR

Case 2: (d,d’\gRout

Case 3 /: (d,d’y = ({m,e),(m’,e’>) where (e,e')eRmm,
which is a fairly--routine matter using the definitions of F,F’, and
we leave it to the reader.

Now since R is a strong sinulation, and indeed Rin’Rout are

identities, Theorem 3.4 entitles us to concl ude é = a'.
Exanmple 2. (See Figure 2). This exanple illustrates sinulation between
two programs with different data representation. W describe this
exanple in less detail, to save space. Each programis supposed to
input a string ¢, a character € and a string t, and to output the
result of substituting + for E everywhere in g. Thus if S is the
al phabet of characters, D.. = Di,'n = S* X Sx S* (where S* is the set of
strings over S) and Dout = D,out = 8%, Program ¢ handl es strings
and characters directly, using the functions hd,tl,()(concatenation) and
the null string ¢. The three inputs are to the program variables g,

£, T, respectively, and output is fromthe variable gg. On the other

hand, program * represents each string as a segnent of an integer-

i ndexed character array; on input the two input strings are stored in arrays

s,t (indexed from1) their -lengths + 1 in integer variables hl, kl and the

13

character in x, and output is the string ss(1),ss(2)..... . ss(hh-1).

The flowcharts are formalized as progranms (in our sense) with

node-sets {1,2}, {1/,27}, and we have DCOmp = {1,2} x (the set of possible

’

values for the programvariable vector of 4}, and sinmlarly for Dcomp.

Fand F', the transition functions, are easy but tedious to define. W

now exhibit a sinulation by giving Rin’ R and the R m? for (m,m’Ve

out

{1,2} x {17,2%}, using an auxiliary function seq: arrays x integers x integers 3

strings defined by
The string a(i),a(i+l),......a(j-1)if i <j
seq(a,1,9) = (

Arbitrarily defined if i > j.

. =I ;R :I ;R ? - R ? :¢;
%n D;,’ “out Dout 12 21

R11'= {((O’o sO'sO'O"gr'n:To 9T> ’<S:h9hl’ss’hh:X,Y:t,k,kl>> !Pl};
R221= {((Uo ’O"OO"E’T]’TO ,'T§,(s,h,hl,ss,hh,x,y,t,k,kl”lP2]
wher e Pl=o, = seq(s,1,hl) Ao = seq(s,h,hl) A T, = seq(t,1,kl) A
oc = seq(ss,l,hh) AE =x A 1<h<hl A 1<klA1l<hh
and P, = P1A7=seq(t,1,k)An=yA1§kgkl

Now as in Exanple 1 the proof of RF/ ¢ FR nust proceed by
- cases; it wll use certain properties (or axions) concerning the string
handling functions, the array and integer handling functions and the

function seq. W leave it to the reader again. Again, since Ry Rt

are identities we have proved that §= f".

There are some interesting points about this exanple.
(1) It seems that program ¢ is nore natural than ¢’, though this
asymmetry was not present in Exanple 1. In fact, program ¢’ is only a

slight nodification of part of a real program witten for use rather than

14

as an exanple. In the process of proving ¢’ correct using Floyd' s
technique, | found that the assertions associated with parts. of the
program were nost naturally expressed using the function seq, and that
the terns appearing in these assertions were precisely those which are
here related (in R11’ and R22,)to the variables of ¢ In fact, (this
is discussed in nore detail in [2]) the task of proving @' correct
factored sinply into two tasks - that of proving ¢ correct (an easier
task since ¢ is nore natural and closer to programmer's intuition)

and that of proving the simulation. This 'factoring’ was made precise by
Theorem 3.6.

(2) Unlike in Exanple 1, the flowcharts here have identical shape, and
it is meaningful (and even true!) to say that under identical inputs the
programs follow the sane path. In Exanple 1 such a statement would not
be neaningful, but in Section Swe show that a sinilar statement has
meaning in cases nore general then Example 2, and provides us with
necessary and sufficient conditions 'for the existence of a sinulation

between two prograns.

5. PARTITIONED SI MULATI ON

We now obtain necessary and sufficient conditions for the
exi stence of simulation between two prograns & and a.
Definition. If J is any indexing set and T, = {CJ.] jed} ,‘[T} = {CJ{ljeJ}
are partitions of Dcomp, Dcomp respectively, then (TTJ,TrJ> is a

partition pair for D , D! (OF course any two dommins can have a
comp comp

partition pair, but we are only concerned wth conputation domains).
Definition. Conput ati on sequences {di} in a, {dé} in g agree for

oo . . _ t At
(TTJ,TTJ) if vi,j. diecj <=> dieCj.

15

Definition. A simulation R respects (nJ,rrfTs if R cu(c; x cJ’.)

Theorem 5.1

(Meak Sinmulation Theorem. G ven R*i c D, x D! and a
n in in

- : ’ ' the following two statenents
partition pair (TTJ, J> of Dcomp’ Dcomp’
are equival ent:

(a) Conputation sequences {d;} of ¢, (df) of g for

which {dy ,ddd €R;’§n al ways agree for (TTJ ’W:T>f

(b) There is a weak sinulation R=1|{: U Reomp U Roue °F 7

by ' which respects (TI'J,TT}).
Pr oof (a) = (b). Itis enough to take

. , b
R = {(e,e'}lThere are conputation sequences {di} of a, {di} of a’ for

which {do ,dé)eRin and for some K e=dk,e’=d1’<3 :

(b) = (a). Assume R Take any conputation sequences

7 . ’ i .
{di}, {di} for which (do,do)eR; - Then we have Vi . (di,di)eR si nce

? * .
Ris a sinulation, so either <(d;,d;7eR; UR_ . or for some jeJ dieCj

and d{eCJf since R respects (TTJ,TTE)- Thus (a) foll ows. o
Theorem 5.2

(Slrong & péathon®y2or€y. Dy x Dis Koy S Doy X
Dgut with R’;-n. Rz:nl. both single-valued and total, and (TTJ,TT;) a
partition pair of Dcomp, D'comp, the following two statenents are equivalent:

(a) 4= R?.n &' ®r¥:L, and computation sequences {d;}of Q,

{d;f_] of @ for which {(do ,dé)eRin al ways agree for (ﬂJ,ﬂj)-

¥*

(b) There is a strong similation R=Rjn URpy UR of

a by @' which respects (ﬁj,ﬁs)-

16

Padof = (b). By the corresponding proof in Theorem 5.1 there is

. . * R ’
a sinulation R i U Rcomp U R, which respects (TTJ, J) and for

whi ch

(e,e')eRout = For some (d,d’)eR.*in, e =4 and e = g'(d").

’ * . A% A, ,*7__1
= (e,e’)eR out® Since a=R in @ R = and both

* A .
R in and ¢ are single val ued.

*

* *
: . R is also a sinulation
thout,V\/nence R, UR U

Thus Rou comp out

respecting <TTJ,TT'> and noreover a strong one, fromthe conditions of the Theorem

(b) = (a). Take any doeD, , and dJ = R:n(do). This is defined

n
*
since R in is total. Then by Theorem 5.1 the conputation sequences
' - 4 H H
{ di} , {di} agree for (TTJ,TrJ>. It follows also fromthis that either

both or neither of #(d), @' (d) are defined. If neither. then neither

* A ¥= .)
of the functions dA, Rin 7' R is defined for do. |f both, then

out

* _ A t — Arrae _ R¥1 .,
for some k (d ,d‘)erR . and d = @(d),dy =& (d5)+ But dy = Rout (45)
* . * ¥] .
’ — ! P-4
and d’y = Rin(d°) so the functions &, R in @R 4t both yield result
. *-1. .
dk for argunent d,, since Rout i s single val ued.
A * Ap %=1
It follows that a—Rina Rout. cl

(Note that this proof nowhere uses the totality of R:;i)
Now the coarsest partition pair (WJ,ﬂj) has J a singleton,
and any sinulation respects it. W therefore have the follow ng corollary

to' Theorem 5.1.

. * . . . _ *
Corollary 5.3. Gven Rin there is a weak simulation R = R, U Rcomp UR e

of ¢ by @ if and only if conputation sequences {d;} in @, {di} in &
such that (do ,do’>€R_:)-:n al ways have |engths either both undefined or

equal (the length of {d.}is defined as min{kldkeD |

out}).

17

There is a corresponding corollary to Theorem 5.2, which we omt.
Finally, we give a corollary for flowchart programs-of the sane

shape.

= = '+ call N the node_set
Corollary 5.4. Let Dcomp N x E, D'wm_p Nx E;

(comon to ¢ and ¢'). Define T = ((n) x E|neN) | Wﬁ‘{{“}xEllneN}-
Then two conputation sequences agree for <1TN’TTI:I> exactly when they trace
the same node path, and so we have the follow ng:

UR of

. * . . .
Gven R, , there is a weak simulation R = out
in

an U'Rcomp

@ by a' Wwhich respects (TTN,TT{I) if and only if every pair of conputation

sequences {dig in {d{} in @ such that (do,do’_)gR:n trace the

sane node path. _ o
Again, there is a corresponding corollary to Theorem5.2. I|f

as in Section 4 we exhibit Ryomy by exhibiting R , g Ex E’ for

n,n’¢ N, then "R respects (M,mo)" neans R, = Pyn#n. This is

the situation in Exanple 2 of that Section.

18

6. CONCLUSI ONS AND POSS| BLE DEVELOPMENTS

The idea of sinmulation, which is really an application of the
notion of weak honomorphism is interesting in two ways: theoretically,
because it allows one to abstract some irrelevant detail from prograns to
come closer to a definition of algorithm and practically because there is
a manageabl e technique for proving simulation between prograns, which in
some cases may make easier the task of proving a programcorrect.

There are two possible directions for devel opment. First, we
have restricted to a single-valued, total transition function F. The
situation | ooks rather different when we relax these conditions - for

exanpl e we should consider conputation trees rather than sequences.

Second, we should consider simulation of parallel prograns, and treat
programs which perform the same conputations but not necessarily in the
same sequence as serializations of the same parallel program- or of
nutual |y sinulating parallel programs. These extensions may bear the sane
relation to the work of Manna [5] and Ashcroft and Manna [6] on the
correctness of nondetermnistic and parallel programs as the present

paper bears to Manna's earlier work on serial prograns [4].

19

ACKNOW EDGEMENTS

This work owes much to Peter Landin who largely pioneered
the al gebraic approach to programs. This paper is in the spirit of
[8], although that paper is concerned with the structure of a single
program (as a product algebra) rather than relations between prograns.
| also had profitable discussions with Peter Landin, Rod Burstall and

John Laski .

20

REFERENCES

[1] Floyd, R W, "Assigning Meanings to Programs", Proceedings of
Symposia in Applied Mithemmtics, Anerican Mathenmatical Society,
Vol. 19, 19-32 (1967).

[2] MIner, R, "A Formal Notion of Simulation Between Programs",

Memo 14, Conputers and Logic Research Goup, University College
of Swansea, U K. (1970).

[3] MIner, R, "Program Sinulation: An Extended Formal Notion"

Mermo 15, Conputers and Logi ¢ Research Goup, University College
of Swansea, U K. (1971).

[4] Manna, Z., "The Correctness of Programs", J. of [an
Sci ences, Vol. 3, No. 2, 119-127 (1969).

[5] Manna, Z., "The Correctness of Non-deterministic Prograns", Stanford
Artificial Intelligence Project, Memp AI-95, Stanford University
(1969) .

[6] Ashcroft, E.A, and Manna, Z., "Fornmalization of Properties of
Paral l el Prograns", Stanford Artificial Intelligence Project, Mno
Al -110, Stanford University, (1970).

[7] G nzburg, A, Algebraic Theory of Automata, Academc Press (1968).

[8] Landin, P., "A Program Machine Symmetric Autonata Theory",
Machine Intelligence 5, ed. D. Mchie, Edinburgh University Press,
99-120 (1969).

21

