
/--

.;.-.‘,,’ <’

I

1. .

..*tr EFFIC'IENTALGORITHMS FOR GRAPHMANIPULATION

BY

JOHNHOPCROFT

ROBERTTARJAN

STAN-CS-71-207

MARCH, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Efficient Algorithms for Graph Manipulation

a.

John Hopcroft

Robert Tarjan

Stanford University, Stanford, California

Abstract: Efficient algorithms are presented for partitioning a graph

into connected components, biconnected components and simple paths.
--.

The algorithm for partitioning of a graph into simple paths is

iterative and each iteration produces a new path between two

vertices already on paths. (The start vertex can be specified

dynamically.) If V is the number of vertices and E is the number

of edges each algorithm requires time and space proportional-to

max(V,E) when executed on a randam access computer.

This research was supported by the Hertz Foundation and by the Office
of Naval Research under grant number N-00014-67-A-0112-005'7 NR 044-402.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

EFFICIENT ALGORITHMS FOR GRAPH MANIIULATION

John Hopcroft

Robert Tarjan

Stanford University, Stanford, California

Graphs arise in many different contexts where it is necessary to represent interrelations between data

elements. Consequently algorithms are being developed to manipulate graphs and test them for various

properties. Certain basic tasks are common to many of these algorithms. For example, in order to test a

graph for planarity, one first decomposes the graph-into biconnected components and tests each component

separately. If one is using an algorithm [4] with asymptotic growth of V log V to test for planarity, it

is imperative that one use an algorithm for partitioning the graph whose asymptotic growth is linear with the

number of edges rather than quadratic in the number of vertices. In fact, representing a graph by a connection

matrix in the above case would result in spending more time in constructing the matrix than in testing the graph

for planarity if it were represented by a list of edges. It is with this in mind that we present a structure

for representing graphs in a computer and several algorithms for simple operations on the graph. These include

dividing a graph into connected components, dividing a graph into biconnected components, and partitioning a

graph into simple paths. The algorithm for division into connected components is well-known [6]. The other

two algorithms are original. For a graph with V vertices and E edges, each algorithm requires time and

space proportionalto msx(V,E) .

Standard graph terminology will be used throughout this discussion. See for instance [2]. We assume

that the gra@ is init$ally given as a list of pairs of vertices, each pair representing an edge of the graph.

The order of the vertices is unimportant; that is, the graph is unordered. Labels may be attached to some or

all of the vertices and edges. '

Our model is that of a random-access computer with standard operations; accessing a number in storage

requires unit time. We allow storage of numbers no larger than k max(V,E) where k is some constant. (If

the labels are large data items, we will assume that they are numbered with small integer codes and referred

to by their codes; there are no more than k max(V,E) labels.) It is easy to see and may be proved rigorously

that most interesting graph procedures require time at least proportionalto E when implemented on any

reasonable model of a computer, if the input is a list of edges. This follows from the fact that each edge

must be examined once.

It is very important to have an appropriate computer representation for graphs. Many researchers have

described algorithms which use the matrix representation of a graph [l]. The time and space bounds for such

algorithms generally are at least $ [3] which is not as small as possible if E is small. (In planar

graphs for instance, E _< YJ-6 .) We use a list structure representation of a graph. For each vertex, a

list of vertices to which it is adjacent is made. Note that two entries occur for each edge, one for

each of its end points. A cross-link between these two entries is often useful. Note also that a directed

graph may be represented in this fashion; if vertex v2 is on the list of vertices adjacent to vl , then

(59 vg) is a directed edge of the graph. Vertex v1 is called the tail, and vertex v2 is called the head

of the edge.
.

A directed representation of an undirected graph is a representation of this form in which each edge

appears only once; the edgespare directed according to some criterion such as the direction in which they are

transversed during a search. Same version of this structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the notion of search, moving from vertex to

adjacent vertex in the graph in such a way that all the edges are covered. In particular depth-first search

is the basis of all the algorithms presented here. In this pattern of search, each time an edge to a new

vertex is discovered, the search is continued from the new vertex and is not renewed at the old vertex until

all edges from the new vertex are exhausted. The search process provides an orientation for each edge, in

addition to generating information used in the particular algorithms.

Detailed Description of the Algorithms

Algorithm for Finding the Connected Components of a Graph

This algorithm finds the connected components of a graph by performing depth-first search on each \

connected component. Each new vertex reached is marked. When no more vertices can be reached along edges

from marked vertices, a connected component has been found. An unmarked vertex is then selected, and the

process is repeated until the entire graph is explored. a.
The details of the algorithm appear in the flowchart (Figure 1). Since the algorithm is well-known, and

since it forms a part of the algorithm for finding biconnected components, we omit proofs of its correctness

and time bound. These proofs may be found as part of the proofs for the hiconnected components algorithm. The

algorithm requires space proportionalto max(V,E) and time proportional to max(V,E) where V is the number

of vertices and E is the number of edges of the graph.

Figure 1: Flowchart for Connected Components Algorithm

Empty stack of points. Number

startpoint and put it on stack.

c
No

Is there an edge out of top point on stack?

I Yes

Delete edge fram graph and add

it to current connected component.

Is head of edge a new point?

Yes

I Add new point to stack of points and number it. I

Is there only one point in stack?
No
--j Remove top point from stack.

Yes

Is there an unnumbered point?

I

No

I Yes

Let it be the new startpoint.

Algorithm for Finding the Biconnected Components of a Graph-

This algorithm breaks a graph into its biconnected ccmponents by performing a depth-first search along

the edges of the graph. Each new point reached is placed on a stack, and for each point a record is kept of

the lowest point on the stack to which it is connected by a path of unstacked points. When a new point

cannot be reached from the top of the stack, the top point is deleted, and the search is continued from the

next point on the stack. If the top point does not connect to a point lower than the second point on the

stack, then this second point is an articulation point of the graph. All edges examined during the search

are placed on another stack, so that when an articulation point is found the edges of the corresponding-.
biconnected component may be retrieved and placed in an output array.

When the stack is exhausted, a complete search of a connected component has been performed. If the graph

is connected, the process is complete. Otherwise, an unreached node is selected as a new starting point

and the process repeated until all of the graph has been examined. Isolated points are not listed as

biconnected components, since they have no adjacent edges. They are merely skipped. The details of the

algorithm are given in the flowchart (Figure 2). Note that this flowchart gives a non-

deterministic algorithm, since any new edge may be selected in block A. The actual program is deterministic;

the choice of an edge depends on the particular representation of the graph.

We will prove that the non-deterministic algorithm terminates on all simple graphs without loops, and

we also derive a bound on the execution time. We will then prove the correctness of the algorithm, by

induction on the number of edges in the graph. Note that the algorithm requires storage space proportional

to max(V,E) , where V is the number of vertices and E is the number of edges of the graph.

Let us consider applying the algorithm to a graph. Referring to the flowchart, every passage through

the YES branch of block A causes an edge to be deleted from the graph. Each passage through the NO branch

of block B causes a point to be deleted from the stack. Once a point is deleted from the stack it is never

added to the stack again, since all adjacent edges have been examined. Each edge is deleted from the stack

of edges once in block C. Thus the blocks directly below the YES branch of block A are executed at most E

times, those below the NO branch of block B at most V times, and the total time spent in block C is

proportionalto E . Therefore there is some k such that for all graphs the algorithm takes no more than

k max(V,E) steps. A more explicit time bound may be calculated by referring to the program.

Suppose the graph G contains no edges. By examining the flowchart we see that the algorithm, when

applied to G, will terminate after examining each point once and listing no components. Thus the algorithm

operates correctly in this case. Suppose the algorithm works correctly on all graphs with E-l or fewer

edges. Consider applying the algorithm to a graph G with E edges. Since the stack of points becomes

empty at least once during the operation of the algorithm, and since the YES branch at block D must be taken

when only two points are on the stack, every edge must not only be placed on the stack of edges but must be

removed in block C. Consider the first time block C is reached when the algorithm is applied to graph G.

Suppose not all the edges in the graph are removed from the stack of edges in this execution of block C.

Then p , the second point on the stack, is an articulation point and separates the removed edges from the

other edges in the graph.

Consider only the set of removed edges. If the algorithm is applied to the subgraph Gr of G made up

of'these edges, with p used as the start point, then the steps taken are the same as those taken during the

analysis of the edges of G' when the input is the entire graph. Since G* contains fewer edges than G ,

the algorithm operates correctly on G' . Gt must be biconnected, since otherwise block C is reached

before Gt is completely examined, contrary to our assumption that block C is reached for the first time

only after all edges of Gt are examined. If we delete the set of edges of G* from G, we get another

graph G" with fewer edges than G . The algorithm operates correctly on G" by assumption. The behavior

of the algorithm on G is simply a composite of its behavior on G' and G" ; thus the algorithm must

operate correctly on G.

Now suppose that the first time block C is reached, all the edges of G are removed from the stack of

edges. We wsnt to show that in this case G is biconnected. Suppose that G is not biconnected. Then

choose a biconnected component of G which may be separated by removing some one point. Let the edges making

up this component be subgraph G' of G ; let the remainder of G be G" w The algorithm operates correctly

on G' and on G" by assumption. The behavior of the algorithm on G is a ccxnposite of its behavior on

G' and on G" . But the algorithm reaches block C once while processing G' and at least once while

processing G" . This contradicts the fact that the algorithm only reaches block C once while processing G l

Thus G must be biconnected, and the algorithm operates correctly on G. By induction, the algorithm is

correct for all simple graphs without loops.

Figure 2: Flowchart for Biconnected Components Algorithm . .
Start7

Empty stack of points. Number

startpoint and put it on stack.

1 4’
Is there an edge out of top point on stack?

Yes

r Delete edge from graph. Put on stack of edges. 1

No

I

Is head of edge a new point?

t
Is there only one point in stack? No

,bB
I

I3B
Is there an unnumbered point?

Yes No

V
l

ILet it be the new
.startpoint.

Is LOXPOINT of the top point
equal to the number of the
next point on the stack?

V *I
Set LOWPOINT of the Form a new biconnected
next point equal to camponent by deleting
LOWPCINT of the top edges frcm edge stack
point if it is less. until finding one which

connects to a point below
< the next point on the

stack.

Remove top point
from stack. I

Algorithm for Finding Simple Paths in a Graph

This algorithm may be used to partition a graph into simple paths, such that all the paths exhaust the

edges of the graph. Each iteration of the algorithm produces a new path which contains no vertex twice,

and which connects the chosen startpoint with some other vertex which already occurs in a path. Total

running time is proportionalto the number of edges in the graph. The starting point for each successive

path may be selected arbitrarily. In fact, the initial edge of each successive path may be selected

arbitrarily from the set of unused edges.

The algorithm is highly dependent on the graph b.eing biconnected. (The biconnected components of a

graph are found using the previously described algorithm.) In order to find a new path, the initial edge is

selected and the head of the edge is checked. If this point has never been reached before, a depth-first

search is begun which must end in a path since the graph is biconnected. The search generates a tree-like

structure; specifically, it is a tree with extra edges connecting some nodes with their (not necessarily

immediate) ancestors. (We will visualize the tree drawn so that the root, which is an ancestor of all points,

is at the bottom of the tree.) Enough information is saved from this tree so that if a point in it is reached

when building another path, the path may be completed without any further search.

The flowchart (Figs. 3 and 4) gives the details of the algorithm. It is divided into two parts; one for t

depth-first search process and one for path construction using previously gathered information. We shall

prove the correctness of the algorithm and give a time bound for its operation. To derive the time bound,

we assume that one point is marked old initially, and a different point is selected as the initial startpoint.

The algorithm is then run repeatedly with arbitrary startpoints until all edges are used to form paths.

Let us consider path generation using depth-first search; that is, suppose the algorithm is applied and

that the head of the first edge selected is previously unreached. Referring to the flowchart, we see that

the search process is very similar to that used.in the biconnectivity algorithm. A search tree is generated,

and each edge examined is either part of the tree or connects a point to one of its predecessors in the tree.

LOWPOINT is exactly the same as in the biconnectivity algorithm; it gives the number of the lowest point in

the tree reachable from a given point by continuing out along the tree and taking one edge back toward the

root. The forward edges point along this path, while the backward edges point back along the tree branches.

We have shown in the correctness proof of the biconnectivity algorithm that, if the graph is biconnected,

LOWPOINT of a given point must point to a node which is an ancestor of the immediate predecessor of the given

point. In particular, LOWPOINT of the second point in the search tree must indicate an old point which is not

the startpoint. Therefore the algorithm will find a path containing the initial edge. Note that all points

encountered during the search process must either be old or unreached, since every point reached in a previous

search either has had all its edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been reached previously but is not marked old.

Then the forward and backward pointers, along with the LOWPXCNT values, allow the algorithm to construct a

path without further search. First, if the number of the head of the edge is less than the number of the

startpoint, then following backward pointers will certainly produce a simple path, since the root of a search

tree must be old and each successive point along a backward path has a lower number and thus is distinct from

the other points in the path. If the initial edge is part of a search tree and the startpoint is the

predecessor of the second point, then LOWPOINT of the second point must be less than the number of the

startpoint. Following forward edges until reaching a point numbered lower than the startpoint and then

following backward edges, will produce a simple path. This is true since the forward edges point through

descendants of the tree, with the single exception of the edge whose head is a point below startpoint in the

tree. The last case to consider occurs when the initial edge is not part of a search tree but points from a

node to one of its descendants in a tree. In this case some node in the tree between the startpoint and the

second point of the path must have a lDXPOINT value less than the number of the startpoint. If we follow

backward edges until the first such point is reached, then follow forward edges until a point numbered less

than the startpoint is reached, and finally follow backward edges until an old point is reached, we will

generate a simple path. Note that the first forward edge taken cannot lead to the previous point, because if

5

it did the LC77POINT value at the previous point would be less than the number of startpoint, and the forward

edge from this point would have been chosen instead of the backward edge.

We thus see that each execution of the pathfinding algorithm produces a simple path, assuming that the

algorithm is applied to a biconnected graph with at least one point which is not the first startpoint marked

old initially. Since each edge is examined at most once in the search section of the algorithm, and since

each edge is put into a path once, there is a constant k such that the time required to execute the

algorithm until no edges are unused is less than kE steps, where E is the number of edges in the graph.

(Note that the number of vertices, V , is less than E_. if the graph is biconnected.) Detailed examination

of the program will produce a more exact time bound.

Another algorithm for finding simple paths exists. Lempel, Even, and Cederbaum [5] have described an

algorithm for numbering the vertices of a biconnected graph such that: (i) each number is an integer in

the range 1 to V , where V is the number of vertices on the graph; (ii) vertices 1 and V are

joined by an edge; (iii) for all 1 < i < V , vertex i is joined to at least two vertices, one with a

higher number and one with a lower number. We may use this algorithm to partition a graph into simple paths.

Given a start point and an adjacent end point, number the vertices so that the start point is 1 , the

endpoint is V , and the numbering satisfies the conditions above. Take edge (1,V) as the first path.

Given an arbitrary start point, find sn edge to a higher numbered vertex. Continue to find edges to

successively higher numbered vertices until an old vertex is reached. If no edge to a higher numbered vertex

exists -from the start vertex, select edges to successively lower numbered vertices until an old vertex is

reached.

This algorithm is cle%rly correct and looks conceptionally simpler. However, Lempel, Even, and Cederbaum

present no efficient implementation of their numbering algorithm, and the only efficient way we have found to

implement it requires using the previously described pathfinding algorithm in a more complicated form. Thus

the new algorithm requires time and space proportional to max(V,E) , but the constants of proportionality

.are larger thsn those for the implemented algorithm.

6

Figure 3: Flowchart for Pathfinding Algorithm (I)

No
Is there an unused edge frcxn startpoint?

I
I Yes (No path exists.). .

Put edge in pathstack. Let
point be head of the edge.

Yes Has point been reached previously?

No

i

<

I
Is there an unsearched edge from point?

Set backward edge of
point to edge on path-
stack. Set pastpoint
to tail of edge. If
LOWPOINT of point less
than LOWPOINT of past-
point, modify LOWPOINT
and forward edge of
pastpoint to indicate
edge to point.

[Set point to pastpoint. 1
Delete edge from path-
stack.I6

Is head of edge unreached?

No Yes

Yes NoI I c5Y

I f G 1

I I If number of head of edge is
less than LOWPOINT of point,
modify LOWPOINT and forward I
edge of point to indicate edge.

1

P:/

Figure 4 Flowchart for Pathfinding Algorithm (II)

.

Is number of point less than
number of startpoint?

NC

Is LOTPOINT of point less
than number of startpoint? Yes

+
Put backward edge on
pathstack. Set point
to head of edge.

I

Is point old?
Yes

I
Is point old?

-. I

1Yes
d

4 r-

Y
, t

Put backward edge on pathstack.
Set point to head of edge.

ry
Is point old?

Yes- t!5B

8

Implementation

The algorithms for finding connected components, biconnected components, and simple paths were implemented

in Algol using the Algol W compiler at Stanford University. Auxiliary subroutines were also implemented.

Brief descriptions of the procedures are provided below.

.
.

ADDz(A,B,STACK,PTR) : This procedure adds value A followed by value B to the top of stack STACK and

increments the pointer to the top of the stack (PTR). Stacks are represented as arrays; the top

of the stack is the highest filled location.

NEXTLINK(POINT,VAXlE): This procedure is used to build the structural representation of a graph. It adds

VAUJE to the list of vertices adjacent to POINT. (POINT,VALUE) is an edge (possibly directed)

of the graph.

CONNECT(V,E,EPTR,EDGELIST,COMPONENTS): This procedure, give a graph with V vertices and E edges,

whose edges are listed in EDGELIST, computes the connected components of the graph and places the

edges of the ccmrponents in COMPONEXCS. Each ccxnponent is preceded by an entry containing the

number of edges E' of the component. The edges are oriented for output according to the direction

in which they were searched (head first, tail second).

c

BICONNBCT(V,E,EPTR,EDGELJST,BICOMPQNENTS): This procedure, given a graph with V vertices and E edges,

whose edges are listed in EDGELIST, computes the biconnected components of the graph and places

them in BICOMPONENTS. Each component is preceded by an entry containing the number of edges E"

of the ccmponent. The edges are oriented for output according to the direction in which they were

searched (head first, tail second).

PATHF'INDER(STARTPT,PATRPT,CODEVALUE,PATH): This procedure, given a list structure representation of a

biconnected graph with certain vertices marked as old, constructs a simple path from STARTPOINT

to some old vertex, saving information to be used in constructing succeeding paths. The new

path is stored in array PATH. Calling PATHFINDER repeatedly may be used to partition the graph

into simple paths.

Further ccmments may be found in the program listings, which follow.

PROCEr)URE NFXTLIhKl IivTEGW VALUF PtlNT,VAL);
BEGIN

CCMMENl- ~*~~0$8$8$~*~1*+~)*~~~~***~*~~~*********~****~~**~
* PWCEDURE T O ADC 3IPFCfED E D G E fPOINT,VALl TC
* S T R U C T U R A L RFP8ESENTATIDN O F A G P A P Y .
*
* G L O B A L V A R I A B L E S :
ror hEAD(V+l:: V+2*f 1 ,NEXT(1: :V+Z*El: STRUCTtJF AL
* REPRESENTATICN’OF T H E GRAFW.
* F R E E N E X T : CUPRENT L A S T E N T R Y I N N E X T ARRA?.
~~~tst9~*8S~~~~~ff~*~~~~~~~~*~*~~~~~~~~*$~~~~~~~~~~~**~~~~;
FREENEXT :=FREENEXT+l;
N~Xf(FREFNEXT):=hEXT(PCINT~;
NEXTfPOINTl ==FREENEXT;
HEAC t FRFENEXT  ):=VAL

EIW;

1 0



.
*

PROCEOURE CoNNECT(IhfEGER V A L U E  V,E; I N T E G E R  R E S U L T  C P T R ;
I N T E G E R  A R R A Y  EDGEL~ST,COMpQNENTS(*~~;

B E G I N
COMMENT  44~444~444~44444444S444444~44444444444444444444*444
*
4

4

4
*

4

4

4

4
4
*
*
*

4

4

t
*

P R O C E D U R E  T O  FIND T H E  C O N N E C T E D  C O M P O N E N T S  QF A
G R A P H .

. .

PARAMET ERS :
V,E: IhWT NLWER Of V E R T I C E S  6NO E D G E S  O F  T H E

G R A P H .
EDGELIST(l::2~Ej: I N P U T  L I S T  OF EDGES O F  G R A P H .
COMPONEkTS(1::3*E): O U T P U T  L I S T  flF E O G E S  C F

C O M P O N E N T S  F O U N D . E A C H  C O M P O N E N T  I S  P R E C E D E D  SY
A N  E N T R Y  G I V I N G  T H E  KUMBER  Cf E D G E S  O f  T t - E
C O M P O N E N T .

C P T R :  O U T P U T  PCINTEP T O  L A S T  E N T R Y  I N  C O M P O N E N T S .

G L O B A L  V A R I A B L E S :
HEAD4 t+l ::V+2*E),NEXT(l:=V+2*Ej:  S T R U C T U R A L

REPRESFNTATIOY  O F  T H E  G R A P H  WNDIRECTED, N O
CRCSS-LIhKS  1.

;REFNEXT: L A S T  E N T R Y  Ilt N E X T  A R R A Y .

L C C A L  VbRIA@LES:
NUMBER{  I::V+lj: A R R A Y  F O R  N U M B E R I N G  T H E  V E R T I C E S

D U R I N G  DEPTt-FIRST S E A R C H .
C O D E :  CCRRENT  H I G H E S T  V E R T E X  N U M B E R .
P C I N T :  C U R R E N T  P O I N T  B E I N G  E X A M I N E D  D U R I N G  S E A R C H .
Vt: N E X T  PCINT T O  6E E X A M I N E D  D U R I N G  S E A R C H .
O L D P T R :  P O S I T I O N  T N  C O M P O N E N T S  T O  P L A C E  E  V A L U E  CF

N E X T  CCYPCNEhT.

GLOBbL  PROCECURES:
A D D 2  ,hFXTC?NK.

a RECURSIVE DEpTh-FIRST  S E AR CH  P R OC E DU RE  I s  USED T o
E X A M I N E  CCNhFCTEO  COWChEWS  OF T H E  G R A P H .

*****+********+**$*************************************~**;

I N T E G E R  A R R A Y  hWBER(l=:V+l);
I N T E G E R  CClOE ,PCIhT ,W,CLDPTR;
P R O C E C U R E  CONNECTOW  I N T E G E R  V A L U E  P O I N T ,  OLDPT);

COMMENT  44~~S*4*l4S44SSS~~S~S~44444~44444444444~444~444444
4 R E C U R S I V E  P R O C E D U R E  T O  FfNQ A CONNECTEO  C O M P O N E N T ,
* U S I N G  D E P T H - F I R S T  SELRCH.
*
* P A R A M E T E R S  :
* POIhT:  S T A R T P O I N T  Of S E A R C H .
* O L O P T :  PREVTOUS STARTPOI  FIT.
*
4 G L O B A L  V A R I A B L E S :
* S E E  C O N N E C T  F O R  D E S C R I P T I O N .
*
* G L O B A L  QPQCECURES:
* ADC2 l

*

ll





COplMEfqT  **$$~$***~************~*4**4~*~~*4**4****
+ E A C H  E X E C U T I O N  [3F C O N N E C T O R  S E A R C H E S  A
4 CCNhECTED  CGWGNEkT. A F T E R  E A C H  S E A R C H ,
* FIhC A h  UNNUMREREC V E R T E X  A N D  SEAR.CH A G A I N .
rt R E P E A T  U N T I L  A L L  V E R T I C E S  A R E  I N V E S T I G A T E D .
+f4~SC~S*tS~S*S*S~SS4~4~~~44~~~~4~44~~~~~~~4~~4~~
NUMt3ER~PCfhT~:=CCDE:=1;
0LDPTR:=CPTR:=CPTR+l:
CCNNECTCR(POINT,O);
CCMMfNT  SIS+*tf4~~4~4444SSSI~4444~4444~4~44***44~
4 C O M P U T E  NbMBER O F  E D G E S  O f  C O M P O N E N T .
~S4S~l**S*f*S+t*S***~*4******~*4*4~~**~**~**4**4;
COMPONENTS(OLDPTR) :=1CPTR-OLDPTRjOIV  2 ;
WHTtE  IWMBER  (PCTNT b-=0 D O  POINT:=POINT+L;

END
E N D ;

P R O C E D U R E  BICUNNECT  ( I N T E G E R  V A L U E  VIE; I N T E G E R  RESUtT R P T R ;
fNTEGERx.ARRAY  EDGELIST,f3ICOMPONENTS  W) ;

B E G I N

4

*

4

*

*

*

4

*

*

*

*

*

*

t

f

*

*

*
. 4

*

*

*

*

*

4

*

*

*

*

*

P R O C E D U R E  T O  F I hD T H E  BICONNECTEQ  C O M P O N E N T S  O F  A
G R A P H .

P A R A M E T E R S :
V,E: I N P U T  N U M B E R  O F  VERTICFS A N D  E D G E S  O F  T H E

G R A P H .
EDGELIST(1::2~E~: I N P U T  L I S T  OF E D G E S  OF G R A P H .
BICOpPChENTS  tl::3*E): O U T P U T  L I S T  O F  E D G E S  O F

COMPONEN’S fOUND. EACti C O M P O N E N T  I S  P R E C E D E D  B Y
A N  EhTRY G I V I N G  TFiE hUMRER OF E D G E S  O F  TI-E
C O M P O N E N T .

BPTR: CIUTPUT  P O I N T E R  TO L A S T  E N T R Y  O F  BTCCMPONFNTS.

GLCBAL V A R I A B L E S :
)IEAO(Wl ::V+2*E),NEXT(l::V+2*E~:  S T R U C T U R A L  REPRF-

SENTATIOk O F  T H E  G R A P H  IUNDIRECTED,  N O  CROSS-
L I N K S ) ,

FREEkEXT: C A S T  E N T R Y  I N  N E X T  A R R A Y .

LCCAL VARIAelES:
NUMBER(l::V+14: A R R A Y  F C R  N U M B E R I N G  T H E  V E R T I C E S

D U R I N G  DEPTb-FIRST  S E A R C H .
CGDE: CURREhT h?GHEST  V E R T E X  N U M B E R .
EDGESfACKf  1 :  : 2*E) 2 S T O R A G E  FOR L I S T  O F  E D G E S

E X A M I N E 0  C U R I N G  SEARCM.
E P T R : P O I N T E R  T O  L A S T  E N T R Y  I N  E D G E S T A C K .
P O I N T :  C U R R E N T  P O I N T  8 E I N G  E X A M I N E D  W R I N G  S E A R C H .
v2: N E X T  P C ?  N T  T O  8E E X A M I N E D  D U R I N G  S E A R C H .
NEWLOkPT: LOWPOINT  F C R  BICONNECTED  P A R T  O F  G R A P H

A B O V E  .ANC I N C L U D I N G  V 2 .

13



4 OLDPTR: P O S I T I O N  I N  BICOMPONENTS  T O  P L A C E  E  V A L U E
* O F  N E X T  COMROr\(ENT.
4
* GLOBAL RRGCEGURES:
4 MIN,ACC2,NEXTLIhK.
*
* A  R E C U R S I V E  CFPTb-FIRST  S E A R C H  P R O C E D U R E  I S  LSED TO
4 MVIOE  T H E  GRAPk T H E  LOhEST  P O I N T  R E A C H A B L E  F R O M  T H E
4 C U R R E N T  P O I N T  \nTTHOUT  G O I N G  T H R O U G H  P R E V I O U S L Y
d: S E A Q C H E C  PCIhTS  I S  C A L C U L A T E D .  T H I S  I N F O R M A T I O N
8 A L L O W S  DETFRluIKATI@N  CF THF ARTICULATIGN  P O I N T S  A N D
f CIVISIOh  C F  Tt-E GQAPH.
94~*S*S4~S*4*~*~~4S4~****~~*****~*~~*~****444**4~~4**44*4*~
INTFGEQ  ARR4Y N U M B E R  (I::V+L 1;
I N T E G E R  A R R A Y  EDGESTACKf 1::2*El;
INTEGER CODE, EPTR,PQ?NT  ,V2,NEWLfWPT$DLDPTR  ;
P R O C E D U R E  RTCCNhECTOR1IWEGER  V A L U E  Q E S U C T  POINT,CLDPT,

LOWPO INT 1;
CCYpE=T  *4~~44$444~$~44$$$~$~4~~~$444~4~44~4444444~4**~4*
4 R E C U R S I V E  PROCEOURE T O  S E A R C H  A  C O N N E C T E D  C O M P O N E N T
4 A N D  FIN0 I T S  BICONNECTEC  C Q M P O N E N T S  U S I N G  D E P T H -
* F I R S T  S E A R C H .
I
* P A R A M E T E R S :
4 _pOItiT: STARTPOXNT C F  SFAQCH, U N C H A N G E D  C U R I N G
4 EXECUT I O N  l

4 C;tDPT: P F E V I C U S  S T A R T P O I N T ,  UNCHANGEO  OUR.ING
f E X E C U T I O N .
4 LOW’OINT: O U T P U T  O F  L O W E S T  P O I N T  R E A C H A B L E  ON A
* P A T H  f CUND D U R I N G  S E A R C H  FORbd4RD.
*
4 G L O B A L  VbR IABLES:
4 S E F  BIC@NNECT  F O R  OESCRIPT?ON.
ror

4 GLi-lBPL  PROCECiRES:
4 MINqADC2.
4r
4 E X A M I N E  E A C H  FOGE G U T  C F  PCINT.
**+*4f*t~4*~*84*~949~44**~*~~**4*~*~*****4~**~**~4*4**4*~
biH?LE  NEXTiPCINTbO  C O

BEGIN
CGMMfNT  ~4*$$$*4IS4$~~$$44$~~**~~~*44*4**~~4*4*4*4~~*
4 v2 I S  WEAC  DF T H E  E D G E .  D E L E T E  E D G E  F R O M
4 S T R U C T U R A L  R E P R E S E N T A T I O N .
s~I**~~**4*~*s4s*~~*******4***4*~4*~4***4*~**~*~**44;
VZ:=HEA@tNEXT( PCINT) );
N E X T  (PO !NT 1 :=NEXT(NEXT(POINT));
COYMENT 141~$448$+4*4$$~*$444~*~444~*4*444444*~4**444
4 H A S .  T H E  EWE B E E N  S E A R C H E D  I N  T H E  CTHEP
4 C TRECT I O N ? I F  S O ,  LOOK  FDR A N O T H E R  E D G E .
*~ft*4S***+t*~S**f***~*******~**~**~*~*~**~*******~4;
I F  (NUMf3ERW2l<NUMBER(POINf) )ANDW2-=OLDPTl  T H E N

BEG? h
CO~~Eh;f  S4444~~*SSS**SllS*tt4*~~~*~**4*******4444
t ADC EDGE T O  E D G E S T A C K .
~*8*$~***4**4**~*~$~**********~~*****~***~***4~*;
AOD2(P@INT,V2,EOGESTACK,EQfR);
C()p)rENT  ~+S~S4tS4SSSSSSfSSS~~~~**4*4*~444~4~*~~~~
* H A S  A  N E W  P O I N T  B E E N  F O U N D ?
*S****SS*S***S~*SSSS*****4****~****~**4~*4~*****;

- .

14



IW7;ER( V2)=0  T H E N

CCf+ENT *~SSl*SSSSS*SStflS~S~****~**~*******~
* NEk P O I N T  F O U N D . N U M B E R  I  T.
*SSS**S~**~~*~**SS***~*****~~****~*$*~******;
NUM8ER1 V2) :=CQDE  :=CODE+l;
CcMMEfirT SSSSftSSS*SSSfS+~S~S~~~***~~*~***~~*~
* IhITIATE  A  D E P T H - F I R S T  S E A R C H  F R O M  T H E
* NEh P O I N T .
*$*~**~$~$~~$***~****~****~~~~~~~~~***~*~~~*;
NEkLCWPT:=V+l;
E3ICONNEf,TOR(V2,POINT,NEWLOtdQT~;
C(yME\T  ~~~**SSS*~S*****St~~~*~**~~~*~***~~~~
* M07E T H A T  A L T H O U G H  GLOBAL  VARIARCE V 2
* I S  CHANGEC, I T S  V A L U E  I S  R E S T C R F D  U P O N
* E X I T  F R O M  T H I S  P R O C E D U R E . R E C A L C U L A T E
jr L O W P O I N T .
****tt&+**S~t*SS*S****~~*~*~~~~**~~*~~~*~*~~;
LOWPOINT :=~IN(LOU.POINT,NE:WLDbiPT~;
CCYMENT $8~*Sl+SSSt**Sl*lS~~~~*~~~~~***~~~~~~
* I S  P O I N T  A N  A R T I C U L A T I O N  P O I N T  OF T H E
sr CRAPH?
*Ss*~~&~~*~*~**********~***~~~***~4$~~****~*;
I f  Ir;EWLOWPT>=NUH8ER(POfNT~  T H E N

=. @EGIr\
CCpPEr\(f ~*SSS*S**~S*l~St~~~s*.~~*~~**~**~~
* P O I N T  I S  A N  A R T I C U C A T I C N  P O I N T .
* O U T P U T  E D G E S  O F  C O M P O N E N T  F R O M
t E D G E S T A C K .
S~~SS~~t~S~****S***S****~*~~~~*~*~~**~~~;
OLDPTR:=BPTR:=BPTR+l;
W H I L E  NUMfXR1:EDGESTACK(EPTR-lb 1 >NUMBER

(PGINT)  DG
8EG I N

ADC2(ECGESTACK(EPTR-11,EOGFSTACK
(EPTR) ,6TCOMPONENTS,E!PTR);

E P T R :=EPTR-2
EhC;

COMMENT  I$$ItiSS*)tS$$$SJCI10t~144rftSr0r*Sl)t*SISItS~
* A D D  L A S T  E D G E .
S**SSS*******f****S**~~***~~**~*~*******;
ADD2~PSlINT,V2,BICOMf’ONENTS,Rf’TR1;
EPTR:=EPTR-2;
r,OfMMENJf  ***SSSSSSSSs**~gS*~**~*~~~****4*~
* C O M P U T E  N U M B E R  OF E D G E S  O F
* COMFCNEFsT.
S**S**S*f***SS**SStJ**~***~**~**********;
BICCMPONENTS  (ULDPTR  1 :=(BPTR-OCDPTR  )DIV 2 ;

E N D
END

E L S E
COMMENT  $**tSI)rSl~StrtlSSSSSSltS#ItSSrltStS*rll*SSrC*SSltrlrSlbr$ .
* N E W  P O I N T  N O T  F O U N D . R E C A L C U L A T E  LOWPOINT.
*******~******+I*****************~*~*~*~*~****;
tOWPO1  hf :=MINt  COWPCINT,NUM8ER(V2)  1

END
E N D ; .

COMMENT  f~SS**SS*tt~SSSSSSI****4~**4*4***~**4*4*4*******44~
4 C O N S T R U C T  TkE S T R U C T U R A L  REPRESENT4TION  Of TFE G R A P H .
**********+****S**tf***tS******SSS***#****I****~********t;

15



FREEhEXT:=V;
F G R  I :=L U N T I L  k D C  NEXT(I)  : = O ;
FOR I :=I. U N T I L  E D C

REGIh
CCMMENT  48444t*t4&44~ttt484$444444444444444444444444444
4 EACk ECGF GCCIJRS T W I C E ,  O N C E  f-R E A C H  E N D P O I N T .
4~**~*~*~4*~4****~**~*****~***~***~***~*~*~~***~~*~*~*;

NEXTLINKtEDGELIST(2*I-l),EDGEL  IST(2*I)  1;
1\EXTL?NK~EDGELTST~2*?~~EOGELIST~Z*I-1~ 1

ENC ;
CCppE&T  44~*4$44~4$44444444?.444$44444444444*444444444444~44
4 I N I T I A L I Z E  VAS TABLES F C R  S E A R C H ,
&*****4S****$$*$**$************************************~**;
EPTH:,=Q;
BPTR:=O;
PCThT:=l;

\

v2:=0;
FCP I:= 1 U N T I L  V+l  09 NUYRER(I):=O;
hHT LE PGTNT<=V  Cc:

REG IN
CCHMENT  44444$~48$4844$4444$44444444444444444~444444444
4 E A C H  EXECUTIOq  O f  BICCNNECTOR  S E A R C H E S  A

- 4 CONhECTEC C O M P O N E N T  O F  T H E  G R A P H . A f  T E R  E A C H
* S E A R C H , FIh’U 4 N  UNhUYBfREO V E R T E X  A N G  S E A R C H
16 __,AG A IN l RFPEAT  U N T I L  A L L  VERICES A R E  EXflMINEO.
*********f****S*91**********************~**~**********;
hUMRER(POTN?)  :=CUX:=l;
bEkLOWPT:=V+l;
@?CONNECTQR(PCINT,t2,NEhLOWQT);
WhTLE  NUMBER(POINT)-=Q  DO POINT:=POINT+l

EhO;
E N D ;

P R O C E D U R E  PATHFINDEStINTEGER  V A L U E  R E S U L T  STARTPCINTg
PATHPT,CGDEVALUE; TNTEGER A R R A Y  P A T H ( * )  1;

B E G I N
COMMENT  4444448444444~41SSft444444444~44444~44444444
4 P R O C E C U R E  T O  fIND D I S J O I N T  P A T H S  tt?TH
4 AR8ITRAPY  S T A R T I N G  P O I N T S  I N  A  B I C O N N E C T E D
4 GRAPH. THF PCIhTS O F  E A C H  P A T H  A R E  L I S T E D
* I N  A R R A Y  “ P A T H ” . T H E  FDLLQWING  VAP’IA8LES A R E
4 ‘ASSUMFO  G L O B A L :
4 NEXT(l::V+2*E1J4EADIV+l,V+2*E),
4 CIhK(V+lrV+2*E)  CEFlNE  T H E  G R A P H  U S I N G  S I N G L Y
4 L I N K E D  E D G E  LTSTS A N D  A  S E T  O F  C R C S S  R E F E R E N C E
4 PCfWERS.
4 GLD( 1 ::V) ,MARK(V+l,V+Z*E)  INDICATE USED
4 PCTNTS  A N D  E D G E S .
4 FATHCCDE  (1 ::V) fS T H E  C O N S E C U T I V E  N U M B E R I N G
4 CF THE POINTS.
4 L0WPC?NT(1::V),FCRWAR0(I==V)tBACKfl=  =V) G?VE
4 INFORMATTCN  S A V E D  FROlv D E P T H - F I R S T  SEAR0.
4 kOOE(-1:  :V) G I V E S  T H E  N E X T  U N S E A R C H E D  E D G E
4 FRCM EACh P O I N T .
***********S**S*t**********************************~



KEXTMARK:

1
I N T E G E R  PCIhTq P A S T E O G E ,  E D G E ,  P A S T P O I N T ,  V 2 ;
PATH{ l):= STAR TPOINT;
COMMENT  $44$44$$~44$$44844444444444444444444*4444444
4 C H O O S E  IhITTAL E D G E .
*****d~*SSSSS*S*S**********************************;
E D G E : = NEXT(STARPPOINT);
W H I L E  (EWE-=OlAND  MARK(EDGE1  D O  EDGE:=NEXT(EDGE);
I F  EDU=O  Tl-EN

B E G I N
COMMENT  ~4$4444444$$144141$4444~44444444444*44
* KG U N U S E D  E C G E  A N D  T H U S  NJ P A T H  E X I S T S .
***+*************t***************************;
NEXT{ S T A R T P O I N T )  :=O;
P4THPTz=  0 ;
GO Tt3 DWE

E N C ;
kEXT(SfAPTPCINT~:=NEXrO;
PATH{ 2) := E D G E ;
POINT:= PEAC(ECUl;
P A T H P T  :=L;
I F  OLC(POINT1  7hEN G O  T O  P A T H F O U N D ;
If FOF~ARC(FCIhT~~=O  T H E N

B E G I N
COMMENT  $4$444$8SSSS44tt4S44444444444444444444
* U S E  PREVICUSLY  F O U N D  I N F O R M A T I C N  T O
* BUfLD A  P A T H . FORWARU,BACKrLOWPCIkT
4 D E S C R I B E  T R E E S  I N V E S T I G A T E D  U S I N G  D E P T H -
* F I R S T  S E A R C H .
S*SSSSS*SS**S**S*****************************;
I F  PATHCCDE(STARTPOINT))PATHCCDE(PCINT~  T H E N

G O  TO N E X T B A C K ;
I F  PA7tCQDE~STARTPOINT~)COWPOINT(POINT~POINT~

THEh
B E G I N

hEXTFC?RbiARD: E D G E : = FCRWARQ(POINT1;
PCI&T:=HEIDtEDGE);
P4THPT:= PATHPT+l;
PATH(PATHPT):=  E D G E ;
I F  CLD(PGINT1 T H E N  G O  T O  P A T H F C U N D ;
I F  PATHCODE~STARTPClINT~>PATHCODEO

T H E N  G C  T O  N E X T B A C K ;
G O  T O  N E X T F O R W A R D

E N C ;
E D G E :  = BACK(POINT! ;
POINT:= kEACI ECGE t:
PATHPT:=PATHPT+l;
P4fH(PATHPT):= E D G E :
I F  CLC(PCINT)  T H E N  G O  T O  PATHFOUNO  E L S E  G O  TO

NEXTMARK ;
IUEXT@ACK: EDGE:=BACK(POINT) ;

PCIfkT:=kEAC(ECGE);
P4THPT:=PATHP-1;
P4THt PATt-PT  l:=EDGE;
I F  CLD( PCTNT) T H E N  G O  T O  P A T H F O U N D  E L S E

G O  T O  NEXTSACK
E N D :

COMMENT 44444t*4S44~444~444**4*44444~44444~4444444~4
11 tS-E DEPTH-FTRST  SEARCb  T O  F I N D  A  P A T H . SAVE .
* fNFURMATION  D E S C R I B I N G  S E A R C H  T R E E .
**SS*S+*SSSS**S*S*t********************************;

17



h EXT PO I N T : CODEVALUE== CffCEVALUE+l;
f’ATHCCCE(  P C  TNT 1: = CQf?EVACUE;

NEXTEDGE: E D G E : = NCDEW0Ih-U;
WHILE ECCE=O CQ

B E G I N ’
BACK(POI~T) :=LINKtPATHWATHPT));
F1STPOlNT:= H E  AD{ B A C K  ( PU INT 1) ;
IF (FCRk6RD(PASTPCIhT)=0)  O R  tLf)WPOINT

(P~I~T)<~~WPOfNT(PASTP~INT~  1 T H E N
P,ECIN

FCKhARD(:PASTPO?NTT):=  PATHWATHPT);
LCWP9INTIPASTPOINT  l:=CDWPQTNT(  POINT)

EN!?;
POINT:= P A S T P O I N T ;  ’
CATHf?:= FATHPT-1;
E D G E : = NCDElPOINTl

ENC;
NUDEtPOTNT)  := hEXT(EDGE1;
vz:= t-EAC( EDGE 1;
I F  PATHCClOF  I V 2  I=0 Tt-EN

BEGIN
POINT:= V2;

-h. FATHFT:=  PATHPT+l;
PATH(  PAThPT)  :=EDGE;
GO T O  NEXTPClNT

E N D :
I F  OLC(V2)  b&D (V2--=STARTPOINTb  T H E N

BEGTN
PAJHPT:=  PATHPT+l;
PATH(  FATtPT  b:= E D G E ;
GG TC PATWCUND

E N D ;
\

IF(FORkAR~(~ClhT)=O)aR(PAfHCDOE(V2~~LDW~DTNT
(PCINT) 1 THEY

HEG IN
FCPkARD (FC MT) := E D G E ;
LD~POINT~PQINT)  :=PATHCODE(  V2)

E N D ;
G O  Trl !vEXTEDGF;
COMMENT  9$~8~$~t~~~~~~~8~~~14~~~~~~~~~~*~~~~~**~~~~~
* P4fh FCUhG. CCWERT  S T A C K  O F  E D G E S  TC LIST
t G F  P O I N T S  IN P A T H . MAqK  ALL. E D G E S  A N C
* FCIhTS I& P&T’.
~~Sfl*~dt*~~l~*f~~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

FATHFQC;ND: FOR  I : = 2 UPJT I L  P A T H P T  G O
B E G I N

EIIG E: = PATH(I);
PCIlQT:= t-EACtECCE);
FCtWARD( POINT) := BACKtPOINT) :=O;
CLCWCINT):= T R U E ;
I@ARK(LfhK(EDCE~l:=~ARK~EtDGE~:=TRUE;
PATH{ I) := POINT

E N D ;
DCf’iE  : E N D ;

18



References

I21

121

[31

WI

I51

161

Fisher, G. J., "Cconputer recognition and extraction of planar graphs

fram the incidence matrix," IEEE Transactions in Circuit Theory CT-13,

..June 1966, pp. 154-163.

Harary, F., Graph Theory, Addison-Wesley Publishing Carsparty,

Reading, Massachusetts, 1969.

Holt, R., and E. Reingold, "On the time required to detect cycles

and connectivity in directed graphs," Computer Science TR 70-33, J

Cornell University, Ithaca, New York.

Hopcroft, J., and R. Tarjan, "Planarity testing in v log v steps,

extended abstract," Stanford University CS 201, March 1971.
-=.

Lempel, A., S. Even, and I. Cederbaum, "An algorithm for planarity

testing of graphs," Theory of Graphs: International Symposium:

Rome, July 1966. P. Rosenstiehl, Ed., New York: Gordon and Breach,

1967, pp. 215-232.

Shirey, R. W., "Implementation and analysis of efficient graph

planarity testing, " Ph.D. dissertation, Computer Science Department,

University of Wisconsin, June 1969.

19




