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EFFICIENT ALGORITHMS FOR GRAPH MANIIULATION

John Hopcroft

Robert Tarjan

Stanford University, Stanford,  California

Graphs  arise in many different contexts where it is necessary to represent  interrelations between data

elements. Consequently algorithms  are being developed to manipulate graphs and test them for various

properties. Certain basic tasks are common to many of these algorithms. For example, in order to test a

graph for planarity, one first decomposes the graph-into biconnected  components and tests each component

separately. If one is using an algorithm [4] with asymptotic growth of V log V to test for planarity,  it

is imperative  that one use an algorithm for partitioning the graph whose asymptotic  growth is linear with the

number of edges rather than quadratic  in the number of vertices. In fact, representing a graph by a connection

matrix in the above case would result in spending  more time in constructing the matrix than in testing the graph

for planarity if it were represented by a list of edges. It is with this in mind that we present  a structure

for representing graphs in a computer and several algorithms for simple operations on the graph. These include

dividing a graph into connected components, dividing a graph into biconnected  components,  and partitioning a

graph into simple paths. The algorithm for division into connected components is well-known  [6]. The other

two algorithms are original.  For a graph with V vertices and E edges, each algorithm requires  time and

space proportionalto  msx(V,E)  .

Standard graph terminology  will be used throughout this discussion.  See for instance [2]. We assume

that the gra@ is init$ally given as a list of pairs of vertices, each pair representing an edge of the graph.

The order of the vertices is unimportant; that is, the graph is unordered. Labels may be attached to some or

all of the vertices  and edges. '

Our model is that of a random-access computer with standard operations; accessing a number in storage

requires  unit time. We allow storage  of numbers no larger than k max(V,E)  where k is some constant. (If

the labels are large data items, we will assume  that they are numbered with small integer  codes and referred

to by their codes; there are no more than k max(V,E)  labels.) It is easy to see and may be proved rigorously

that most interesting graph procedures require time at least proportionalto E when implemented on any

reasonable model of a computer, if the input is a list of edges. This follows  from the fact that each edge

must be examined  once.

It is very important  to have an appropriate computer representation  for graphs. Many researchers have

described algorithms  which use the matrix representation of a graph [l]. The time and space bounds for such

algorithms generally are at least $ [3] which is not as small as possible if E is small. (In planar

graphs for instance, E _< YJ-6 .) We use a list structure representation  of a graph. For each vertex, a

list of vertices  to which it is adjacent  is made. Note that two entries  occur for each edge, one for

each of its end points. A cross-link between these two entries is often useful.  Note also that a directed

graph may be represented in this fashion; if vertex v2 is on the list of vertices adjacent to vl , then

(59 vg) is a directed edge of the graph. Vertex v1 is called the tail, and vertex v2 is called the head

of the edge.
.

A directed representation of an undirected graph is a representation of this form in which each edge

appears  only once; the edgespare  directed according to some criterion such as the direction in which they are

transversed during  a search. Same version of this structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the notion of search,  moving from vertex  to

adjacent  vertex  in the graph in such a way that all the edges are covered. In particular depth-first search

is the basis of all the algorithms  presented here. In this pattern of search, each time an edge to a new

vertex is discovered,  the search  is continued from the new vertex and is not renewed at the old vertex until

all edges from the new vertex are exhausted. The search process provides an orientation for each edge, in

addition to generating information used in the particular algorithms.



Detailed Description of the Algorithms

Algorithm for Finding the Connected Components of a Graph

This algorithm finds the connected components of a graph by performing depth-first search on each \

connected component. Each new vertex  reached is marked. When no more vertices can be reached along edges

from marked vertices, a connected component has been found. An unmarked vertex is then selected, and the

process is repeated until the entire graph is explored. a.
The details of the algorithm appear in the flowchart (Figure 1). Since the algorithm is well-known, and

since it forms a part of the algorithm for finding biconnected  components, we omit proofs of its correctness

and time bound. These proofs may be found as part of the proofs for the hiconnected  components algorithm.  The

algorithm requires  space proportionalto max(V,E)  and time proportional  to max(V,E)  where V is the number

of vertices and E is the number of edges of the graph.

Figure 1: Flowchart for Connected Components Algorithm
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Algorithm for Finding the Biconnected Components of a Graph-

This algorithm breaks a graph into its biconnected  ccmponents by performing a depth-first search along

the edges of the graph. Each new point reached is placed on a stack, and for each point a record is kept of

the lowest point on the stack to which it is connected by a path of unstacked points.  When a new point

cannot be reached from the top of the stack, the top point is deleted, and the search is continued from the

next point on the stack. If the top point does not connect to a point lower than the second  point on the

stack,  then this second point is an articulation point of the graph. All edges examined during the search

are placed on another stack, so that when an articulation point is found the edges of the corresponding-.
biconnected component  may be retrieved and placed in an output array.

When the stack is exhausted,  a complete search of a connected component has been performed. If the graph

is connected,  the process is complete. Otherwise,  an unreached node is selected as a new starting  point

and the process  repeated until all of the graph has been examined. Isolated points are not listed as

biconnected  components, since they have no adjacent  edges. They are merely skipped. The details  of the

algorithm are given in the flowchart  (Figure 2). Note that this flowchart  gives a non-

deterministic algorithm, since any new edge may be selected in block A. The actual program is deterministic;

the choice of an edge depends  on the particular representation of the graph.

We will prove that the non-deterministic algorithm terminates on all simple graphs  without loops, and

we also derive a bound on the execution  time. We will then prove the correctness of the algorithm, by

induction on the number of edges in the graph. Note that the algorithm requires storage  space proportional

to max(V,E)  , where V is the number of vertices and E is the number of edges of the graph.

Let us consider applying the algorithm to a graph. Referring to the flowchart,  every passage through

the YES branch of block A causes an edge to be deleted from the graph. Each passage through the NO branch

of block B causes a point to be deleted  from the stack. Once a point is deleted from the stack it is never

added to the stack again, since all adjacent  edges have been examined. Each edge is deleted from the stack

of edges once in block C. Thus the blocks  directly below the YES branch of block A are executed at most E

times, those below the NO branch of block B at most V times, and the total time spent in block C is

proportionalto E . Therefore there is some k such that for all graphs the algorithm takes no more than

k max(V,E)  steps. A more explicit time bound may be calculated by referring to the program.

Suppose  the graph G contains  no edges. By examining the flowchart  we see that the algorithm,  when

applied  to G, will terminate after examining each point once and listing no components. Thus the algorithm

operates correctly in this case. Suppose the algorithm works correctly on all graphs with E-l or fewer

edges. Consider applying the algorithm to a graph G with E edges. Since the stack of points becomes

empty at least once during  the operation of the algorithm, and since the YES branch  at block D must be taken

when only two points are on the stack, every edge must not only be placed on the stack of edges but must be

removed in block C. Consider the first time block C is reached when the algorithm is applied to graph G.

Suppose  not all the edges in the graph are removed from the stack of edges in this execution of block C.

Then p , the second point on the stack, is an articulation point and separates  the removed edges from the

other edges in the graph.

Consider only the set of removed edges. If the algorithm is applied to the subgraph Gr of G made up

of'these edges,  with p used as the start point, then the steps taken are the same as those taken during the

analysis of the edges of G' when the input is the entire graph. Since G* contains fewer edges than G ,

the algorithm operates  correctly on G' . Gt must be biconnected, since otherwise block C is reached

before Gt is completely examined, contrary to our assumption that block C is reached for the first time

only after all edges of Gt are examined. If we delete the set of edges of G* from G, we get another

graph G" with fewer edges than G . The algorithm operates correctly on G" by assumption. The behavior

of the algorithm on G is simply a composite of its behavior on G' and G" ; thus the algorithm must

operate correctly on G.

Now suppose  that the first time block C is reached, all the edges of G are removed from the stack of

edges. We wsnt to show that in this case G is biconnected. Suppose that G is not biconnected. Then

choose a biconnected  component of G which may be separated by removing some one point. Let the edges making

up this component be subgraph G' of G ; let the remainder of G be G" w The algorithm operates  correctly



on G' and on G" by assumption. The behavior of the algorithm on G is a ccxnposite  of its behavior on

G' and on G" . But the algorithm reaches block C once while processing G' and at least once while

processing  G" . This contradicts the fact that the algorithm only reaches block C once while processing  G l

Thus G must be biconnected, and the algorithm operates correctly on G. By induction,  the algorithm is

correct  for all simple  graphs without loops.

Figure 2: Flowchart for Biconnected  Components Algorithm . .
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Algorithm for Finding Simple  Paths in a Graph

This algorithm may be used to partition a graph into simple paths, such that all the paths exhaust the

edges of the graph. Each iteration  of the algorithm produces a new path which contains  no vertex  twice,

and which connects the chosen startpoint with some other vertex which already occurs in a path. Total

running time is proportionalto  the number of edges in the graph. The starting point for each successive

path may be selected  arbitrarily. In fact, the initial edge of each successive path may be selected

arbitrarily from the set of unused edges.

The algorithm is highly dependent on the graph b.eing biconnected. (The biconnected components of a

graph are found using the previously described algorithm.) In order to find a new path, the initial edge is

selected  and the head of the edge is checked. If this point has never been reached before, a depth-first

search is begun which must end in a path since the graph is biconnected. The search generates a tree-like

structure;  specifically,  it is a tree with extra edges connecting some nodes with their (not necessarily

immediate)  ancestors. (We will visualize the tree drawn so that the root, which is an ancestor of all points,

is at the bottom of the tree.) Enough information is saved from this tree so that if a point in it is reached

when building another path, the path may be completed without any further  search.

The flowchart (Figs.  3 and 4) gives the details of the algorithm. It is divided into two parts; one for t

depth-first search process and one for path construction using previously  gathered information. We shall

prove the correctness of the algorithm and give a time bound for its operation.  To derive the time bound,

we assume that one point is marked old initially,  and a different point is selected as the initial startpoint.

The algorithm is then run repeatedly with arbitrary startpoints  until all edges are used to form paths.

Let us consider path generation using depth-first search; that is, suppose  the algorithm is applied and

that the head of the first edge selected is previously  unreached. Referring  to the flowchart,  we see that

the search process is very similar  to that used.in the biconnectivity  algorithm. A search tree is generated,

and each edge examined is either part of the tree or connects  a point to one of its predecessors in the tree.

LOWPOINT is exactly the same as in the biconnectivity  algorithm; it gives the number of the lowest point in

the tree reachable  from a given point by continuing out along the tree and taking one edge back toward the

root. The forward edges point along this path, while the backward edges point back along the tree branches.

We have shown in the correctness proof of the biconnectivity  algorithm that, if the graph is biconnected,

LOWPOINT  of a given point must point to a node which is an ancestor of the immediate  predecessor of the given

point. In particular,  LOWPOINT of the second  point in the search tree must indicate  an old point which is not

the startpoint. Therefore the algorithm will find a path containing the initial edge. Note that all points

encountered during  the search process must either be old or unreached, since every point reached in a previous

search  either has had all its edges examined or has been included in a path.

Let us now suppose  that the head of the first edge has been reached previously but is not marked old.

Then the forward  and backward pointers, along with the LOWPXCNT  values, allow the algorithm to construct a

path without further  search. First,  if the number  of the head of the edge is less than the number of the

startpoint,  then following backward pointers will certainly produce a simple path, since the root of a search

tree must be old and each successive  point along a backward path has a lower number and thus is distinct  from

the other points  in the path. If the initial edge is part of a search tree and the startpoint  is the

predecessor of the second point, then LOWPOINT of the second point must be less than the number  of the

startpoint. Following forward  edges until reaching a point numbered lower than the startpoint  and then

following backward edges, will produce a simple path. This is true since the forward edges point through

descendants of the tree, with the single exception of the edge whose head is a point below startpoint  in the

tree. The last case to consider occurs when the initial edge is not part of a search tree but points  from a

node to one of its descendants  in a tree. In this case some node in the tree between the startpoint  and the

second  point of the path must have a lDXPOINT  value less than the number of the startpoint. If we follow

backward edges until the first such point is reached, then follow forward edges until a point numbered less

than the startpoint  is reached, and finally follow  backward edges until an old point is reached, we will

generate a simple path. Note that the first forward edge taken cannot lead to the previous point, because if
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it did the LC77POINT value at the previous point would be less than the number of startpoint,  and the forward

edge from this point would have been chosen  instead  of the backward edge.

We thus see that each execution of the pathfinding algorithm produces a simple path, assuming that the

algorithm is applied to a biconnected graph with at least one point which is not the first startpoint  marked

old initially. Since each edge is examined at most once in the search section of the algorithm,  and since

each edge is put into a path once, there is a constant k such that the time required to execute the

algorithm until no edges are unused is less than kE steps,  where E is the number of edges in the graph.

(Note that the number of vertices,  V , is less than E_. if the graph is biconnected.) Detailed  examination

of the program will produce a more exact time bound.

Another algorithm for finding simple paths exists. Lempel, Even, and Cederbaum  [5] have described  an

algorithm for numbering the vertices  of a biconnected graph such that: (i) each number is an integer in

the range 1 to V , where V is the number of vertices on the graph; (ii) vertices 1 and V are

joined by an edge; (iii) for all 1 < i < V , vertex i is joined to at least two vertices, one with a

higher number  and one with a lower number. We may use this algorithm to partition a graph into simple paths.

Given a start point and an adjacent  end point, number the vertices so that the start point is 1 , the

endpoint  is V , and the numbering satisfies  the conditions above. Take edge (1,V) as the first path.

Given an arbitrary start point, find sn edge to a higher numbered vertex. Continue to find edges to

successively higher numbered vertices until an old vertex is reached. If no edge to a higher numbered vertex

exists -from the start vertex, select edges to successively lower numbered vertices until an old vertex is

reached.

This algorithm is cle%rly correct  and looks conceptionally  simpler. However,  Lempel, Even, and Cederbaum

present  no efficient  implementation of their numbering algorithm,  and the only efficient  way we have found to

implement  it requires  using the previously described pathfinding algorithm in a more complicated form. Thus

the new algorithm requires time and space proportional  to max(V,E) , but the constants of proportionality

.are larger thsn those for the implemented algorithm.
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Figure 3: Flowchart for Pathfinding  Algorithm (I)
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Figure 4 Flowchart for Pathfinding  Algorithm (II)
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Implementation

The algorithms for finding connected components,  biconnected  components, and simple paths were implemented

in Algol using the Algol W compiler at Stanford University. Auxiliary subroutines were also implemented.

Brief descriptions of the procedures are provided below.

.
.

ADDz(A,B,STACK,PTR) : This procedure adds value A followed by value B to the top of stack STACK and

increments  the pointer to the top of the stack (PTR). Stacks are represented as arrays; the top

of the stack is the highest  filled location.

NEXTLINK(POINT,VAXlE): This procedure is used to build the structural representation of a graph. It adds

VAUJE to the list of vertices  adjacent  to POINT. (POINT,VALUE)  is an edge (possibly directed)

of the graph.

CONNECT(V,E,EPTR,EDGELIST,COMPONENTS): This procedure,  give a graph with V vertices and E edges,

whose edges are listed in EDGELIST, computes the connected components of the graph and places the

edges of the ccmrponents in COMPONEXCS. Each ccxnponent is preceded by an entry containing the

number of edges E' of the component. The edges are oriented for output according to the direction

in which they were searched (head first,  tail second).

c

BICONNBCT(V,E,EPTR,EDGELJST,BICOMPQNENTS): This procedure,  given a graph with V vertices and E edges,

whose edges are listed in EDGELIST, computes the biconnected components of the graph and places

them in BICOMPONENTS. Each component is preceded  by an entry containing the number of edges E"

of the ccmponent. The edges are oriented for output according  to the direction in which they were

searched (head first,  tail second).

PATHF'INDER(STARTPT,PATRPT,CODEVALUE,PATH): This procedure,  given a list structure representation  of a

biconnected graph with certain vertices  marked as old, constructs a simple path from STARTPOINT

to some old vertex, saving information to be used in constructing succeeding paths. The new

path is stored  in array PATH. Calling PATHFINDER repeatedly may be used to partition the graph

into simple paths.

Further ccmments  may be found in the program listings, which follow.



PROCEr)URE NFXTLIhKl  IivTEGW  VALUF  PtlNT,VAL);
BEGIN

CCMMENl-  ~*~~0$8$8$~*~1*+~)*~~~~***~*~~~*********~****~~**~
* PWCEDURE T O  ADC 3IPFCfED E D G E  fPOINT,VALl TC
* S T R U C T U R A L  RFP8ESENTATIDN  O F  A  G P A P Y .
*
* G L O B A L  V A R I A B L E S :
ror hEAD(V+l:: V+2*f 1 ,NEXT( 1: :V+Z*El: STRUCTtJF  AL
* REPRESENTATICN’OF  T H E  GRAFW.
* F R E E N E X T :  CUPRENT L A S T  E N T R Y  I N  N E X T  ARRA?.
~~~tst9~*8S~~~~~ff~*~~~~~~~~*~*~~~~~~~~*$~~~~~~~~~~~**~~~~;
FREENEXT :=FREENEXT+l;
N~Xf(FREFNEXT):=hEXT(PCINT~;
NEXTfPOINTl ==FREENEXT;
HEAC t FRFENEXT  ):=VAL

EIW;

1 0



.
*

PROCEOURE CoNNECT(IhfEGER V A L U E  V,E; I N T E G E R  R E S U L T  C P T R ;
I N T E G E R  A R R A Y  EDGEL~ST,COMpQNENTS(*~~;

B E G I N
COMMENT  44~444~444~44444444S444444~44444444444444444444*444
*
4

4

4
*

4

4

4

4
4
*
*
*

4

4

t
*

P R O C E D U R E  T O  FIND T H E  C O N N E C T E D  C O M P O N E N T S  QF A
G R A P H .

. .

PARAMET ERS :
V,E: IhWT NLWER Of V E R T I C E S  6NO E D G E S  O F  T H E

G R A P H .
EDGELIST(l::2~Ej: I N P U T  L I S T  OF EDGES O F  G R A P H .
COMPONEkTS(1::3*E): O U T P U T  L I S T  flF E O G E S  C F

C O M P O N E N T S  F O U N D . E A C H  C O M P O N E N T  I S  P R E C E D E D  SY
A N  E N T R Y  G I V I N G  T H E  KUMBER  Cf E D G E S  O f  T t - E
C O M P O N E N T .

C P T R :  O U T P U T  PCINTEP T O  L A S T  E N T R Y  I N  C O M P O N E N T S .

G L O B A L  V A R I A B L E S :
HEAD4 t+l ::V+2*E),NEXT(l:=V+2*Ej:  S T R U C T U R A L

REPRESFNTATIOY  O F  T H E  G R A P H  WNDIRECTED, N O
CRCSS-LIhKS  1.

;REFNEXT: L A S T  E N T R Y  Ilt N E X T  A R R A Y .

L C C A L  VbRIA@LES:
NUMBER{  I::V+lj: A R R A Y  F O R  N U M B E R I N G  T H E  V E R T I C E S

D U R I N G  DEPTt-FIRST S E A R C H .
C O D E :  CCRRENT  H I G H E S T  V E R T E X  N U M B E R .
P C I N T :  C U R R E N T  P O I N T  B E I N G  E X A M I N E D  D U R I N G  S E A R C H .
Vt: N E X T  PCINT T O  6E E X A M I N E D  D U R I N G  S E A R C H .
O L D P T R :  P O S I T I O N  T N  C O M P O N E N T S  T O  P L A C E  E  V A L U E  CF

N E X T  CCYPCNEhT.

GLOBbL  PROCECURES:
A D D 2  ,hFXTC?NK.

a RECURSIVE DEpTh-FIRST  S E AR CH  P R OC E DU RE  I s  USED T o
E X A M I N E  CCNhFCTEO  COWChEWS  OF T H E  G R A P H .

*****+********+**$*************************************~**;

I N T E G E R  A R R A Y  hWBER(l=:V+l);
I N T E G E R  CClOE ,PCIhT ,W,CLDPTR;
P R O C E C U R E  CONNECTOW  I N T E G E R  V A L U E  P O I N T ,  OLDPT);

COMMENT  44~~S*4*l4S44SSS~~S~S~44444~44444444444~444~444444
4 R E C U R S I V E  P R O C E D U R E  T O  FfNQ A CONNECTEO  C O M P O N E N T ,
* U S I N G  D E P T H - F I R S T  SELRCH.
*
* P A R A M E T E R S  :
* POIhT:  S T A R T P O I N T  Of S E A R C H .
* O L O P T :  PREVTOUS STARTPOI  FIT.
*
4 G L O B A L  V A R I A B L E S :
* S E E  C O N N E C T  F O R  D E S C R I P T I O N .
*
* G L O B A L  QPQCECURES:
* ADC2 l

*

ll





COplMEfqT  **$$~$***~************~*4**4~*~~*4**4****
+ E A C H  E X E C U T I O N  [3F C O N N E C T O R  S E A R C H E S  A
4 CCNhECTED  CGWGNEkT. A F T E R  E A C H  S E A R C H ,
* FIhC A h  UNNUMREREC V E R T E X  A N D  SEAR.CH A G A I N .
rt R E P E A T  U N T I L  A L L  V E R T I C E S  A R E  I N V E S T I G A T E D .
+f4~SC~S*tS~S*S*S~SS4~4~~~44~~~~4~44~~~~~~~4~~4~~
NUMt3ER~PCfhT~:=CCDE:=1;
0LDPTR:=CPTR:=CPTR+l:
CCNNECTCR(POINT,O);
CCMMfNT  SIS+*tf4~~4~4444SSSI~4444~4444~4~44***44~
4 C O M P U T E  NbMBER O F  E D G E S  O f  C O M P O N E N T .
~S4S~l**S*f*S+t*S***~*4******~*4*4~~**~**~**4**4;
COMPONENTS(OLDPTR) :=1CPTR-OLDPTRjOIV  2 ;
WHTtE  IWMBER  (PCTNT b-=0 D O  POINT:=POINT+L;

END
E N D ;

P R O C E D U R E  BICUNNECT  ( I N T E G E R  V A L U E  VIE; I N T E G E R  RESUtT R P T R ;
fNTEGERx.ARRAY  EDGELIST,f3ICOMPONENTS  W) ;

B E G I N

4

*

4

*

*

*

4

*

*

*

*

*

*

t

f

*

*

*
. 4

*

*

*

*

*

4

*

*

*

*

*

P R O C E D U R E  T O  F I hD T H E  BICONNECTEQ  C O M P O N E N T S  O F  A
G R A P H .

P A R A M E T E R S :
V,E: I N P U T  N U M B E R  O F  VERTICFS A N D  E D G E S  O F  T H E

G R A P H .
EDGELIST(1::2~E~: I N P U T  L I S T  OF E D G E S  OF G R A P H .
BICOpPChENTS  tl::3*E): O U T P U T  L I S T  O F  E D G E S  O F

COMPONEN’S fOUND. EACti C O M P O N E N T  I S  P R E C E D E D  B Y
A N  EhTRY G I V I N G  TFiE hUMRER OF E D G E S  O F  TI-E
C O M P O N E N T .

BPTR: CIUTPUT  P O I N T E R  TO L A S T  E N T R Y  O F  BTCCMPONFNTS.

GLCBAL V A R I A B L E S :
)IEAO(Wl ::V+2*E),NEXT(l::V+2*E~:  S T R U C T U R A L  REPRF-

SENTATIOk O F  T H E  G R A P H  IUNDIRECTED,  N O  CROSS-
L I N K S ) ,

FREEkEXT: C A S T  E N T R Y  I N  N E X T  A R R A Y .

LCCAL VARIAelES:
NUMBER(l::V+14: A R R A Y  F C R  N U M B E R I N G  T H E  V E R T I C E S

D U R I N G  DEPTb-FIRST  S E A R C H .
CGDE: CURREhT h?GHEST  V E R T E X  N U M B E R .
EDGESfACKf  1 :  : 2*E) 2 S T O R A G E  FOR L I S T  O F  E D G E S

E X A M I N E 0  C U R I N G  SEARCM.
E P T R : P O I N T E R  T O  L A S T  E N T R Y  I N  E D G E S T A C K .
P O I N T :  C U R R E N T  P O I N T  8 E I N G  E X A M I N E D  W R I N G  S E A R C H .
v2: N E X T  P C ?  N T  T O  8E E X A M I N E D  D U R I N G  S E A R C H .
NEWLOkPT: LOWPOINT  F C R  BICONNECTED  P A R T  O F  G R A P H

A B O V E  .ANC I N C L U D I N G  V 2 .
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4 OLDPTR: P O S I T I O N  I N  BICOMPONENTS  T O  P L A C E  E  V A L U E
* O F  N E X T  COMROr\(ENT.
4
* GLOBAL RRGCEGURES:
4 MIN,ACC2,NEXTLIhK.
*
* A  R E C U R S I V E  CFPTb-FIRST  S E A R C H  P R O C E D U R E  I S  LSED TO
4 MVIOE  T H E  GRAPk T H E  LOhEST  P O I N T  R E A C H A B L E  F R O M  T H E
4 C U R R E N T  P O I N T  \nTTHOUT  G O I N G  T H R O U G H  P R E V I O U S L Y
d: S E A Q C H E C  PCIhTS  I S  C A L C U L A T E D .  T H I S  I N F O R M A T I O N
8 A L L O W S  DETFRluIKATI@N  CF THF ARTICULATIGN  P O I N T S  A N D
f CIVISIOh  C F  Tt-E GQAPH.
94~*S*S4~S*4*~*~~4S4~****~~*****~*~~*~****444**4~~4**44*4*~
INTFGEQ  ARR4Y N U M B E R  (I::V+L 1;
I N T E G E R  A R R A Y  EDGESTACKf 1::2*El;
INTEGER CODE, EPTR,PQ?NT  ,V2,NEWLfWPT$DLDPTR  ;
P R O C E D U R E  RTCCNhECTOR1IWEGER  V A L U E  Q E S U C T  POINT,CLDPT,

LOWPO INT 1;
CCYpE=T  *4~~44$444~$~44$$$~$~4~~~$444~4~44~4444444~4**~4*
4 R E C U R S I V E  PROCEOURE T O  S E A R C H  A  C O N N E C T E D  C O M P O N E N T
4 A N D  FIN0 I T S  BICONNECTEC  C Q M P O N E N T S  U S I N G  D E P T H -
* F I R S T  S E A R C H .
I
* P A R A M E T E R S :
4 _pOItiT: STARTPOXNT C F  SFAQCH, U N C H A N G E D  C U R I N G
4 EXECUT I O N  l

4 C;tDPT: P F E V I C U S  S T A R T P O I N T ,  UNCHANGEO  OUR.ING
f E X E C U T I O N .
4 LOW’OINT: O U T P U T  O F  L O W E S T  P O I N T  R E A C H A B L E  ON A
* P A T H  f CUND D U R I N G  S E A R C H  FORbd4RD.
*
4 G L O B A L  VbR IABLES:
4 S E F  BIC@NNECT  F O R  OESCRIPT?ON.
ror

4 GLi-lBPL  PROCECiRES:
4 MINqADC2.
4r
4 E X A M I N E  E A C H  FOGE G U T  C F  PCINT.
**+*4f*t~4*~*84*~949~44**~*~~**4*~*~*****4~**~**~4*4**4*~
biH?LE  NEXTiPCINTbO  C O

BEGIN
CGMMfNT  ~4*$$$*4IS4$~~$$44$~~**~~~*44*4**~~4*4*4*4~~*
4 v2 I S  WEAC  DF T H E  E D G E .  D E L E T E  E D G E  F R O M
4 S T R U C T U R A L  R E P R E S E N T A T I O N .
s~I**~~**4*~*s4s*~~*******4***4*~4*~4***4*~**~*~**44;
VZ:=HEA@tNEXT( PCINT) );
N E X T  (PO !NT 1 :=NEXT(NEXT(POINT));
COYMENT 141~$448$+4*4$$~*$444~*~444~*4*444444*~4**444
4 H A S .  T H E  EWE B E E N  S E A R C H E D  I N  T H E  CTHEP
4 C TRECT I O N ? I F  S O ,  LOOK  FDR A N O T H E R  E D G E .
*~ft*4S***+t*~S**f***~*******~**~**~*~*~**~*******~4;
I F  (NUMf3ERW2l<NUMBER(POINf) )ANDW2-=OLDPTl  T H E N

BEG? h
CO~~Eh;f  S4444~~*SSS**SllS*tt4*~~~*~**4*******4444
t ADC EDGE T O  E D G E S T A C K .
~*8*$~***4**4**~*~$~**********~~*****~***~***4~*;
AOD2(P@INT,V2,EOGESTACK,EQfR);
C()p)rENT  ~+S~S4tS4SSSSSSfSSS~~~~**4*4*~444~4~*~~~~
* H A S  A  N E W  P O I N T  B E E N  F O U N D ?
*S****SS*S***S~*SSSS*****4****~****~**4~*4~*****;

- .
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IW7;ER( V2)=0  T H E N

CCf+ENT *~SSl*SSSSS*SStflS~S~****~**~*******~
* NEk P O I N T  F O U N D . N U M B E R  I  T.
*SSS**S~**~~*~**SS***~*****~~****~*$*~******;
NUM8ER1 V2) :=CQDE  :=CODE+l;
CcMMEfirT SSSSftSSS*SSSfS+~S~S~~~***~~*~***~~*~
* IhITIATE  A  D E P T H - F I R S T  S E A R C H  F R O M  T H E
* NEh P O I N T .
*$*~**~$~$~~$***~****~****~~~~~~~~~***~*~~~*;
NEkLCWPT:=V+l;
E3ICONNEf,TOR(V2,POINT,NEWLOtdQT~;
C(yME\T  ~~~**SSS*~S*****St~~~*~**~~~*~***~~~~
* M07E T H A T  A L T H O U G H  GLOBAL  VARIARCE V 2
* I S  CHANGEC, I T S  V A L U E  I S  R E S T C R F D  U P O N
* E X I T  F R O M  T H I S  P R O C E D U R E . R E C A L C U L A T E
jr L O W P O I N T .
****tt&+**S~t*SS*S****~~*~*~~~~**~~*~~~*~*~~;
LOWPOINT :=~IN(LOU.POINT,NE:WLDbiPT~;
CCYMENT $8~*Sl+SSSt**Sl*lS~~~~*~~~~~***~~~~~~
* I S  P O I N T  A N  A R T I C U L A T I O N  P O I N T  OF T H E
sr CRAPH?
*Ss*~~&~~*~*~**********~***~~~***~4$~~****~*;
I f  Ir;EWLOWPT>=NUH8ER(POfNT~  T H E N

=. @EGIr\
CCpPEr\(f ~*SSS*S**~S*l~St~~~s*.~~*~~**~**~~
* P O I N T  I S  A N  A R T I C U C A T I C N  P O I N T .
* O U T P U T  E D G E S  O F  C O M P O N E N T  F R O M
t E D G E S T A C K .
S~~SS~~t~S~****S***S****~*~~~~*~*~~**~~~;
OLDPTR:=BPTR:=BPTR+l;
W H I L E  NUMfXR1:EDGESTACK(EPTR-lb 1 >NUMBER

(PGINT)  DG
8EG I N

ADC2(ECGESTACK(EPTR-11,EOGFSTACK
(EPTR) ,6TCOMPONENTS,E!PTR);

E P T R :=EPTR-2
EhC;

COMMENT  I$$ItiSS*)tS$$$SJCI10t~144rftSr0r*Sl)t*SISItS~
* A D D  L A S T  E D G E .
S**SSS*******f****S**~~***~~**~*~*******;
ADD2~PSlINT,V2,BICOMf’ONENTS,Rf’TR1;
EPTR:=EPTR-2;
r,OfMMENJf  ***SSSSSSSSs**~gS*~**~*~~~****4*~
* C O M P U T E  N U M B E R  OF E D G E S  O F
* COMFCNEFsT.
S**S**S*f***SS**SStJ**~***~**~**********;
BICCMPONENTS  (ULDPTR  1 :=(BPTR-OCDPTR  )DIV 2 ;

E N D
END

E L S E
COMMENT  $**tSI)rSl~StrtlSSSSSSltS#ItSSrltStS*rll*SSrC*SSltrlrSlbr$ .
* N E W  P O I N T  N O T  F O U N D . R E C A L C U L A T E  LOWPOINT.
*******~******+I*****************~*~*~*~*~****;
tOWPO1  hf :=MINt  COWPCINT,NUM8ER(V2)  1

END
E N D ; .

COMMENT  f~SS**SS*tt~SSSSSSI****4~**4*4***~**4*4*4*******44~
4 C O N S T R U C T  TkE S T R U C T U R A L  REPRESENT4TION  Of TFE G R A P H .
**********+****S**tf***tS******SSS***#****I****~********t;
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FREEhEXT:=V;
F G R  I :=L U N T I L  k D C  NEXT(I)  : = O ;
FOR I :=I. U N T I L  E D C

REGIh
CCMMENT  48444t*t4&44~ttt484$444444444444444444444444444
4 EACk ECGF GCCIJRS T W I C E ,  O N C E  f-R E A C H  E N D P O I N T .
4~**~*~*~4*~4****~**~*****~***~***~***~*~*~~***~~*~*~*;

NEXTLINKtEDGELIST(2*I-l),EDGEL  IST(2*I)  1;
1\EXTL?NK~EDGELTST~2*?~~EOGELIST~Z*I-1~ 1

ENC ;
CCppE&T  44~*4$44~4$44444444?.444$44444444444*444444444444~44
4 I N I T I A L I Z E  VAS TABLES F C R  S E A R C H ,
&*****4S****$$*$**$************************************~**;
EPTH:,=Q;
BPTR:=O;
PCThT:=l;

\

v2:=0;
FCP I:= 1 U N T I L  V+l  09 NUYRER(I):=O;
hHT LE PGTNT<=V  Cc:

REG IN
CCHMENT  44444$~48$4844$4444$44444444444444444~444444444
4 E A C H  EXECUTIOq  O f  BICCNNECTOR  S E A R C H E S  A

- 4 CONhECTEC C O M P O N E N T  O F  T H E  G R A P H . A f  T E R  E A C H
* S E A R C H , FIh’U 4 N  UNhUYBfREO V E R T E X  A N G  S E A R C H
16 __,AG A IN l RFPEAT  U N T I L  A L L  VERICES A R E  EXflMINEO.
*********f****S*91**********************~**~**********;
hUMRER(POTN?)  :=CUX:=l;
bEkLOWPT:=V+l;
@?CONNECTQR(PCINT,t2,NEhLOWQT);
WhTLE  NUMBER(POINT)-=Q  DO POINT:=POINT+l

EhO;
E N D ;

P R O C E D U R E  PATHFINDEStINTEGER  V A L U E  R E S U L T  STARTPCINTg
PATHPT,CGDEVALUE; TNTEGER A R R A Y  P A T H ( * )  1;

B E G I N
COMMENT  4444448444444~41SSft444444444~44444~44444444
4 P R O C E C U R E  T O  fIND D I S J O I N T  P A T H S  tt?TH
4 AR8ITRAPY  S T A R T I N G  P O I N T S  I N  A  B I C O N N E C T E D
4 GRAPH. THF PCIhTS O F  E A C H  P A T H  A R E  L I S T E D
* I N  A R R A Y  “ P A T H ” . T H E  FDLLQWING  VAP’IA8LES A R E
4 ‘ASSUMFO  G L O B A L :
4 NEXT(l::V+2*E1J4EADIV+l,V+2*E),
4 CIhK(V+lrV+2*E)  CEFlNE  T H E  G R A P H  U S I N G  S I N G L Y
4 L I N K E D  E D G E  LTSTS A N D  A  S E T  O F  C R C S S  R E F E R E N C E
4 PCfWERS.
4 GLD( 1 ::V) ,MARK(V+l,V+Z*E)  INDICATE USED
4 PCTNTS  A N D  E D G E S .
4 FATHCCDE  (1 ::V) fS T H E  C O N S E C U T I V E  N U M B E R I N G
4 CF THE POINTS.
4 L0WPC?NT(1::V),FCRWAR0(I==V)tBACKfl=  =V) G?VE
4 INFORMATTCN  S A V E D  FROlv D E P T H - F I R S T  SEAR0.
4 kOOE(-1:  :V) G I V E S  T H E  N E X T  U N S E A R C H E D  E D G E
4 FRCM EACh P O I N T .
***********S**S*t**********************************~



KEXTMARK:

1
I N T E G E R  PCIhTq P A S T E O G E ,  E D G E ,  P A S T P O I N T ,  V 2 ;
PATH{ l):= STAR TPOINT;
COMMENT  $44$44$$~44$$44844444444444444444444*4444444
4 C H O O S E  IhITTAL E D G E .
*****d~*SSSSS*S*S**********************************;
E D G E : = NEXT(STARPPOINT);
W H I L E  (EWE-=OlAND  MARK(EDGE1  D O  EDGE:=NEXT(EDGE);
I F  EDU=O  Tl-EN

B E G I N
COMMENT  ~4$4444444$$144141$4444~44444444444*44
* KG U N U S E D  E C G E  A N D  T H U S  NJ P A T H  E X I S T S .
***+*************t***************************;
NEXT{ S T A R T P O I N T )  :=O;
P4THPTz=  0 ;
GO Tt3 DWE

E N C ;
kEXT(SfAPTPCINT~:=NEXrO;
PATH{ 2) := E D G E ;
POINT:= PEAC(ECUl;
P A T H P T  :=L;
I F  OLC(POINT1  7hEN G O  T O  P A T H F O U N D ;
If FOF~ARC(FCIhT~~=O  T H E N

B E G I N
COMMENT  $4$444$8SSSS44tt4S44444444444444444444
* U S E  PREVICUSLY  F O U N D  I N F O R M A T I C N  T O
* BUfLD A  P A T H . FORWARU,BACKrLOWPCIkT
4 D E S C R I B E  T R E E S  I N V E S T I G A T E D  U S I N G  D E P T H -
* F I R S T  S E A R C H .
S*SSSSS*SS**S**S*****************************;
I F  PATHCCDE(STARTPOINT))PATHCCDE(PCINT~  T H E N

G O  TO N E X T B A C K ;
I F  PA7tCQDE~STARTPOINT~)COWPOINT(POINT~POINT~

THEh
B E G I N

hEXTFC?RbiARD: E D G E : = FCRWARQ(POINT1;
PCI&T:=HEIDtEDGE);
P4THPT:= PATHPT+l;
PATH(PATHPT):=  E D G E ;
I F  CLD(PGINT1 T H E N  G O  T O  P A T H F C U N D ;
I F  PATHCODE~STARTPClINT~>PATHCODEO

T H E N  G C  T O  N E X T B A C K ;
G O  T O  N E X T F O R W A R D

E N C ;
E D G E :  = BACK(POINT! ;
POINT:= kEACI ECGE t:
PATHPT:=PATHPT+l;
P4fH(PATHPT):= E D G E :
I F  CLC(PCINT)  T H E N  G O  T O  PATHFOUNO  E L S E  G O  TO

NEXTMARK ;
IUEXT@ACK: EDGE:=BACK(POINT) ;

PCIfkT:=kEAC(ECGE);
P4THPT:=PATHP-1;
P4THt PATt-PT  l:=EDGE;
I F  CLD( PCTNT) T H E N  G O  T O  P A T H F O U N D  E L S E

G O  T O  NEXTSACK
E N D :

COMMENT 44444t*4S44~444~444**4*44444~44444~4444444~4
11 tS-E DEPTH-FTRST  SEARCb  T O  F I N D  A  P A T H . SAVE .
* fNFURMATION  D E S C R I B I N G  S E A R C H  T R E E .
**SS*S+*SSSS**S*S*t********************************;
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h EXT PO I N T : CODEVALUE== CffCEVALUE+l;
f’ATHCCCE(  P C  TNT 1: = CQf?EVACUE;

NEXTEDGE: E D G E : = NCDEW0Ih-U;
WHILE ECCE=O CQ

B E G I N ’
BACK(POI~T) :=LINKtPATHWATHPT));
F1STPOlNT:= H E  AD{ B A C K  ( PU INT 1) ;
IF (FCRk6RD(PASTPCIhT)=0)  O R  tLf)WPOINT

(P~I~T)<~~WPOfNT(PASTP~INT~  1 T H E N
P,ECIN

FCKhARD(:PASTPO?NTT):=  PATHWATHPT);
LCWP9INTIPASTPOINT  l:=CDWPQTNT(  POINT)

EN!?;
POINT:= P A S T P O I N T ;  ’
CATHf?:= FATHPT-1;
E D G E : = NCDElPOINTl

ENC;
NUDEtPOTNT)  := hEXT(EDGE1;
vz:= t-EAC( EDGE 1;
I F  PATHCClOF  I V 2  I=0 Tt-EN

BEGIN
POINT:= V2;

-h. FATHFT:=  PATHPT+l;
PATH(  PAThPT)  :=EDGE;
GO T O  NEXTPClNT

E N D :
I F  OLC(V2)  b&D (V2--=STARTPOINTb  T H E N

BEGTN
PAJHPT:=  PATHPT+l;
PATH(  FATtPT  b:= E D G E ;
GG TC PATWCUND

E N D ;
\

IF(FORkAR~(~ClhT)=O)aR(PAfHCDOE(V2~~LDW~DTNT
(PCINT) 1 THEY

HEG IN
FCPkARD (FC MT) := E D G E ;
LD~POINT~PQINT)  :=PATHCODE(  V2)

E N D ;
G O  Trl !vEXTEDGF;
COMMENT  9$~8~$~t~~~~~~~8~~~14~~~~~~~~~~*~~~~~**~~~~~
* P4fh FCUhG. CCWERT  S T A C K  O F  E D G E S  TC LIST
t G F  P O I N T S  IN P A T H . MAqK  ALL. E D G E S  A N C
* FCIhTS I& P&T’.
~~Sfl*~dt*~~l~*f~~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

FATHFQC;ND: FOR  I : = 2 UPJT I L  P A T H P T  G O
B E G I N

EIIG E: = PATH(I);
PCIlQT:= t-EACtECCE);
FCtWARD( POINT) := BACKtPOINT) :=O;
CLCWCINT):= T R U E ;
I@ARK(LfhK(EDCE~l:=~ARK~EtDGE~:=TRUE;
PATH{ I) := POINT

E N D ;
DCf’iE  : E N D ;
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