ALGOR ITHMS TO REVEAL PROPERTIES OF FLOATING-POINT
ARITHMETIC

BY
MICHAEL A. MALCOLM

STAN-CS-71-211
MARCH, 1971

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

ATGORITHMS TO REVEAL PROPERTIES OF FLOATI NG PO NT

ARI THVETI C

by

M chael A Ml col m

- Abstract

Two algorithns are presented in the formof Fortran subroutines.
Each subroutine conputes the radix and nunber of digits of the floating-
poi nt nunbers and whet her rounding or chopping is done by the machine

on which it is run. The methods are shown to work on any "reasonable"

floating-point conputer.

Keywor ds: Fl oating-Point Arithnetic
H gh- Level Languages

Phi | osophy of Language Design

This research was sponsored by the Ofice of Naval Research under grant
number NOOO14-67-A-0112-0029, The National Science Foundation under grant

number NSF GJ 408 and the Atomi c Energy Commi ssion under grant number
AT (04-3) 326, PA 30.

1. [ntroduction

A large percentage of the practical numerical algorithns in use today
require sone information about the actual floating-point nunber system on
which they are inplenented. For exanple, a zero finder nust use sone sort
of "machine epsilon" to determine when it has found a "zero". An iterative
i nprovement subroutine in a linear systemsolver nust stop iterating when
the corrections no longer affect the answer. Seme other algorithns which
require this type of information are: eigenval ue-ei genvector routines,
~ordinary differential equation solvers, function mnimzers, etc

Usual Iy this information is supplied to the algorithmin one of two
ways : It is either passed as a parameter or it is imbedded in
one or nore constants. In the first case, each user is faced with the
probl em of understandi ng anot her confusing paraneter in the calling sequence
and he is likely to not know what to use for a "machine epsilon". In the
second case, the "magic" nunbers in a programare often not understood by
peopl e reading or translating the program Wen the subroutine is moved
from one machine to another, these nunbers are seldom changed to reflect
the properties of the new machine -- even when the author of the original
program provi des explicit coments in the programtelling what the constants
mean and how to change them

Since one of the original notivations for designing and inplenenting
hi gh-1evel |anguages was to allow a programwitten for one machine to
run on other machines, | think that this problem reflects a serious
shortcom ng of |anguages |ike Fortran and Al gol. Such |anguages shoul d

provi de standard functions which return infornmation pertinent to the machine.

However, given these shortcomings, it is reasonable to ask: How can
information about the number system of a conputer be determned auto-
matical ly? That is, can a subroutine witten in Fortran conpute this
i nformation?

The Fortran subroutine given in the next section partially solves
the problemfor a large class of floating-point systems. Another
Fortran subroutine, presented in Section 3, solves the sanme problem

for a nore restricted set of floating-point systens.

2. The Fortran Subroutine ENVRON

For the remainder of this paper, a floating-point nunber system F

will be characterized as follows: Each nunber will have a radix B

and a t-digit mantissa where t >1 . Usually pis 2; 8 , 10 or 16 , but B
will only be restricted to be a positive integer greater than 1 . The
exponent e is assumed to lie in the range

m<e <M,
where m< 0 and M >t . Each nonzero =xe¢F has the representation

X =+ .did,...8, %,
wher e dys. .ndg are integers satisfying

0 < di_<s-1 ;o (= 1y eea,t) .
The nunmber O belongs to F . No assunption is made about the representation

of O ; however it is usually represented by
0 = + .00...0-8" .

If x#0 and dlféo, then x is said to be normalized. All
floating-point operations (e.g., addition and nultiplication) are

assumed to result in either 0 or a normalized floating-point nunmber.

The machine will do either proper rounding or chopping (truncation).

The machine epsilon nentioned in the previous section is the

smal | est positive floating-point nunber ¢ such that e®1 > 1 , where
® denotes floating-point addition. Thus, one could conmpute e from
g and t.

The Fortran subroutine shown in Figure 1 can be called with the
Fortran St at enent

CALL ENVRN (1B, IT, IR

|f the Fortran programis running on a machine with a floating-point
nunber system of the type just described, then the actual paraneters

will be returned with the val ues

IB=8,
IT = t P
0 , if the machine does chopping,
IR =
1 , if the machine does proper rounding.
SUBROUTINE ENVRON(BETA,T,RND)
| NTEGER BETA, T, RND
RND = 1
A=2
B =2
100 1F ((A+1.)-A.NE.1.) GO0 TO 200
A= 2.%A.
GO TO 100
200 IF (A+B.NE.A) co TO 300
B = 2.%B
GO TO 200

300 BETA = (A+B) - A
| F (A+(BETA-1) .FQ.A) RND = O
T=0
A=1
Loo T = T+1
A = A*BETA
IF ((A+1)-A.FQ.1) GO TO 400
RETURN
END

NHEPR s s e e
Oo\O» o~ oj(ﬂ_pwl\)I:O@OO\lom.bUf\)H

Figure 1
3

Suppose the machine on which ENVRON is executing has the
floating-point system F . Then the consecutive integers

t
O’ 1,2’ LN .’B

can be represented exactly in F . Integers larger than Bt whi ch
can be represented exactly are

Bl+p, phos, p+3s, pU Y, NS,

Thus, the difference between nei ghboring floating-point nunbers in the

i nterval [Bt,Bt+l] isp. The first part of ENVRON (lines 4 through 8)
tests successive powers of 2 until a floating-point nunber (A) in

this interval is found. Lines 9 through 12 add successive powers of 2
to A until the next floating-point nunber (a+g) is found and then B

is conputed by subtracting these two nunbers. To determ ne whether rounding

or chopping is being done (line 13), -1 is added to A . Now, since A

is in the interva
B‘b_<A<Bt+l’
the nunber t can be conputed by
T= | log, &
| logg 4] .
However, possible inaccuracies in conputing the |ogarithm are avoi ded by
determning the power of B required to shift the least significant digit
of an integer out of the mantissa. The snallest such exponent i s equal
to t
The time required for ENVRON to execute is roughly proportional to
log, B . For any practical application, the execution time is negligible.

It is inportant to note that the algorithmused in ENVRON does not

rely upon the use of guard digits in the floating-point additions

L

The author believes this algorithmto be a very efficient way of

conputing B, t and whether the floating-point systemrounds or chops.

3. A Special Algorithmfor the Cases g = 2, 4, 8, 10 and 16

After using the technique described in the previous section to
: t _t+ : .
determ ne the nunber Ae [B ,BJG l) , the followng trick can be used

. to determne both g and whether rounding or chopping is done:

1. Set B:=A+15 (B is another floating-point representation).

2. If B=A , then B=16 and chopping is done.

W
.
—

B=A+8 , then p=8 and chopping is done.

=
L]
-

B=A+10 , then B=10 and chopping is done.
If B=A+12 , then =k and chopping is done.
6. If B=A+14 , then p=2 and chopping is done.
7. If B=A+16, then rounding is done and g is either 2, 4, 8 or 16.

8. If B=A+20 , then B=10 and rounding is done.
The case B=A+16 can be resol ved by

1. Set B:=A+5.
2. |f B=A . thenp=16

[f B=A+4 , then p=b .

= W
-

B=A+6 , then p=2 .

5. |f B=A+8 , then p=8 .

A For-bran subroutine incorporating this idea and using the same
name and calling sequence as the subroutine given in Section 2 is shown
in Figure 2. Athough the code is longer than the version in Figure 1,

the execution tinme for this version is slightly smaller.

SUBROUTI NE ENVRON(BETA, T,RND)
| NTEGER BETA, T, RN\D
C
C TH'S VERSI ON WORKS FOR MACHI NES WITH BASE 2, 4,8, 10 OR 16
C
RND = O
A= 2.
10 1F ((A+1.)-A.NE.1.) GO 710 20
A= 2.%A
30 TO 10
20 | = IPIX((A+15.)-A) + 1
& TO (3p.,1%.312,1,1,Lk0,1,50,1,60,1,70,1,80,1,1,1,90),I
1 STCP
30 BETA = 16
G0 TO 100
40 BETA = 8
G0 TO 100
50 BETA = 10
G0 TO 100
60 BETA=4
G0 TO 100
70 BETA=2
go G0 TO 100 RID - 1
| = IFIX((A+5.)-A) + 1
GO TO (82,1,1,1,84,1,86,1,88),1
82 BETA = 16
G0 TO 100
84 BETA=4
G0 TO 100
86 BETA=2
G0 TO 100
88 BETA=8
G0 TO 100
go RND =1
BETA = 10
10T =0
A=1
110 T = T™+1
A = A¥BETA
IF ((A+1)-A.EQ.1) GO TO 110
RETURN
END

Fi gure2

L. Concl usions

The algorithms given in Figures 1 and 2 will determne certain
characteristics of the floating-point nunber system of any nachine
currently in use (at least those floating-point machi nes of which the
author is aware). Specifically, the nunber base, number of digits and
whether rounding or chopping is done, can be conputed automatically.

Prograns and subroutines in general use, such as library routines,
shoul d avoid additional paraneters in the calling sequence and magic
constants in the code by using one of these subroutines for conputing
the floating-point environnent of the current nmachine. This not only
makes the code nore readable but the portability of the programis
greatly increased. The additional execution time required to call such
a routine is insignificant conpared to these advantages

Unfortunately, it is not possible to wite a general subroutine to
conpute upper and |ower bounds for the floating-point exponent
(m and M . If underflow and overflow conditions were handled in sone
uni form manner, it would be possible to do so. Sone programs nmke use
of the values of mand M. Thus it would be worthwhile for software
manufacturers to consider ways of providing such information automatically
Automatic determ nation of properties of the integer arithmetic system
woul d al so be useful. A good universal random nunber generator could
be witten if it were possible to autonatically determ ne the magnitude
of the largest representable integer.

Q her desirable environmental paraneters are listed in a paper

by Redish and Ward.

5. Acknowledgment

The author would |ike to thank Professor Ceve Mler for arousing
his interest in this problem M. Richard Sites contributed sone of
the ideas which led to an earlier version of ENVRON. The author
woul d I'ike to thank Professor Robert Floyd for questioning the

"optimality" of this earlier version and for a discussion which |ed

to inproved versions.

6. Bibliography

Redish, K A and Ward, W, “Environment Enquiries for Numerical

Anal ysis", SIGNUM Newsletter 6 (1), January 1971, 10-15.

