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' Abst ract

The problem of sorting a sequence of nunbers using a network
of queues and stacks is presented. A characterization of sequences
sortable using parallel queues is given, and partial characterizations

of sequences sortable using parallel stacks and networks of queues

are given.
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The Switchyard Problem

Sorting Using Networks of Queues and Stacks

I nspired by knuth [2], p. 234, we wi sh to consider the follow ng
problem  suppose we are presented with the layout of a railroad
switchyard [Figure 1]. If a trainis driven into one end of the yard,
what rearrangenents of the cars may be nmade before the train comes out
the other end?
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Figure 1: A railroad swtchyard. What rearrangenents are possible'?

In order to get a handle on the problem we nust introduce some
formalization. A swtchyard is an acyclic directed graph, with a unique
source and a unique sink. Each vertex represents a siding. The
vertex/siding is assuned to have indefinite storage space and may be a
stack, a queue, or a deque of some sort (see Knuth [2] p. 23L4). A stack
is a siding which has the property that the last elenent inserted is the
first to be renoved. A queue has the property that the first elenment
inserted is the first to be removed. In the switchyard, the sidings

associated with the source and sink are assumed to be queues.



Figure 2: Abstract representation of switchyard in Figure 1.

The vertices are queues.

Suppose a finite sequence of nunbers s = (81’32""’sn) is placed
in the source queue of a switchyard. W may rearrange S by moving the
el enents of s through the switchyard. At each step, an elenent is noved
from some siding to another siding along an arc of the switchyard. After
a suitabl e nunber of such noves, all elenments will be in the sink queue.

If they are in order, snallest to largest, we have sorted the sequence
s using the switchyard. W wish to analyze the sequences s which may

be sorted in a switchyard Y .
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Figure 3: Can (561324) be sorted through the switchyard above?

W | ose nothing in our formalismby allow ng storage only on the

vertices, and not on the arcs of the switchyard. \e ignore questions



concerning the finite size of the sidings; assumng small sidings
conplicates the problem considerably. A circuit in the switchyard will
allow us to sort any sequence;, thus we do not allow circuits. Havi ng
established our nodel, we proceed to discover its properties.

Notice that no fixed switchyard is sufficient to sort all sequences.

This may be proved very easily.

Lenma 1. Let Y be a switchyard. Then there are an infinite nunber

of sequences which Y will not sort.

Proof . Consi der noving a sequence s of length ¢ through Y . If Y
has v vertices, then at any step there are at nost v-| possible noves.
After at nost ve noves, all elenents of s nust have reached the sink
queue. Thus there are at nost (v-I)Vz possi bl e nove sequences. However
there are £t possible pernutations of the numbers 1,2,...,£ , and

for large ¢, 2y > (v-l)vz . Thus for large ¢, same pernutations

of length £ are unsortable.

Lemma 1 gives a very crude upper bound on the size of the smallest
sequence unsortable in a given switchyard Y. W wll be able to conpute
the length of the smallest unsortable sequence exactly for certain switch-
yards. Let us characterize the sequences sortable in sone sinple
swit chyards.

A parallel network of m queues is a switchyard with a source

queue, a sink queue, and m queues. An arc connects the source queue
to each of the m queues, and an arc connects each of the m queues

to the sink queue. A parallel network of mstacks is identical to a
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parall el network of m queues except each of the m queues is replaced

by a stack.

Figure 4: A parallel network of four stacks.

Consi der any sequence of nunbers s . Let the length of the
| ongest strictly increasing subsequence of s be i(s) . Let the

length of the longest strictly decreasing subsequence of s be d(s)

Lemma 2; Let Y be a parallel network of m queues. Let s be a

sequence of numbers. Then s is sortable in Y if and only if

d(s) <m.
Pr oof . If d(s) >m , then in any novement of s through Y , there
nust be two elenents S and sj of s such that i <j |, S5 >s.Jc s

and oF and sj both pass through the same one of the m queues. But
inthis case, S and sj will be out of order in the sink queue.
Thus if d(s) > m, s is unsortable in Y .

To prove the converse, we use an algorithmto find the
| ongest decreasing subsequence of a sequence [4]. This algorithm
will give us a sorting procedure using m queues, where

m=d(s) . Imagine the sequence s to be sitting in the



source queue. First we nove all elenents to the parallel queues. Number
the parallel queues from1l to m. Put the first element of the sequence
inqueue 1 . At the i-th step, put the i-th el ement S of the sequence s
in the first conpatible queue; that is, in the first queue such that the
last elenment g in this queue satisfies 5;>4 - After all elenments

are inserted into queues, exactly mqueues wll contain nunbers and

the nunbers in each queue will be in order. Mwve tre nunbers to the sink
queue, smallest first, largest last. This conpletes the sort. W |eave

it to the reader to verify this procedure.

Lemma3: Let Y be a parallel network of m stacks. Let s be a

sequence of numbers.  Suppose we wish to sort s by first inserting all

the elenments of s into the parallel stacks and then moving all the

elements into the sink queue. S is sortable in this way if and only
if i(s) <m.
Proof . Ve may prove Lenma 3 in the sane way as Lemma 2; a simlar

algorithm gives a sort if one exists.

Corol lary: Let Y be a parallel network of m stacks. Let s be
a sequence of nunbers, such that the |ast elenent Sh is the smallest

elenent of s . Then s is sortable in Y if and only if i(s) <m.

Corol | ary: Let Y be a parallel network of m stacks. Then the

shortest sequence unsortable in Y s of length m2 .



A pattefn is a finilte pernutation m:(ﬁl,...epk) g e r S
1,2,...,k . Let s be a sequence of nunbers. W say that s contains
the pattern p if there is a 1-1 mapping ¢ of p into s such that
if ¢(pi) = 544 a.nd¢(pj) =S5 s i<yj inplies i' < j' and
Pi <pj if and only if S <s}.], . As an exanple, the sequence (561324)
contains the pattern (312) in ten different ways. Using the notion of a

pattern, we may cast Lemma 2 and Lemma 3 into a new form

Lenma 2*¥: Let Y be a parallel network of m queues. Let s be a
sequence of nunbers. Then s is sortable in Y if and only if s does

not contain the pattern (m,m-1,...,1) .

Lemma 3*: Let Y be a parallel network of m stacks. Let s be
a sequence of numbers. Then s is sortable in Y using conplete

insertion into the parallel stacks followed by complete deletion if and

only if s does not contain the pattern (1,2,...,m+1) .

Even and 1tai [1] give characterizations simlar to those of Lemma 2
and Lemma 3 based upon coloring a graph corresponding to a sequence to be
sorted. If we relax the conditions we place on sorting using parallel
stacks, the problem of characterizing the sortable sequences becomes

nuch harder. For instance, we have the follow ng necessary condition:

Lemma 4: Let Y be a parallel network of m stacks and let s be a
sequence. Then if s is sortable in Y, s does not contain the

pattern (2,3,4,...,mt1,1) .



The condition given in Lenma 4 is sufficient for one stack [2], but
is not sufficient for two stacks or more. For instance, the sequence
(27416385) is unsortable using two parallel stacks, though it does not

contain the pattern (2341) . In general, given a sequence s , we may

construct a corresponding graph which Even and Itai [1] call the union
graph. The vertices of the graph are the elenments of the sequence. If
S; 285 5 8y match the pattern (231) then 8; and s.J are connected
by an arc. The sequence is sortable-using m parallel stacks if and
only if the corresponding union graph is colorable using m colors.

This gives a nice algorithmfor deciding whether a sequence is sortable
using two parallel stacks, but beyond that we have no good decision
procedur es.

W may conjecture that some finite set of patterns characterize the

sequences sortable in a swtchyard. However, using the concept of the

uni on graph, we may disprove this for the case of two parallelstacks.

Let nma5: There are an infinite set of permutations, none of which

contains another as a pattern, and such that each pernutation is unsortable

using two parallel stacks

Proof : Let us construct a diagram corresponding to a pernutation
p = (pl,uu,pn). W plot i on the x axis, p; On the y axis,

and we connect points which are joined by an arc in the corresponding

uni on graph.
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Figure 5: Diagrams for (2341) and (27416385).

G ven the second exanple in Figure 5, we may extend the idea to
construct a permutation whose union graph is a cycle of length 2n+l |
for arbitrary n > 2. (2,kn-1,% 1 ,6385,...,4n,4n-3) is the
general permutation. Since the union graph of this permutation is a
cycle of odd length, the pernutation i s unsortable uUSing two stacks.
Further, no pernutation of this type contains another of this type as

a pattern.

Let us return to the case of arbitrary switchyards. W will assune
that all sidings are queues. Gven a switchyard Y , we associate with
it a capacity c(Y) conputed as follows:
(1) Nunber the sidings of the switchyard from1l to mso that
no arc runs froma higher nunbered siding to a | ower nunbered
one. (This is always possible in an acyclic directed graph.)
(2) Attach a capacity to each siding from1 to m: Label siding m
(the sink) with 1 . Attach 1 to all arcs entering siding m .
At step 1, add up all capacities of arcs out of siding m-i+l .

Attach this capacity to siding m-i+1 and to all arcs entering it.



(3) Wien the labelling i S campleted, the capacity of the source

is c(Y)

(1)
(1)

Q(1) Q)
Q1
Q(1)

Figure 6: A switchyard and its siding capacities.

Lemma 6: Let Y be a switchyard of queues. Let Y' be the switchyard

formed by reversing the direction of all arcs of Y . Then c(Y) = c(¥?) .

Proof : The value of c(Y) is actually the nunmber of different paths
fromthe source to the sink. Thus c(Y) is independent of the direction
of its calculation. The nunber of paths from source to sink in Yis

the sane as the nunber of paths from source to sink in y*.

It is nore useful in what follows to regard the cal culation of c(Y)
as proceding from the sink back towards the source. W may state a

rel ationship between c(Y) and sequences sortable in Y .

Lemma 7: Let Y be a switchyard of queues and let s be a sequence. If
s contains the pattern (c(Y)+1, c(Y), . . . . 2, 1) then s is unsortable

inVY.



Proof: By induction. Cdearly, Lemma 7 holds for a two-siding swtchyard.
Suppose the result is true for all switchyards with ml| or fewer sidings.
Let Y be a switchyard with m sidings, and let s be a sequence which
contains the pattern (e(Y)+l, c(Y), «., 2, 1) . Let the queues

1’ -,Ck zci @ e

Then any sequence of noves of s through the switchyard must overl oad

adjacent to the source have capacities ¢

one of the queues adjacent to the source. That is, for some i , the
subsequence of s which passes through queue i adjacent to the source
nmust contain the pattern (ci+1,c., R 2, 1) . By the induction

hypot hesis, this subsequence is unsortable in the remainder of the

switchyard, and thus the entire sequence is unsortable.

Lenma 8: Let Y be a switchyard of queues and let s be a sequence.

If s is no longer than c(Y) , then s is sortable in Y .

Proof . V¢ proceed by induction. The result is trivial for a two-siding
switchyard. Suppose the result is true for all switchyards with ml or
fewer sidings. Consider a switchyard with msidings. Do the calculation
of c(Y) from the sink queue to the source queue. Each arc a; out of
the source queue has a capacity c(ai) ; §:°<ai) = c(Y) . Further, the
arcs have an inposed ordering given by the nunber of the queues on their
front end. Mve the |owest elements of the sequence to the highest
nunbered adjacent queue, the next |owest elements to the next highest
nunbered adjacent queue, and so on. At nost c(ai) el enents are all owed
to pass through arc 8, . Once this has been done, the elements at the
hi ghest nunbered queue may be sorted through the rest of the network by

the induction hypothesis. The nunber of elements in this queue does not
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exceed its capacity, and the other elements of the original sequence do
not interfere. Then the elenments at the next highest queue may be sorted
and so on. Thus the entire sequence may be sorted.
Lemmas 7 and 8 give us the length of the shortest sequence
unsortable in a switchyard of queues. Lenma 7 gives a necessary condition
for sortability. W have already seen that the condition is sufficient
in the case of parallel queues; however, it is doubtful that the condition
is in general sufficient. The situation is somewhat anal ogous to that of
paral l el stacks, though we presently know of no counterexample to show
that the converse of Lemma7 is false.
If we allow stacks or deques in an arbitrary swtchyard things

became even nore conplicated. Let us exam ne one such case. A series

network of m stacks is a directed sinple path of length m2 . The

two end sidings are queues, and the mintermedi ate sidings are stacks.

. < > < . < - < ®
Q S S S Q
Figure 8: A series network of three stacks. Wiat is the shortest

unsortabl e sequence?

Lemma O: Let Y be a series network of 2 stacks. Then the shortest

unsortable sequence in Y is of length 7 .

Pr oof : (2435761) is unsortable using two stacks, as the reader nmay
easily verify. Conversely, every sequence of length 6 or |ess may

be sorted using two stacks. Exhaustive case analysis will verify this fact



Lenma 10 [3]:  Suppose sequences of length k or less may be sorted
using m stacks in series. Then sequences of length 2k or |ess nay

be sorted using m+1l stacks in series.

Proof: Suppose that the hypothesis of the lemma is true and that a
sequence of length 2k is given. Sort the first k elenents into the

| ast of the m+l stacks, so that the k elenents are in order, smallest
on top, largest on the bottom Sort the remaining k elenents through
the network so that they enter the last stack in order, smallest to
largest. Instead of placing these elements in the last stack, nerge
themwi th those already in the |ast stack by always noving the snall est

element to the sink queue when it is available to be noved. 2k el enent s

my be sorted in this way.

C orollary : If m>2, a sequence of length 525 or less may be

sorted using m stacks in series.

In the case of one or two stacks in series, we know the |ength of
the smallest unsortable sequence. Lenma 10 gives a | ower bound in the

general case. Knuth [3], using an argument along the lines of Lenma 1,
gives an asynptotic upper bound of k4™ for the shortest sequence
unsortable using m stacks in series. The upper and |ower bounds are

not close in general. The author has constructed a sequence of length L1
which is unsortable using three stacks in series; beyond this, getting

the upper and |ower bounds closer together seens hard.
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Concl usi ons

W have defined the switchyard probl emand given a solution in

certain special cases. In general, the problem seens very difficult

and many questions are unanswered.
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