
THESWITCHYARD PROBLEM:
SORTING USINGNETWORKS  OF-QUEUES'AND STACKS

BY

ROBERTTARJAN

STAN-CS-71-213

APRIL, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and' Sciences

STANFORD UNIVERSITY

“P . .



THE SWITCHYARD l?ROBLED:

SORTING USING NETWORKS OF QUEUES AND STACKS

Robert Tarjan

Computer Science Department

Stanford University

'Abstract

The problem of sorting a sequence of numbers using a network

of queues and stacks is presented. A characterization of sequences

sortable using parallel queues is given, and partial characterizations

of sequences sortable using parallel stacks and networks of queues

are given.

Keywords and Phrases: Sorting, network, queue, stack.

This research was supported by the Hertz Foundation and the
National Science Foundation (GJ-992).



The Switchyard Problem:

Sorting Using Networks of Queues and Stacks

Inspired by Knuth [2], p. 234, we wish to consider the following

problem: suppose we are presented with the layout of a railroad

switchyard [Figure l]. If a train is driven into one end of the yard,

what rearrangements of the cars may be made before the train cOmes out

the other end?

+ (train)

(rearranged
train) c-

Figure 1: A railroad switchyard. What rearrangements are possible'?

In order to get a handle on the problem, we must introduce scxne

formalization. A switchyard is an acyclic directed graph, with a unique

source and a unique sink. Each vertex represents a siding. The

vertex/siding is assumed to have indefinite storage space and may be a

stack, a queue, or a deque of some sort (see Knuth [2] p. 234). A stack

is a siding which has the property that the last element inserted is the

first to be removed. A queue has the property that the first element

inserted is the first to be removed. In the switchyard, the sidings

associated with the source and sink are assumed to be queues.

1



Q Q

:C
Figure 2: Abstract representation of switchyard in Figure 1.

The vertices are queues.

Suppose a finite sequence of numbers s = (s1,s2,...,sn) is placed

in the source queue of a switchyard. We may rearrange s by moving the

elements of s through the switchyard. At each step, an element is moved

from some siding to another siding along an arc of

a suitable number of such moves, all elements will

If they are in order, smallest to largest, we have

the switchyard. After

be in the sink queue.

sorted the sequence

s using the switchyard. We wish to analyze the sequences s which may

be sorted in a switchyard Y .

123456 _? Q Q e 561324

Figure 3: Can (561324) be sorted through the switchyard above?

We lose nothing in our formalism by allowing storage only on the

vertices, and not on the arcs of the switchyard. We ignore questions

2



concerning the finite size of the sidings; assuming small sidings

complicates the problem considerably. A circuit in the switchyard will

allow us to sort any sequence; thus we do not allow circuits. Having

established our model, we proceed to discover its properties.

Notice that no fixed switchyard is sufficient to sort all sequences.

This may be proved very easily.

Lemma 1: Let Y be a switchyard. Then there are an infinite number

of sequences which Y will not sort.

Proof. Consider moving a sequence s of length 1 through Y . If Y

has v vertices, then at any step there are at most v-l possible moves.

After at most vL moves, all elements of s must have reached the sink

queue. Thus there are at most (v-l) Vi possible move sequences. However,

there are L! possible permutations of the numbers 1,2,...,1  , and

for large 1 , a! > (v-l)v' . Thus for large 1 , same permutations

of length 1 are unsortable.

Lemma 1 gives a very crude upper bound on the size of the smallest

sequence unsortable in a given switchyard Y . We will be able to compute

the length of the smallest unsortable sequence exactly for certain switch-

yards. Let us characterize the sequences sortable in some simple

switchyards.

A parallel network of m queues is a switchyard with a source

queue, a sink queue, and m queues. An arc connects the source queue

to each of the m queues, and an arc connects each of the m queues

to the sink queue. A parallel network of m stacks is identical to a

-. 3



parallel network of m queues except each of the m queues is replaced

by a stack.

Figure 4: A parallel network of four stacks.

Consider any sequence of numbers s . Let the length of the

longest strictly increasing subsequence of s be i(s) . Let the

length of the longest strictly decreasing subsequence of s be d(s) .

Lemma.2; Let Y be a parallel network of m queues. Let s be a

sequence of numbers. Then s is sortable in Y if and only if

d(s) Lrn .

Proof. If d(s) >m , then in any movement of s through Y , there

must be two elements s
i and s

3
of s such that i < j , si >s.,

J
and s

i
and s

3
both pass through the same one of the m queues. But

in this case, s
i

and s
3

will be out of order in the sink queue.

Thus if d(s) > m , s is unsortable in Y . _ _

To prove the converse, we use an algorithm to find the

longest decreasing subsequence of a sequence [4]. This algorithm

will give us a sorting procedure using m queues, where
-.

m = d(s) . Imagine the sequence s to be sitting in the

4



source queue. First we move all elements to the parallel queues. Number

the parallel queues from 1 to m . Put the first element of the sequence

in queue 1 . At the i-th step, put the i-th element s
i

of the sequence s

in the first compatible queue; that is, in the first queue such that the

last element q in this queue satisfies si_>q* After all elements

are inserted into queues, exactly m queues will contain numbers and

the numbers in each queue will be in order. Move tb numbers to the sink

queue, smallest first, largest last. This completes the sort. We leave

it to the reader to verify this procedure.

Lemma3: Let Y be a parallel network of m stacks. Let s be a

sequence of numbers. Suppose we wish to sort s by first inserting all

the elements of s into the parallel stacks and then moving all the

elements into the sink queue. s is sortable in this way if and only

if i(s) <m .

Proof. We may prove Lemma 3 in the same way as Lemma 2; a similar

algorithm gives a sort if one exists.

Corollary: Let Y be a parallel network of m stacks. Let s be

a sequence of numbers, such that the last element s is the smallest
n

element of s . Then s is sortable in Y if and only if i(s) 5 m .

Corollary: Let Y be a parallel network of m stacks. Then the

shortest sequence unsortable in Y is of length m+2 .



A pattern is a finite permutation p = (p,,...,p,>o f  t h e  i n t e g e r s

1,2,...,k . Let s be a sequence of numbers. We say that s contains

the pattern p if there is a l-1 mapping $6 of p into s such that

if I = 'i* ~a I  =  ‘j, ~ i<j implies i.'<j* and

Pi <Pj if and only if s i* <s., .
3

As an example, the sequence (561324)

contains the pattern (312) in ten different ways. Using the notion of a '

pattern, we may cast Lemma 2 and Lemma 3 into a new form.

Lemma 2*: Let Y be a parallel network of m queues. Let s be a

sequence of numbers. Then s is sortable in Y if and only if s does

not contain the pattern (m,m-l,...,l) .

Lemma 3*: Let Y be a parallel network of m stacks. Let s be

a sequence of numbers. Then s is sortable in Y using complete

insertion into the parallel stacks followed by complete deletion if and

only if s does not contain the pattern (1,2,...,m+l)  .

Even and Itai [l] give characterizations similar to those of Lemma 2

and Lemma 3 based upon coloring a graph corresponding to a sequence to be

sorted. If we relax the conditions we place on sorting using parallel

stacks, the problem of characterizing the sortable sequences becomes

much harder. For instance, we have the following necessary condition:

-.. _---_ _ --_ _.
Lemma4: Let Y be a paraliel network of m

----
stacks and let s be a

sequence. Then if s is sortable in Y , s does not contain the

pattern (2,3,4,...,m+l,l) .

6



The condition given in Lemma 4 is sufficient for one stack 121, but

is not sufficient for two stacks or more. For instance, the sequence

(27416385) is unsortable using two parallel stacks, though it does not

contain the pattern (2341) . In general, given a sequence s , we may

construct a corresponding graph which Even and Itai [1] call the union

graph. The vertices of the graph are the elements of the sequence. If

S i 9 'j 7 'k match the pattern (231) then si and s. are connected
J

by an arc. The sequence is sortable-using m parallel stacks if and

only if the corresponding union graph is colorable using m colors.

This gives a nice algorithm for deciding whether a sequence is sortable

using two parallel stacks, but beyond that we have no good decision

procedures.

We may conjecture that some finite set of patterns characterize the

sequences sortable in a switchyard. However, using the concept of the
.

union graph, we may disprove this for the case of two parand s-tacks.

Letnma5: There are an infinite set of permutations, none of which

contains another as a pattern, and such that each permutation is unsortable

using two parallel stacks.

Proof: Let us construct a diagram corresponding to a permutation

p = (pl,...,pn) . We plot i on the x axis, pi on the y axis,

and we connect points which are joined by an arc in the corresponding

union graph.



12345678
G . .

. .

12 3 4

Figure 5: Diagrams for (2341) and (27416385)  .

Given the second example in Figure 5, we may extend the idea to

construct a permutation whose union graph is a cycle of length 2n+l ,

for arbitrary n > 2 . (2,411-l 4 1 6 3 8 5t > 9 2 J > 9***> 4r&n-3) is the-

general permutation. Since the union graph of this permutation is a

cycle of odd length, the permutation is unsortable  using two stacks.

Further, no permutation of this type contains another of this type as

a pattern.

Let us return to the case of arbitrary switchyards. We will assume

that all sidings are queues. Given a switchyard Y , we associate with

it a capacity c(Y) computed as follows:

(1) Number the sidings of the switchyard from 1 to m so that

no arc runs from a higher numbered siding to a lower numbered

one. (This is always possible in an acyclic directed graph.)

(2) Attach a capacity to each siding from 1 to m : Label siding m

(the sink) with 1 . Attach 1 to all arcs entering siding m .

At step i, add up all capacities of arcs out of siding m-i+1 .

Attach this capacity to siding m-i+1 and to all arcs entering it.



(3) When the labelling is completed,  the capacity of the source

is c(Y) .

Q(l)

Q(l) Q(4)

Q(1)

Figure 6: A switchyard and its siding capacities.

Lemma 6: Let Y be a switchyard of queues. Let Y* be the switchyard .

formed by reversing the direction of all arcs of Y . Then c(Y) = c(Y*) .

Proof: The value of c(Y) is actually the number of different paths

from the source to the sink. Thus c(Y) is independent of the direction

of its calculation. The number of paths frcxn source to sink in Y is

the same as the number of paths from source to sink in Y* .

It is more useful in what follows to regard the calculation of c(Y)

as proceding from the sink back towards the source. We may state a

relationship between c(Y) and sequences sortable in Y .

Lemma71 L& Y be a switchyard of queues and let s be a sequence. If

s contains the pattern (c(Y)+l, c(Y), . . . . 2, 1) then s is unsortable

in Y .



Proof: By induction. Clearly, Lemma 7 holds for a two-siding switchyard.

Suppose the result is true for all switchyards with m-l or fewer sidings.

Let Y be a switchyard with m sidings, and let s be a sequence which

contains the pattern (c(Y)+& c(Y), l ., 2, 1) .- Let the queues

adjacent to the source have capacities Cl� l l �,Ck  ;

c

ci = c(Y) .

Then any sequence of moves of s through the switchyard must overload

one of the queues adjacent to the source. That is, for some i , the

subsequence of s which passes through queue i adjacent to the source

must contain the pattern (ci+l, c., . . . . 2, 1) .
1

By the induction

hypothesis, this subsequence is unsortable in the remainder of the

switchyard, and thus the entire sequence is unsortable.

Lemma 8: Let Y be a switchyard of queues and let s be a sequence.

If s is no longer than c(Y) , then s is sortable in Y .

Proof. We proceed by induction. The result is trivial for a two-siding

switchyard. Suppose the result is true for all switchyards with m-l or

fewer sidings. Consider a switchyard with m sidings. Do the calculation

of c(Y) frcxn the sink queue to the source queue. Each arc ai out of

the source queue has a capacity c(ai) ; Ec(ai) = c(Y) . Further, the

arcs have an imposed ordering given by the number of the queues on their

front end. Move the lowest elements of the sequence to the highest

numbered adjacent queue, the next lowest elements to the next highest

numbered adjacent queue, and so on. At most c(ai) elements are allowed

to pass through arc ai . Once this has been done, the elements at the

highest numbered queue may be sorted through the rest of the network by

the induction hypothesis. The number of elements in this queue does not

10



.

exceed its capacity, and the other elements of the original sequence do

not interfere. Then the elements at the next highest queue may be sorted,

and so on. Thus the entire sequence may be sorted.

Lemmas 7 and 8 give us the length of the shortest sequence

unsortable in a switchyard of queues. Lemma 7 gives a necessary condition

for sortability. We have already seen that the condition is sufficient

in the case of parallel queues; however, it is doubtful that the condition

is in general sufficient. The situation is scrmewhat  analogous to that of

parallel stacks, though we presently know of no counterexample to show

that the converse of Lermna  7 is false.

If we allow stacks or deques in an arbitrary switchyard things

beccrme even more complicated. Let us examine one such case. A series

network of m stacks is a directed simple path of length m+2 . The

two end sidings are queues, and the m intermediate sidings are stacks.

Figure 8: A series network of three stacks. What is the shortest

unsortable sequence?

Lemma9: Let Y be a series network of 2 stacks. Then the shortest

unsortable sequence in Y is of length 7 .

Proof: (2435761) is unsortable using two stacks, as the reader may

easily verify. Conversely, every sequence of length 6 or less may

be sorted using two stacks. Exhaustive case analysis will verify this fact.

ll



Lemma 10 [3]: Suppose sequences of length k or less may be sorted

using m stacks in series. Then sequences of length 2k or less may

be sorted using ml-1 stacks in series.

Proof: Suppose that the hypothesis of the 1-a is true and that a

sequence of length 2k is given. Sort the first k elements into the

last of the m+l stacks, so that the k elements are in order, smallest

on top, largest on the bottom. Sort the remaining k elements through

the network so that they enter the last stack in order, smallest to

largest. Instead of placing these elements in the last stack, merge

them with those already in the last stack by always moving the smallest

element to the sink queue when it is available to be moved. 2k elements

may be sorted in this way.

C orollary : If m>2 , a sequence of length 3*2m'1 or less may be

sorted using m stacks in series.

In the case of one or two stacks in series, we know the length of

the smallest unsortable sequence. Lemma 10 gives a lower bound in the

general case. Knuth [3], using an a&men-t along the lines of Lemma 1,

gives an asymptotic upper bound of kbrn for the shortest sequence

unsortable using m stacks in series. The upper and lower bounds are

not close in general. The author has constructed a sequence of length 41

which is unsortable using three stacks in series; beyond this, getting

the upper and lower bounds closer together seems hard.

12



Conclusions

We have defined the switchyard problem and given a solution in

certain special cases. In general, the problem seems very difficult

and many questions are unanswered.

References

[l] Even, S. and Itai, A. Queues, stacks, and graphs. Unpublished.

[2] Xnuth, D. E. The Art of Computer Programming, Volume 1.

Addison-Wesley Publishing Campany, Reading, Mass., 1968.

133 Knuth, D. E. The Art of Computer ProgramminG, Volume 3.

To appear.

{4] Schensted, C. Longest increasing and decreasing subsequences.

Canadian Journal of Mathematics, Vol. XIII, No. 2 (1961).

13


