STANFORD ARTIFICIAL INTELLIGENCE PROJECT .
MEMO AIM-148

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-217

DECIDABLE PROPERTIES OFMONADIC FUNCTIONAL SCHEMAS

BY

EDWARD ASHCROFT
ZOHAR MANNA
AMIR PNEULI

JULY 1971

COMPUTER SCIENCE DEPARTMENT .
STANFORD UNIVERSITY

MEMO AIM-148

' DECIDABLEPROPERTIES OFMONADIC FUNCTIONALSCHEMAS
EDWARD ASHCROFT ZOHAR MANNA AMIR PNUELI

- Computer Science Dept. Computer Science Dept. Applied Mathematics Dept.
University of Waterloo Stanford University Weizmann Institute
Waterloo, Canada Stanford, California Rehovot, Isr=<l

= Abstract: We define a class of (monadic) functional schemas which
properly includes 'Ianov' flowchart schemas. We show that the

= termination, divergence and freedom problems for functional
schemas are decidable. Although it is possible to translate a

 — large class of non-free functional schemas into equivalent free
functional schemas, we show that this cannot be done in general.

- We show also that the equivalence problem for free functional
schemas is decidable. Most of the results are obtained from
well-known results in Formal Languages and Automata Theory.

-

—

—

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the

o official policies, either expressed or implied, of the Advanced Research

Projects Agency or the U. S. Government.

The research reported here was supported in part by the Advanced Research
-~ Projects Agency of the Office of the Secretary of Defense (SD-183).
A preliminary version of this paper was presented at the International
Symposium on the Theory of Machines and Computation (Haifa, Israel),
-— Auvgust 1971.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: full size copy, $3.00; microfiche copy, $.95.

=

r-

DECIDABLE PROPERTIES OFMONADIC FUNCTIONALSCHEMAS

EDWARD ASHCROFT ZOHAR MANNA AMIR PNUELI

Computer Sci ence Dept. Computer Science Dept. Applied Mathematics Dept.
University of \aterloo Stanford University Weizmann | nstitute

Waterl oo, Canada Stanford, California Rehovot, [Israel

Monadi ¢ _Functional Schemas

An ES' phabet of a (nmonadic) functional schema S consists of one individual variable x , a finite set of
moaedie function variables {Fi} (with a designated initial function variable Fo) , afinite set of monadic fmrticrn
const ant's [fi] , and a finite set of monadic predicate constants {_pi} . Note that individual constants are not
al | oved.

A term over g is any termin the normal sense constructed from the nonadic function variables [Fi} , monadic

function constants {£,} and the variable x , e.g., fl(F3(Fo(f2(x) A condi))jonal term over g; is any finite

expression of the form

if p,(x) then 7, else 7, ,

where p, is any predicate constant of &, , and v, and v, are any terms or conditional terms over Zy .

A definition of Fi ,over £ is of the form

Fi(x) <=1,

where 7 is any termor conditional term over g . A (nonadic) functional schema S (over an al phabet }:s)

consists of a finite set of definitioms over I, one for each function variable Fi in g . Whenever the speci al
function variable Fw is used, its definition is considered to be Fw(x) <= Fm(x)' This definition is usually

amitted.

Example 1: Let us consider the functional schema 8
Fo(x) <= 4f p,(x) then if p,(x) then F,(x) else Fl(fl(x))
else x
Fl(x) <= if pj(x) then Fo(fe(x)) else fl(x) .

Since we are using a very restricted al phabet, parentheses and the individual variable x may be omitted without
causing any confusion. Therefore the functional schema §, can be rewitten as:
Fg <= if p, then it P, then Felse F £
else |

Fy <= if p then F f, else f, ,

02
where | stands for the 'identity function'.y

An interpretation 8 of a functional schema S consists of:
1 a non-enpty set of elements D (called the damain),

2. an el enent of D used as the initial value of x , and

%
3. assignments to the constants of I !
(1) a total mnadic function (from D into D) for each function constant £, » and

(11) @ total monaaic predicate (fram b into {T,F}) for each predicate constant v, -

Y It is worth noting that nost of the results in this paper would be trivial if we did not allowthe "identity
function'.

r—

For a given interpretation § , the pair (S,8) , called a functional program can be computed by eval uating
Fy wi th input & in the usual way (see MCarthy [1963]). The canputation either (i) terninates yielding an
element of D denoted by val(s,s) , or (ii) diverges (i.e., does not ternminate) in which case vel(s,d) is said
to be undefined. The method of canputation is described more fully later for special types of interpretations
cal | ed 'Herbrand interpretations'.

A functional schema S is said to terminate/diverge if for every interpretation 8, val(s,d) is

defined/undefined. Two functional schemas S, and 5, are said to be equivalent if for every interpretation &

1
either both g(sl,.s) and val(s,,8) are undefined or both are defined and E(Sl,a) = vel(s,,9) .

The same class of functional schemas has been di scussed by DeBakker and Scott [1969].

It is straightforward to show that every functional schema in which any termcontains at nmost one function
variable, occurring on the left-hand side of the term (as in Example 1 above), can be translated to an equival ent
'Ianov' flowchart schema (lanov [1960], see al so Rutledge [196%4]). However, such sinple functional schemas as

F

o < if p then | else f,F,f

o2
have no equivalent Isnov flowchart schema. Hence, the results in this paper generalize known results about |anov

flowchart schemas.

. *
|l. Herbrand |nterpretati ons-/

A Herbrand interpretation & of a functional schema S consists of:

L The domain D¥ which is the set of all expressions "-rc“ , Where T is a constant termconstructed fromthe
individual variable x and the function constants 9 of gg . eg., ™", "fl(x)", "fQ(fl(x))";
2. The expression "x"eD* used as the intial value of x ;
3. Assignnents to the constants of Iy
(1) For every function constant £, in Ig . Ve assign the total function mapping every expression
"-rc"eD* into the expression "fi(-rc)"eD* ,
(ii) For every predicate constant Py in Ig . e assign sane total predicate over D* , i.e., for every
"Tc"CD* the val ue of pi("‘rc") is either T or F .
Note that all Herbrand interpretations of a given functional schema differ only in the assignments to the predicate
constants. Henceforth we omit the quotation marks whenever this causes no confusion.
The computation of (8,4%) is best described by a (finite or infinite) sequence of temms o, . The first
term a, of the sequence is Fo(x) . I'n general, suppose o (n > 0) contains the sub-term Fi(g) where EeD* ,

i.e., Fy is the right-nost function variable in o, - Theno, is obtained by substituting a termt for

ntl
Fi(t) where 7 is obtained as follows. First x is replaced by t in the definition of F, and then the
terms is chosen fran this definition using the val ues of pd(g) supplied by the interpretation of the predicate
constants Py - The canputation terninates as soon as we reach aconstant terms . Then val(s,8%) = 7,
Herbrand interpretations are important because many properties of functional schemas can be described and proved
just by considering Herbrand interpretations rather than all interpretations. For exanple,
(1) a functional schema terminates/diverges (under every interpretation) if snd only if it terninates/diverges
under every Herbrand interpretation;

(ii) two functional schemas are equivalent (under every interpretation) if and only if they are equivalent under

every Herbrand interpretation.

¥ . . ; ; . .
i Herbrend interpretations are identical to the t*free interpretations' of Luckham, Park and Paterson {[1970].

Ill. Termnation and Divergence of Functional Schemas

V& show t hat

THEOREM 1. It_is decidable whether or not a functional schems termimates or diverges (for every interpretation).

Proof: The proof depends on the well-known results in Pormmal Language Theory that it is decidable for any context-
free grammar whether or not all (rightnost) derivations are finite and whether or not all (rightnost) derivations
are infinite.

For this purpose we associate with every functional schema S_a comtext-free grammar Gg such that:

there is a one-to-one correspondence between the set of all conputations of S for all Herbrand interpretations,
and the set of all (rightnost) derivations of Gg . Furthermore, a cauputation of S diverges if and only if the
corresponding derivation of Gg isinfinite.

Gven a functional schema S with n predicates py,p,-.-sp, , function variables {F,} and function

constants [fil , we define Gy as foll ows:

1 The non-terninals are of the form

["b:F

k’wa] er{Fi] end W ,w W ,

a
where Wis the set of all strings of length n over .{T,F} . The intuitive neaning of [w,F,w.]is that
it will generate all possible constant terms 7, such that s, is computed by S starting from Fk(x) ,
under sane Herbrand interpretation for which the values of Pysee0sPy for x are LA and for T, are w .
In eddition, we have a special initial non-termnal A .
2. The terninals are the function constants {fi}'
3. The productions are obtained from S as follows:
(1) A - [wb,Fo,wa] for all VoW oW
(ii) For every non-termnal [wb’Fk’"a] we add productions as follows:
Locate in definition of ¥, that term which is selected by w, . Let the term be

Clm. . Q2a1

where each ¢

4 is either a function variable or a function constant. W construct all productions of

the form

[wank:"a] N [wb’am"m-l][v-l’am-l"m-fi]' @D ' @‘%@@9"‘@"@@‘];’@. Wherewlngi'.. a”O’. e

s

after replacing each [w,ai,w'] , Wwhere o

In the special case where the tem is | , if LA # w, We generate no production, whereas if LA

is a function constant, by o .

we generate the single production
lw w1 = A (Ais the empty word).
Finally, we go through Gy and repeatedly remove all productions containing some non-terminal which is not the
| eft-hand side of any production and all productions in which the non-termnal on the Ieft-hand side cannot be
reached from A .
Gg now clearly has the required properties.

QED.

|V. Functional Schemas in Standard Form

Ve introduce now an interesting subclass of functional schemas which has a special syntactic form This form
is relevant to our |ater discussion.

A functional schema S is said to be in standard formif
1. Every conditional termin S is of the form

if pj then Ty else 1’2

wher e 7 and T, ae distinct (i.e., there are no 'redundant' tests) and each of T and 7, is of one of
the following forns:

(a) a conditional termnot containing pj (i.e., there are no 'redundant' terns),

(®) F,

(¢) I | or

(@) a termin which F. does not occur and the rightmost symbol is a function constant.

2. Every definition in S (except for F) contains a conditional term

3. No function variable in S always diverges (i.e., no matter which function variable in P8 is taken as the

initial function, the schenas do not diverge), except for F and ¥y if Fy <= F_ .

Note that our definition of standard formhas the flavor of Geibach Normal Formin Formal Languages Theory.

"The interest in this formarises fromthe fact that every functional schema can be effectively transformed to an
equi val ent functional schema in standard form This is done-easily by first recognizing all 'divergent' function
variables (using the technique described in the previous section) and replacing all terms in which they occur by ¥_ .
Then we repeatedly replace every function variable occurring as the rightnost symbol of a termby its definition,

applying straightforward sinplifications, as illustrated in Example3 bel ow.

Example 2: The functienal schema 52 e

F, <= if p _then F.F.f, else f,

Fl <= if p then Flf3 else | |

is clearly in standard form

Example 3: The functional schenma s3 wher e

F, <= if p then lel else f,

F, <= if p then Flf3 else f)
is not in standard form because of the term LE This term can be removed by first replacing F, in lel by
its definition to obtain:

Fy <= if p.then if p then 1)F Ty else £f)

* f2 ,

and then sinplifying it to

FO <= if p then lelfj else f2

Thus, we obtain the functional schema S'B' which is clearly in standard form and equivalent to 333

t <= '
Bl <= if p then lelfB else f2

FZ'L <= if p then F:I'_f3 else fh

r—-r— rr— r—r r——

r——

r—

V. Freedom Ol runcuional Schemas

A functional schema S is said to be free if for every Herbrend interpretation ¢ of s the computation of

(8,8*) does not test 8 predicate with the same term (from D*) nore than once.

Examples :
1. The functional schema S| (Example 1 above) is clearly free.
2. The functional schema 5, (Exanple 2 above) is not free, since there is sHerbrand interpretation * for
which the conputation of (82,3*) is of the form
(a) (v)
Fo(x) = Fo(Py(£(0)) = Fo(£,(x) ~ £,(£,(x) -0 .
Predicate p tests term fl(x) at both steps (8) and (b).
3. The functional schema s5 (Example 3 above) is not free, since there is 8 Herbrand interpretation & for
which the computation of (SB,J*) is of the form

(2) (»)
Fo(x) nd fl(Fl(x)) - fl(Fl(fj(x))) = eee e

Predicate p tests term x at both step6 (a) and (b).

There is 8 crucial difference between the non-freedom demonstrated in the functional schema S, and that of 85 .
I'n Example3 the non-freedom results fromthe substitutions at step (b) for the function variable Py which resul ted
fron the substitution at step (a). In Exanple 2 the non-freedau results from the substitution at step (b) for the
function variable Fy which was already present before step (8). Note that in this case the function variable F
substituted for at step (8) produce6 the identity function. This will always be the case when non-freedom of the
second type occurs.

Functional schemas in standard form camnot have non-freedom of the first type but may have non-freedan of the
second type. Thus, by bringing a functional schema to standard form we always eliminate any non-freedan of the first
type (but unfortunately preserving any non-freedom of the second type). Since the second type of non-freedan invol ves
the identity function, it follows that any functional schema not containing | can be made free by putting it into
standard form

Al'though 8 large class of functional schemas containing | can still be translated to equivalent free functional

schemas, t hi s cannot be done in general as follows from

THEOREM 2: The non-free schena sl+ where

Fy <= if p then FF,f else |

Fl<=gqthmfelse1,

has no equivalent free functional schena.

Pr oof : Consider the following two fanilies {J;] and {ﬂ;} , N > 1 of Herbrand interpretations, where

p(fi(x)) =T iff i<n
s

t

af @) =1 iff i fn

p(etx) = T iff i <n

%

A @) =T for alli

Note that two corresponding interpretations o* and i differ by Only one value, that of a(fx)) . It is clear
that val(s,s%) = P(x) and val(s,a%) = £°(x) for all n >1.
5

Suppose there exists 8 free functional schema G in standard form that'is equivalent to 8, - W shall derive
2n

8 contradiction by showing that there exists 8 positive integer ng for which w_;l(c,u;o) £F L °(x) .
Let n be an arbitrary positive integer. |If we apply interpretations i and wr to G we must reach in

both cases a termof the form an(rn(x)), since for ri(x) , 1 <n, G cannot distinguish between 8 and Lol
Since for o this termnmust produce f"(x) , it follows that every synmbol in o is a function variable thet

'collapses' to identity for predicate values determned by S for the term r“(x) . Thus, since Gis free and

no predicate in G can test under interpretation g the term f"(x) twice, the nunber of synbols in a o can be

no more than the number of distinct predicate constants {pil in G .

Therefore, there nust exist two distinct positive integers nl and n, "1"“2* such that o is

1

identical to a. By definition of [u;;] , the continuation of the computation of a (f 7(X)) wunder #* s

! 1 "1

" 2n
identical to that of a (f “(x)) under k*ne. Therefore, since n, £, , either E(G,yg YA l(x) or
1

2n

val(G,\%) £f 2(x) . Contradiction.
2 QED

Despite the above result, we still have

THEOREM 5. |t is decidable whether a functional schema is free or not.

Proof (sketch): The proof consists of showing that a functional schems S is non-free if and only if non-freedan

oceurs in 8 canputation under sane Herbrand interpretation within a number K of steps, where K depends only on S

The decision method is then to explore all the different ways in which canputation can proceed for K steps under

any llerbrand interpretation. Since there are 8 finite nunber of such ways it is possible to decide whether or not
non-freedom Wi || ever occur.
V¥ can assume that no function variable in Sis sinply defined by the term!| , since such function variables

ovbe removed Wi thout affecting freedom in any way.

|f non-freedom occurs it will be of the first or the second types. It can easily be shown tmt if non-freedan

of the second type is ever to occur in S, then for some Herbrand interpretation the functional schema nust have a

subcanputation of the form
(a) (v)
- TF, F. ...F, 7. - 1FJ ...szfc - TE T e

Jrn Im-1 1 m m

wher e T is a'constant termand m< n+l (n is the nunber of distinct predicate constants in Ig .} Non-freedom

occurs bhetween steps (a) and (b), i.e., at (b) sane predicate constant is testing % which al so tested T, at
step (a). Note that F:J ,...,Fj all nust collapse to identity for T, under this interpretation.

1 m |

Let us assunme that the earliest occurrence of non-freedom, i n any computation, is of the second type, and

results from a computation oOf rFJ . ..grc as above. |f it takes J steps to get rFJ oy F 1 then all
m 1

1

m
computations of S are free for at least their first J steps. These initial computations therefore result from

all possible substitutions, analogously to the rightnost derivations of 8 grammar. W can use the following easily

proved result of Formal Language Theory to show that J is bounded.
In any context free grammer, let S 5 ogy be the shortest rightnost derivation of a sentential form containing
a given substring B (of termnals and non-terminals) of length m, wth some terminal string on its right (i.e.,

18 a terminal string). ‘Then this derivation has no nmore than m 1M steps where:

I 18 the nunber of non-termnals in ¢,

Mis the maxi mal number of non-terminals on the righthand side of any production of G, and
N is the upper bound on the minimum number of steps needed for each non-terminal of Gto produce a terninal

string, if any; (i.e., every non-terminal of G can generate 8 terninal string, if at all, within N Steps).

Simlarly defining L, M and N for schema S gives us 8 bound on J depending only on S and M.
Since m< nl we have a bound Kon the first occurrence of non-freedan if such an occurrence is of the second
type. It can be easily shown that any non-freedan of the first type nust also be discovered within K steps, and
hence the nmethod of exploring the initial segments of all possible cauputations can decide whether non-freedom
(of any type) is present.

QE.D.

VI. =quivalence of Free Functional Schemas

THEOREM 4: |t is decidable whether or not two free functional schemas are equivalent (for every interpretation).

Proof: Suppose we are given two free functional schemas S and §' . Since the translation of functional schema6
into standard form never introduces new non-freedom, We can assume without |oss of generality that S and S* are
in standard form

W construct 8 Deterministic Push-Down Automaton (DPDA) A , whose input tape is a representation of some Herbrand
interpretation and which simulates the canputation of S and s* under this interpretation. A accepts an input
tape if and only if S and S' are inequivalent under the corresponding interpretation. Since it is decidable
whet her or not the |anguage accepted by a DPDA is enpty (see, for exanple, Hoperoft and Ullmen [1969]), it fol | ows
that the equival ence problem for free functional schemas is decidsble.

The construction of A nmakes use of sane ideas devel oped by Rosenkrentz and Stearns [1970] (see al so Korenjak
and Hopcroft [1966]).

Suppose S and S are n predicate constants PysPys e osBy - The input al phabet consists of words of length
n over {T,F}vwhere we intend that when A reads such 8 word (input synbol), the i-th letter denotes the current
truth value of B - This requires sone nore explenation.

Each step in the cctnputation sequence of 8 schema for sane interpretation 8 consists of taking the current

term TFch say, and substituting for F, according to the truth values of the predicates applied to 7, .

J
Suppose this substitutes some term 1'F3fk for F.j Then, at the next step, to substitute for F!J, we need only
know the truth values of the predicates applied to 8. i.e., the current truth values. At each step we need
only know the current truth values, for example in this case the truth values of the predicates for .. 14, £E

will not affect the canputation in any way. Each interpretation, by specifying 8 cunputation, has a corresponding
sequence of n-tuples over {T,F} ; and vice-versa, each sequence of n-tuples over {T,F} , by specifying a computation,
gives the truth values of the predicates for certain constant terms and therefore indicate a set of interpretations,

all giving this conmputation. Hence we can represent interpretations by sequences of n-tuples over {T,F}, which is
what @ use as input tapes to our automaton A .

To sinulate the joint action of S and 8* for a given Herbrand interpretation, we |let A have a_two-track
push-down stack. Each track will hold 8 nodified version of the current termin the conputation sequence of the
correspondi ng scheme under the given interpretation.

The nodification of the conputation terms is such that if S and St are equivalent, both tracks are of the
same | ength during corresponding cauputations of S and s*. This enables us to put both tracks in a single
push-down stack. To understand this nodification we introduce the notion of the *thickness' T(1) of a term=t

(that does not contain F_), nanely the length of the shortest possible constant term coamputable fran t for

some Herbrand interpretation. For free schemss, T(t T(Tl) + T(vy) , since no decision made while

%) =
computing T, Ny af fect the freedom of choice in conputing L The required nodification of a term

to give its stack representation is to make T(Fi) copies of each function variable . Thus the length of

stack representing term tis T(t) . Note that if the corresponding terms in the canputation of two equivalent
7

functional schemas are 7, end 1, , t hen T(‘rl) = T(-re) ; so the nodified ternms have the required property. To
erase a function variable Fi from such a stack, the automaton A will in fact erase T(Fi) copi es of F, whi ch
. is 8 feasible action of a nulti-state DPDA
' The only problemthat nmay arise is that it is possible that T(Fi) =0 , which is the CaS€ when the definition
= of Fy contains | . In this case we would like to add F to the preceding stack position and hence not increase
5 the length of the stack. Note that if, for the next function variable FJ‘ ., we have again T(Fj) =0 F, will
L also be added to the same stack position; and so on. However, for free functional schemas the number of function
v-risbles we have to add to the same stack position will never exceed the number n of predicate symbolz. This is
i, because there can never be more than n successive function variables collapsing to | (otherwise some predicate
e woul d be tested MOIE than once on the same term. We therefore can resolve the above difficulty by making each
; position in & track wide enough to hold n+l ordered symbols. Then synbols of thickness zero are witten on the
\ preceding position, after the other synbols already residing there. In order to make no exception for the bottom
position of the stack, we may agree to test the equival ence of ¥, and £y instead of Fy and FE,
The behavior of the DPDA A is as follows.
~— For each input symbol, A sinulates all the possible actions of Sand S . |If the topmost letter of the
. corresponding track is a function constant, no change is made. Qtherwise, it MUST be a function variable F, and
we nodify the top of that track according to the termin the definition of F selected by the current input synbol.
- These actions will terninate either with some new stack-trackwith a_function constant at the top or ®_ will be
: encountered. The crucial point is that for free functional schemas in standard form the variation that occurs during
- these actions in the stack is bounded and can be tenporarily remenbered in 8 finite control until both operations
. for S and 8' are completed.
Before moving to the next input letter, A now proceeds 8s follows:
~ (1) If F_ is encountered for both tracks, we pass to a rejecting state, (i.e., S and S are equivalent
under the given interpretation).
- (41) If we encounter F for one track and not in the other, we pass to an accepting state (i.e., S and S
are inequivalent for sone Herbrend interpretation under which the other track goes to a constant term.
(iii) Il the two tracks are not of the same | ength, we pass to an accepting state (i.e., S and S' are inequival ent
-~ for some Herbrand interpretation under which the shorter track produces its shortest constant term.
(iv) If the two function constants at the top of the two tracks are different, we pass to an accepting state.
. (v) Ctherwise, (i.e., ssne length tracks with the seme topnost function constant) we renove the topnost letters.
. If both stacks are still non-enpty, we nove to the next input synbol, otherwise both tracks are empty and we
: pass to 8 rejecting state.
-
Thus the two given free functional schenas S and S are equivalent if and only if the DPDA A accepts no
, input tapes, which is a known decidable problem
(- QE.D
Example h: Consider the following two free functional schenas:
~ Sy Fy <o £,F5F f)
F) <= if p, then F.f, else |
. F, <= if p, then F,f, else |
F; <= if p, then F,F)f, else |
-~ Fy <= if p, then F\F,f, else f‘3
8
o

R T

. = w, |
e 1‘0 ~= p K o*o

and F. , F

1 2,FjandFka.reasms

5 -

T(F;) = F,) = T(Fj) =0, ™F) =1, ad T(Fo) = T(F(')) =2,

This inmplies, for example, that the terns FR, o BFf, and f.F.F.f_ would be stacked, respectively, as

3312
foll ows:
f, £, f,
Fh Fth fBFBFl
B
o

W illustrate now the behavior of the DPDA A sinulating the joint operation of s5 and S¢ for any input

tape starting with (T,T) , (FF), (T,T),

input(T,T)
(1)

input (F,F remove f input (T,T) i i
put (F, F) % f} 3 > rg g(%t‘lang
(3) (%) (5) (6)
f £ fif

Since the input elenent indicates that both n and v, are false at step (3), we have by definition that

F, = F, = F3 =1 and F) = f3 . Therefore both terms f:_,)F:_,)Fl and F\F, reduce to f

3 Note that we shall get

the same sequence of stacks for any input tape for which the second element is (F,F) .

Acknowl edgment: W are indebted to Mke Paterson for his critical reading of the manuscript and subsequent hel pful

suggestions. Mke proved independently that the equivalence problemis decidable for the class of all schemas

without 1 .

Ref erences
J. W De-Bakker and D. Scott [1969). A Theory of Programs. Unpublished meno.

J. E. Hoperoft and J. D. Ullman {1969]. Formal Languages and Their Relation to Automata. Addison-Wesley.

Y. |. lanov [1960). "The Logical Schemes of Algorithms". In Problens in Cybernetics, Vol. 1, Pergamon Press,
New York, pp. 82-1ko.

A J. Korenjak and J. E. Hoperoft[1966]. Sinple Deterministic Languages, IEEE 7th Annual Synposium on Switching
and Automata Theory. pp. 36-46.

D, C. Luckham, D, M R Park and M S. Paterson (1970]. "On Formalized Computer Programs”. Journal of Conputer
and System Sciences, Vol. 4, pp. 220-249.

J. McCarthy [1963]. "A Basis for a Mathematical Theory of Computation". |n Computer Programming and Fornmal Systems,

North-Hol | and, Ansterdam pp. 33-70.

D. J. Rosenkrantz and R E. Stearns [1970]. "Properties of Deterministic Top-Down Grammers". |nformation and
Control 17, pp. 226-256.

J. D Rutledge {1964}, "On Ianov's Program Schemata". J. ACM 11, 1, pp. 1-g.
9

