
STANFORD ARTIFICIAL INTELLIGENCE PROJECT .
MEMO AIM-148

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-37

DECIDABLE PROPERTIES OFMONADIC FUNCTIONAL SCHEMAS

BY

EDWARD ASHCROFT

ZOHAR MANNA

AMIR PNEULI

JULY 1971

,

C O M P U T E R S C I E N C E D E P A R T M E N T .

STANFORD UNIVERSITY

L

MEMO AIM-144

DECIDABLEPROPERTIES OFMONADIC FUNCTIONALSCHEMAS

EDWARD ASHCROFT ZOHARMANNA AMIRPNUELI
Computer Science Dept. Computer Science Dept. Applied Mathematics Dept.
University of Waterloo Stanford University Weizmann Institute
Waterloo, Canada Stanford, California Rehovot, Is?nQ?l

Abstract: We define a class of (monadic) functional schemas which

properly includes rIanov* flowchart schemas. We show that the

termination, divergence and freedam problems for functional

schemas are decidable. Although it is possible to translate a

large class of non-free functional schemas into equivalent free

functional schemas, we show that this cannot be done in general.

We show also that the equivalence problem for free functional

schemas is decidable. Most of the results are obtained from

well-known results in Focal Languages and Automata Theory.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U. S. Government.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).
A preliminary version of this paper was presented at the International
Symposium on the Theory of Machines and Computation (Haifa, Israel),
August 1971.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: f'ull size copy, $3.00; microfiche copy, $.95.

i

i

DECIDABLE PROPERTIES OFMONADIC FUNCTIONALSCHEMAS

EDWARDMHCROFT ZCHARMARNA
Canputer Science Dept. Carrputer Science Dept.
University of Waterloo Stanford University
Waterloo, Canada Stanford, California

AMIRPNURLI
Applied Mathematics Dept.
Weismann Institute
Rehovot, Israel

I. Monadic Functional Schemas

An alphabetCs of a (monadic) functional schema S consists of one individual variable x , a finite set of

raoxdic function variables IFi} (with a designated initial function variable Fo) , a finite set of monadic PvY?~G.

constants {fi) , and a finite set of monadic predicate constants Cpi] . Note that individual constants are not

allowed.

Atermover ZS is any term in the normal sense constructed from the monadic function variables [Fi) , monadic

function constants and the variable x , e.g., fl(F3(Fo(f2(x)))I -A conditional term over Rs is any finite

expression of the form

g p,(x) * Tl * ?2)

-e pi is any predicate constant of ES , and ?1 and '2 are any terms or conditional terms over cs

A definition of Fi over cs is of the form

Fi(x) <= ? ,

where ? is any term or conditional term over Cs . A (monadic) functional schema S (over an alphabet Cs)

consists of a finite set of definitions over Cs , one for each function variable Fi in Cs . Whenever the special

function variable Fm is used, its definition is considered to be F-(x) <= F-(x) . This definition is usually

anitted.

Eksqple 1: Let us consider the functional schena Sl :

FO(x) <= g p,(x) then if p,(x) s F,(x) else Fl(fl(x))- -

else x

Fl(x) <= g p+x) g Fo(f2(x)) else fl(x) .

Since we are using a very restricted alphabet, parentheses and the individual variable x may be anitted without

causing any confusion. Therefore the functional schema Sl can be rewritten as:

F. <= g pl then if p2 then F- - else Flfl

else I

Fl <= if p s Fof2 else fl ,

where I stands for the 'identity function'.!!I

An interpretation 3 of a functional schema S consists of:

1. a non-empty set of elements D (called the danain),

2. an element t
0

of D used as the initial value of x , and

3. assignments to the constants of Es :

(1) a total

(ii) a total
monadic function (from D into D) for each function constant fi '

monadic predicate (frun D h-t0 [T,F)) for each predicate constant

and

it
J It is worth noting that most of the results in this paper would be trivial if we did not allow the 'identity

function'.

1

For a given interpretatia 9 , the pair (S,J) , called a functional program, can be canputed by evaluating

F. with input 6, in the usual way (see McCarthy [1963]). The canputation either (I) terminates yielding an

elenent of D denoted by val(S,J) , or (ii) diverges (i.e., does not terminate) in which case val(S,S) is said

to be undefined. The method of canputation is described more fully later for special types of interpretations

called 'Herbrand interpretations'.

A functional schema S is said to terminate/diverge if for every interpretation 9 , val(S,d) is

defined/undefined. Two functional schema6 Sl and S2 are said to be equivalent if for every interpretaticn 9

either both s(Sl,9) and &S2,cp) are undefined or both are defined and s(Sl,J) = &(S2,9) .

The same class of functional schema6 has been discussed by DeBakker and Scott [1969].

It is straightforward to show that every functional schema in which any term contains at most one function

variable, occurring on the left-hand side of the term (as in Example 1 above), can be translated to an equivalent

'Ianovt flowchart schema (Ianov [19&J], see also Rutledge [19&l). However, such simple functional schema6 as

F. <= c p e I else flFof2

have no equivalent Isnov flowchart schema. Hence, the results in this paper generalize known results about Ianov

flowchart schanas.

II. Herbrand Interpretations?I

A Herbrand interpretation # of a functional schema S consists of:

1. The danain D* which is the set of all expressions "?c" , where rc is a constant term constructed from the- - -

individual variable x and the function constants fi of cs , e.g., "x" , "fl(x)" , "f2(fl(x))" ;

2. The C%pression "x"cD* used as the intial value of x ;

3. Assignments to the constants of Cs :

(I) For every function constant fi in cs , we assign the total function mapping every expression

"T "CD* into the expression "fi(rC)"cD* ,
C

(ii) For every predicate constant pi in Cs , we assign sane total predicate over D* , i.e., for every

T
CD* the value of pi("lc)o is either T or F .

Note that all Herbrand interpretations of a given functional schema differ only in the assignments to the predicate

constants. Henceforth we anit the quotation marks whenever this causes no canfusion.

The caxputation of (S,@) is best described by a (finite or infinite) sequence of terms Czi . The first

term CL0 of the sequence is FO(x) . In general, suppose 01~ (n 2 0) contains the sub-term Fi(E) where (ED* ,

i.e., Fi is the right-most function variable in an . Then aHl is obtained by substituting a term 7 for

Fi(2) where T is obtained as follows. First x is replaced by 5 in the definition of Fi , and then the

term '5 is chosen fran this definition using the values of p,(C) supplied by the interpretation of the predicate

constants p
j

. The canputation terminates as soon as we reach a constant term 7c . Then v&1(S,9*) = rc .

Herbrand interpretations are important because many properties of functional schema6 can be described and proved

just by considering Herbrand interpretations rather than all interpretations. For example,

(1) a functional schema terminates/diverges (under every interpretation) if snd only if it terminates/diverges

under every Herbrand interpretation;

(ii) two functional schema6 are equivalent (under every interpretation) if and only if they are equivalent under

every Herbrand interpretation.

*
J Herbrand interpretations are identical to the 'free interpretations' of Luckhsm, Park and Paterson [lg'i'o].

2

-

III. Termination and Divergence of Functional Schenas

We show that

!CHEGRm 1. It is decidable whether or not a functional scheua tenntites or diverges (for every interpretation).

Proof: The proof depends on the well-known results in Fozmal Language Theory that it is decidable for any context-

free grananar whether or not all (rightmost) derivations are finite and whether or not all (rightmost) derivations

are infinite.

For this purpose we associate with every functional schema S a cont.&-free grammar Gs such that:

there is a one-to-one correspondence between the set of all computations of S for all Herbrand interpretations,

and the set of all (rightmost) derivations of GS . Furthermore, a cauputation of S diverges if and only if the

corresponding derivation of GS is infinite.

Given a functional schema S with n predicates pl,p2,...#pn , function variables {Fi} and function

constants If,} , we define Gs as follows:

1. The non-terminals are of the form

[wb' Fk>wa 1 Fk+'i) and wa,wbcw 9

where W is the set of all strings of length n over -{T,F) . The intuitive meaning of [wb,Fk,wa] is that

it will generate all possible constant terms 7c such that %c is canputed by S starting fran Fk(x) ,

under sane Herbrand interpretation for which the values of pl,...,pn for x are wa and for 7c are wb .

In addition, we have a special initial non-terminal A .

2. The terminals are the function constants {f,) .

3. The productions are obtained from S as follows:

(I) A 4 [wb,FO,wa] for all wa,wbcW .

(ii) For every non-terminal [wb,Fk,wa] we add productions as follows:

Locate in definition of Fk that term which is selected by wa . Let the term be

am . . . a2 al

where each ai is either a function variable or a function constant. We construct all productions of

the form

bb,Fk,Wal + ~wb~am~wm-ll~wm,l~am~l~wm-2]. . l ☯w2,a2,wll☯wl,al,wal where w1jw2je l l jwmsl EW)

after replacing each [w,CXi,w'] , where ai is a function constant, by ai .

In the special case where the term is I , if wa # wb we generate no production, whereas if wa = wb

we generate the single production

ha'Fk>Wa] + A (A is the empty word).

Finally, we go through Gs and repeatedly remove all productions containing some non-terminal which is not the

left-hand side of any production and all productions in which the non-terminal on the left-hand side cannot be

reached fran A .

OS now clearly has the required properties.

Q.E.D.

IV. Functional Scheaas in Standard Form

We introduce now an interesting subclass of functional schema6 which has a special syntactic form. This form

is relevant to our later discussion.

A functional schema S is said to be in standard form if- -

1. Every conditional term in S is of the form

if pj g71 er2

where 7 1 and 'I 2 are distinct (i.e., there are no 'redundant' tests) and each of '1 and 72 is of one of

the following forms:

(4 a conditional term not containing pj (i.e., there are no 'redundant' terms),

(b) F, >

Cc) 1 , or

(d) a term in which F03 does not occur and the rightmost symbol is a function constant.

2. Every definition in S (except for F,) contains a conditional term.
-_

3. No function variable in S always diverges (i.e., no matter which function variable in Cs is taken as the

initial function, the schenas do not diverge), except for F, and F. if F. <= F, .

Note that our definition of standard form has the flavor of Greibach Normal Form in Formal Languages Theory.

'The interest in this form arises from the fact that every functional schema can be effectively transformed to an

equivalent functional schema in standard form. This is done-easily by first recognizing all 'divergent' function

variables (using the technique described in the previous section) and replacing all terms in which they occur by F, .

Then we repeatedly replace every function variable occurring as the rightmost symbol of a term by its definition,

applying straightforward simplifications, as illustrated in Exsxple 3 below.

w h e r eBceur@le 2: The functional schema S2

FG <= if p then FGFlfl else f2

Fl <= if p s Flf3 e I ,

is clearly in standard form.

Exsmple 3: The functional schema S3 where

FG <= g p B flFl else f2

Fl <= g p then Flf3 else f,+

is not in standard form because of the term flFl . This term can be removed by first replacing Fl in

its definition to obtain:

FG <= if p then if p ts flFlf3 e flf4- -

* f2 ,

and then simplifying it to

FG <= if p G flFlf3 else f2 .

Thus, we obtain the functional schema Sf ,
3

which is clearly in standard form and equivalent to S3 :

FA <= if p ta flFif3 e f2

Fi <= Ls p then Fif3 else f4 .

flF1 by

v. Freedun or runc'cio11(u kznem86

A functional schem8 S is said to be free if for every Herbrand interpretation fl

(S,P) does nOt test 8 predicate with the 6ame term (fran D*) more than once.

Examples :

1. The functional When8 Sl (Ekample 1 8bOVe) is clearly free.

2. The f'unctional schema S2 (Example 2 above) is not free, since there is 8 Herbrand

which the computation of (S2,@) is of the form

(4 (b)
Fob) 4 Fc(Fl(fl(⌧))) - F&(⌧)) -e f,(f+)) ..- l

of s the canputation of

interpretation fl for

Predicate p tests term fl(x) at both steps (8) and (b).

3. The functional schema S3 (Ekample 3 above) is not free, since there is 8 Herbrand interpretation fl for

which the ccmputation of (S3,9*) is of the form

(4 (b)
F&d -, fl(Fl(x)) - fl(Fl(f3(x))) -, .a. .

Predicate p tests term x at both step6 (a) and (b).

There is 8 cruci8l difference between the non-freedan dWXstr8ted in the functional schema S2 and that of S3 .

In Exsmple 3 the nOn-freedan results from the substitutions at step (b) for the function variable F1 which resulted

from the substitution at step (a). In Example 2 the non-freedau results fran the substitution at step (b) for the

function variable FC which w8s already present before step (8). Note that in this case the function variable F1

substituted for at step (8) produce6 the identity function. This will always be the case when non-freedom of the

second type occurs.

Functional schemas in standard form cannot h8Ve non-freedan of the first type but may have non-freedan of the

second type. Thus, by bringing a functional schema to standard form we 8lw8ys eliminate 8ny non-freedan of the first

type (but unfortunately preserving any non-freedun of the second type). Since the second type of non-freedan involves

the identity function, it follows that any functional schaaa not containing I can be made free by putting it into

standard form.

Although 8 large class of functional schanas containing I can still be translated to equivalent free functional

schemes, this cannot be done in general as follows frcm

THEOFW 2: The non-free schema S4 where

FC <= if p then FIFCf else I

F1<=ifqthen f*I ,

has no equivalent free functional schema.

Proof: Consider the following two families {q) and wn} , n ,> 1, of Herbrand interpretations, where

p(fi(x)) = T iff i<n

dg=

d(x)) = T iff i # n

q=

C

p(fi(x)) = T iff i <n

d(x)) = T for 8U i .

Note that two corresponding interpretations q and 5 differ by Only one value, that of q(fn(x)) . It is clear

that ml(s4,9;) = P(x) and ~(E$,&$ = f2"(x) for all n ,>l .

5

Suppose there exists 8 free functional schema G in standard form that.16 equivalent to S,+ . We shall derive

8 COntr8diCtiOn by showing that there exists 8 pot3itiVe integer no for which val(G,q) # f"'(x) .
0 .

Let n be an arbitrary positive integer. If we apply interpretations s and $$ to G we must reach in

both cases 8 term of the form a,(f"(x)) , Since for fi(x) , 1 <n , G cannot distinguish between @n and q .

Since for q* this term must produce f"(x) , it follows that every symbol in an is a function variable that

'col18p6es1 to identity for predicate values determined by #n for the term p(x) . Thus, since G is free and

no predicate in G can test under interpretation % the term f"(x) twice, the number of symbols in un can be

no mrc than the number of distinct predicate constants hi) h Go

Therefore, there must exist two distinct positive integers nl and n2 , n1 # n2 , such that an is

identical to a . J3y definition of [&+$, the continuation of the ccmput8tion of anl(f"1

"2
(x)) unde: fl is

"1

identical to that of "2

2n2

a%(f (x)) under 3P . Therefore, since nl # n2 , either
"2

!+(G,q) # f2n1(x) or
1

&G,q,) f f (x) . Contr8diction.
L Q.E.D.

Despite the above result, we still have

THEORE 5: It is decidable whether a functional schema is free or not.

Proof (sketch): The proof consists of showing that a functional schem8 S is non-free if and only if non-freedan

OCCUTS in 8 canputation under sane Herbrsnd interpretation within a number K of steps, where K depends only on S

The decision method is then to explore all the different ways in which canputation can proceed for K steps under

8ny Herbrand interpretation. Since there are 8 finite number of such ways it is possible to decide whether or not

non-freedan will ever occur.

We can assume that no function variable in S is simply defined by the term I , since such function variables

CM be removed without affecting freedan in any way.

If non-freedan occurs it will be of the first or the second types. It can easily be shown tPat if non-freedan

of the second type is ever to occur in S , then for sOme Herbrand interpretation the functional schema must have a

subcanputation of the form

(4 (b)
. . . - rFjmFjm-l...Fjl?c 4 rFjm...Fjbc 4 . . . - TF~~T~ 4 0.. ,

where r c is a‘constant term and m _< n+l (n is the number of distinct predicate constants in Cs .) Non-freedom

occurs between steps (a) and (b), i.e., at (b) sane predicate constant is testing TV which also tested ?c at

step (4. Note that F. ,...,F.
Jl Jm-l

all must collapse to identity for ~~ under this interpretation.

Let us assume that the earliest occurrence of non-freedan, in 8ny COmputation, is of the second type, and

results frCm a COfnpUtatiOn of TF

jrn
. ..F T

jl ' 8s 8bove*
If it takes J steps to get TF . ..F T , then all

jrn jl '
canputationo of S are free for at least their first J steps. These initial canputations therefore result from

8Jl possible substitutions, analogously to the rightmost derivations of 8 grsamn8r. We can use the following easily

proved result of Formal Language Theory to show that J is bounded.

In any context free gramn8r, let S f c@r be the shortest rightmost derivation of a sentential form containing

a given substring g (of terminals and non-terminals) of length m , with scme terminal string on its right (i.e.,

1s a terminal string). Then this derivation has no more than m I&P4 steps where:

1, lo tlic number of non-terminals in ti ,

M is the maximal number of non-terminals on the righthand side of any production of G , and

N is the upper bound on the minimum number of steps needed for each non-terminal of G to produce a terminal

string, if any; (i.e., every non-terminal of G can generate 8 terminal sizing, if at all, within N Steps).

Similarly defining L, M, and N for schema S gives us 8 bound on J depending only on S and M .

Since m s n+l we h8Ve a bound K on the first occurrence of non-freedan if such an occurrence is of the second

type. It can be easily shown that any non-freedan of the first type must also be discovered within K steps, and

hence the method of exploring the initial segments of 8l.l possible cauputations ten decide whether non-freedom

(of any type) is present.

Q.E.D.

VI. '33uivalence of Free Functional Schanas

THEORIM 4: It is decid8ble whether or not two free functional schema8 are equivalent (for every interpretation).

Proof: Suppose we are given two free functional schenas S and S' . Since the translation of functional schema6

into standard form never introduces new non-freedcm, we can assume without loss of generality that S and S' are

in standard form.

We construct 8 Deterministic Push-Down Autanaton (DADA) A , whose input tape is a representation of some Herbrand

interpretation and which simulates the canputation of S and S' under this interpretation. A accepts an input

tape if and only if S and S' 8re inequivalent under the corresponding interpretation. Since it is decidable

whether or not the language accepted by a DPDA is empty (see, for example, Hopcroft and Ullman [lg@]), it follows

that the equivalence problem for free functional schemas is decidable.

The construction of A makes use of sane idea8 developed by Roaenkrantz and Stearns [lgO] (see also Korenjak

and Hopcroft 119661).

Suppose S and S' are n predicate constants p1,p2,...,pn . The input alphabet consists of words of length

n over {T,F} hw ere we intend that when A resds such 8 word (input symbol), the I-th letter denotes the current

truth value of pi . This requires some more explenation.

Each step in the cctnputation sequence of 8 schema for sane interpretation 9 consists of taking the current

term, TF T
JC

say, and substituting for F
J

according to the truth values of the predicates applied to Tc .

Suppose this substitutes sOme term TUFTS
ilk

for F
j l

Then, at the next step, to substitute for F! , we need only
J

know the truth values of the predicates applied to fkTc , i.e., the current truth values. At each step we need

only know the current truth values, for exsmple in this case the truth values of the predicates for flTc , fl # fk ,

will not affect the canputation in any way. Each interpretation, by specifying 8 cunputation, has a corresponding

sequence of n-tuples over {T,F] ; and vice-versa, each sequence of n-tuples over {T,F') , by specifying a computation,

gives the truth values of the predicates for certain constant terms and therefore indicate a set of interpretations,

all giving this computation. Hence we can represent interpretations by sequences of n-tuples over [T,F} , which is

what We USe 88 input tapes to our 8UtCm8tOn A .

To simulate the joint action of S and St for 8 given Herbrand interpretation, we let A h8Ve a two-traCk

push-down stack. Each track will hold 8 modified version of the current term in the computation sequence of the

corresponding schena under the given interpretation.

The modification of the computation terms is such that if S and St are equivalent, both tracks are of the

ssme length during corresponding cauputations of S and Sf . This enables us to put both tracks in a single

push-down stack. To understand this modification we introduce the notion of the *thickness' T(T) of a term T

(that does not contain Fo,), namely the length of the shortest possible constant term canputable fran T for

same Herbrand interpretation. For free schemas, T(T1T2) = T(Tl) + T(T2) > since no decision made while

CCsQUtiIlg T1 may affect the freedan of choice in computing T2 . The required modification of a term

to give its stack representation is to make T(Fi) copies of each function variable Fi . Thus the length of

st8Ck representing term T is T(T) . Note that if the corresponding terms in the canputation of two equivalent

7

functional schemas are ~~ and 72 , then T(I~) = T('r2) ; so the modified terms have the required property. To

erase a function variable Fi from such a stack, the automaton A will in fact erase T(Fi) copies of Fi , which

is 8 feasible action of a multi-state DPDA.

The only problem that may arise is that it is possible that T(Fi) = 0 , which is the case when the definition

of Fi contains I . In this case we would like to add Fi to the preceding stack position and hence not increase

the length of the stack.

also be added to the ssme stack position; and so on. However, for free

Note that if, for the next function variable F . ,J
we have again

functional schemas

T(Fj) = 0

the number of function

F4 will

v-ripbles we have to add to the same stack position will never exceed the number n of predicate symbols. This is

because there can never be more than n successive function variables collapsing to I (otherwise some predicate

would be tested more than once on the same term). We therefore can resolve the above difficulty by making each

position in 8 track wide enough to hold n+l ordered symbols. Then symbols of thickness zero are written on the

preceding position, after the other symbols already residing there. In order to make no exception for the bottom

position of the stack, we may agree to test the equivalence of fFo and fJ?I, instead of FO and FE, .

The behavior of the DPDA A is as follows.

For each input symbol, A simulates all the possible actions of S and S' . If the topmost letter of the

corresponding track is a function constant, no change is made. Otherwise, it must be a function variable Fi and

we modify the top of that track according to the term in the definition of Fi selected by the current input symbol.

These actions will terminate either with some new stack-trackwith 8 function constant at the top or F, will be

encountered. The crucial point is that for free functional schema6 in standard form, the variation that occurs during

these actions in the stack is bounded and can be temporarily remembered in 8 finite control until both operations

for S and S' are ccmpleted.

Before moving to the next input letter, A now proceeds 8s follows:

(0

(ii>

If Fco is encountered for both tracks, we pass to a rejecting state, (i.e., S and S' are equivalent

under the given interpretation).

If we encounter F for one track and not in the other, we pass to an accepting state (i.e., S and S'm

are inequivalent for some Herbrand interpretation under which the other track goes to a constant term).

(iii) II the two tracks are not of the same length, we pass to 8n accepting state (i.e., S and St are inequivalent

for some Herbrand interpretation under which the shorter track produces its shortest constant term).

(iv) If the two function constants at the top of the two tracks are different, we pass to an accepting state.

(4 Otherwise, (i.e., ssme length tracks with the same topmost function constant) we remove the topmost letters.

If both stacks are still non-empty, we move to the next input symbol, otherwise both tracks are empty and we

pass to 8 rejecting state.

Thus the two given free fLUICtiOn8l schenas S and S' are equivalent if and only if the DPDA A accepts no

input tapes, which is a known decidable problem.

Q.E.D.

Fxamplc 11: Consider the following two free functional schemas:

s.:
5

PO <-- fgF3Flf2

F1 <= if p1 then Flf2 else I

i F2 <= if p2 then F2f2 else I

F3 <= if p2 then F3Flf2 else I

F4 <= if pl E F4F2f2 $+ f3

8

i

Here,

P- \=l! F I"6' o 422

and F1, F2 , F3 and F4 are as in S5 .

T(F1) = T(F2) = T(F3) = 0 , T(F4) = 1 , snd T(FO) = T(F&) = 2 ,

This implies, for exsmple, that the terms FoF4f2 , F4F2f2 and f3F3Flf2 would be stacked, respectively, as

follows:

f2 f2 f2

F4 F4F2 f3F3F1

FO

FO

We illustrate now the behavior of the DPDA A simulating the joint operation of S5 and S6 for any input

tape starting with (T,T) , (F,F) , (T,T) , .*. .

FO FA f2 f2
input(T,T)

FO F; ___$
(1)

f3F3F1 F4F2

input(F,F)
-b

(3)

LL-LL

remove fI eb 2

(2)
f f

rejecting

(6)
+ state

Since the input element indicates that both p1 and p2 are false at step (3), we have by definition that

F1 = F2 = F3 = I and F4 = f
3

. Therefore both terms f F F
3 3 1

and F4F2 reduce to f
3'

Note that we shall get

the same sequence of stacks for any input tape for which the second element is (F,F) .

Acknowledgment: We are indebted to Mike Paterson for his critical reading of the manuscript and subsequent helpful

suggestions. Mike proved independently that the equivalence problem is decidable for the class of all schwas

without I .

References

J. W. De-R8kker and D. Scott [lg@]. A Theory of Programs. Unpublished memo.

J. E. Hopcroft and J. D. UlJman [1969]. Formal Languages and Their Relation to AutQnata. Addison-Wesley.

Y. I. Ianov [19CI]. "The Logical Schemes of Algorithms". In Problems in Cybernetics, Vol. 1, Pergsmon Press,

New York, pp. 82-140.

A. J. Korenjak and J. E. Hopcrof't [1966]. Simple Deterministic Languages, IEEE 7th Annual Symposium on Switching

and Automata Theory. pp. 36-46.

D. C. Luckhsm, D. M. R. Park and M. S. Paterson [lg'i'o]. "On Formalized Ccmputer Programs". Journal of Computer

and System Sciences, Vol. 4, pp. 220-249.

J. McCarthy [lg63]. "A Basis for a Mathematical Theory o? Canputation". In Canputer Programming and Formal Systans,

North-Holland, Amsterdam, pp. 33-70.

D. J. Rosenkrantz and R. E. Stearns [1970]. "Properties of Deterministic Top-Down Grsmmars". Information and

Control 17, pp. 226-256.

L J. D. Rutledge [lgGk]. "On Ianov's Progrsm Schemata". J. ACM 11, 1, pp. 1-g.

9

