
SLAC-133
STAN-CS-71-226
UC-32
WISC)

. .

SIMPLE - - A SIMPLE PRECEDENCE TRANSLATOR WRITING SYSTEM *

JAMES E. GEORGE

STANFORD LINEAR ACCELERATOR CENTER
-=. AND

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT No. AT(04-3)-515

July 1971

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22 151.
Price : Full size copy $3.00; microfiche copy $0.95.

“Supported in part by the National Science Foundation, Contract No. 2SFGJ687.

ABSTRACT

SIMPLE is a translator writing system composed of a simple precedence

syntax analyzer and a semantic constructor and is implemented in PL/I. It

provides an error diagnostic and recovhy mechanism for any system implemented

using SIMPLE. The removal of precedence conflicts is discussed in detail with

several examples.

The utilization of SIMPLE is illustrated by defining a command language

meta system for the construction of scanners for a wide variety of command

oriented languages. This meta system is illustrated by defining commands from

several text editors.

. . .
- 111 -

1.

2.

3.

e

4.

5.

TABLE OF CONTENTS

Introduction .

Input Data to Simple’s Executive
. .

Syntax Analyzer and Parser. .

3.1 Definitions and Notation .

3.2 Transforming a Grammar to Simple Precedence

3.2.1 Removing Precedence Conflicts

3.2.2 Transforming a S-Precedence Grammar to Simple
Precedence .

3.2.3 Transformation Examples

3.3 Input Conventions for the Syntax Analyzer

3.4 Syntax Analyzer Output .

3.5 Parser. .

3.5.1 Declarations in the Parser.

3.5.2 Declarations and Initialization Inserted by the Syntax

Analyzer .

3.5.3 Symbol Recognition.

3.5.4 Parsing .

3.5.5 Error Recovery and Diagnostics.

Semantic Constructor .

Possible Extensions .

5.1 Automatic Syntax Correction

5.2 Parser Modification to Allow Simple Manipulation of the

Parsing Stack by the Semantic Procedure

Page
1

5

8

9

10

11

18

18

27

28

29

32

32

34

35

39

42

43

43

43

- iv -

Page
45

45

49

49

50

54

54

55

57

59

61

62

70

75

81

85

89

6. Example Applications of Simple

6.1 Semantic Constructor. .

6.2 A Command Language Meta System

6.2.1

6.2.2

6.2.3

6.2.4

-=.
Bibliography. .

Appendix A. . .

Appendix B. . .

Appendix C. . .

Appendix D. . .

Appendix E. . .

The Model .

The Table Generator.

The Scanner. .

Examples Using the Command Language Meta System

6.2.4.1 WYLBUR Example.

6.2.4.2 CRBE Example

. .

. .

. .

. .

. .

. .

Appendix F. e

AppendixG -..........
e

-V-

LIST OF FIGURES

page
1. SIMPLE block diagram . 2

2. Example SIMPLE application ,’ 3

3. Basic parsing algorithm. 31

4. Symbol recognition. 36

5. Flow chart for LOOK - the get next symbol procedure 37

6. Parser flow chart . 38

7. Command language meta system - table generation 51

8. Command language meta system - scanner. 51
--.

- vi -

1. INTRODUCTION

SIMPLE is a specialized translator writing system designed to aid the im-

plementation of an experimental graphic meta system in PL/I (George 1969 a & b).

Although intended for writing preprocessors for PL/I, experience has demonstrated

that these techniques can be used to implement various specialized languages

(George 1967 a & b; George and Saal 1971).

SIMPLE is composed of three components: an executive, a syntax analyzer,

and a semantic constructor as illustrated in Fig. 1.

The executive reads a block of data (i.e. , variable initialization) and then

passes control to the syntax analyzer and then to the semantic constructor.
--.

The syntax analyzer reads the input syntax and constructs parsing tables which

are then merged as data in a general skeleton parser, in source form (PL/I); this

merged program is a specific parser for the language defined by the syntax and

includes a parser, automatic error recovery and error diagnostics. The syntax

analyzer has two output files: the specific parser, in source form (PL/I), and

diagnostics related to the syntax.

The semantic constructor reads the semantics to be associated with the previous

.
syntax and constructs a semantic procedure compatible with the specific parser; it

also has diagnostic output for errors. The semantic constructor is defined using

the syntax analyzer and a skeleton parser containing a short, hand-coded semantic

procedure.

A language defined using SIMPLE functions is illustrated in Fig. 2. The input

text is processed by the parser which calls the semantic procedure at appropriate

times. The language processor has access to two output files: a source output

and a diagnostic output. Roth of these files are available to the parser and the

-l-

I
. f

DATA L
SIMPLE !

EXEC

*I -.------ lSYNTAX

1lizz-j ANALYZER I
.

DIAGNOSTIC SEMANTIC
OUTPUT - CONSTRUCTOR - SEMANTlCS

I c
I

r-l
!

SPECIFIC
SEMANTIC
PROCEDURE

I53485

FIG. l--SIMPLE block diagram.

I INPUT
STRING

DIAGNOSTIC
\RSER 1 yi OUTPUT

SPECIFIC_ _ _-__ .-
I

I
t 1 S O U R C E I

1 PRC I O U T P U T
I

1534A2

FIG. 2--Example SIMPLE application.

-3-

semantic procedure. A typical application would be to process input text and

generate an equivalent source text (say PL/I) and error diagnostics, if any.

The source output can then be compiled using a standard language processor.

. .

-4-

2. INPUT DATA TO SIMPLE’S EXECUTIVE

The executive program initializes variables to be used by both the syntax

analyzer and the semantic constructor. Any of these values may be changed by

name value pairs appearing in the data file, SYNDATA (the data is read using the

data directed input option in PL/l and, hence, consists of the variable name, an
\

fr=?* and the value as a legal constant in PL/l). The variables are:

NAME TYPE

ERRORSCAN CHAR(2 0)VAR

FILE 1

FILE2

FILE3

FILE4

FILE5

FILE6

FILE7

FILE8

INTEGER

MLIM

CHAR(8)VAR

CHAR(8)VAR

CHAR{ 8)VAR

CHAR(8)VAR

CHAR(8)VAR

CHAR(8)VAR

CHAR(8)VAR

CHAR(8)VAR

CHAR{2 0)VAR

FIXED BIN

DEFAULT

END

SYNTAX

SPARSER

PARSER

PSYNTAX

SYNDATA

SEMANTICS

PSEMANT

SEMANT

INTEGER

20

EXPLANATION

That symbol in the syntax which
is used in error recovery. When
an error is detected when parsing,
all current and future text until
the first occurrence of this symbol
is erased.

Syntax equations input file.

Skeleton parser input file,

Parsing program output file.

Syntax diagnostic output file.

Input file for SIMPLE executive.

Semantic input file.

Semantic diagnostic output file.

Semantic program output file.

That symbol used in the syntax
for an integer.

Maximum number of symbols in
the syntax,

-5-

NAME

MMLIM

NLIM

PARSER-NAME

QUOTES

RLIM

SCAN-START

. SCAN-STOP

SEMANT-NAME

SEND

SEQUENCE

.

SINIT

SSEMANT

TYPE

FIXED BIN

FIXED BIN

CHAR{ 8)

CHAR(2 0)VAR ’

FIXED BIN

--.
CHAR(2 0)VAR

CHAR(2 0)VAR

CHAR(8)

CHAR(2 0)VAR

CHAR@ 0)VAR

CHAR@ 0)VAR

CHAR(2 0)VAR

DEFAULT

20

20 -.

SEMANT

11

8

END

CODE

CODE-OUT

END-SYNTAX

SEMANTICS

*SYNTm

NO-SEMANT

EXPLANATION

Maximum number of non-
basic symbols in the syntax.

Maximum number of
productions in the syntax.

Name to be substituted for
PARSER in FILEB; the
procedure name for the
parser procedure.

That symbol used for quotes
to force the STRING class.

Maximum number of symbols
on the right side in any pro-
duction in the syntax.

That symbol not in the
syntax which will restart
the parsing,,

That symbol in the syntax
which, upon entry into the
parsing stack, causes all
input to be ignored by the
parser until the symbol
after SCAN-START.

Name to be substituted for
SEMANT in FILEB; the
name of the semantic pro-
cedure to be called by this
parser,

Terminator for syntax.

The initial symbol of the
syntax; when it occurs in
the stack, the parsing is
terminated.

Initiator for syntax analyzer.

Indicates no semantics for
this production.

NAME

SSEP

STERM

STRING

SYM(*)

TERMINAL

WORD

TYPE

CHAR(2 0)VAR

CIIAR(2 O)VAR

CHAR(2 O)VAR

CHAR(2 0)VAR

CHAR(XO)VAR
--_

CHAR(2O)VAR

DEFAULT

* -*::-

;
. .

STRING

SYM(l)=‘SEMANT’

SYM(2)=‘CODA’

SYM(J)=‘INTERPRE-
TATIONS’

SYM(4.. .20)=’ ’

END-SEMANTICS

WORD

EXPLANATION

Separator for left-right
sides.

Terminator for syntax
equations.

That symbol in the syntax
used for the string class,

Used for error recovery;
those symbols which are
expected to reside in the
it& position of the parsing
stack.

That symbol used to force
the parsing to be completed.

That symbol used in the
syntax for the WORD class.

A listing of the executive is given in Appendix A.

-7-

3. SYNTAX ANALYZER AND PARSER

A simple precedence syntax analyzer was chosen for its simplicity, power

and availability in a form suitable for modification. The basic analyzer was trans-

lated to PL/l from an ALGOL listing obtained from N. Wirth (Wirth and Weber,

1966 a & b). Many sections were modified to take advantage of features of PL/l.

The changes to the analyzer are:

1, The input section was modified to be free field and to mark productions

with no semantics;

2, Maximum number of right part elements is variable;

3. Three terminal classes are recognized rather than two (this holds in

the parser also);

4. The output section inserts PL/l declarations into a skeleton parser

rather than punching tables.

A complete listing of the syntax analyzer is given in Appendix B.

The skeleton parser is also a translation of an ALGOL parser (Wirth and Weber,

1966a, Shaw 1966) with the following modifications:

1, The parser uses precedence tables rather than precedence functions;

2. Three terminal classes are recognized rather than two;

3. An additional input scanner allows direct code emission independent of

the parsing section;

4. Error recovery and diagnostics are provided and related to the grammar;

5. The semantic procedure is not called for those productions with no

semantics.

Thus the output of the analyzer is a PL/l program containing the parsing tables,

error recovery and diagnostics; a listing of the skeleton parser is given in

Appendix C.
-8-

3.1 Definitions and Notation

The formal definitions are included here for completeness (Wirth and Weber
. .

1966a, Shaw 1966, Feldman and Gries 1967),

Upper case letters, special characters (*, + . O e) or a string of these enclosed

by < and > represent symbols.

Lower case letters represent strings of symbols.

Script letters represent sets.

An individual statement of the syntax is called a production and has a left side

and a right side separated by * :: =lo
--.

Terminal or basic symbols are those which appear only in right sides.

Nonterminal or nonbasic symbols are those which occur in left sides.

A grammar is a set of productions.

A grammar is a simple precedence grammar if:

1.

2.

3.

4.

5.

The productions contain exactly one nonterminal symbol which appears

only as a left side (i. e. , the goal);

All left sides are single nonterminal symbols;

The productions contain a nonempty set of terminal symbols;

No two right sides of any pair of productions are identical;

Between any two symbols of the grammar one and only one of the

precedence relations (; , =, > or no relation) holds.

The precedence relations are defined by:

1. A = B iff there is a production of the form U: := xABy in the grammar;

2. A < B iff there is a production of the form U: : = xAVy and B@‘(V);

-9-

3. A> B iff either

there is a production of the form

U : := xVBy and A&?(V), or

there is a production of the form

U : := xVWy and AL%?(V) and B&?(W),

where,

L!?(U) = @3z(U: := Sz) or (3z(U: := Vz)

and Se 2’(V))

@vJ) = IS 3z(U: := zS) or

(3z(U: := zV) and SE%?(V))

where z may be the null string.

3.2 Transfor,ming a Grammar to Simple Precedence

In many cases, the grammar for a given language must be manipulated

before it is a simple precedence grammar. The problem areas are the

requirement for unique precedence relations between any two symbols of the

language and that no two productions have identical right sides. Within the

literature, many formal properties about precedence languages are discussed

and each uses his own definitions. For presenting these results, the definition

of a simple precedence grammar is given in Section 3.1 and S-precedence is
e

defined by :

Simple precedence = S-precedence plus unique right sides

Some of the formal properties are:

1. Wirth and Weber’s parsing algorithm yields a unique canonical

parse for any sentence of any simple precedence language

(Wirth and Weber 1966a, Shaw 1966).

2. A context free grammar can be transformed to a simple precedence

grammar but the terminal language may be altered (Presser 1968;

Gray 1969; Presser-and Melkanoff 1969).

- 10 -

3. Any context free grammar can be transformed to a S-precedence

grammar, and there is no deterministic parsing algorithm for all

S-precedence grammars (Fischer 1969). The transformation proof

requires Chomsky normal form of a grammar and is not useful as a

practical algorithm.

4. Any context free grammar can be transformed to a S-precedence

grammar without modification of the terminal language (Learner and

Lim 1970; McAfee and Presser 1970). These proofs are different

but both are directly useful as practical techniques.

5. Any context free grammar with unique right sides can be transformed

into-a S-precedence grammar with at most two duplications of any

right side of any production (Learner and Lim 1970).

I had also studied these transformations using methods similar to Learner

and Lim’s but was unable to complete the formal proof (George 1969c). The

proof is short with the proper form but does not lead to a practical algorithm

(Fischer 1969); Learner and Lim’s approach results in a more difficult proof

but yields a practically useful algorithm; it is also intuitively easier to under-

stand.

3.2.1 Removing Precedence Conflicts

Precedence conflicts* can be removed by several means, however the

method presented here will be restricted such that it does not cause a change

in the terminal language or require a change in the associated semantics of

any production of the grammar. The changes of interest are those which could

be incorporated in the syntax analyzer of SIMPLE and be invisible to a user.

*
A precedence conflict means that more than one of the precedence relations

holds between two symbols of the grammar.

- 11 -

From the formal work, this can not always be accomplished for an arbitrary

context free grammar, but if the terminal language is altered or the associated

semantics must be modified, then the user must make these changes before

SIMPLE can be utilized. However, many times the changes required are

significant and the user should be conscious of them.

The techniques presented are intended to be intuitive and easy to under-

stand.

An artificial production is a production with no associated semantics and

only one element on the right side (Shaw 1966, p. 145; also called an inter-

mediate production, Feldman and Gries 1967, p.28).

A left restricted expansion (LRE) of A replaces A in the right sides of

all productions , except where it is the left-most symbol, by the same new

non-terminal Ai and adds the artificial production Ai : : = A to the grammar

(Learner and Lim 1970).

A right restricted expansion (RRE) of A replaces A in the right sides of

all productions , except where it is the right most symbol, by the same new

non-terminal Ai and adds the artificial production Ai : :=A to the grammar

- (Learner and Lim 1970).

Lemma 1: The precedence relation =between two symbols A and B (i.e. A = B)

can be changed to < by a left restricted expansion of B.

Proof: Let A = B, then productions of the form

U . .=. . x A B y exist

By the LRE these become

U ::= x A Bly

and Bl :: = B is added to the grammar

Thus, A = Bl andA< B .

- 12 -

Lemma 2: The precedence relation = between two symbols A and B (i. e. A = B)

can be changed to > by a right restricted expansion of A.

Proof: Let A = B, then productions of the form

U : :=x A B y exist . .

By the RRE these become

U . .=. . XAlBy

and A1 : : = A is added to the grammar

T h u s , A1 = B and A > B.

Lemma 3: The precedence relation c between two symbols A and B (i. e. A < B)

can be changed to > by a right restricted expansion of A.

Proof: Let A. < B, then there exist productions of the form

U : := x A V y and B E 9 (V)

By the RRE these become

U ::= xA1VyandBE9(V)

and A1 : := A is added to the grammar

Thus A1 = V , Al< B and A>B.

These lemmas provide the techniques for removing precedence conflicts

between two symbols; the changes in the grammar do not affect the terminal

language or the associated semantics. The precedence conflicts which can

occur between any two symbols are (=, <I, (=a 1, k, 9 and{=,<, NW

Th 1: The precedence violation pair (=, <) between two symbols A and B

(i. e. A = B and A < B) can be removed by a left restricted expansion of

B (i.e. change the = to < by Lemma 1); however, new violations may be

introduced.

- 13 -

Proof: Lemma 1 for removal of the original conflict.

No left sets are altered by the expansion and some right sets

may have the new symbol Bi included, hence relationships between

symbols other than A, B or Bi are unchanged. The only symbols
. .

whose relationship may cause violations are those adjacent to a

B in the original grammar.

Let the symbol Z occur to the left of B and Y to the right of B in

the original grammar, then

Orig. relation new relation (after LRE)

Z = B Z =Bi Z < B

Z< B Z < B
--.
Z>B Z >B Z > Bi (possible)

B = Y B = Y or Bi = Y &B>Y

B<Y B<YorBi <Y&B>Y

B >Y B >Y

Thus, the conflicts which could be introduced are

B (=, >) Y from productions of the form

U ::=B Yd and W : := e V B k f

and

B (< , >) Y from productions of the form

U : := B T d and Y E 9(T)

W ::=eVBTf and Y C?(T)

One might consider removing the violation pair (=, <) by applying a right

restricted expansion to A (i.e. changing the = to > by Lemma 2 and the

< to > by Lemma 3); however, this leaves the original violation pair between

Ai and B.

- 14 -

Th 2: The precedence violation pair (=, >) between two symbols A and B

(i. e. A = B and A > B) can be removed by a right restricted expansion of

A (i.e. change the = to > by Lemma 2); however, new violations can be

introduced.

Proof: Lemma 2 for removal of the original conflict

No right sets are altered by the expansion and some left sets

may have the new symbol Ai included, hence relationships between

symbols other than A, B or Ai are unchanged. The only sumbols

whose relationships may cause violations are those adjacent to an

A in the original grammar.
--.

Let the symbol Z occur to the left of A and Y to the right of A in

the original grammar, then

orig. relation new relation

A = Y Ai = Y A >Y

ACY Ai < Y A>Y

A>Y Ai < Y orAi = Y andA>Y

Z = A Z =A or Z =Ai&Z<A

Z<A Z < A Z < Ai (possible)

z >A Z>A Z >Ai (possible)

Thus the conflict (=, <) could be introduced between Z and A from

original productions of the form

U ::=d Z A andW ::=e ZAVf.

Th 3: The precedence violation pair (< , >) between two symbols A and B

(i. e. A < B and A > B) can be removed by a right restricted expansion of A

(i. e. change the < to > by Lemma 3); however, new violations can be

introduced.

- 15 -

Proof: Lemma 3 for removal of the original violation.

Second part of Theorem 2 for rest.

Th4: The precedence violation triple (=, < , >) between two symbols A

and B (i.e. A = B , A < B and A > B) can--be removed by a right restricted

expansion of A (i.e. change the = to > by Lemma 2 and the < to > by

Lemma 3); however, new violations can be introduced.

Proof: Lemmas 2 and 3 for removal of the original conflict.

Second part of Theorem 2 for rest.

Th 5: A context free grammar with unique right sides can be transformed

to a S-precedence grammar with at most two duplications of any right side.

Proof: Find all the violations between two symbols A and B.

Case 1: A (=, <) B

Theorem 1 substitutes B1 : : = B and the only B’s remaining are

B1::= B , and

U= BY where y may be null

The only violation which can be introduced is one between

B and C, where C occurs immediately to right of B in some

production.

Case A: B (=, >) C

Theorem 2 adds B2 1: = B and changes U Z := B V y to U :: = B2 V y.

Thus, the only B’s remaining are

B1 ::= B u-h 1)

B2 ::= B (Th 2)

U l l -
. l - B (from original grammar)

The only violations from Theorem 2 involve symbols immediately

to the left of a B after applying Theorem 1, of which there are

none. Therefore, after two levels no new violations will be

- 16 -

introduced. Further, for an expansion to be required for

B, B would have to occur adjacent to some symbol to generate

some precedence conflict; since it does not, only two duplications

are possible.

Case B: B(<, >)C

Theorem 3 adds B2 : : = B and becomes same as Case A.

Case 2: A (=, >) B

Theorem 2 leaves the following productions with A’s

Al::=A , and

U ::= y A

The only violations which can be introduced is one between

A and C where C occurs immediately to left of A.

C (=, <) A

Theorem1addsA2 ::= AandchangesU ::= y AtoU ::= yA2

Thus the only A’s remaining are

Al ::= A (Th 2)

A2 ::= A (Th 1)

U = A (from the original grammar).

By Theorem 1, the only new violations which can be introduced

must occur with a symbol immediately to the right of an A

after the application of Theorem 2; since there are no symbols

of this type, no new violations will be introduced by Theorem 1.

Further, for an expansion of A to be required, A would have to

occur adjacent to some symbol to generate some precedence

conflict; since it does not, only two duplications result.

- 17 -

Case 3: A(<,>) I 3

Theorem 3, then same as Case 2.

Case 4: A (=A ,>) B

Theorem 4, then same as Case 2.

Learner and Lim’s algorithm is recursive, but since the grammars are

finite, the number of duplicates of right hand sides is at most two, I suspect

that the algorithm does not need to be recursive, but perhaps related to the

total number of symbols of the original grammar.

3.2.2 Transforming a S-Precedence Grammar to Simple Precedence

Section 3.2. l-shows how to transform any context free grammar to a

S-precedence grammar. If the transformed grammar is only S-precedence,

it must be transformed to simple precedence before being useable within SIMPLE.

Generally, this requires a change in the terminal language or splitting of

productions and the corresponding change in the associated semantics. These

changes must be specified by the user and an example is given in the next

set tion.

3.2.3 Transformation Examples

1. Violation pair (=, <) (Shaw 1966, example 4 pp. 139-141).

S . . =. . E

E = E + T

E = T

T . . =. . T* F

T . . -. . - F

F ..A.*- (El

F 0’ -. . - <VAR>

The violations are + = < T and (= < E.

- 18 -

For + and T,

+= T results from E::= E+T

+ < T results from E: : = E +T and Tefi’JJ)
. .

Using Th 1, change T to <TT> resulting in the grammar;

S E. .=. .

E ::=E+<TT>

E: := <TT>

<TT>::= T

T: := T * F

T : : = F
--

F: :=(E)

F: := <VAR>

This removes the violation pair (= , <) between + and T, but not

the pair for (and E.

For (and E,

(= E results from F: : = (E)

(< E results from F: := (E) and ECZ(E)

Using Th 1, change E to < EE > resulting in the grammar;

s: := <EE>

<EE>::= E

E: := E+<TT>

E: := <TT>

<TT>: := T

T: := T * F

T: := F

- 19 -

T: := (<EE>)

F: := <VAR>

Which is a simple precedence grammar.

2. Violation pair (= , >). . .

Consider the above grammar modified to be right recursive instead of

left recursive.

S: := E

E: := T + E

E::= T

T::= F * T

T : : = F --.

F::=(E)

F: := <VAR>

the violations are T = > + and E = >).

For the T and +, use Th 2 and change T to <TT >; for the E and), use

T h 2 and change E to < EE >, resulting in the grammar:

S::= <EE>

<EE>::= E

E: := <TT>+E

E: := <TT>

<TT>::= T

T ::= F * T

T: := F

F::=(<EE>)

F : := <VAR.

Now the grammar is a simple precedence grammar.

- 20 -

3. Violation pair (<, >).

Consider the grammar:

N::= R . .

N : :-- S

R::=WATX

s: := Y U B Z

T::= B

U : : = M A

The violation is A > < B.

A <B results from R: : = WATX and Be@T)

A > B results from S: := YUBZ and A@?(U).

’ Using Th 3, change A to C resulting in the grammar:

N R. .=. .

N: := S

C: := A

R: := W C T X

s: := Y U B Z

T : : = B

U :I= MA

Which is a simple precedence grammar. Note that the A in U: := MA was

not changed.

Consider the grammar:

N R. .=. .

N S. .=. .

R::= W A T X

s: := YUVZ -

- 21 -

T::= B

U::= MA

V: := B K

The violation is A > < B.

. .

A < B results from R: := WATX and B@(T)

A > B results from S: := YUVZ and A&?(U) and B&(V)

Using Th 3, change A to C resulting in the grammar:

N R. .=. .

N: := S

C::=A-=.

R : : = W C T X

s: := YUVZ

T: := B

U : : = M A

V: := B K

Which is a simple precedence grammar. Note that the A in U: := MA

was not changed.

4. Consider the syntax for simple assignment statement.

<STAT>::= <VAR> <:=> <EXPR>

<EXPR>::= <EXPR>+ <TERM>

<EXPR>::= <EXPR> - <TERM>

<EXPR>::=- <TERM>

<EXPR>: := <TERM>

<TERM>::= <TERM> X <FACTOR>

<TERM>::= <TERM> / <FACTOR>

<TERM>: := <FACTOR>

-22 -

<FACTOR>::= < FACTOR > * <PRIMARY 7

< FACTOR 7 : : = < PRIMARY 7

<PRIMARY>::=(<EXPR7)

<PRIMARY>::= <VAR7 ..

< PRIMARY 7 : : = <NUMBER 7

The violations are:

<:=> =< <EXPR7

(<= <EXPR7

+ =< <TERM7

= < <TERM7 two cases
--.

X = < < FACTOR7

/ <= < FACTOR7

This example suggests that the symbols which have been replaced must

be recorded to prevent future redundant substitutions.

Using Th 1 repeatedly, the grammar becomes:

<STAT>::= <VAR> <:=> <EXPRA>

<EXPRA>::=<EXPR>

<EXPR7::= <EXPR> + <TERMA>

<EXPR>::= <EXPR> - <TERMA>

<EXPR7::= - <TERMA7

<EXPR>::=<TERMib

<TERMA>::= <TERM7

<TERM>::= < TERM7 x < FACTORA 7

<TERM>: := <TERM7 / <FACTORA

<TERM>::= < FACTORA 7

< FACTORA 7 : : = < FACTOR 7

- 23 -

<FACTOR>::= < FACTOR7 * < PRIMARY 7

< FACTOR 7 : : = < PRIMARY 7

<PRIMARY>::=(<EXPRA>)

<PRIM.ARY>::=<VAR> . .

<PRIMARY 7: := <NUMBER7

which is a simple precedence grammar.

5. Consider an early version of the syntax for SPIRES, an information

retrieval system (George 196713; Parker 1967).

<SEARCH>::= <FIND7 <REQLIST.; <END7

<REQLIST>::= < CQMPSEARCH 7

< REQLlST> : : = < REQLIST 7 ; < COMPSEARCH >

<REQLIST>::= < REQLIST > ; <OR> < COMPSEARCH >

< COMPSEARCH > : : = < FACTOR >

< COMPSEARCH > : := < COMPSEARCH 7 <OR > < FACTOR >

<FACTOR>::= < SIMPSEARCH >

<FACTOR>::= < FACTOR > < AND 7 < SIMPSEARCH >

<PHRASE>::= <WORD>

<PHRASE>::= < PHRASE > <WORD >

< SIMPSEARCH > : : = (< COMPSEARCH 7)

< SIMPSEARCH > : : = < AUTHOR 7 < PHRASE 7

< SIMPSEARCH > : : = < DATE 7 < BETWEEN 7 < PHRASE 7

<AND7 <PHRASE7

The violations are:

a. < F I N D 7 = < < REQLIST >

b. ; = < < COMPSEARCH 7

c. (=< < COMPSEARCH 7

- 24 -

d. <OR7 = < < COMPSEARCH 7

e, <OR7 = < < FACTOR >

f0 <AUTHOR7 = < < PHRASE >

go < BETWEEN7 = < < PHRASE 7

h. <AND7 = < <PHRASE 7

i, < PHRASE 7 = < <AND7

a. Changing < REQLIST 7 to < REQLIST- 7 as specified by Th 1 will

result in the violation pair (= , 7) between < REQLBT 7 and “;” as discussed

in the theorem. This is an error which requires a production to be
--.

split.

b, c and d. Using Th 1, change < COMPSEARCH 7 to < COMPSEARCH- 7.

e, Us.ing Th 1, change < FACTOR 7 to <FACTOR- 7 .

Thus, two productions with a right side of <FACTOR 7 result; the solution

is a different terminal symbol for one of the <OR 7’s,

f, g and h. Using Th 1, change <PHRASE 7 to <PHRASE- 7.

i . Using Th 2, change only one < PHRASE- 7 to <PHRASE+ 7.

If the correction for i is made before f, g and h, then the steps

would be:

Change <PHRASE 7 after < BETWEEN 7 to < PHRASE+ 7 and add

<PHRASE+>::-- -< PHRASE 7 ; do not change other < PHRASE 7% since

this would remove < PHRASE 7 E R(< FACTOR 7) as specified in the theorem.

-25 -

Change < PHRASE > after <AUTHOR > to < PHRASE - >,

<PHRASE+>::= <PHRASE 7 to c PHRASE + 7 : : = <PHRASE - 7 and all

of the <PHRASE 7% to <PHRASE.- 7 except those where < PHRASE 7 is

the left side.

The corrected grammar is:

<SEARCH>::= < FIND > < REQLIST- 7 < END >*

<REQLIST->::= <REQLIST.;

<REQLIST.::= < COMPSEARCH- 7

< REQLIST > : := < REQLIST 7; < COMPSEARCH- 7

<REQLIST>::= < REQLIST 7; < ORA 7 < COMPSEARCH- 7**

< COMPSEARCH- 7 : : = < COMPSEARCH 7

< COMPSEARCH 7 : : = < FACTOR- >

< COMPSEARCH 7 : : = < COMPSEARCH 7 < OR > < FACTOR- >

< FACTOR- 7 : : = < FACTOR >

<FACTOR>: := < SIMPSEARCH 7

<FACTOR>::= < FACTOR 7 <AND 7 < SIMPSEARCH >

<PHRASE+>::= <PHRASE->

<PHRASE->::= <PHRASE>

<PHRASE>::= <WORD>

<PHRASE>::= < PHRASE 7 <WORD 7

< SIMPSEARCH 7 : : = (< COMPSEARCH- 7)

< SIMPSEARCH 7 : : = <AUTHOR 7 < PHRASE - 7

< SIMPSEARCH 7 : : = <DATE 7 < BETWEEN > <PHRASE + >

<AND 7 < PHRASE- 7

*
This production was split.

**
This <OR > was changed.

- 26 -

3.3 Input Conventions for the Syntax Analyzer

The input for the syntax analyzer (i. e. , the productions) is contained in a

file whose default name is SYNTAX (setting this name is explained in Section 2).

The formal definition of the syntax is:

<SYNTAX7 : := < SINIT 7 <PRODUCTIONS 7 < SEND 7

< PRODUCTIONS 7 : : = < PRODUCTION 7

: : = < PRODUCTIONS 7 < STERM7 <PRODUCTION >

< PRODUCTION 7 : : = <LEFT-PART 7 < SSEP 7 < RIGHT-PART >

: : = <LEFT-PART 7 < SSEP 7 < RIGHT-PART > < SSEMANT 7

< LEFT-PART 7 : : = < SYMBOL 7
--.

< RIGHT-PART 7 : : = < SYMBOL 7

: : = <RIGHT-PART 7 < SYMBOL 7

<SYMBOL>::= any string excluding blanks

The default values are:

<SINIT>= *SYNTAX*

<SEND 7 = *END-SYNTAX*

<STERM> = *;*

<SSEP> = *: :=*

< SSEMANT 7 = “NO-SEMANT*

The input is free field card images using blanks or a new card to separate symbols;

only the first 20 characters of a symbol are used.

In actual use there are two additional limits:

1. Upper limit on number of productions;

2, Upper limit on number of symbols in any right part.

If more productions than the limit of productions are used, then those productions

between the limit less one and the last productions are lost; similarly, for more

-27 -

symbols in the right part than the

to SIMPLE (Section 2).

If the left part has more than

limit, Note that both of these are input parameters

one symbol then the last symbol in the left part

is used.

3.4 Syntax Analyzer Output

In addition to inserting the necessary declarations and initialization into the

skeleton parser, the syntax analyzer generates a file (FILE4 whose default name

is PSYNTAX) which contains information about the syntax and any errors. This

output consists of:

1,

2.

3.

4.

Productions - The productions are numbered in the order that they are

read in and-this number is used to select the applicable portion of the

semantic procedure.

Basic and nonbasic symbols - The basic and nonbasic symbols are

assigned a unique number,

KEY and PRTB tables (Shaw 1966a p. 194) - These are used by the parser

in determining the production number and the left part of the production

of a reducible substring. 0th‘KEY(i) represents for the I- symbol (i cor-

responds to the number assigned in 2) the index in the production table

PRTB, where those productions are listed whose right part string begins

with the ith symbol. For each production, the right part is listed without

its leftmost symbol, followed by the production number (negative) and the

left part symboLof the production. The end of the list of productions

referenced via KEY(i) is marked with a 0 entry in PRTB. lf If a production

has no semantics then the production number in PRTB is adjusted to be

out of range (by the number of productions).

Right and left symbol sets - These are sometimes useful in removing

conflicts.
-28 -

5. PRECEDENCE Matrix - Two symbols x and y are related (either x=y,

0thx< y, x>y or no relation) by the entry in the i- row (where i is the number

.thcorresponding to x) and j- column (j corresponding to y) of the matrix,

6, DIAGNOSTICS

a. For a correct syntax

NO PRECEDENCE VIOLATIONS OCCURRED

b. For

1.

-e_

an incorrect syntax

PRECEDENCE VIOLATIONS OCCURRED

HINTS REGARDING PRECEDENCE VIOLATION

The most recent production number which causes a violation

followed by the two symbols separated by the two relations.

c. Incorrect input file

***** ENDFILE SYNTAX INPUT - NO

followed by the value of SEND (Section 2).

SEND missing generally causes no problems. If there is no additional

syntax output, then the symbol SINIT was never encountered (Section 2).

3.5 Parser

One of the principal advantages of the simple precedence system is the parser,

which, for a correct syntax, yields a unique canonical parse with no backtracking

- (Wirth and Weber 1966a; Shaw 1966). This permits the syntactical analysis

(parsing) to be separated from the semantics; this is both a blessing and a headache.

The advantage of this separation is that the parser can be protected from

interference (or modification) from the associated semantics. This protection is

very important when a complete parser is supplied to any user; it limits debugging

faults and permits confident use without a detailed knowledge of the internal methods.

- 29 -

However, this separation also limits the power of the applications. Namely,

no semantic process can alter or change the parsing (i. e. , the system is entirely

syntactically driven); this sometimes results in an awkward syntax or may not

be applicable toa class of desirable languages. Section 5.2 discusses this further

and illustrates an extension which relaxes this requirement, still preserving an

acceptable level of protection.

The parsing algorithm depends upon the precedence relations <, = and >

(Wirth and Weber 1966a; Shaw 1966) according to:

10 The relation = holds between all adjacent symbols within a symbol which

is directly reducible;

2, The relation < holds between the symbol immediately preceding a reducible

string and the leftmost symbol of that string;

3. The relation > holds between the rightmost symbol and the symbol imme-

diately following that string.

The basic parsing algorithm consists of locating a string S. ---- Sk such that
J

Sa= Sn+l for Q=j, j+l, --- k-l and S.
J-1 3

<S. and Sk>sk.tlm This string S. --- Sk is
J

then a reducible substring and corresponds to some production U : : = S. --- Sk.
J

The semantics for the production may then be performed and then the string
m

S.---
J

Sk is replaced by the left side of the production. This is illustrated in

Fig. 3.

1 The parser consists of five parts:

1. Declarations in the parser;

2. Declarations and initialization inserted by the syntax analyzer (i. e. ,

dependent upon the grammar);

3, Symbol recognition;

4. Parsing;

5. E r r o r r e c o v e r y . -
- 30 -

S y n t a x
E r r o r

NO

Error i f no +
P r o d u c t i o n - -

,

FIND k 3

Sk =k+l
. . l-

j=k-I
Decrement j unt i l

sj-l j# s

4 Y E S

.

Reduce Sj . . . Sk
1534A3

FIG. 3--Basic parsing algorithm.

- 31 -

3.5.1 Declarations in the Parser I

These declarations reside in the parser since they are related to the parsing

technique and not to the individual grammar.

NAME

ANS

ERROR

J

K

INPUT

INPUT

OUTPUT

POUT

SYM

SYMS

- s(O:50)

V(O:50)

TYPE

FIXED BIN

BIT(1)

FIXED BIN

FIXED BIN

-v.
CHAR(100)VAR

CHAR(7)VAR

CHAR(7)VAR

CHAR(7)VAR

FIXED BIN

CHAR(4OO)VAR

FIXED BIN

CHAR(4OO)VAR

VALUE __

initially 0

initially * 0’ B

SOURCE

OUTPUT

DIAG

initially set
to 0

initially null

EXPLANATION

For use in the semantic routine

For use in the semantic routine to
indicate an error; upon return to the
parser, if ERROR true (‘1’B) then
parsing is terminated.

Left hand stack pointer; copy of it
passed to semantic routine,

Right hand stack pointer; copy is
passed to the semantic routine.

Input string buffer.

Input file identified as //GO. SOURCE.
Contains the input to be parsed.

Output file identified as //GO.OUTPUT.

Diagnostic output file identified as
//GO. DIAG.

Numerical form of the current input
symbol.

String form of the current input symbol.

Parsing stack (numerical form)

Associated value stack to the parsing
stack.

3.5.2 Declarations and Initialization Inserted by the Syntax Analyzer

The declarations and values for these variables are inserted by the syntax

analyzer since they are determined by the grammar.

- 32 -

NAME

BASVAL(*)

ERRORSCAN

H(0:*, 0:*)

HINITIAL

. HLIM

KEY(0:*)

M

N

PRTB(O:*)

TYPE

CHAR@ 0)VAR

FIXED BIN The associated numerical form of BASSYM,

CHAR(2 0)VAR

CHAR(1)

Procedure

FIXED BIN

FIXED BIN

FIXED BIN

FIXED BIN

FIXED BIN

QUOTES CHAR@ 0)VAR

SCAN-START CHAR@ 0)VAR

XINTEGER FIXED BIN

EXPLANATION

Contains the basic symbols of the grammar
with the three types WORD, INTEGER and

STRING removed and the value of TERMINAL
added,

Termination symbol for error recovery.

The precedence matrix; each entry is =,
<, > or blank.

This procedure is automatically called upon
entry to the parser to initialize the matrix
H. Within the procedure, the variable J
contains triples indicating the nonblank
entries in H; Row, Column, [0, 1,2] where
0 means =, 1 means <, 2 means >.

This solution was forced by the PL/I compiler
due to maximum string length in the INITIAL
statement.

Upper limit for each dimension of the H
matrix and KEY matrix,

Index in PRTB for those productions whose
right part string begins with the it& symbol.

DIMENSION of BASSYM and BASVAL

Number of productions

Contains the productions without the left-
most symbol of the right part and with the
production number (negative) and the left
part symbol of the production. Productions
with the same leftmost symbol of the right
part are together and these groups are
separated by 0%.

That symbol which turns on and off the
string class recognition,

That symbol which terminates the alternate
scanner and returns to the parsing section.

Numerical form of the symbol in the grammar
used for the integer class.

- 33 -

NAME TYPE

XSCAN-STOP FlXED B I N

XSEQ FIXED BIN

EXPLANATION

Numerical form of the symbol in the syntax
which activates the alternate scanner just
before it is inserted into the parsing stack.

Numerical form of the goal. When this
appears as the rightmost element of the
parsing stack, the parsing is terminated
and control is returned to the calling
program.

XSTRING FIXED BIN Numerical form of the symbol in the grammar
used for the string class.

XSYly 10) FIXED BIN Used for error recovery. (See error
recovery section,)

XTERM FIXED BIN Numerical form of the symbol whose pre-
cedence is such that it will force all parsing
to be completed and prevent scanning across
the beginning of the parsing stack.

XWORD FIXED BIN Numerical form of the symbol in the grammar
used for the word class.

3.5.3 Symbol Recognition

The function of the symbol recognizer is to scan the input file for the next

syntactical unit and to assign this symbol the unique number originated by the

syntax analyzer. The recognizer classifies all symbols into four classes:

- 1. INTEGER CLASS

2, WORD CLASS

- 3, STRING CLASS

4. RESERVED WORDS

The integer class is defined by:

INTEGER : := DIGIT

: := INTEGER DIGIT

DIGIT : := 0111213(41516)7)8)9

- 34 -

The word class is any string of characters starting with a non-digit and

excluding blanks, single character reserved words and QUOTES if it is a single

character,

The string class is any string of characters including reserved words and

surrounded by QUOTES; the string corresponding to QUOTES is erased.

Reserved words are those words contained in the BASSYM matrix.

and

any

The separators for the word class are blanks, a single character QUOTES

single character reserved words. The separators for the integer class are
\

non-digit character. The entire character string enclosed in QUOTES is

recognized as a string as it appears; the QUOTES are removed since they are not
--.

part of the syntax. A flow chart of the symbol recognition is given in Figs, 4

and 5.

3.5.4 Parsing

The parser is a modification of the basic parsing algorithm given at the

beginning of Section 3.5. The flow chart for the parser is given in Fig. 6. tS”

is a stack which contains the partially reduced string at any time, The input

string is copied one symbol at a time into SYM and SYMS. If the rightmost

element of S is > SYM then S is scanned to the left from the current right end

until Si ,f Si; at this point if Si 1 < Si then we are guaranteed (if the string is in

the language) that there is a production whose right side is Si --- S.. We then
J

perform a “semantic reduction” on the value stack Vi --- Vj (i, e., call the

semantic procedure) and then reduce the string Si --- Sj by replacing it by the

left side of the corresponding production.

Input to the parser is in a file named SOURCE; the parser has two output

files, one for diagnostics (internal name, POUT, external name DIAG) and one

for semantic output (internal name OUTPUT, external name OUTPUT). Both

output files are used by the parser and both may be used by the semantics.

- 35 -

GET&NEXT
SYMBOL. ,

Y E S NO

READ UNTIL Y E S

NEXT QUOTES
I N T E G E R T Y P E

* R E T U R N E N T I R E ? I

STRING AND RETURN SYMBOL
STRING TYPE AND

I 4
I N T E G E R T Y P E

$

NO Y E S

RETURN SYMBOL
AND

WORD TYPE

RETURN SYMBOL
AND

BASIC SYMBOL
T Y P E

1534A4

FIG. 4--Symbol recognition.

Entry Variables

S Output string

I Input character pointer

T T is set to False if integer else true

X if X true then Blanks removed

flSYM=next *
s=“;

, •+
True Call CON

T = true - IExit

No

I< Spec (SYM
QUOT;) >I”ii

I

Call CON
SY M = Next

I
Yes I

v
Exit

T=FalseY
1 I Exit

* SPEC returns true if first argument is not a separating character.
*CON concatenates SYM to end of S and increments I.
* NEXT returns the character pointed at by I in the input string. If I > length

of input string, 80 more characters are read, a blank is concatenated to end
and I is set to 1.

FIG. 5--Flow chart for LOOK - the get next symbol procedure.

- 37 -

I INITIALIZATION

S(*)iO, V(*)=NIJLL

S(O);XTERM, OPENI,OFILES

I-l, INPUT=NULL, J=O

QUOTE-FAME, FETCHNEWSYM, SYMS
4

Lc

-1 LOCATESREDUCIBLESUBSTRWG

CALL SCAN2 - -,

b EXIT PARSER

FOUNDPRODUCTION

Il=J(LEFT POMTER)

IZ=K(MGHTF~INTER)

IS=-PRTB(L)(PROD+)aIX=N
NO

YES

S(J)-PRTB(Ltl)(LEFTSIDEOF PRODUCTION)I[]

I
-RECOVERY 1

1534CI

FIG. 6--Parser flow chart.

- 38 -

When the SCAN-STOP symbol is moved to the parsing stack, procedure

SCAN2 is activated, SCAN2 simply reads the input and copies it to the output

file (this is the only use of the OUTPUT file in the parser) until the SCAN-START

symbol is detected (the SCAN-START symbol is effectively erased). This facility

allows the mixture of special code and. the normal output code within one input

string.

3.5.5 Error Recovery and Diagnostics T

“There has also been very little effort on the problems of automatic error

detection and recovery in syntax-directed processors. Once again, even a

bad system would be of great value to users. ” (Feldman and Gries 1967, p., 111)

After using the syntax for implementing several different languages (George

1967b, 1969b)-a simple method for error recovery and useable automatic diagnostics

has finally evolved. This has primarily resulted from careful analysis of the

parsing stack and the classification of the input symbols.

With a simple precedence system, the earlier an error is detected (i, e., with

the least amount of parsing) the easier it is to recover and issue meaningful diag-

nostics. Precedence functions were utilized in an earlier system (Wirth and

Weber 1966a, b) and led to complications for error detection, With the precedence

functions, the blank relation is effectively removed and several steps of parsing

can occur before an error is detected; in fact, the only type of error to be detected

is an illegal production (i. e., no production matches the string to be reduced).

The problem of restoring the parsing stack after several illegal reductions is

complex; further, one cannot automatically restore the actions performed by the

associated illegal semantic activations. Also, automatic diagnostics were impos-

sible since the blank entries were missing.

TLeinius (Leinius 1976) analyzes and classifies syntax errors in simple
precedence and LR(K) languages. He developes general techniques for
detecting errors (equivalent to the detection methods used here) and specifying,
syntactically, error recovery for any language of these classes. His techniques
are more general than those presented here, but are not needed in simple
languages. The techniques presented here have proven adequate for applications
involving simple languages.

- 39 -

The solution was to try to detect syntax errors as soon as possible and

keep the blank entries for diagnostic purposes. With a change of Wirth and

Weberrs parsing algorithm, the errors can be detected earlier (i. e, , use

the precedence matrix and not the functions). When searching for a reducible

substring, the search is only started when a ‘9 relation exists between the

rightmost symbol of the stack and the next symbol. A scan is then initiated

to scan to the left in the stack while the T = r relation holds between adjacent

symbols; this scan terminates at the leftmost symbol of the candidate re-

ducible substring.

At this point the relation i< ’ is required (STACKOK in parser flow chart)
--.

otherwise the stack is incorrect and production look-up and semantic calls are

not performed and a diagnostic message is issued. The error recovery mechanism

is activated by either an incorrect stack or the nonexistence of a production to

match the candidate reducible substring.

The error recovery procedure first outputs the current contents of the stack.

The stack is then examined from the leftmost symbol and compared to a recovery

stack of maximum length 10 (this stack was processed by the syntax analyzer as

SYM(l) --- SYM(10) and represents what is normally expected to reside in the

stack). The symbols in the parsing stack (and their associated value) are kept as

long as they match the recovery stack.

After the stack has been corrected, the input scanner is reset to the beginning

of the current input file and the symbols are read and checked to see if they may

occur adjacent; if they may not occur adjacent, a diagnostic message is issued

< -40 -

giving the symbols and how they were classified (WORD, STRING, INTEGER

or RESERVED). This scanning continues until the SCAN-STOP symbol is detected.

The symbols thus processed are erased from the input file and normal parsing

is resumed.

Although this method is simple, it has proven quite useful for the types of

languages implemented to date. It provides automatic diagnostics and recovery

related to the input grammar with little effort of the user.

-4l-

4. SEMANTIC CONSTRUCTOR

The semantic constructor processes its input text, which is a mixture of
. .

keywords and PL/l statements, and generates a program which is compatible

with the parser. Its purpose is to provide the standard procedure and parameter

declarations and to construct the branching logic for selecting that portion of the

code applicable for a particular production; the overall branching structure

cannot be affected by the code for any production. The specification of the

semantic constructor is given in Appendix D.

The syntax for the semantic constructor follows:
--.

SEMANTICS : : = *SEMANTICS* PROG-NAME CODA PRODUCTIONS

PROG-NAME : := procedure name to be given to these semantics

CODA::= *CODE* <block of PL/l code > *END*

PRODUCTION : : = INTERPRETATION

: : = PRODUCTION INTERPRETATION

INTERPRETATION : : = *PRODUCTION* INTEGER CODA

As the syntax illustrates, the basic unit is an INTERPRETATION, which is

the keyword *PRODUCTION* followed by an integer followed by the keyword
m

CODE followed by a block of PL/l code terminated by *END*. For this unit,

an if test on the integer is constructed and a label (IrL” followed by the integer)

attached to form a DO group for the block of PL/l code. The end of the PL/l

block causes an END label to be generated, thereby closing the DO group.

The semantic constructor is implemented using the syntax analyzer and a

skeleton parser with a hand coded semantic section, It will be used to illustrate

the use of the SIMPLE system in Section 6.

-42 -

5. POSSIBLE EXTENSIONS

5 . 1 Automatic Syntax Correction

Some grammars require the insertion of several artificial productions and

renaming of variables in different parts of the grammar to be a simple precedence. .

grammar. This results in the grammar’s being longer and not in a form easily

useable by users of a special language.

The methods of removing precedence violations discussed in Section 3.2

were developed with the idea of possible inclusion into the syntax analyzer; in

fact, the organization of the syntax analyzer was modified to permit this insertion

in an easy straightforward manner. Removing the conflicts automatically would

make the grammars shorter and more readily useable, I see no problem in doing-v.

this, but haven’t had the time to do so0

5 . 2 Parser Modification to Allow Simple Manipulation of the Parsing Stack by

the Semantic Procedure

As discussed earlier (Section 3.5) the parser and semantics are separate

and the semantics may operate only upon the value stack and not the associated

parsing stack. This means that the system is entirely syntax driven and the parsing

cannot be affected by any semantic meaning, Situations do arise where the parsing

must be affected by the semantic meaning.

Consider for example the evaluation of an algebraic expression where the

variables may stand for a numeric value or for some other algebraic expression.

The parser only recognizes symbols and cannot determine whether a symbol

represents a primitive or an intermediate expression; only the semantics can

determine this. At this point the semantics need to defer a reduction and alter

the stack (i, e., the semantics would like to replace the variable by its equivalent

expression). This particular problem originated in the Graphic Description

Language of GEMS (George 1969a, b).

- 43 -

The problem was to allow a form of stack manipulation which would still

preserve a reasonable level of protection, From my work with and modification

of the parser, I knew that all the error recovery and error diagnostics are based

upon the symbol recognition; thus, the manipulation should be upon the input string

so that the symbol recognizer can process the input string and thus preserve error

recovery and diagnostics; this would provide the “reasonable level of protection, rf

The solution is to provide an external switch and string to both the parser

and the semantics, When the semantics wants to erase the effect of a whole pro-

duction and insert a string into the current input string (Le,, this new string is

to be processed before the rest of the old string), the semantics leaves the string

in the external string variable and sets the switch. Upon return from the semantics,

the parser checks the switch and performs the ordinary reduction if the switch has

not been set. If the switch has been set, the parser inserts the external string

.into the proper place of the current input string, resets the switch and erases

the current production from the stack; it performs no reduction but resumes the

normal parsing.

This solution not only provides a substitution facility for intermediate or non-

basic primitives, but also allows grammars to be used with apparently disjunct

productions. These disjunct productions can represent shortened or alternatee

forms of a production; these sometimes cause precedence violations and cannot

be resolved in any other manner, For example in SPIRES (George 196713;

IParker 1967) it is desired to have

AUTHOR name AND name

to be equivalent to

AUTHOR name AND AUTHOR name.

This disjunct production method can be used for search classes other than AUTHOR

by remembering the last search type and performing a substitution.

- 44 -

,

6. EXAMPLE APPLICATIONS OF SIMPLE
c

. .

6.1 Semantic Constructor

For an example consider the semantic constructor. The syntax in simple

precedence form and the data for SIMPLE’s executive follow:

//GO. SYNDATA

SEMANT-NAME=‘SEMANT’

/*

//GO. SYNTAX DD* .

’ *SYNTAX*

SEMANTICS * . .= *. .

PRODUCTIONS * . .= *. .

SEMANT * -*: :-

INTERPRETATIONS * : : = *

* . .= *. .

INTERPRETATION * : : = *

INTERP * : : = *

CODA * * .= *
. l

SEMANT CODA PRODUCTIONS *;*

INTERPRETATIONS *NGSEMANT* * ;*

SEMANTICS WORD *;*

INTERPRETATION *NO-SEMANT* *;*

INTERPRETATIONS INTERPRETATION

NO-SEMANT *;*

INTERP *CODE* *;*

PRODUCTION INTEGER *;*

CODE

END-SYNTAX

-45-

The semantics are:

//GO. SEMANTIC DD*

SEMANTICS SEMANT *CODE* *END*

PRODUCTION 1 *CODE*

PUT FILE (OUT) EDIT

(Co1 (lo), A);

CLCSE FILE (OUT);

END

(‘END’ 11 VS(J)) ‘;‘)

PRODUCTION 3 *CODE*

PUT FILE (OUT) EDIT

(vs uq’: PROC (N, VS, J, K, ANS, ERROR);‘)
--.

(Co1 (2), A);

PUT FILE (OUT) EDIT

(‘DCL (N, J, K, ANS) FIXED BIN, ‘,

‘VS(0:50) CHAR(400) VAR, ‘,

‘ERROR BIT{ 1) ;‘)

(Co1 (lo), A, Co1 (20), A, Co1 (20), A);

VS(J) = VS(K);

END

PRODUCTION 6 *CODE*

PUT FILE (OUT) EDIT

(‘RETURN;‘, ‘END’ 11 ‘L’ 1 VS(J) 11 ‘;‘)

(2 (Co1 (lo), A));

END

PRODUCTION 7 *CODE*

PUT FILE (OUT) EDIT

(‘IF N=‘, VS(K), ’ THEN’, ‘L’ 11 VS(K) 11 ’ :‘,<

- 46 -

*DO’; /*PR O D UC TION NUMBER 1,

I-(K), ‘*/‘)

(Co1 (lo), 3 A, Co1 (2), A, Co1 (20), 3 A);

VS(J) = VS(K);

END

END-SEMANTICS

/*

An example input to

//GO. SOURCE

SEMANTIC S
--.

this language is:

SEM *CODE*

/*ANY PL/l CODE CAN BE HERE*/

END

PRODUCTION 1 *CODE*

PUT FILE (OUT) EDIT

(‘PUT LIST (N) SKIP;‘)

(Co1 (lo), A);

END

PRODUCTION 2 *CODE*

PUT FILE (OUT) EDIT

(‘PUT LIST (N, J) SKIP;‘)

(Co1 (lo), A);

END

END-SEMANTICS

-47-

And the output is:

SEM: PROC (N,VS,J,K,ANS,ERROR);

DCL(N,J,K,ANS) FIXED BIN,

VS(O:50) CtiR(400)VAR,

ERROR BIT (1);

/*ANYPL/lCODE CAN BE HERE */

IfN=lTHEN

Ll: Do; /*PR~DUCTIONNIJMBER~*/

Pm &T(N) SKIP;

RETURN; .

ENDLl;

IF N=2 THEN

L2: Do; /*PRoDuCTIONNUMBER~*/

PUT LIST (N, J) SKIP;

RETURN;

ENDL2;

ENDSEM;

- 48 -

6.2 A Command Language Me@ System

During the Spring Quarter of 1970, a computer laboratory (CS 293) was

organized by Professor W. F. Miller to allow small groups of students to

participate in projects involving substantial programming tasks. Dr. Harry J.

Saal and I led a group to study and implement a text editor system; the students

were Howard Cohen, David Wyeth and Marice Schlumberger.

During the initial process of reviewing existing text editors, we arrived

at the following conclusions :

1. No existing text editor had all the features desired;

2. We could not agree on a universal text editor language;

3. There was no existing’system in which we could experiment

with djfferent text editor languages in an economical manner;

4. Generally, only one text editor was available in a computer system.

At this point, we realized that we were really talking about command

languages rather than just text editor languages. The sentences of these

languages are a command and consist of a command keyword followed by a list

of parameters . Thus, we decided to design a meta system for defining command

languages of this type.

The characteristics desired were :

1. The defined command language should be easy to change;

2. The system should be, able to service various command languages.

1 The meta system developed for describing, scanning and implementing command

languages (George and Saal 1971) has been used to define and implement two text

editors (Schlumberger and Wyeth 1971) and will now be presented in detail.

6.2.1 The Model

The meta system consists of a table generator and a scanner. A specific

command language is defined by a command description and the inclusion of any

additional subroutines into. the primitive library; the command description is

-49 -

translated by the table generator to a form useable by the scanner as illustrated

in Figure 7. The tables describe how a standard parameter list is to be con-

structed, thus allowing the primitive library members to be shared by various

applications. The table generator provides a construction aid to a user with

error diagnostics and some consistency checking.

To use a specific command language, the user designates to the scanner

which table is to be used; this table is then obtained and saved in the user’s

work area. Commands can now be syntactically analyzed by the scanner using

the specified table and the semantics of a command can be performed through

activation of the appropriate subroutine in the primitive library. This is

illustrated in Figure 8.

This model provides the versatility desired and allows command languages

to be developed or modified modularly. New or modified commands can be

tested without the other users of that particular command language system being

aware of or affected by this testing. Further, each command language can be

tailored to a user or group of users. This tailoring could provide simplified

commands for less sophisticated users or could limit their actions or capabili-

ties in items such as, read only systems, file access restrictions, etc.

6.2.2 The Table Generator

The Table Generator is implemented using SIMPLE and its definition is

given in Appendix E. As indicated in the appendix, a command table consists

of a set of options followed by a list of commands.

The options consist of the table name to which the table generator adds the

current date and time for identification (this line is usually typed out when a

user selects a table and, thus, indicates the version of the command system to

the user), a separator to mark fields in the table (*PERIOD*) and a character

which will inclose strings to indicate type <STRING> , (*QUOTES*).
d

- 50 -

T A B L E S

C O M M A N D T A B L E) cl
D E S C R I P T I O N “GENERATOR 1

/ \ I I
I
II

cl
I534A7

FIG. 7--Command language meta system - table generation.

--.

T A B L E S

S C A N N E R 4
P R I M I T I V E

+ L I B R A R Y

IT E R M I N A L
1534A8

FIG. 8--Command language meta system - scanner.

- 51 -

The list of commands is composed of subroutines used by the commands

and the commands, all are recursive. Commands are indicated by an identifier

list followed by a parameter list; an identifier list is a list of identifier

specifications ; e . g.

* K E Y W O R D * L I S T *RTN* SUB1 *DL-EX-LIST* ‘I/” “DL-SKIP’ “. ”

specifies a command whose name is LIST and whose semantic routine is

named SUBl.

Normally, all special characters are treated as delimiters by the scanner;

when scanning for the next item, the scanning proceeds until a delimiter is found

and then the delimiter is deleted. In the above example, 11/11 is not to be deleted,

but is to be returned as the following item; “. ” is not to be treated as a delimiter.
-m.

Thus, 2/3 would.be scanned as three items 2, / and 3 whereas 2 :3 would be

scanned as two, 2 and 3. Further, 2.3 would be scanned as one item 2.3.

Each parameter may be one of the following types

NUM type number

STRING type string

NAME first letter alphabetic followed by

alphanumerics

<STRING > Call the table subroutine specified by

<STRING>to obtain the parameter ?

t The table subroutine calling mechanism is assumed to work by concatenating

this <STRING> to the current unscanned input string and then activation of the

scanner. This results in not only the subroutine activation, but character strings

can be appended to the string. For example, if the current input pointer is at

ABC)
t

and the subroutine call is

then, the input becomes

“SUB5 (”

SUB5 (ABC)s t

- 52 -

Further, parameters may be restricted by the options:

:p No parameter before the one with this

option can be filled in after this parameter

K This parameter can only be filled in after

recognition of its key

and parameters may be initialized. A parameter may have multiple keys of

the types:

VALUE Take the next item after the key in the

current input string and assign it to the

--.

VALUE (ST RIN G)

parameter if it is of the proper type

Take everything up to the occurrence of

<STRING), assign it to the parameter

and then delete <STRING) from the input

VALUESHORT (STRING) Take everything up to the occurrence of

(STRING) and assign it to the parameter;

do not delete <STRING> from the input- -

* S E L F* (S T RIN G) Assign <STRING> to the parameter

CALL (STRING) Call the table routine named in <STRING);

same functioning as the previous subroutine

call

For example, if the desired command is:

7 <NUM> (/ <NuM> 1 IN (FILENAME)

where,

☯* l *I means one of the options must be used; and

f* l *I

means the contents are optional

- 53 -

The command description is:

QUOTES *& ”

PERIOD *& .

‘TBL-NAME* ** ” EXAMPLE” a.

KEYWORD LIST *RTN* SUB1 *DL-EX-LIST” “/”

KEYWORD L *RTw SUB1 *DL-EX-LIST* “/”

* PARM’ “NUM” *INITIAL* “-1” *‘END*

PARM *NUM* *K* *P* *INITIAL* “-1”

*KEF / *VALUE* *END*

PARM *NAME* *eK* *P* * INITIAL” “”

*KEF I N *VALUE* *END*

-*END-TABLE*

6.2.3 The Scanner-.

The original scanner was designed to test the model and the design of the

tables produced by the table generator (George and Saal 1971; the table generator

is the author’s work, the scanner work was done by H. J. Saal and the command

description language and the tables were a joint effort). This scanner was then

modified to perform the subroutine linkages to complete the meta system model

as discussed in Section 6.2.1 (Schlumberger and Wyeth 1971). The original

version of the scanner accepts an input string from the user and builds a parenthe-

- sized expression indication which subroutine is to be activated, number of

characters scanned and a parameter list; if an error occurs, a diagnostic is

given with a pointer to the offending character. This original version does

provide a convenient testing vehicle for checking out the syntax of a command

language and will be used for illustration.

6.2.4 Examples Using the Command Language Meta System

The system has been used to define and implement two text editors

(Schlumberger and Wyeth 1971) and found to be an efficient way to experiment

with different text ‘editor languages. In particular, the syntax is easily debugged

- 54 -

and commands may be modified or added easily. Some example commands from

each of these languages will be used for illustration.

6.2.4.1 WYLBUR Example
. .

WYLBUR (---WyLBUR-1969) is a locally available text editor and several

commands from it will be used as an example. The commands are :

1. List Command

[<ARANGE>] [IN] [<NRANGE>]

2. Change Command

[<ARANGE>] TO [<STRING>] [IN] [<NRANGE>]

3. Copy Command

[<NRANGE>] TO [<VALUE>] BY [<N U M B E R>]

4. Set Command

SET [LENGTH=@JMBER>] [D E L TA = <NUMBER>]

[UPLOW 1 UPPER 1 VERBOSE 1 TERSE]

where,

<ARANGE>= I <
1 STRING>

1 <STRING>
[<NUMBER> [/ <NUMBER>]] [(<NUMBER>)]

<NRANGE = <vALuE> 1 <VALUE> / <VALUE>I <NRANGE> , <VALUE> I

<NRANGE> , <VALUE>/ <VALUE>.

<VALUE>= <NUMBER> I FIRST 1 LA ST 1 END I ALL

< S T R I NG>= t (CHARACTERSTRING) * I 11 <CHARACTERSTRING> '1

[1. . means optional

i I. . means one of the options must be present

- 55 -

The specification of the syntax of these commands is given in Appendix F

with the resultant generated table. An example conversation with the scanner

using the tables follows :
. .

UNIT#?13
WYLBUR EXAMPLE - - - G E O R G E 07/17/70 14:33:48.260

LIST TABLES?no
LIST COMMANDS?yes
LIST
L
CHANGE
CH
COPY
co
SET
COMMAND?list
(SUBl,5,(,),tO,O),)
COMMAND?i' 1,2 '
(SUB1,6,(,((1),,((2),,)~1,(0,1),)
COMMAND?1 l/4
(SUBl,6,(,((1),(4),)>,(0,1),)
COMMAND?1 all
(SUBl,6,(,((-4),,)),(0,1),)
COMMAND?1 'y'
(SUB1,6,(((,(Y,-l,-1,-lm,~,(l,o~,~
COMMAND?1 'y' l/8 (9) i n a l l
(SUBl,21,(((,(Y,1,8,9~~~,((-4),,~~,(1,1~,~
COMMAND?list everything
ERROR I
COMMAND?set terse
tSUB4,10,(,,4),(0,0,1),)
COMMAND?set delta=12
(SUB4,13,((12),,0),(1,0,0~,~
COMMAND?set delta=1 length=2 terse
(SUB4,27,((1),(2),4),(1,1,11,~
C O M M A N D ? c h a n g e ' s k ' t o 'wk' in all
(SUB2,27,(((,(SK,-1,-1,-1))),(~jK),((-4),,)),(1,1,1),)
COMMAND?ch l't' 4/9 (8) t o "e" i n a l l
tSUB2,32,(((~,(T,4,9,8))),(E),((-4),,)),(1,1,1),)
COMMAND?copy l/5 t o 1 6 . 2
(SUB3,17,(((1),(5),),(16.2),-l~,(l,l,OI,~
COMMAND?*RESTART*

- 56 -

6.2.4.2 CRBE -ample .

CRBE (Wells 1970a and b) is another locally available text editor and

several commands from it will be illustrated. The commands are:

T 1.

2.

3.

4.

List Command - . .

I
LIST

1 IL
[<=-> I [<AR-E> 1

Save Command

SAVE

I t
r <FNAME> 1

S
[(<NUMBER) [9 <NUMBER>])]

[KEEP 1 PURGE] [REPUCE (REPL]

Bring Command .

BRING -’

1 H

<NUMBER>

B
<NAME>

[D 1 DsNmmj =<FNAME> [(GAME>)] [, [v) voL] =<NAME>]

[SEQ 1 NOSEQ]

Change Command

[<NRANGE>] [~<sTRING) 1 <STRING] [@TRING>]

1 coL = (<NUMBER> [, < NU M B E R)])]

[NOTEXT 1 NOLIST]

where,e

<NRANGE> = [<NUMBEI+ 1 Fms~] [<N U M B E R> I L A ST] [(<WMBER>)I

1

<ARANGE> =
+TRING>

i i<STRING>
[IcoL = (<NUMBER> [, <NU M B E R>])]

[SEQ (NOSEQ]

<FNAME> = @AME> 1 <FNAME> . <NAME>

< N AM E> = First character alpha rest alpha-numeric

<STRING) = ’ <CHARACTER STRING> ’ STRING> ”

II 1. . . means optional *

f I. . . means one of the options is required

- 57 -

The specification of the syntax of these commands is given in Appendix G

with the resultant generated table. An example conversation with the scanner

using the tables follows:

UNIT#?lS -.
CRBE EXAMPLE--- GEORGE 07/22/70 12:50:25.960

LIST TABLES?no
LIST COMMANDS?yes
LIST
L
SAVE
S
BRING
B
CHANGE
CH
COMMAND?list
tSUBl,S,(,),(O,O),)
COMMAND?l-lst l/4 .
(SUBl,S, (((l),(4),-l),),(l,O),)
COMMAND? 1 1,4
(SUB1,6,(((1),(4),-l),),(l,OI,I
C O M M A N D ? 1 ‘y’ in all
ERROR I
COMMAND? 1 ’ y’
(suB1,6,(,((,(Y,,o))~~,(o,l~,~
COMMAND?1 f irst last
tSUBl,l3,(((0),(-2),-1),),(1,Q),)
COMMAND?1 1,2,(9),“‘k”,co1=(2,3)
tSUBl,25,(((1),(2),(9)),((‘,(K,((2,3)),0)))),(1,1),)
C O M M A N D ? 1 1 2 (9) -‘K” col=(2,3)
tSUBl,25,~~~1~,~2~,~9~~,~~‘,(K,~K,~~2,3~~,O~~~~,~l,l~,~
COMMAND?save ,repl
(SUB2,11,((ACTIVE,),,-l,OI,(l,O,O,l),)
COMMAND?save ss.dd.ff,v=wy1003,(200,500~
ERROR I
COMMAND?save ss.dd.ff,vo1=wy1003,(200,500~
ERROR I
COMMAND?save ss.dd.ff,repl
tSUB2,19,(tSS,(DD,(FF,)II,,-1,0),(1,0,0,1~,~
COMMAND?b 123
tSUB3,6,(,-1,,123),(0,0,0,1~,~
COMMAND?b jegxx123
(SUB3,11,(,-l,JEGXX123,),(0,0,1,0),)
COMMAND?b d=ss.dd(member),v=wylOO3
tsUB3,27,(((SS,(DD,)),MEMBER,((WYLOO3~~),~1,,~,~1,0,0,0~,~
COMMAND?ch 1,2,'y','u',nolist
tSUB4,22,~~~1~,~2~,-1),~,~Y~~,~U~,,1~,~1,1,1,0,1~,~
COMMAND?*quit*
GOODBYE!
? s

- 58 -

BIBLIOGRAPHY

1. Fe ldman, Jerome A. a n d G r i e s , D a v i d (1 9 6 7) . T r a n s l a t o r
Wri ttng Systems. Computer Sc ience Depar tment , S tanford
U n i v e r s i t y , Techn ica l Repor t No . CS 69 . A lso appeared
i n C o m m . A C M , ll(19681, 2(February), 7 7 - 1 1 3 .

2 . F i s c h e r , M i c h a e l J . (1969). Some Proper t ies o f
Precedence Languages. ACM Symposium on Theory of
Comput ing , 181-190.

3 . G e o r g e , J . E . (1967aI. SARPSIS: Syntax Analyzer,
Recognizer, P a r s e r a n d S e m a n t i c I n t e r p r e t a t i o n S y s t e m .
S t a n f o r d L i n e a r A c c e l e r a t o r C e n t e r , C G T M 3 4 , November
15 , 1 9 6 7 .

4 . G e o r g e , J . E . (1967b). The SPIRES Scope Demonstration
Sys tern. S tanford L inear Acce le ra tor Center , CGTM 33 ,
November 15, 1 9 6 7 .

5 . G e o r g e , J a m e s E . (1969a). T h e S y s t e m S p e c i f i c a t i o n o f
G L A F : A L i n e a r S t r i n g G r a p h i c a l L a n g u a g e F a c i l i t y .
S t a n f o r d L i n e a r A c c e l e r a t o r C e n t e r , G S G - 6 1 , F e b r u a r y ,
1969.

6 . G e o r g e , J . E . (1969b). GEMS: A Graphic Exper imenta l
Meta-System. S t a n f o r d L i n e a r A c c e l e r a t o r C e n t e r , GSG
63 , June , 1 9 6 9 .

7 . G e o r g e , J . E . (1969c). Rules for Transforming a Grammar
t o a S i m p l e P r e c e d e n c e G r a m m a r U t i l i z i n g A r t i f i c i a l
Product ions . S t a n f o r d L i n e a r A c c e l e r a t o r C e n t e r
Computa t ion Group, GSG-62 , Ju ly , 1969 .

8 . G e o r g e , J a m e s E . a n d S a a l , H a r r y J . (1971). A Command
Language Meta-System. F o u r t h H a w a i i I n t e r n a t i o n a l
Conference on System Sc iences 483-485 .
L i n e a r A c c e l e r a t o r C e n t e r , SLAkPUB-844.

A l s o S t a n f o r d

9 . G r a y , J a m e s (1969). Precedence Parsers for Programming
Languages. Depar tment o f Computer Sc ience , Un ivers i ty
o f C a l i f o r n i a .

1 0 . L e a r n e r , A . a n d L i m , A . L . (1970). A Note on
Transforming Context-Free Grammars to Wirth-Weber
Precedence Form. T h e C o m p u t e r J o u r n a l , 1 3 , 2(May),
142 -144 .

1 1 . L e i n i u s , R o n a l d P a u l (1970). E r r o r D e t e c t i o n a n d
Recovery for Syntax D i rec ted Compi le r Systems.
U n i v e r s i t y o f W i s c o n s i n .

- 59 -

1 2 . McAfee, J . a n d P r e s s e r , L . (1970). A n A l g o r i t h m f o r
the Design of Simple Precedence Grammars. Department
o f E l e c t r i c a l E n g i n e e r i n g , U n i v e r s i t y o f California a t
Santa Barbara .

13. P a r k e r , E d w i n B . (1967). SPIRES 1967 Annual Report .
lnsti tu te f o r C o m m u n i c a t i o n R e s e a r c h , S t a n f o r d
U n i v e r s i t y , D e c e m b e r , 1 9 6 7 .

1 4 . P r e s s e r , L . (1968). T h e S t r u c t u r e , S p e c i f i c a t i o n s a n d
E v a l u a t i o n o f T r a n s l a t o r s a n d T r a n s l a t o r W r i t i n g
Systems. D e p a r t m e n t o f E n g i n e e r i n g , U n i v e r s i t y o f
C a l i f o r n i a a t L o s A n g e l e s , R e p o r t N o . 6 8 - 5 1 .

1 5 . P r e s s e r , L . a n d M e l k a n o f f M . A . (1969). Transformat ion
to S imple -Precedence . S e c o n d H a w a i i I n t e r n a t i o n a l
Conference on System Sc ience , 695 -698 .

16. Sch lumberger , M a u r i c e a n d W y e t h , D a v i d (1971). A
M u l t i - E d i t o r S y s t e m . Computer Science Department,
StanfordYJniversi ty , CS 293 Repor t . A l s o , S tanford
L inear Acce le ra tor Center , CGTM 127 .

1 7 . S h a w , A l a n C . (1966). Lecture Notes on a Course in
Systems Programming. Computer Science Department,
S t a n f o r d U n i v e r s i t y , T e c h n i c a l R e p o r t N o . 5 2 ,

18 . We l ls , J . (1970a). C R B E C o m m a n d L i s t . S L A C F a c i l i t y ,
S t a n f o r d C o m p u t a t i o n C e n t e r , S t a n f o r d U n i v e r s i t y , U s e r
Note 39.

1 9 . Wel ls , J . (1970bL CRBE C o m m a n d s . S L A C Faci 1 i ty,
S t a n f o r d C o m p u t a t i o n C e n t e r , S t a n f o r d U n i v e r s i t y .

2 0 . W i r t h , N i k l a u s a n d W e b e r , H e l m u t (1966a). EULER: A
G e n e r a l i z a t i o n o f A L G O L , a n d i t s F o r m a l D e f i n i t i o n :M
P a r t I . Corn. A C M , 9 , l(January), 1 3 - 2 5 .

21 , Wi r th , N ik laus a n d W e b e r , H e l m u t (1966bL EULER: A
G e n e r a l i z a t i o n o f A L G O L , a n d i t s F o r m a l D e f i n i t i o n :
P a r t I I . Comm. A C M , 9 , 2(February), 8 9 - 9 9 ..

22. - - - - - - (1 9 6 9) . WLBUR Reference Manual . ’ Campus
F a c i l i t y , S tanford Computa t ion Center , S tanford
U n i v e r s i t y , A p p e n d i x E , U s e r ’ s M a n u a l .

- 60 -

A P P E N D I X A

S I MPLE’S E X E C T I V E

SIVPLE: PROC CPTI CNS (MA1 N1 ;
D C L FILE1 CHAR(8) VAR, / * S Y N T A X E Q U A T I O N S I N P U T F I L E + /

F I L E 2 CHAR(8) V A R , /4PARS I N G P R O G R A M I N P U T F I L E * /
F I L E 3 CHAR(8) V A R , /*P4RSING P R O G R A M QUTPUT F I L E * /
F I L E 4 CHAR(B) V A R , /4SYNTAX O U T P U T F I L E * /
FILE5 CHAR181 VAR,, / * S Y N T A X D A T A O P T I O N S * /
F I L E 6 CHAR(8) V A R , /4SEMANTLC I N P U T F I L E * /
F I L E 7 CHAR(8) V A R , / * S E M A N T I C D I A G N O S T I C O U T P U T F I L E * /
F I L E R CHAR481 VAR, /4SEMANT I C P R O G R A M O U T P U T F I L E * /
SINIT CHAR{201 V A R , /4INITIATOR F O R S Y N T A X A N A L Y Z E R * /
S S E P CHAR(20J V A R , / * S E P A R A T O R F O R L E F T - R I G H T SIDES4/
S T E R Y CHAR(20) V A R , / * T E R M I N A T O R FOR E Q U A T I O N S * /
S E N D CHAR(201 VAR, / * T E R M I N A T O R F O R SYNTAX4/
S S E M A N T CHAR{201 V A R , / * I N D I C A T E S ‘ J O S E M A N T I C S F O R T H I S

PROOUCT ION*/
P A R S E R - N A M E C H A R (B) 1 / 4 N A M E T O BE S U B S T I T U T E D F O R

+P4RSER* I N F I L E 2 41

S E M A N T , N A M E CH4RtBl 1 /* N A M E T O B E S U B S T I T U T E D F O R
4SEYANT* I N F I L E 2 4/

IhTEGER CHAR(201 VAR,/4THAT S Y M B O L USE0 I N S Y N T A X F O R
A N INTEGERI/

kORD CHAR(20) V A R , /tTHAT S Y M B O L USE0 I N S Y N T A X F O R W O R D * /
S T R I N G CHARt20) V A R ; / * T H A T S Y M B O L U S E D F O R S T R I N G 4/

QLOTES CHAR(20) V A R , / * T H A T S Y M B O L USE0 F O R QUOTES4/
S E Q U E N C E CHAR(20) V A R , /4THE I N I T I A L S Y M B O L O F T H E S Y N T A X

-=. W H E N I T O C C U R R S I N T H E S T A C K T H E P A R S I N G
I S T E R M I N A T E D 4/

T E R Y I N A L CHAR(20) V A R , / * T H A T S Y M B O L U S E D T O F O R C E PAR.SING
T O B E C O M P L E T E D 4/

E R R O R S C A N CHAR(20) V A R , /4THAT S Y M B O L I N T H E S Y N T A X W H I C H
I S USE0 I N E R R O R R E C O V E R Y . . T H E T E X T B E T W E E N
T W O O F T H E S E S Y M B O L S I S E F F E C T I V E L Y D E L E T E D * /

SYY(10) CHAR(201 V A R , / * T H O S E S Y M B O L S W H I C H A R E E X P E C T E D
T O R E S I D E I N T H E I - T H P O S I T I O N O F T H E P A R S I N G
S T A C K 4/

S C A N - S T O P CHAR(20) V A R , / * T H A T S Y M B O L I N T H E S Y N T A X W H I C H
U P O N E N T R Y I N T O T H E P A R S I N G S T A C K C A U S E S
A L L I N P U T T O B E I G N O R E D B Y T H E P A R S E R
U N T I L T H E S Y M B O L A F T E R SCAN,STAR.T.*/

S C A N - S T A R T CHAR(20) V A R , /* R E S T A R T S T H E P A R S I N G A F T E R T H E
A P P E A R A N C E O F T H I S SYMBOL4/

MLIY F I X E D B I N , /4MAXIMUM N U M B E R O F SYMBOLS4/
Cl’LIM F I X E D B I N , /+MAXIMUM N U M B E R 3F N O N - B A S I C S Y M B O L S * /
N L I M F I X E O !3IN, / * M A X I M U M N U M B E R O F P R O D U C T I O N S + /
R L I M F I X E D BIN; / * @ ‘ A X IMUM N U M B E R O F R I G H T E L E M E N T S * /

D C L I F I X E D B I N :
O N ENOFILEtSYNDATA) G O T O X X X :
FILEl=‘SYNTAX’:FILE2=‘SPARSER’;FILE3=’PARSER’:FILE4=‘PS~TAX’;
FILES=‘SYNDATA’: FILE6=‘SEMANTICS’; FILE7r’PSEMANT’; -
FILES=‘SEMANT’: PARSER,NAME=‘SEMANT’: SEMANT,NAME=‘CODE,OUT’;
SINIT=‘*SYNTAX*‘; SSEP=‘*::=r’; STERM=‘4;*‘;
SEND=‘*END-SYNTAX*‘; SSEMANT=‘*NO-SEMANT*‘;

INTEGER=‘INTEGER’; WORD=‘WORD’: Q U O T E S = ‘ “ ‘ ; MLIM=20;
MMLI C=20 : N L I M=20 ; RLIM=8; S T R I N G = ’ S T R I N G ’ ;

SEQUENCE=‘SEMANTICS’; TERMINAL=‘*ENO-SEMANTICS*‘;

ERRORSCAN=‘*ENO*‘;
D O I=1 T O 1 0 ; SYM(I)=“: END;

S C A N - S T A R T = *END4’ : SCAN,STOP=‘*COOE4’;
SYM(lI=‘SEMANT’; SYH(3)=‘INTERPRETATIONS’; SYM(2I=‘CODA’:
O P E N F I L E (SYNDATA) TITLEtFILES) I N P U T S T R E A M ;
G E T FILEtSYNOATAl D A T A :

X X X : C A L L S Y N T A X (FILE1 ,FILE2,FILE3,FILE4,SINIT,SSEP,STERM~SENDn
SSEMANT ,PARSER,NAME,SEMANT,NAMEp

INTEGER,WORO,STRING,OUOTES,SEQUENCE,TERMINAL~ERRORSCAN8
SYM,SCAN,STOP,SCAN,START,MLIY,nMLIM,NLIM,NLIM,RLIM~:

C A L L SEMANT(FILE6,FILE8,FILE7);
E N D S I YPLE ;

- 61 -

A P P E N D I X B

S Y N T A X A N A L Y Z E R

S Y N T A X : PROC(FILE1,FILE2,FILE3,FILE4,SIN1T~SSEP,STERW,SEND~SSEUANT,
PARSER,NAMEeSEMANT,NAME,
INTEGER,WORD,STRING,O(JOTES,SEQUENCE,TERMINAL,ERRORSCAN,

SYM,SCAN,STOP,SCAN,START,nCln,MMLIM,NL1M~RLIM1:
DCL FILE1 CHAR(B) V A R , / * S Y N T A X E Q U A T I O N S I N P U T F I L E + /

F I L E 2 CHAR(8) V A R , / * P A R S I N G P R O G R A M I N P U T F I L E * /
F I L E 3 CHAR(a) V A R , / * P A R S I N G P R O G R A M O U T P U T F I L E + /
F I L E 4 CHAR(8) V A R , / * S Y N T A X O U T P U T F I L E * /
SINIT CHAR4201 V A R , / * I N I T I A T O R F O R S Y N T A X A N A L Y Z E R * /
S S E P C H A R 1 2 0 1 V A R , / * S E P A R A T O R F O R L E F T - R I G H T S I D E S + /
STERM CHAR(20J V A R , / * T E R M I N A T O R F O R E Q U A T I O N S * /
S E N D CHARt20) V A R , / * T E R M I N A T O R F O R S Y N T A X * /
S S E M A N T CHAR(20) V A R , / * I N D I C A T E S N O S E M A N T I C S F O R T H I S

PROOUCT ION*/
P A R S E R - N A M E CHAR{81 ,/*NAME T O B E S U B S T I T U T E D F O R

S P A R S E R * I N FILE2 */
S E M A N T , N A M E CHAR(8) t / * N A M E T O BE S U B S T I T U T E D F O R

SEMANT I N F1LE2 */
I N T E G E R CHAR(201 VAR,/*THAT S Y M B O L U S E D I N S Y N T A X F O R. .

A N I N T E G E R * /
W O R D CHAR(20) V A R , / * T H A T S Y M B O L U S E D I N S Y N T A X F O R W O R D * /
S T R I N G CHAR(20) V A R , / * T H A T SYM6OL I N S Y N T A X F O R S T R I N G */
Q U O T E S CHAR(20) V A R , / * T H A T S Y M B O L U S E D F O R Q U O T E S * /
S E Q U E N C E CHAR(20) V A R , / * T H E I N I T I A L S Y M B O L O F T H E S Y N T A X

W H E N I T O C C U R R S I N T H E S T A C K T H E P A R S I N G
I S T E R M I N A T E D */

T E R M I N A L CHAR(201 V A R , / * T H A T S Y M B O L U S E D T O F O R C E P A R S I N G
T O B E C O M P L E T E D */

E R R O R S C A N CHARL201 V A R , / * T H A T S Y M B O L IN, T H E S Y N T A X W H I C H
I S U S E D I N E R R O R RECOVERY..THE T E X T B E T W E E N
T W O O F T H E S E S Y M B O L S I S E F F E C T I V E L Y D E L E T E D * /

SYM(lO1 CHAR(20) V A R , / * T H O S E S Y M B O L S W H I C H A R E E X P E C T E D
T O RESIOE I N T H E I - T H P O S I T I O N O F T H E PARSfNG
S T A C K */

S C A N - S T O P CHARLZOL V A R , / * T H A T S Y M B O L I N T H E S Y N T A X W H I C H
U P O N E N T R Y I N T O T H E P A R S I N G S T A C H C A U S E S
A L L I N P U T T O B E IGNURED B Y T H E P A R S E R
U N T I L T H E S Y M B O L A F T E R S C A N - S T A R T . + /

S C A N - S T A R T CHAR(20) V A R , /* R E S T A R T S T H E P A R S I N G A F T E R T H E
A P P E A R A N C E O F T H I S S Y M B O L * /

M L I M F I X E D B I N , / * M A X I M U M N U M B E R O F S Y M B O L S * /
WHLIM F I X E D B I N , / * M A X I M U M N U M B E R O F N O N - B A S I C S Y M B O L S * /
N L I M F I X E D BINc / * M A X I M U M N U M B E R O F PRODtJCTIONS+/
R L I M F I X E D B I N ; /*WAXIMUM N U M B E R O F R I G H T E L E M E N T S * /

D C L X I N T E G E R F I X E D B I N , /*NUMBER F O R M O F I N T E G E R * /
X S C A N , S T O P F I X E D B I N , /*NUMBER F O R M O F SCAN,STOP*E
XSEQ F I X E D B I N , / * N U M B E R F O R M O F S E Q U E N C E * /
XSYMtlO) F I X E D B I N , / * N U M B E R F O R M O F SYM(+l */
X T E R M F I X E D B I N , / * N U M B E R F O R M O F T E R M I N A L * /
X S T R I N G F I X E D B I N , / * N U M B E R F O R M O F S T R I N G */
X W O R D F I X E D B I N : / * N U M B E R F O R M O F WORCW/

OCL M F I X E D B I N A R Y : /* N U M B E R O F S Y M B O L S */
D C L M M F I X E D 81 N A R Y : /* N O N O N - B A S I C S Y M B O L S */
OCL N F I X E O B I N A R Y : /* N U M B E R O F P R O D U C T I O N S * /
D C L SYT(O:MLIMl CHAR4201 VAR;/*SYMBOL T A B L E *I

* - 62 -

D C L PRD(YLIM,O:RLIM1 F I X E O B I N ; /* P R O I N N U M B E R F O R M * /
D C L P(NLIM,O:RLIM) C H A R (2 0 1 VAR; / * P R O D U C T I O N S I N S T R I N G F O R M * /
D C L SEMANT(NLIM1 BIT(I); / * T R U E I F N O S E M A N T I C S F O R I T H P R O D * /
DCL H(O:MLIM,O:PLIMI CHAR(11; / * P R E C E D E N C E M A T R I X */
DCL L(O:MMLIM,O:MLIM) BIT(l~,R(O:MMLIM,O:MLIM~ BIT(l):

/* L(1 ,J) T R U E M E A N S T H A T S Y - J O C C U R S I N T H E */
/* L E F T S Y M B O L S E T O F SY-I;R(I, J 1 M E A N S T H A T */
/* S Y - J I S I N R I G H T O F S Y - I * /

DCL (KEY(O:MLIY),PRTB(O:5*NLIM~ 1 F I X E O BIN:
PCL BASVALLNLIY) F I X E D B I N ;
D C L BASSYM(MLIY1 CHAR(20) V A R :

R E A D - S Y N T A X - 1 N P U T : PROC;
DCL I N B U F CHAR(100) VAR,BUF CHAR(100) VAR,(I,K) F I X E O B I N :
/*READS S Y N T A X I N P U T A N 0 M A K E S U P P M A T R I X AND SEMANT*/

D E L E T E : PROCLINBUF) RETURNSLCHARflOO) VAR);
/ * D E L E T E S L E A D 1 N G B L A N K S - - R E T U R N S N U L L I F A L L B L A N K * /
O C L LINBUF,STR) CHARtlOO) V A R :

STR=I NBUF:
I F STR=” I STR=’ ’ T H E N RETURN(” 1:
D O WILE (SUBSTR(STR,l,lt=’ ’ 1;

STR=SUBSTR(STR,2 1;.
E N D :

RETURN(STR):
E N D D E L E T E :

N E X T : PROC RETURNS(CHAR(100) VARI;
D C L C C T A CHAR(100) V A R ;
/ * F E T C H E S N E X T S Y M B O L F R O M I N P U T * /

O N ENDFILEtDATA) B E G I N :
P U T FILE(OUTJ EDIT(‘*****ENDFILE S Y N T A X I N P U T - - N O ‘,

S E N D) (SKIP,2 A);
G O T O E X I T ;
ENO;

I F INBUF=” T H E N D O ;
LOOP: G E T FILE(DATA) EDIT (INBUF)(A(801 1;

INBUF=INBUF) 1’ ‘;
INBUF=OELETE(INBUF);
I F INBUF=” T H E N G O T O L O O P ;
E N D :

I=INDEX(INBUF,’ ‘);
OLTA=SUBSTR(INBUF,l,I-1);
INBUF=OELETE(SUBSTR(INBUF, I+l)L;
RE TLRNL OUTA) :
E N D N E X T :

D C L N E X T I N T E R N A L E N T R Y RETURNS(CHAR(100) VARI,
D E L E T E I N T E R N A L ENTRY(CHAR(lOO1 ‘VAR) RETURNStCHARt 1 0 0) VAR);

K=O; N=l; BUF=’ ’ ; INRUF=“:
D O I=1 T O NLIM;P(ItO~=“;SEMANTor’O’B; E N D :
C P E N FILE(DATA1 TITLE(FILE1) I N P U T S T R E A M :
D O WILE (BUF q= SINITI;

B U F = N E X T :
E N D ;

RUF=NEXT;
D O W I L E (BUF q= SENO):

I F BUF=SSEP T H E N K=l;
E L S E I F BUF=STERH T H E N 00;

D O I - K T O R L I Y ; P(N,I)=“; END:
I F N < N L I M T H E N N = N + l ;
K=O ;
END;

E L S E I F BUF=SSEMANT T H E N SEMANT(Nl=‘l’B;

- 63 -

E L S E 0 0 :
- P(N,K)=BUF;

I F K < R L I C T H E N . K=K+l;
.END:

BUF=NEXT;
E N D ;

E XI T: C L O S E FILE(DATA):
00 I=2 T O N : I F P(I,Ol=” T H E N P(I,O)=P(I-l,Ob; END;
E N D R E A D - S Y N T A X - I NPUT;

B A S I C : PROC ;
/ * M A K E S S Y M B O L T A B L E AND N U M E R I C A L P R O D U C T I O N T A B L E PRD*/
D C L (I,J,K! F I X E D B I N :

C=O; SYT(0) =@‘:
D O K = O T O R L I M ;

D O I=1 T O N ;
00 J = O Tfl M; I F P(I,K)=SYT(Jb T H E N G O T O F F : E N D ;
M=M+l: J=M: SYT(M)=P(1,KI:

F F : PRDLI ,K)=J;
END:

I F K = O T H E N MM=M;
END: ’

EN.0 B A S I C :
COMP-KE Y-PR TB : PROC ;

/ * C O M P U T E S K E Y A N D P R T B TABLES...KEY (I) R E P R E S E N T S , F O R T H E
I T H S Y M B O L T H E I N D E X I N T O P R T B W H E R E T H O S E P R O O U C T I O N A R E
L I S T E D WHOSE R I G H T P A R T B E G I N S W I T H T H E I T H S Y M B O L . .
F O R E A C H P R O D U C T I O N , T H E R I G H T P A R T I S L I S T E D W I T H O U T
I T S L E F T M O S T S Y M B O L , F O L L C W E O B Y T H E N E G A T I V E O F T H E
P R O D U C T I O N NUMBER(IF N O S E M A N T I C S O P T I O N S E L E C T E D N
I S S U B T R A C T E D F R O M T H E P R O D U C T I O N N U M B E R) A N D T H E L E F T
P A R T S Y M B O L O F T H E P R O D U C T I O N . A L L S Y M B O L S A R E I N N U M E R I C
FORM. T H E EN0 O F A L I S T OF P R O D U C T tONS R E F E R E N C E D B Y KEY(I)
I S M A R K E D W I T H A 0 E N T R Y I N P R T B . */
D C L (I ,J,K,U,V) F I X E D B I N ;

K=O; V=O: KEYLO)=O; PRT@LO)=O:
00 I=1 T O Y+l;

I F V-=0 T H E N KEYLI-l)=V;
V=O ;
I F PRTB(K13=0 T H E N K=K+l:
PRTBtKl =O: KEY (I b=K;
D O J=l T O NJ ;

I F PRD(J,l)=I T H E N 0 0 :
I F V = O T H E N V=K+l;
0 0 U=2 T O RLIM;

I F PRO(J,lJbv=O T H E N 00;
K=K+l: PRTB(K)=PROtJ,UIi E N D :
E N D ;

K=K+l;
I F SEMANTLJI T H E N PRTB(K!=-N-J:

E L S E PRTB(K 15-J;
K=K+l; PRTB(Kb=PRO(J,O);
END;

E N D :
E N D :

E hi0 C O M P - K E Y - P R T B ;
SYNTAX-OUTPLT: PROC;

/ * O U T P U T S S Y N T A X INFORMAT ION+/
D C L (I,J,K) F I X E O B I N :
/ * O U T P U T P R O D U C T I O N S I N S T R I N G F O R M * /

P U T FILEtOUT) EOIT(‘PROOUCTIONS’,’ ’ b(PAGE,A,SKIP,Al:

-64-

D O I - l T O N ;
P U T FILE(OUT) EDIT(I,P(I,O~,SSEP~(SKIP,F(4),X(2~,A,X(2~,

A) ;
D O J - l TO R L I M :

I F P(I ,Jlq--‘@ T H E N P U T FILE(OUT1 EDIT(P(I,J))
(X.(2) ,A) ;

E N D :
I F SEMANT(I) T H E N P U T FILEdOUT) E D I T (‘*NO-SEMANTICS*0

(X(5) ,A);
E N D :

/*OUTPUT B A S I C A N D N O N - B A S I C S Y M B O L S * /
PUT FILE(OUT) EDIT(‘BASfC S Y M B O L S ‘@‘NON-BASIC S Y M B O L S ’ , ’ ‘)

(PAGE,A,COLUMN(501 ,A,SKIP, A):
0 0 I=1 TO MAXtMM,U-MC);

I F I+WM<=M T H E N P U T FILE(OUT1 EDITtMM+I,SYT(MM+I))
(SKIP,F(4) ,X(2), A);

I F I<=MM T H E N P U T FILE(OUT1 EDIT(I,SYT(I~1
(COLUMN(~O!,F(~)PX(~),A);

END:
/ * O U T P U T K E Y AN0 PRTB*/

P U T FILE(OUT) EDIT(‘I’ ,‘KEYtI~‘,‘PRTB(KEY(I~)‘,’ ‘1
(PAGE,A,C~OLUMN(lO~,A,COLUMN(2O~,A,SKIP,A~:

JO I=1 T O M;
P U T FILEtOUT) EOIT(I,KEYtI),’ ‘)(SKIP,F(4~,COLUMN(lO~,

F(5) ,COLUMN(ZO!,A1:
D O K-KEY(I) B Y 1 W H I L E (PRTB(KI-=O):

P U T FILE(OUT) EDIT(PRTB(K~~(X(l~pF(4~~;
E N D ;

E N D :
E N D S Y N T A X - O U T P U T :

P R E C E D E N C E : PROC ;
/* FIND H P R E C E D E N C E M A T R I X *c/
D C L (I,J,K) F I X E D BIN,ERRORFLAG B I T (l) ;
D C L (U,,V,P,Q,A,B~ F I X E D B I N :
D C L Nh F I X E D B I N , C H A N G E BIT(l):
O C L (Cl(O:MLIM) ,C2(0:MLIMt t F I X E D B I N :

/* T H E I T ’ H S Y M B O L O C C U R S Cl(I) T I M E S A S L E F T */
/* A N D C2(1) T I M E S A S R I G H T */

D C L (Bl(O:NLIM) ,B2(0:NLIM~~ BIT(l):
/It B (K) M E A N S T H A T T H E K ’ T H P R O D U C T I O N H A S B E E N */
/* ELI MI NAT ED */

O C L (SO(O:NLIH) ,SL(O:NLIM~,SR(O:NLIH) 1 F I X E D B I N :
ENTER : P R O C (XpY ,St :

D C L T CHAR(l):

B A :

D C L (X,Y) F I X E D BINARY,S CHAR(l):
T=H(X,Y);
I F T-=’ ’ C T-=S T H E N 00:

I F - E R R O R F L A G T H E N P U T FILE(OUT) E D I T
(‘ H I N T S R E G A R O I N G P R E C E D E N C E V I O L A T I O N S ’ , ’ ‘1
(PAGEpApSKIPpA);

E R R O R F L A G = ‘ l ’ B :
P U T FILE(OUT) E D I T

(U,$YT(X),T,S8SYT(Y))(SK1P,F(4~,X(2hA,X(2~,
2 ApXt2)pA):

E N D :
H(X,Y)=S;
EhD E N T E R :

0 0 I - l .TO M; C1(1)=0; C2tI)=o; EN Di
D O K=l T O N ;

SO(K)=PRD(K,O); SL(KI=PRO(K, 1): J-RL IM;

- 65 -

BB :

D O W I L E (PRD(K,JJ=OI: J=J-1; END:
SR(KJ *PRO{ K, J) : B l (K I==’ 1’ 8: B2(K J-’ 1’ B :
C2(SO(K#)=Cl(SO(K).1+1: CltSOtY)J-C2(SO(KJ);
EhD B A ;

D O I=1 T O M M :
D C J*l T O M; RLI J#=‘O’B;? L(f, J)=‘O’ 8: END: E N D :

N#=N; CHANGE=‘l’B:
D O W I L E (C H A N G E C NN>O)t

CHANGE=‘O’B:
D C K=l T O N ;

I F Bl(K1 T HE N 00:
A=SO(KJ: B=SL(KJ:
I F q’ L(A,B) T H E N 00; L (A, BJ=’ 1’ B: CHANGE=@ 1’Bt

E N D :
I F B<=MM T H E N 0 0 J=l T O M:

I F q L(A,J) T H E N I F LLB,J) T H E N 0 0 :
L~A,J~=‘1’B: C H A N G E - ’ 1, B : EMD: END:

I F Cl(B)=0 T H E N D O : Bl(KJ=‘O@ Bi Cl(A)-Cl(A)-1:
NN=NN-1 : END:

EN0 88:
NN=N: CHANGE=‘l’B:

B C : D O WILE (C H A N G E C NN>Ob:
CHANGE-‘O’BI
D C K=l T O N :

I F B2LKJ T H E N D O :
A=SO(K); B=SR(K):
I F q RLA,B) T H E N D O : R(A, B)=’ 1’ 8; C H A N G E = ’ 1’B;ENO;
I F B<=MM T H E N 0 0 J - l T O M :

I F v Rt A,J) T H E N I F R(B,J 1 T H E N 00:
R(A,J)=‘l’B: C H A N G E = ’ 1’ 8: E N D : E N D ;

I F C2(Bb=O T H E N 00:
BZ(KJ=‘O’B: C2(A)=C2(AJ-1: NN-NN-1; E N D ;

EN0 B C ;
/ * O U T P U T R I G H T A N D L E F T S Y M B O L S E T S * /

P U T FILELOUT) E D I T (‘ R I G H T S Y M B O L S E T S ’ , ’ ‘~fPAGE,A,SKIP,A~:
D O I=1 T O M M :

P U T FILELOUT) E D I T (SYT(I~,‘-‘1WiIP,A,X(1),A)I
D O 3=1 T O H:

I F R(I,J) T H E N P U T FILElOUT) EDIT (SYTLJID(X(2)pA);
E N D :

END:
P U T FILE(OUT1 EDITt’LEFT S Y M B O L S E T S ’ , @ ‘)~SKIP(4#,A,SKIP,

AD ;
D C I=1 T O MM:

P U T FILE(CUT) E D I T (SYT~I~,‘*‘~(SKIP,A,X(lD,A~:
00 J-1 T O M:

I F L(I,J! T H E N P U T FILE(UJT# EOIT(SYT(J1)(X(2!,A1;
E N D :

E N D ;
. /* FIND H P R E C E O E N C E M A T R I X */

0 0 I - O T O M: D O J=O T O M; H(I,JJ=’ ‘IEND: ENO:
ERRORFLAG=‘O’B:

u v : 0 0 U=l T O N ;
D O V=2 T O RLIM;

I F PRO(U,W~-O T H E N 00;
P=PROW,V-1); Q-PROWpV); C A L L ENTER(P,Q,‘-0;
I F P<=YM T H E N 00: .

D O I=1 T O M:
I F R(P,I! T H E N C A L L ENTER(I.O,‘>‘~; END;

I F Q<=MM T H E N 0 0 J=l T O M;

d
- 66 -

c

I F L(O,J4 T H E N 00;
C A L L ENTE.R(P, J, ‘C’):
D O I=1 T O M:

I F R(P,I) T H E N C A L L ENTER(I,J,‘>‘Jt
E N D :

E N D ;
END:

E N D :
E L S E I F QC=MM T H E N 0 0 J - l T O M;

I F L(Q,J) T H E N C A L L ENTER~P,J,‘<‘): END;
END U V ;

P U T FILE(oUT) EDIT(‘PRECEOENCE M A T R I X ’ , ’ ’ ~(f’AGE,A,SKIP,A~;
P U T FILELOUT) EDIT((J/lO D O J=lO T O M B Y 10))

(SKIP,X(6J,9(X~lO),Fo));
D O I=1 T O M;

P U T FILEtOUT) EDIT(1,’ ‘)(SKIP,F(4~,XLl~,AI;
DO J=O TO M BY 10:

I F M>J+9 T H E N U=J+9: E L S E lJ=M:
P U T FILElOUT) EDITLLH-(IpI D o Y=J T O U~,‘.‘~

(11 A D ;
E N D : _

E N D ;
I F E R R O R F L A G T H E N P U T FILEtOUT) E D I T

(‘ P R E C E D E N C E V I O L A T I O N S OCCURRED’)~SKIP(2~,AJi
E L S E P U T F I LEtOUT) E D I T (‘ N O P R E C E D E N C E V I O L A T I O N S O C C U R R E D ’)

4 S K I Pt2) ,A) :
E N D PRECEDENGE:

O U T P U T , D C L : PROC ;
/ * O U T P U T D E C L A R A T I O N S T O P A R S E R FILEtI
D C L (I,J,Kb F I X E D B I N :

PUT F I LE (PARSER) E O I T L ’ D C L /*DECLARAT I O N S F R O M S Y N T A X * / ’ !
(COLUMN461 p A) t

I F Q U O T E S = “ ” T H E N C?UOTES=QUOTESI I Q U O T E S :
P U T FILEtPARSER) E D I T (‘ Q U O T E S E X T CHAR(2OJ V A R INITIAL(“‘,

QUOTES,“‘J ,‘~(COLUMN(lO~, 3 A);
P U T FILE~PARSERI EDIT (‘ERRORSCAN CHAR(ZOI VA R INITIAL(“‘,

ERRORSCAN,“‘~,‘I~COLUMNtlO~,3 AI:
P U T FILELPARSER) E D I T (‘ S C A N - S T A R T CHAR{201 V A R INITIALI “’

,SCAN,START,“‘),‘~(COLUMN~lO~,3 A I :
I* M A K E U P B A S S Y M AN0 B A S V A L */
J=O; XWORD=O; XI NT EGER=O: XSTRING=O;
00 I=Yn*l T O M;

I F SYT(I) = W O R D T H E N XWCRD=I:
E L S E I F SYT(IJ=INTEGER T H E N XINTEGER=I:
E L S E I F SYT(I!=STRING T H E N XSTRING=I;
E L S E D O :

J=J+l:
BASSYMt J)=SYT(I J;
BASVAL(J)=I;

. E N D :
E N D :

J-J+1 :
BASSYML JI =TERMINALt
BASVAL(31 =M+l:
XTERM=M+l;

P U T FILEtPARSER) EDIT(‘BASSYM(‘,J,’) CHAR4201 V A R ‘p
‘INITIAL(“‘,BASSYM(l~,““J~COLUMN~lO~, A ,

F(Q), 4 A);
P U T FILE(PARSERI EDIT ((‘,“‘,BASSYM~I~,“” 0 0 I=2 T O

31)(COLUMN(201,6 A D . ;

- 6’7 -

P U T F I L E t P A R S E R J E D I T t ’ J , ’ J(A);
P U T F I L E t P A R S E R J E O I T 1’BASVALt’,J,

‘ J FIXED BIN IN1T1ALt0,8ASVAL(1JJtC0LUMNt10J,A,F(4J,
A,Ft4J J;

P U T FILE(PARSER) E D I T W’,‘,BASVALi% 00 1=2 T O J)J
(COLUMN(tOJ, lOtApF(4JJJ:

P U T FILE(PARSERJ EDITt’ J,’ J(A):
P U T FILE(PARSERJ EOIT(‘KEYtO:‘,M+l,’ JFIXED B I N INITIAL(’

,KEY(Oj J (COLUMNtLO.J,A,Ft4J, A, Ft4J J:
P U T FILEtPARSER) E D I T t(‘,‘,KEYt 11 00 I=1 T O M+lJJ

tCOLUMNt20J ,btA,Ft4JJ J :
P U T F I L E t P A R S E R J EDIT(‘J,‘J(AJ;
P U T FILEtPARSER) EOITt’PRTB(O:‘,KEY(M+1J,

‘J F I X E D B I N INITIALt ‘,PRTBtO)J(COLUMNt10~,A,Ft4~,
A,Ft4));

P U T FILEdPARSER) E D I T t(‘,‘,PRTBtI) D O I=1 T O KEYtM*lJ
J J tCOLUMNt2OJ ,6(A,F(4BJJ:

P U T F I L E t P A R S E R J E D I T t ’ J , ’ J tAJ;
P U T FILEtPARSER) EDIT(‘HLIM F I X E D B I N I N I T I A L (',M+l,

‘J ,‘JtCOLUMNt1OJ,A,Ft4J,A~;
P U T FILEtPARSER) EDITt’XTERM F I X E O B I N INITIALt”,XTERM,

‘ J ,‘J tCOLUMN(lOJ,A,FtGJ,AJ:
XSEQ,XSCAN,STOP=O; D O K = l T O 1 0 ; XSYM(K)=O: E N D :
D O I=1 T O M:

0 0 K=l T O 10;
I F SYTtIJ=SYM(KJ T H E N XSYMtKbI:
E N D :

I F SYTtIJ=SEQUENCE T H E N XSECJ=I;
E L S E I F SYTtI J=SCAN,STOP T H E N XSCAN,STOP=I;
E N D ;

P U T FILEfPARSER) EOIT (‘XSYWtlOJ F I X E D B I N INITIALt’,
XSYM(1~,(',',XSYM(K~ D O K=2 T O 10~,'~,*~
(COLUMN(lOJ,A,Ft4~,COLUMNt2O~,9tA,Fo),AJ:

P U T FILEdPARSER) EDIT(‘XWOR0 F I X E D B I N INIT1ALt’,XWORO,
‘J ,‘J(COLUMNt1OJ,A,Ft4J,A~;

P U T FILEtPARSER) EDITt’XINTE.GER F I X E D B I N INITIAL(‘,
XINTEGER,‘J,‘J(COLUMNtlOJ,A,ft4J,AJ;

P U T FILEtPARSER) EOIT(‘XSTRING F I X E O B I N INITIAL(‘,
X$TR1NG8’J,‘~(C0Lt10J,A,F~4J,A);

P U T FILEtPARSER) EDITt’XSCAN,STOP F I X E O B I N INITIAL(‘P
XSCAN,STOP,‘J,‘J~COLUMNtlOJ,A,F(6),AJ:

P U T FILE(PARSERJ E D I T (‘XSEQ F I X E O B I N INITIALt’,XSEQ,
‘1 ,‘I (COLUMN(lO),A,F(4J,AJ:

P U T F I L E (PARSER) EDITt’M F I X E D B I N INITIALt’,J,‘J,‘J
tCOLUMNtlOJ,A,Ft4J,AJ:

P U T FILEtPARSER) EDITt’N F I X E D B I N IN1TIALt’,N,‘J;‘J
(C0LUMNt10J8A,Ft4J,A);

/* S E T U P T O O U T P U T P R E C E D E N C E I N I T I A L I Z I N G PROCEOURE
AND PRECEOENCE M A T R I X H */

P U T FILE(PARSERJ EDITt’DCL H I N I T I A L ENTRYtFIXED BIN):‘,
‘ H I N I T I A L : PROCtJLIMJ:‘,
‘ O C L tI,K,JLIMb F I X E O B I N , ‘ ,
‘J(O:JLIM) F I X E D B I N INITIAL(O’J
tCOL(1OJ,A,COLt2J,A,2tCOLt10J,AJJ;

/* 0 M E A N S = 1 M E A N S < A N 0 2 M E A N S > */
J - O :
D O I=1 T O M:

D O K=l T O M;
I F H~I,K~~=’ ’ T H E N D O ;

P U T F I L E t P A R S E R J EDITt’,‘,I,‘,‘,K,‘,‘J

* - 68 -

.

(COL(201,2(A,F(4)I,A);
I F H(I,K)=‘=’ THEN

P U T FILEtPARSER) EDIT(‘0’ b(A);
E L S E I F H(I,Kt=‘<’ T H E N

PIJT FILEdPARSER) EOIT(’ 1 ’)(A);
E L S E P U T FILEtPARS ER) EDIT{’ 2 ’)(A):
J=J+3;
END;

E N D : . .
E N D :

P U T FILEtPARSER) EOIT(‘~:’)(A):
P U T FILEtPARSER) EDIT(‘O0 I=0 T O H L I M ; ‘ ,

‘ D O K = O T O HLIM;‘,‘H(I,KJ=” “;‘,
‘END;‘,‘ENO;‘, ‘ D O I=1 T O J L I M - 1 B Y 3:‘,
‘ I F J(I+2) =O T H E N H(J (It, J(I+l)~=“=“;‘,
‘ E L S E I F 3(1+2) =l T H E N H(J(I),J(I+1)~=“<“;‘,
‘ E L S E H(J(I~,J(I+1)~=“>“;‘,
‘ E N D ; ‘ ,
‘00 I=0 T O HLIM;‘,‘H(HLIM, I ~ = “ < “ : ‘ ,
‘H(I , H L I MJ =’ 0’ ’ ; ’ , ‘END:‘,‘END HINITIAL:‘)
(COL114) ,A,COL(18),A,COL(22),A,COLO,A,

COL~18),A,COL(14J,A,4(COLO,A~,COLO,A,
3(COL(lB~,AJ,COL(14),A);

P U T FILE(PARSER) EOITL’DCL H(O:‘,M+l,‘,O:‘,M+l,
‘) CHAR(l) I N I T I A L C A L L HINITIAL(‘,J,‘~:‘~
(COL(10) ,3tA,F(4)1,At:

EN0 O U T P U T , D C L ;
O U T P U T - P A R S E R : PROC:

/* M E R G E S I N P U T F I L E 2 W I T H D E C L A R A T I O N S F R O M O U T P U T , D C L I N T O
F I L E 3 */

O C L A CHARtBOb V A R :
D C L I F I X E O B I N , (B,CI BtT(lb;

O N ENDfILE B E G I N :
P U T FILEtOUT) EDIT(‘+****ENOFILE P A R S E R I N P U T - * E N D * ‘P

‘ A B S E N T O R WRONG’b(SKIP,Z A);
G O T O E X I T ;
E N D ;

LOOP:

O P E N FILEtIN) TITLE(FILE2) I N P U T S T R E A M ;
O P E N F I LEtPARSER) T ITLE(FILE3) O U T P U T S T R E A M :
I F PARSER-NAME=” THEN B=‘O’B: E L S E B=‘l’B:
I F SE MANT,NAME=’ ’ T H E N C=‘O’B: E L S E C=’ 1’B;
G E T FILEtIN) EOIT(A)(A(BO~):
I F SUBSTR(A,1,5)=‘*ENO*’ T H E N G O T O E X I T :
I F SUBSTR(A,1,8~=‘*INSERT*’ T H E N C A L L O U T P U T - D C L ;

E L S E I F B t INDEX(A,‘*PARSER*’ Iv=0 T H E N 00:
I=INOEX(A,‘*PARSER*’ 1:
A=SUBSTR(A,l,I-l)(JPARSER,NAMEi ~SUBSTR(A,I+B~;
P U T FILElPARSERl EOIT(A~(SKIP,A~;
END;

E XI 1:

E L S E I F C & INOEX(A,‘*SEMANT*‘~~=O T H E N DO;
I=INDEX(A,‘*SEMANT*’ 1;
A=SUBSTR(A,l,I-111 (SEMANT,NAME! lSUBSTRLA,I+B);
P U T FILEfPARSER) EOIT(A)(SKIP,A9;
E N D ;

E L S E P U T FILEtPARSER) EOIT(A)(SKIP,A!;
G C T O L O O P :
C L O S E FILEtIN);
C L O S E FILEtPARSER);
EKD O U T P U T - P A R S E R ;
/*----------CALL 1 NG S EQ(J ENCE ------------+/

O P E N FILELOUT) TITLE(FILE4) P R I N T S T R E A M :
C A L L R E A D - S Y N T A X - I N P U T ;
C A L L B A S I C ;
C A L L COMP,KEY,PRTB:
C A L L S Y N T A X , O U T P U T ;
C A L L P R E C E D E N C E :
C A L L O U T P U T - P A R S E R ;
C L O S E FILEtOUT):

E N D S Y N T A X ;

- 69 -

A P P E N D I X C

S K E L E T O N P A R S E R . .

* P A R S E R * : PROC OPTIONS(MAINI:
/ * P A R S E R U S I N G T H E T A B L E S I N S E R T E D B Y T H E S Y N T A X P R O G R A M */

D C L INPUTT CHAR(7) V A R , / * I N P U T F I L E */
P O U T CHAR(7) V A R , /*DIAGONOST I C O U T P U T F I L E * /

O U T P U T CHAR471 V A R : / * O U T P U T FILE*/
D C L (1,J,K,L,KK,11,12,13~ F I X E D B I N ,

S(O:50) F I X E D B I N A R Y , / * P A R S I N G S T A C K * /
VLO:SO) CHAR(400) V A R , /* V A L U E S T A C K */
Q U O T E BIT41 b , / * B O O L E A N F O R Q U O T I N G B A S I C S Y M B O L S */
S Y M F I X E D B I N , /* MJMERICAL F O R M O F A S S I G N E D S Y M B O L */
S Y M S CHAR(400) V A R , / * S T R I N G F O R M O F A S S I G N E O S Y M B O L */
E R R O R BITtI 1 INITIAL(‘O’B~, /*PASSE0 T O SEMANT*/
AK’S F I X E D B I N I N I T I A L (O) , / * P A S S E D T O SEMANT*/
I N P U T CHARtlOO) V A R : / * I N P U T B U F F E R * /

INSERT
D C L L C O K I N T E R N A L ENTRY(CHAR(4001 VAR,FIXEO BIN,BIT(ll,BIT(l)~;

L O O K : PROC (S-$1 , T, X 1 ;
/ * F R E E FIELO R E A O PROCEOURE T I S F A L S E I F I N T E G E R E L S E T R U E * /
/ * S E P A R A T O R I S A L W A Y S . B L A N K I F N O T Q U O T E D S T R I N G T H E N A

S E P A R A T O R I S A N Y S I N G L E C H A R A C T E R I N T H E S Y N T A X
I F X T R U E T H E N B L A N K S R E M O V E D E L S E B L A N K S L E F T */

NE XT: PROC RETURNS(CHAR(l1 I:
/* G E T S T H E N E X T C H A R A C T E R F R O M I N P U T * /

O N ENDFILE (IN1 B E G I N :
P U T FILEtDIAGb LIST(‘*+***ENDFILE M A I N S C A N N E R ’) S K I P :
I F Q U O T E T H E N P U T FILEtOIAGb L I S T

(‘ * * * * * M I S M A T C H I N G Q U O T E S ’ 1 S K I P :
G O TO F I N I S :
E N D :

I F I>LENGTH(INPUT) T H E N 00:
G E T FILELIN) EDIT(INPUT~(A(80~);
P U T FIL’E(DIAG) EOITd’NEW I N P U T STRINOc**’ p INPUT 1

(S K I P , 2 A):
I N P U T = INPUT I I @ ‘:
I=1 ;
E N D :

RETURNtSUBSTRLINPUT, 181) 1:
E N D N E X T :

C O N : P R O C ;
/ ‘ @ C O N C A T E N A T E S S Y M T O S A N 0 I N C R E A S E D I */

S = S I (SYM: 1=X+1;.
E N D C O N :

SPEC : PROC(A,Bl RETURNStBITtlb I:
/* T R U E I F A I S N O T A S E P A R A T I N G C H A R A C T E R * /
D C L A CHAR(l), B BIT(l), J F I X E D B I N :

IF A=’ ’ I A=QUOTES T H E N RETURN(‘0’ B J ;
I F B T H E N RETURN(‘l’B):
D O J = l T O M; I F A = B A S S Y M(J 1 T H E N RETURNi’ 0’ Bl; E N D :
RETURN(‘l’B) :
E N D S P E C :

D C L S P E C I N T E R N A L E N T R Y (CHAR(l), BIT(l) J RETURNStBITC 18 1,
N E X T I N T E R N A L E N T R Y R E T U R N S (CHAR(l)),
C O N I N T E R N A L E N T R Y ,
S Y M CHAR(l) p
(T,XJ BIT(l),

- 70 -

I F I X E O B I N , /*INPUT B U F F E R P O I N T E R * /
S CHAR(400) VAR: /*OUT P U T S T R I N G * /
SYM=NEXT; S=“t -
IF X T H E N D O W H I L E (SYM=’ ’):

x=1+1; SY H-NEXT ; END;
I F dPECLSYM,QUOTE) T H E N 00:

C A L L C C N ; T=’ I’ 8: R E T U R N : END:
I F SYM>‘Z’ T H E N D O :

D O W H I L E L NEXT)’ Z’ 1;
C A L L C O N : SYM=NEXT:
E N D :

T=‘O’B; RETURN:
E N D ;

D C W H I L E (SPECtSYM, OUOTE) 1;
C A L L C O N : SYM=NEXT;
E N D :

T=‘l’B; R E T U R N :
EhD L O O K :

A S S I G N : P R O C (Q U O T E ,OS,V) R E C U R S I V E :
/ * A S S I G N S A N U M E R I C A L V A L U E T O C U R R E N T I N P U T S Y M B O L */
DCL Q U O T E BIT(l) P

O S CHAR(400) VAR, / * S T R I N G R E T U R N E D H E R E */
V F I X E D B I N , /* N U M E R I C A L F O R M O F S T R I N G */
J F I X E D B I N ,
1 BIT(l1,OX CHAR14001 V A R :
I F Q U O T E T H E N DO;

C A L L LOOK(OS,I,T,‘O’B~;
I F O S - Q U O T E S T H E N D O ;

QUOTE=‘O’B; O$=‘@; V = X S T R I N G ; R E T U R N :
END;

C A L L LCOK(OX,I,T,‘O’B~:
DO WHI LE (OX-=QUOTES 1:

os=osllax;
C A L L LOOK~OX,I,T,‘0’B~:
E N D ;

QUOTE=‘O’B; V=XSTRING;
R E T U R N :
E N D ;

C A L L LOOKLOS,I,T,‘1’B~i
I F T T H E N D O :

I F OS=QUOTES T H E N 00;
QUOTE=‘l’B: C A L L ASSIGN(QUOTE,OS,VL: R E T U R N ;
END;

00 J=l T O M:
I F OS=BASSYM(J) T H E N 0 0 ;

V=BASVAL(J 1; R E T U R N :
-END:

E N D ;
V=XWORD; R E T U R N :
E N D ;

V=XI NTEGER; R E T U R N :
E N D A S S I G N :

SCANZ: PROC i
/* D R A I N S I N P U T B U F F E R A N D S C A N S I N P U T F I L E U N T I L S C A N - S T A R T

O C C U R S R E S E T I A N D I N P U T B U F F E R */
D C L K F I X E D B I N :

C N E N O F I LE(I N) B E G I N ;
P U T FILELO! A G J EDIT(‘*****ENOFILE A L T E R N A T E S C A N N E R ’ ,
‘ * * * * * C H E C K F O R M A T C H I N G S C A N - S T O P & S C A N - S T A R T ’ 1
(2LSKIPpAJ);

- 71 -

LOOP :

WDTO F I N I S :

I F I<L;NGTH(INPUTt T H E N INFUT=’ ’ I I SUBSTRd I N P U T , I t :
E L S E D O :

G E T FILELINt EOIT~INPUT-i(A(BOtt;
P U T FILEtOIAGt EDIT~‘CODE I N P U T STRING’K*‘, INPUT)

(S K I P,‘2 A t t
E N D :

K=INDEXtINPUT,SCAN-START);
I F K = O T H E N D O :

P U T FILEdOUTt EDITt INPUT) (S K I P , A t :
G E T FILEtINt EDIT(INPUTt(A(BOtt:
P U T FILE(DIAGt EDIT(‘CODE I N P U T STRINW*‘,INPUTt,

(SKIP,2 A t ;
G O T O L O O P :
E N D ;

I F :+:ENGW&A;7START t>=LENGTH(I N P U T 1 T H E N Do:
;

E;D;
= ;

E L S E D O :
P U T FILEdOUT) EDIT(SUBSTR(INPUT, l,K-1tt~COLUMN~2t,At:
I=1 ; INPUT=SUBSTR(INPUT,K+LENGTHdSCAN-START)):
E N D ;

END SCANZ; .
STACKOK: P R O C RETURNS(BIT(ltt;

/* T R U E I F H(S(J-l~,S~J~t~‘<’ */
D C L I F I X E D B I N :

I F H(S(J-lt ,S(Jtt=‘<’ T H E N RETURN(‘l’Bt;
P U T FILEtDIAGt LIST(‘+*+*+ERROR I N P A R S I N G S T A C K ‘ t S K I P :
RETURN4 ‘O’B) :
E hD STACKOK;

E R R O R - R E C O V E R Y : PROC:
/ * R E S E T S S T A C K , S C A N S I N P U T U N T I L E R R O R - S C A N */
D C L LM,ERt BIT(l) ,(R,L,KKt F I X E D BIN,~TR,TL,XR,XLt CHAR(SOOt

V A R :
D C L T Y P E I N T E R N A L ENTRY(FIXE0 BINt R E T U R N S (CHARt400t VARt;

TYPE : PROCdRl RETURNS(CHAR(400 1 VAR!;
/ * R E T U R N S T Y P E O F R INTEGER,tdORO,STRING O R R E S E R V E D */
D C L R F I X E D B I N :

IF R=XWORO T H E N RETURN(‘WORD’ 1;
E L S E I F R=XI N T E G E R T H E N RETURNt’ I N T E G E R ’ t :
E L S E I F R = X S T R I N G T H E N RETURNL’STRING’ t;
E L S E R E T U R N I ’ R E S E R V E D W O R O ’ 1;
E N D T Y P E :

/+RE S E T S T A C K - - - - - - - - - - - - - - - - - */
P U T FILE(DIAGt EDIT(‘++***SYNTAX A N A L Y S I S I=‘,ll

(SKIP,A,F(Qtt;
P U T FILE(OIAGt EDIT(‘STACK W A S ‘,(S(Lt, V(L) 0 0 L=O T O K t t

(COLUMNt20t,A,StCOLUMNt2Ot,lO~F~4t,XO,Attt;
L=l :
D O UHILE (XSYM(Ltq=O C L<lO):

L=L+l;
E N D :

Y=‘O’B; j=L;
D C KK=l T O L ;

I F SLKKt -=XSYM(KK) T H E N D O :
J=KK-1: G O T O E X I T :
E N D :

E N D :
E X I T : I F J=L & ERRORSCAh=SCAN-START T H E N M-’ 1’8:

*- 72 -

.

/* S C A N I N P U T U N T I L E R R O R S C A N F O R E R R O R S */
I - l : OUGTE=‘O’B; ER=’ 1’ B ;
C A L L ASSIGN(QUOTE,XR,Rt;
TR=TYPE L Rt :

LOOP : I F XR=ERRORSCAN T H E N G O TO X E X I T ;
TL=TR: X L = X R ; L = R :
I F L=XSCAN,STOP T H E N D O :

C A L L SCAN2;
I F ERRORSCAN=SCAN,START T H E N G O T O X E X I T ;
END;

C A L L ASSIGN(QUOTE,XR,Rt:
T R = T Y P E (Rt :
I F H(L,Rt=’ ’ T H E N D O ;

ER=‘O’B:

X E X I T :

P U T FILELDIAGt E D I T (XL,‘(TYPE-‘,TL,‘t M A Y N O T B E ‘,
‘ F O L L O W E D B Y ’ ,XR, ’ (T Y P E - ’ ,TR,’ L’t(COLUMN(2Ot,9 A t :

E N D ;
G O T O L O O P ;
I F E R T H E N P U T FILEtOIAG) EDIT(‘ERROR N O T I N C U R R E N T I N P U T ’)

(COLUMN(20t ,A):
P U T FILE(OIAGt EDITL’STACK R E S E T T O ‘,(S(Lt, V(L) D O L=O

T O Jtt(COLUMN(1Ot,A,5(CCLUMN(2Ot,lO~F(4t,X(lt,Attt;
P U T FILE(DIAGt LIST(-‘*****EN0 O F A N A L Y S I S ’ 1 S K I P ;
CA~OTE=‘O’8;
INPUT=SUBSTR(INPUi,It; I= 1;
I F M T H E N 00; SY MS=XR; S Y M = R : ENO;

E L S E C A L L ASSIGN(CtUOTE,SYMS,SYMt:
E N D E R R O R - R E C O V E R Y :

/* - w e - - - - - PARSING SECT I O N - - - - - - - - - - - - */
D C L STACKOK I N T E R N A L E N T R Y RETURNS(BIT(ltt;

D O J=O T O 5 0 ; S t J)=O; V (J) = “; END;
SL Ot =XTERM:
I NPLTT=‘SOURCE’ ; P O U T = ’ O I A G ’ ; OUTPUT=‘OUTPUT’;
O P E N FILELOUTt TITLE(OUTPUTt O U T P U T S T R E A M :
O P E N FILELDIAGt TITLEdPOUT) P R I N T S T R E A M :
O P E N FILELINt T I T L E (INPUTT) I N P U T S T R E A M :
I - l ; I N P U T = “ ; J=O; CUOTE=‘O’ 8:
C A L L ASSIGN(OUOTE,SYMS,SYMt:
0 0 UHILE (SYMX,;

J = J + l ; K=J; S(Jt=SYM; V(J)=SYMS:
I F S(J) =XSCAN,STOP T H E N C A L L S C A N 2 ;
C A L L ASSIGN(BUOTE,SYMS,SYMt:
D O WILE (H(S(Jt,SYMt=‘>‘t:

I F S(Jt=XSEQ T H E N G O T O F I N I S :
D O W H I L E ((H(S(J-li,S(J)l=‘=‘) S(J>l)b:

J=J-1 ;
E N D :

L=KEY(S(Jt t :
I F STACKOK T H E N D O W H I L E (PRTB(L t-=0);

KK= J+I :
D O W H I L E ((KK<=Kt & (StKKt=PRTB(Lttt:

KK=KK+l: L=L+l;
END:

I F ((KK>Kt C (PRTB(Lt<Ott T H E N D O :
Il=J: 12=K; 13=-PRTB(L t :
I F 13<=N T H E N C A L L *SEMANT*I 13,V, 11,12,ANS,ERR0Rt:
S(J) =PRTBLL+lt; L=O;
E N D :

E L S E 00;
D O W H I L E (PRTB(Lt>Ot:

- 73 -

L=L+l;
E N D :

L=L+2;
E N D :

E N D :
. .

E L S E D O ; / * E L S E T O IF-DDtPRTB--1 +I
C A L L E R R O R - R E C O V E R Y ; L - O ;
E N D :

I F L-=0 T H E N 0 0 : / * P U T E R R O R R E C O V E R Y H E R E */
L=O: C A L L ERROLRECCIV ERY;
E N D :

K = J :
E N D :

E N D :
I F SYM=O T H E N 00;

P U T FILEfDIAGl L I S T
(‘*****THE S Y M B O L ‘,SYMS,’ W A S A S S I G N E D T O N U L L C L A S S ‘1
S K I P ;

IF XWORD=O T H E N P U T FILEtOIAGl LISTt’WORO C L A S S 0;
I F XINTEGER==O T H E N P U T FILEtDIAGl LIST(‘INtEGER C L A S S 0:
I F XSTRING=O T H E N P U T FILEtOIAG) LISTt’STRING C L A S S ’) ;
E ND :

FIN1 $2 EN0 *PARSER*:
END

*

- 74 -

A P P E N D I X 0 - - S E M A N T I C C O N S T R U C T O R

SYNTAX

* SYN TA X*
S E M A N T I C S *: :=* S E M A N T CODA PRODUCT IONS *: *
PROOUCTIONS Jr:: =* I N T E R P R E T A T I O N S *NO-SEMANT+ It;*
S E M A N T *: :=* * S E M A N T I C S * W O R D *;*
I N T E R P R E T A T I O N S *: :=* I N T E R P R E T A T I O N *NO-SEMANT* *;*
::= I N T E R P R E T A T I O N S I N T E R P R E T A T I O N *NO-SEMANT* *;*
I N T E R P R E T A T I C N *::=* I N T E R P * C O D E * *:*
I N T E R P f: : =* * P R O D U C T I O N * I N T E G E R *;*
CODA St’:=* * C O D E *
* E N D - S Y N T A X *

- 75 -

A P P E N D I X D - - S E M A N T I C C O N S T R U C T O R

P A R S E R W I T H S E M A N T I C S

* P A R S E R * : P R O C (INPUTT,OUTPUT,POUTt;
/*PARSER U S I N G T H E T A B L E S INSERTED’BY T H E S Y N T A X P R O G R A M */

O C L INPUTT CHAR(7t V A R , / * I N P U T F I L E */
P O U T CHAR(I) V A R , /*DIAGONOSTIC O U T P U T F I L E * /

O U T P U T CHAR(7J V A R , / * O U T P U T F I L E + /
L C O K I N T E R N A L E N T R Y (CHARt400) VAReFIXED BIN,BIT(lt,BIT(1)):

C O D E - O U T : PRClC(N,VS,J,K,ANS,ERRORt:
D C L tN,J,K,ANS) F I X E O B I N , I FIXEO B I N ,

VS(O:SOt CHAR4400 t V A R , E R R O R BIT(1):
I F N = l T H E N D O ;

P U T FILEtOUT) E D I T (‘ E N D ‘IIVS(Jtlt’:‘t(COL(lOtpAt:
C L O S E FILE(OUTt:
E N D ;

E L S E I F N=3 T H E N D O :
P U T FILE(OUTt E D I T
(VS(J+lt t I’: PROC(N,VS,J,K, A N S , ERROR);’ t(CDLUMN(2t,At;

P U T FILEtOUT) EDIlL
‘ D C L N F I X E D B I N , / * P R O D U C T I O N N U M B E R * / ‘ ,
‘VS(O:5Ot CHAR(400t V A R , / * V A L U E S T A C K tf’,
‘3, F I X E D B I N , ./*LEFT S T A C K P O I N T E R * / ‘ ,
‘ K F I X E D B I N , / * R I G H T S T A C K P O I N T E R */‘,
‘ A N S F I X E D B I N , / * N O T U S E D B Y P A R S E R INIT T O Ct’@/‘,
‘ E R R O R BITLlt: / * N O T U S E D B Y P A R S E R INIT T O FALSE*/‘)
~COL~lOt,A,5fCOL(l4),A~~:

VS(Jt=VS(J+lt;
E N D :

E L S E I F N=6 T H E N P U T FILEdOUT) EOIT(‘RETURNi’,‘END ’
tI’L@ttVSCJttt ‘:‘~(2~COLUMN(lOt,Att:

E L S E I F N=7 T H E N 0 0 :
P U T FILE(OUTt EDIT(‘IF N?‘,JS(Kt,’ THEN’,‘L’~~VS~Kt~~@:’

,‘oo; /+FRODUCTtON N U M B E R ‘,VS~Kt,‘*/‘t
(COLUMN(lOtr3 A,COLUMN~2t,A,COLUMN(2Ot,3 A t :

VStJl=VStKl:
E N D :

E N D C O D E - O U T :
D C L (1,3,K,L,KK,11,12,13t F I X E D B I N ,

S(Or50t F I X E D B I N A R Y , / * P A R S I N G S T A C K + /
V(O:5Ot CHAR(400t V A R , /* V A L U E S T A C K */
Q U O T E BIT(l), / * B O O L E A N F O R Q U O T I N G B A S I C S Y M B O L S */
S Y M F I X E D B I N , /* N U M E R I C A L F O R M O F A S S I G N E D S Y M B O L */

. S Y M S CHAR14OOt V A R , / * S T R I N G F O R M O F A S S I G N E D S Y M B O L */
E R R O R BIT(l) INITIAL~‘O’B~, / * P A S S E D T O SEMANT*/
A N S F I X E D B I N INITIAL1Otp / * P A S S E D T O SEMANT+/
I N P U T CHAR(100t V A R ; / * I N P U T B U F F E R * /

INSERT
LOUK: PROCt St1 ,T,Xt :

. / * F R E E F I E L O R E A D PROCEUJRE T I S F A L S E I F I N T E G E R E L S E T R U E * /
/ * S E P A R A T O R I S A L W A Y S B L A N K I F N O T QUOTE0 S T R I N G T H E N A

S E P A R A T O R IS A N Y S I N G L E C H A R A C T E R I N T H E S Y N T A X
I F X T R U E T H E N B L A N K S R E M O V E D I F F A L S E T H E N B L A N K S ’ L E F T */

NE XT: PROC RETURNSLCHARIlt t :
/* G E T S T H E N E X T C H A R A C T E R F R O M I N P U T * /

O N ENDFILE (INt B E G I N :
P U T FILEdDIAGt LISTt’*+***ENDFILE M A I N S C A N N E R ’) S K I P ;
G O T O F I N I S ;

- 76 -

E N D :
I F I>LENGTHtINPUT! T H E N D O :

G E T FILEtIN) EDIT~IN~UT)(At80~~;
P U T FILEf DIAG) EDITf’NEW I N P U T STRINW**’ ’ I N P U T)

(SKIP,2 A);
INPUT = I NPUT 1 I ’ ‘:
I - l ;
E N D :

REfURN(SlJBSTR(INPUT, I,11 1;
EhD N E X T :

CON2 PROC :
/ * C O N C A T E N A T E S S Y M T O S A N D I N C R E A S E D I */

S=S IISYH: 1=1+1:
EhD C O N ;

SPEC : PROC(A,B) RETURNS (BIT (1) 1:
/* T R U E I F A I S N O T A S E P A R A T I N G C H A R A C T E R * /
DC1 A CHAR(l), 8 BIT(l), 3 FIXEO B I N :

IF A=’ ’ I A = Q U O T E S T H E N RETURN4 ‘0’ f3 1;
I F 8 T H E N RETURNt’l’B):
D O J=l T O H; I F A=BASSYM(J, T H E N RETURNL’O’B): E N D :
RETURN(‘l’B);

--.E ND SPEC ;
D C L S P E C I N T E R N A L E N T R Y (CHARtl),BIT(l)) RETURNSiBITLl!),

N E X T I N T E R N A L ENTRY.RETURNS tCHAR(l))r
CON I NTERNAL ENTRY,
SYH CHAR(l) p
(T’X) BIT(l) ’
I F I X E D MN, / * I N P U T B U F F E R P O I N T E R * /
S CHAR(400) V A R : / * O U T P U T STRINW/
SYM=NEXT; S=� l

I F X T H E N D O WHILE (SYM=’ ’ 1;
I-1+1; SY H=NEXT ; END:

I F ~SPEC(SYM’OUOTE) T H E N D O :
C A L L C O N ; T=‘l’ 8; R E T U R N : E N D :

I F SYH>‘Z’ T H E N D O :
D O WHI L E (N E X T > ’ Z ’ 1:

C A L L C O N : SYM=NEXT:
E N D ;

T=‘0’6: RETURN:
E N D :

D O WHILE (SPEC(SYM,WOTE))t
C A L L C O N : SY M= NEXT :
E N D :

T=‘l ‘8; RETURN:
EhD L O O K :

A S S I G N : P R O C (QUOTE,DS,V) R E C U R S I V E ;
/ * A S S I G N S A N U M E R I C A L V A L U E T O C U R R E N T I N P U T S Y M B O L */
D C L Q U O T E 6IT41) e

O S CHAR(400) V A R , / * S T R I N G R E T U R N E D H E R E */
V F I X E D B I N , /* N U M E R I C A L F O R M O F S T R I N G */
J F I X E D BIN,
T BIT(l),OX CHARt400) V A R :
I F Q U O T E T H E N D O :

C A L L LOOK(OS,ItT,‘O’B):
If OS=OUOTES T H E N D O :

QUOTE=‘O’B: O S = “ : V = X S T R I N G ; R E T U R N :
E N D :

C A L L LOOK(OX,I,T,‘0’6):
DO WHI LE t OXq=OUOT ES) :

os=os I I ox ;

s

- 77 -

;:A$1 LOOK(DX~I,T”O’B~:
;

OUOTE=‘O’6: V=XSTRING; -.
R E T U R N :
E N D :

C A L L LOOK(OS,I,T,*l’6):
I F T T H E N D O :

I F OS=QUOTES T H E N D O :
QUOTE=‘l’B; C A L L ASSIGN(OUOTE,OS,V); R E T U R N ;
E N D :

D O J=l T O M;
I F OS=BASSYM(J) T H E N 00;

V=BASVAL(Jl: R E T U R N :
E N D :

E N D ;
V=XUORD; R E T U R N :
E N D ;

V=XI NTEGER; R E T U R N :
EN3 A S S I G N :

SCAN2 : PRDC t
/II D R A I N S I N P U T B U F F E R A N D S C A N S I N P U T F I L E U N T I L S C A N - S T A R T

O C C U R S - R E S E T , I A N D I N P U T WFFER */
DC1 K F I X E D 8IN:

O N E N D F I LE(I N) B E G I N :
P U T FILE(DIAGJ E D I T (‘+rc***ENDFILE A L T E R N A T E S C A N N E R ’ ,
‘ * * * * * C H E C K F O R M A T C H I N G S C A N - S T O P & S C A N - S T A R T ’ 1
(2LSKIP,AI):
G O T O F I N I S :
E N D :

I F I<LENGTHLINPUTI T H E N INPUT=* *I I SUBSTR(INPUT~ Itit
E L S E D O :

G E T FILE(IN) EDIT(INPUT)(A(BO) 1;
P U T FILE1DIAG) EDITL’CODE I N P U T S T R I N G * * ‘ , I N P U T)

(S K I P ’ 2 A);
E N D :

LOOP : K=INDEX(INPUT,SCA&START);
I F K = O T H E N D O :

P U T FILEfOUT) EDIT~INPUT~(SKIP,A):
G E T FILELIN) EDIT(INPUTI(A(8O)I:
P U T FILEtDIAG) EDITf’CODE I N P U T STRINW*‘,INPUTI

(SKIP’2 A) :
G O T O L O O P :
E N D :

I F :+:ENGW&A;TSTART l>=LENGTH(I N P U T 1 T H E N D O :

E;Di
= ;

E L S E D O :
P U T FILEtOUT) EDIT(SUBSTR(INPUT, l,K-l~~~COLUMN12~,Ai:
I--1; INPUT=SUBSTR(INPUT,K+LENGTH(SCAN,STARTl)i
E N D :

END SCAN2 ;
STACKOK: P R D C RETURNS(BIT(1)):

/* T R U E I F H(S(J-l),S(J))=‘<’ */
DC1 I F I X E D B I N ;

I F H(S(J=1~,StJ~~=‘<’ T H E N RETURN(‘1’8);
P U T FILE(DIAGl LIST~‘*+***ERROR I N P A R S I N G S T A C K ‘1 S K I P :
RETURN(‘0’8~ ;
E hD STACKOK;

E R R O R - R E C O V E R Y : PROC:
/ * R E S E T S S T A C K ’ S C A N S I N P U T U N T I L E R R O R - S C A N $1

*
- 78 -

D C L (M,ER) B I T (l) ,(R,L,KK) F I X E D BIN, (TR,TL,XR,XL) CHAR(400)
V A R ;

D C L T Y P E I N T E R N A L ENTRY(FIXE0 BINI R E T U R N S (CHAR(400) VAR):
TYPE : PROC(RI R E T U R N S (C H A R (4 0 0 1 VAR);

/ * R E T U R N S T Y P E O F R INTEGER,WORD O R R E S E R V E D */
DC1 R F I X E D B I N :

I F R=XWORD T H E N RETURN(‘WORD’);
E L S E I F R=XI N T E G E R T H E N RETURN{’ I N T E G E R ’ 1:
E L S E I F R = X S T R I N G T H E N RETURN(‘STRING’):
E L S E R E T U R N (‘ R E S E R V E D W O R O ’ 1:
E N D T Y P E :

/ * R E S E T S T A C K - - - - - - - - - - - - - - - - - */
P U T FILE(DIAG) EDIT(‘*****SYNTAX A N A L Y S I S I=@,11

(SKIP,A,F(4));
P U T FILE(DIAG) EDIT(‘STACK W A S “(S(L), V(L) D O L=O T O K))

(COLUMN(20~,A,5(COLUMN(2O~‘lO(F(4),X(l~’A~~~:
L=l;
D O WILE (XSYM(L)v=O & L<lD):

1=1+1;
E N D ;

H=‘O’B; J=L;
D O KK=l T O 1;

=‘IF S(KK) -=XSYMiKK) T H E N D O :
J=KK-1; GO TO E X I T :
E N D :

E N D :
E X I T : I F J=L & ERRORSCAk=SCAN-START T H E N M=’ 1’6;

/* S C A N I N P U T U N T I L E R R O R S C A N F O R E R R O R S */
x-1; QUOTE=‘0 ’ B; ER=‘l’B;
C A L L ASSIGN(QUOTE,XR,RI:
TR=TYPE(RI ;

LOOP : I F X R = E R R O R S C A N T H E N G O T O X E X I T :
TL=TR; XL=XR; L=R;
I F L=XSCAN,STOP T H E N D O :

C A L L S C A N 2 ;
I F E R R O R S C A N = S C A N , S T A R T T H E N G O T O X E X I T ;
E N D ;

C A L L ASSIGN(QUOTE,XR,R);
TR=TYPE(Rb:
I F H(L,R)=’ ’ T H E N D O :

ER=‘O’B:

X E X I T :

P U T FILE(DIAG) E D I T (XL,‘(TYPE-‘,TL,‘~ M A Y NOT B E ‘t
‘ F O L L O W E D B Y ’ ‘XR,’ (TV PE-’ ‘TR, ’ 1’)(COLUMN(201’9 A);

E N D :
G O ’ T O L O O P :
I F E R T H E N P U T FILE(DIAG) EDIT(‘ERROft N O T I N C U R R E N T I N P U T ’)

(COLUMN(20) ‘A):
P U T FILE(DIAGI EDIT(‘STACK R E S E T T O ‘,tS(L), V(L) D O L=O

T O J~)(COLUMN(10~,A,5(COLUMN(20~,lO(F(41,X(1~~A~~~;
P U T FILE(DIAG1 LISTt’*****END O F A N A L Y S I S ’) S K I P :
QUCTE=‘O’B;
INPUT=SUBSTR(INPUT,I): I= 1:
I F M T H E N D O : SY MS=XR: SY M=R; ENO;

E L S E C A L L ASSIGN(QUOTE,SYMS,SYM);
E N D E R R O R - R E C O V E R Y :

/* v - w - - - - - P A R S I N G S E C T I O N -0-0-0-0-m */
DC1 STACKOK I N T E R N A L E N T R Y RETURNS(BIT(1));

D O J = O T O 5 0 ; S(J)=O; V(J)= “; END:
S(01 = X T E R M :
O P E N FILEtOUT) TITLE(OUTPUTI O U T P U T S T R E A M :

- 79 -

FIN1 S :
* E N D *

m

O P E N FILEtDIAG) TITLEtPCkJTt P R I N T S T R E A M ;
O P E N FILEtIN) T I T L E (INPUTT 1 I N P U T S T R E A M :
x=1; I NPUT=’ ’ ; J=O: OU.OTE=‘O’ 6:
C A L L ASSIGN(QUOTE,SYMS,SYH);
D O UHILE (SYMPO);

J-J+1 ; K=Ji S(J)=SVM: VtJ)=SYMS:
I F S(J)=XSCAN-STOP T H E N C A L L SCAN2i
C A L L ASSIGNdQUOTE,SYMS,SYM);
D O W I L E (H(StJ),SYM)=‘>’ 1;

I F S(J)=XSEQ T H E N G O T O F I N I S :
D O WHILE ((H(S(J-l),S(J))=‘=‘) f(J>l));

313-l :
E N D :

C=KEY(S(J) 1;
IF STACKOK T H E N D O W H I L E (PRTB(Lh=OI;

KK=J+lt
D O UHILE ((KKC=K) E (S(KK~=PRTB(L~));

KK=KK+l; 1=1+1;
E N D ;

I F ((KK>K) L (PRTBtL)<O)) T H E N D O :
Il=J; 12=K; 13=-PRTBtL I:

- - . I F 13<=N T H E N .CALL *SEMANT*(13,V, Ii, IZ’ANS’ERROR!:
S(J) =PRTB(L+l); L=O:
E N D :

E L S E D O :
D O W H I L E (PRTB(L)>O);

C=L+I :
E N D :

1=1+2;
E N D :

E N D ;
E L S E D O : / * E L S E T O IF--DO(PRTB--1 */

C A L L E R R O R - R E C O V E R Y : L=O;
E N D ;

I F L+=O T H E N D O : / * P U T E R R O R R E C O V E R Y H E R E */
1x0: C A L L E R R O R - R E C O V E R Y :
E N D :

K=J;
E N D ;

E N D ;
E N D * P A R S E R * :

- 80 -

A P P E N D I X E - - C O N T R O L L A N G U A G E META S Y S T E M

SY NT AX

//GO.SYNDATA D D *
SYM(l)=‘OPTIONS’ ERRORSCAN=‘*ENW’ SEQUENCE=‘COMMAND-TABLE’
PARSER-NAME=‘TABLE’ SEMANT-NAME=‘SEMANT’ OUOTES=“”
TERMINALP’z~~END-TABLE+’ HLIM=SO NLIM-50 MMLIM=50 SYM~2)=‘COHMAND-LIST’;

/*
//GO.SVNTAX DO *
* SYN TA X*

C O M M A N D - T A B L E *: : =* O P T I O N S C O M M A N D - L I S T * +;*
O P T I O N S *::=S O P T I O N *NO-SEMANT* *;*
$::=* O P T I O N S O P T I O N *NO-SEMANT* *;*
OPTION $::=* *QUOTES* *=* W O R D *;*
$::=$ *PERIOD* *=* W O R D *;*
*::=$ *Tel-NAME* *=* S T R I N G *;*

C O M M A N D - 1 1 S T * *: : =f C C M M A N D - L I S T *NO-SEMANT* *;*
COMMAND--LX S T * : : =* C O M M A N D * N O - S E M A N T * *;*
*: :=$ C O M M A N D - L X S T C O M M A N D *NO-SEMANT* *;*

C O M M A N D *::=* I D - L I S T P A R M - L I S T * *NO-SEMANT+ *:*
I D - L I S T *:: =* I D - S P E C *NO-SEMANT* *;*
::= I D - 1 1 S T I D - S P E C * N O - S E M A N T * *;*

I D - S P E C *::=* I D *;*
*::=e I D *DL-EX-LIST* S T R I N G *;*
::= I D *DL-SKIP* S T R I N G *;*
::= I D *DL-EX-LIST* S T R I N G *DL-SKIPc S T R I N G *:*
et:=* ID *DL-SKIP* S T R I N G * D C - E X - L I S T * S T R I N G *:*

I D *::=* * K E Y W O R D * W O R D *RTN* W O R D *;*
::= * S U B - E N T R Y * UORD *;*

PARM-11 S T * * : : =* P A R M - L X S T * N O - S EMANT* *;*
P A R M - L X S T *: : =* P A R M * E N D * *NO-SEMANT* *;*
::= P A R M - L X S T P A R M * E N D * *NO-SEMANT* *;*

P A R M St:=* P A R M - I D *NO-SEMANT* *;*
::= P A R M - I D KEYS* *NO-SEMANT* *;*

PARM-[D S t :=* *PARM* T V P E *;*
St:=* *PARM* T Y P E * I N I T I A L * S T R I N G *:*

T Y P E *::=* V - T Y P E *:*
: := V - T Y P E P-ACT1 O N *;*

::= V - T Y P E K - R E Q U I R E D *;*
::= V - T Y P E P - A C T I O N K - R E Q U I R E D +t*
::= V - T Y P E K - R E Q U I R E D P - A C T I O N *:*

V - T Y P E *: : = * +hlJM* *NO-SEMANT* *c;+
::= * S T R I N G * *NO-SEMANT* *;*
*::=t * N A M E * *NO-SEMANT* *;*
*::=f S T R I N G *:*

P - A C T I O N * ::=* +P* *NO-SEHANT* *;*
K - R E Q U I R E D * ::=$ llKlt *NO-SEMAM+ *;*
K E Y S * *::=* K E Y S *NO-SEMANT* *: f
K E Y S I::=* K E Y T Y P E - K E Y *;*
a::=* K E Y S K E Y T Y P E - K E Y *;*

K E Y *::=* * K E Y * W O R D *:*
T Y P E - K E Y St:=* * V A L U E * *;*
::= * S E L F * S T R I N G ‘I’;*
rC::=* * V A L U E * S T R I N G *;*
: := *VALUE SHORT* STRI NG *;*
St:=* * C A L L * STRING

END- SYNTA X

- $1.

A P P E N D I X E - - C O N T R O L L A N G U A G E META S Y S T E M

S E M A N T I C S

. .
//GO.SEMANTIC 00 *
* S E M A N T I C S * S E M A N T * C O D E *

DC1 I F I X E D B I N , TBL(500) E X T CHAR(BOt V A R ,
(NAHE,NUMBERt I N T ENTRY(CHAR(*t VARt RETURNS(BIT(ltt,
QLOTES E X T CHAR4201 V A R INIT1AL(““~,
P E R I O D E X T CHAR(l) INITIAL(‘.‘~’
T B L - N A M E E X T CHAR(4Ot V A R INITIAL(‘TABLE’),
T O U T F I L E ENVIRONMENT(F(400,BOt t;

NAME : PROC(At RETURNS(BIT(ltt;
/ * R E T U R N S T R U E I f A O F T Y P E N A M E E L S E F A L S E */
DC1 A CHAR(*) V A R , J F I X E D B I N :

IF A=’ Q 1 A=” T H E N RETURNq.0’ B t :
I F SUBSTR(A,l,lt<‘A’ I SUBSTR(A, l,l)>‘Z’ T H E N

RETURN(‘O’Bt:
D O 312 T O LENGTH(A);

I F SUBSTR(A,J,lt<‘A’ T H E N RETURN(‘O’Bt:
E N D :

RETURN(‘l’Bt i
END, N A M E ;

NUMBER: PROC(At RETURNS(BIT(lt t :
/ * R E T U R N S T R U E I F A O F T Y P E N U M B E R E L S E F A L S E * /
DC1 A CHAR(*) V A R , X F L O A T B I N ;

CR C O N V E R S I O N G O T O F A L S E :
O h O V E R F L O W G O T O F A L S E :
O h U N D E R F L O W G O T O F A L S E :
X=A;
RETURNd ‘1’Bt ;

F A L S E : RETURN(‘ 0 ’ Bt ;
END N U M B E R ;

* E N D *
* P R O D U C T I O N * 1 <ODE*

/* O U T P U T T A B L E S */
O P E N FILE(TOUTt TITLE(‘TABLES’ t O U T P U T S T R E A M ;
TBL(ANS+lt =DATE;
TB1(ANS*1t=SUBSTR(TBL~ANS+1t~3~2tt~’/’1(

SUBSTR(TBL(ANS+lt,5,2)(I’/‘tISUBSTR(TBL(ANS+lt,l~2t:
TBL(ANWEt =TIME:
TBL(ANS*2t=SUBSTR(TBL(ANS+2t~l,2ttt’:’tt

SUBSTR(TBL(ANS+2t,3,2tt t’t’t I
SUBSTR(TBL(ANS+2t,5,2tt t’.‘t I
SUBSTR(TBL(ANS+2),7,3);

P U T FILE(TOUTt EDIT(TBL-NAME,TBL(ANS+lt~TBL(ANS*2),’ ’ t
(COL(2t,A,X(2t,A,X(2),A,SKIPd2t~At;

D O I=1 T O A N S ;
P U T FILEiTOUTt EDIT(TBL(Itt~SKIP,At:
E N D :

P U T FILE(TOUTt EDIT(‘$SS’t(SKIP,Ati
END

* P R O D U C T I O N * 4 *ODE*
/* S E T Q U O T E S */

QUOTES=VS(Kt :
* E N D *

* P R O D U C T I O N + 5 *ODE*
/ * S E T P E R I O D */

PER1 OD=VS(Kt :

s
- 82 -

* E N D * . .
* P R O D U C T I O N * 6 * C O D E *

/* S E T T B L , N A M E */
TBL-hAME=VS(Kt :
* E N D *

* P R O D U C T I O N * 1 3 * C O D E *
/* B U I L D I D - S P E C */

ANS=ANS+l;
TBL(ANS)=VS(J) llPERIODllPERIDD~~PERIOD:
* E N D *

PRODUtTION 1 4 *CODE*
/or BUILD ID-SPEC WITH E X C L LIST *:/

ANS=ANS+l:
TBL(ANS~=VS(J~iiPERIOD~~VS(K)((PERIDD~~PER~DD~
* E N D *

* P R O D U C T I O N * 1 5 * C O D E *
/* BUILD ID-SPEC WITH SKIP LIST */

ANS=ANS+l;
TBL(ANSl=VS(J) I IPERIODI l PERIOD1 lVS(K tl lPERIOD;
*END?,

* P R O D U C T I O N + 1 6 * C O D E *
/* BUILD ID-SPEC WITH EXCL LIST AND SKIP LIST */

ANS=ANS+l:

PRODUCTION 17 *CODE*
/It B U I L D I D - S P E C W I T H E X C L L I S T A N D S K I P L I S T */

ANS=ANS+l;
TBL(ANSt=VStJt IlPERIODllVS(K~llPERIODl IVS(J+2)iiPERIOD;
END

PRODUCTION 18 *CODE*
/* S A V E K E Y W O R D A N D RTN */

VS(J~=VS(J+~~ I IPERIOD~ IVWK);
* E N D +

* P R O D U C T I O N * 1 9 * C O D E *
/* S A V E E N T R Y */

vwt=vswit I IPERIOD:
* E N D *

* P R O D U C T I O N * 2 5 * C O D E *
/ * E N T E R P A R A M E T E R A N D T Y P E * /

ANS=ANS+l;
TBL(ANSt=PERIODl lVS(Kt l l PERIOD1 l P E R I O D :
VSt Jt=VS(Kt ;
* E N D *

PRODU:TION 2 6 * C O D E *
/* E N T E R P A R A M E T E R T Y P E , , I N I T I A L V A L U E */
/* C H E C K I NIT1 A L V A L U E T Y P E */

ANS=ANS+l;
TBL~AN~~=~ERI~D~~VSIJ+~~~~PERIOD~~VS(K~IIPERI~D:
I F INDEX(VS(J*l) ,‘*NUM*‘t~=O T H E N

I F qNUMBERIVS(Kt t T H E N
P U T FILELDIAGt L I S T

(‘ D I A G N O S T I C M E S S A G E * W R O N G T Y P E I N I T I A L VALUE’t S K I P :
I F INDEX(VS(J+l) ,‘*NAME*‘)-=0 T H E N

I F yNAME(VS (Kt t T H E N
P U T FILELDIAGt L I S T

(‘ D I A G N O S T I C M E S S A G E * W R O N G T Y P E I N I T I A L VALUE’) S K I P :
* E N D *

* P R O D U C T I O N * 2 7 * C O D E *
/* E N T E R N U L L F O R P K O P T I O N S */

- 83 -

.

VS(Jt=VS(Jtll’**‘t
* E N D *

* P R O D U C T I O N * 2 8 * C O D E *
/* B U I L D T Y P E */

VS(Jt=VS(Jt I~‘P**‘;
* E N D *

* P R O D U C T I O N * 2 9 * C O D E *
/* B U I L D T Y P E */

VS(Jt=VS(Jt~l’*K*‘:
* E N D *

* P R O D U C T I O N * 3 0 * C O D E *
/* B U I L D T Y P E */

VS(Jt=VS~Jt~~‘P*K*‘;
* E N D *

*PRODUCTION+ 3 1 *ODE+
/* B U I L D T Y P E */

VS(Jt=VSdJJ Ii’P*K*‘;
* E N D *

PRODUCTIONS 3 5 WDDE
/* S A V E T Y P E Y I T H * A T E N D */

VS(Jt=VS(JtI~‘*‘:
* E N D *

* P R O D U C T I O N * 3 9 * C O D E *
/ * E N T E R K E Y T Y P E - K E Y I N T O T B L */

ANS=ANS+‘i :
TBL(ANSt=PERIODl IPERIOD lVS(JtilPERIOD1 lVS(Kt:
* E N D *

* P R O D U C T I O N * 4 0 * C O D E *
ft E N T E R K E Y T Y P E - K E Y I N T O TBL */

ANS=ANS+l;
TBL(ANSt =PERIOD(iPERIOD iVS(J+lti 1 PERIOD1 iVS(K t:
* E N D *

* P R O D U C T I O N * 4 1 * C O D E *
/* S A V E K E Y */

VS(Jt=VS(Kt :
* E N D *

* P R O D U C T I O N * 4 2 -DDE*
/ * S A V E V A L U E */

VS~Jt=VS~Jt1~PERIOD~IPERroo;
* E N D *

* P R O D U C T I O N * 4 3 *CODE+
/*SAVE S E L F A N D S T R I N G */

VS~Jt=VS~JtllPERIODl~VS(Kt~lPERIOD:
* E N D *

* P R O D U C T I O N * 4 4 * C O D E *
/* S A V E V A L U E A N D S T R I N G */

VS(Jt=VS(Jt I lPERIODl IVS(Kt I I PERIOD:
* E N D *

* P R O D U C T I O N * 4 5 * C O D E *
/* S A V E V A L U E A N D S T R I N G */

VS(Jt=VS(JtIIPERIODl~VS(K)(IPERIOD:
END

* P R O D U C T I O N * 4 6 * C O D E *
/* S A V E C A L L A N D S T R I N G */

VS(J,=VS(JtIIPERiODlIvscK,IIPERIOD:
* E N D S

* E N D - S E M A N T I C S *

- 84 -

A P P E N D I X F - - W Y L B U Q E X A M P L E

C O M M A N D D E S C R I P T I O N

‘Tel-NAME *=* ‘ W Y L B U R E X A M P L E - - - G E O R G E ’
QUOTES *=* a *PERIOD* f=* :
SUB-ENTRY NUMRER

PARM *NUC* * I N I T I A L * a-l@
* K E Y * F I R S T * S E L F * a - 2 a
* K E Y * E N D * S E L F * a - 3 3
*KEYS L A S T * S E L F* a - 3 3
* K E Y * A L L *SELF* a-4a * E N D *

* S U B - E N T R Y * N R A N G E *DL-EX-LIST* a,/-(t’“@
PARM aNUMBER a *KS

* K E Y *) * V A L U E * * E N D *
*PARM+ aNUMBER a *K* *P*

* K E Y * / * V A L U E * * E N D *
+PARM* aNRANGE , a *KS * P *

* K E Y * ’ * V A L U E * * E N D *
- - . * S U B - E N T R Y * ARANGE *DL-EX-LIST+ a’/ 4)“-‘a

+PARM* * S T R I N G * +K* * I N I T I A L * aa
* K E Y * 7 * C A L L * aSTRINGA *a
* K E Y * ’ * C A L L * aSTRINGA ‘ a
* K E Y * ” * C A L L * @STRINGA “ a
* E N D *

SUB-ENTRY STRINGA *DL-EX-LIST* a”‘/ (,~,a
PARM * S T R I N G * *K* * I N I T I A L * aa

* K E Y * q * S E L F * ala * E N D *
+PARM* *STRI NG* S K * *P* * I N I T I A L * a@

KEY * *CALL* ~STRINGB * a
* K E Y * ” * C A L L * aSTRING “ a
* E N D *

* S U B - E N T R Y * S T R I N G B l D L - E X - L I S T * @“‘/(,,a
PARhI * S T R I N G * +K* * I N I T I A L * aa

KEY * *V A L UE * a*a
KEY ” *V A L UE * av *ENlP

+PARM* *NUC* *P* *I NI TI A L* a-la *END*
+PARM+ *hUN* *K* *P* * I N I T I A L * a-la

* K E Y * / * V A L U E * * E N D *
+PARM* +KUC* +K* * P * * I N I T I A L + a-l@

KEY 1 *V A L UE * ala * EN D*
* S U B - E N T R Y * EQNUM

PARM *NUM* * I NIT1 AL* a-la
* K E Y * = * V A L U E * * E N D *

* S U B - E N T R Y * S T R I N G *DL-EX-LIST* a”‘a
PARM *STRING* SK* *INITIAL* aa

KEY * *V A L UE * a*a
* K E Y * n *VALUE+ a”a * E N D *

* K E Y W O R D * LX S T *RTN* S U B 1 *DL-Ex-LIST* ;a,“‘/ (8 ‘a
* K E Y W O R D * L +RTN* S U B 1 *DL-EX-LIST* a-“‘/ (t ‘ a

PARM aARANGE a * I N I T I A L * a&l * E N D *
PARM aNRANGE ,a * I N I T I A L * ZiJ

* K E Y * I N * V A L U E * * E N D *
* K E Y W O R D * C H A N G E *RTN* S U B 2 * D C - E X - L I S T * a,“‘/ 4 t .a
* K E Y W O R D * C H *RTN* S U B 2 +DL-EX-LIST* a-r’“/ (t , a

PARM aARANGE a * I N I T I A L * i3;a * E N D *
PARM aSTRING a *K* * P * * I N I T I A L * aa

* K E Y * TO * V A L U E * * E N D *
PARM aNRANGE #a *INITIAL* aa

- 85 -

* K E Y * I N * V A L U E * * E N D *
KEYWORD C O P Y . *RTN* S U B 3 *M-EX-LIST* a,/R
* K E Y W O R D * C O *RTN* S U B 3 *DC-EX-LIST* aefa

SPARMe ONRANGE , a *INITIAL* d a *ENS
SPARM* RNUMBER B SK* * I N I T I A L * Pa

* K E Y * T O * V A L U E * * E N D *
PARM +NUM+ *KS * I N I T I A L * B-la

KEY B Y * V A L U E * * E N D *
* K E Y W O R D * S E T +RTN* S U B 4 *DL-EX-LIST* i)=3

+PARM* aEwuM a l K * *INITIAL* 33
* K E Y * D E L T A * V A L U E * *ENO*

SPARMS REOHUM iJ *K+ * I N I 1 I A L * aR
* K E Y * L E N G T H * V A L U E * *EN[)+

*PARMS *NlJW *K* * I N I T I A L * 303
* K E Y * UPLOW * S E L F * ala
KEY U P P E R *S E L F* a23
* K E Y* V ER B OS E *SELF* a33
* K E Y* TE R S E *SELF* a43 *ENW

* E N D - T A B L E * .

* - 86 -

A P P E N D I X F - - W Y L B U R E X A M P L E

T A B L E

WYLBUR EXAMPLE - - - G E O R G E 07/17/70 14:33:48.260

N U M B E R : : : :
:*NUMM’*:-1 :
::FIRST:+SELF*:-2:
: :END:*SELF*:-3:
: :LA ST:*SELF*:-3 :
::ALL:*SELF+:-4:
NRANGE::,/-0’“::
:NUMBER **K*: :
::,:*VALUE*::
:NUMBER *P+K*::
::/:*VALIJE*::
: N R A N G E ,*P*K*::
::,:*VALUE+::
ARANGE::‘/(t “1,::
:*STRI bJG**K*: :
::~:+CALL*:STRINGA 1:
::‘:*CALL*:STRINGA ‘:
::“:*CAL1*:STRINGA “:
‘STRINGA::‘~~~~,::
:*STRI NG**K*: :
::q:*SELF*:q:
:*STRING*P*K*: :
::‘:‘bCALL*:STRINGB ‘:
::“:*CALL*:STRINGB “:
STRINGB::“‘/O)::
:*STRING**K*::
l -‘:*VALUE*:‘:a.
::“:*VALUE*:“:
:*NUM*P**:-1 :
:*NUM+P*K*:-1:
::/:*VALUE*::
:*NUM*P*K*:-1 :
::(:*VALUE*:) :
E Q N U M : : : :
:*NUM***:-1:
::=:*VALUE*::
S T R I N G : : ‘ “ : :
:*STRI NG**K*: :
::‘:*VALUE*:‘:
::“:SVALUE*:“:
LIST:SW1:-r’“/O R::
L:SUBl :v”‘/() ,::
:ARANGE ***: :
: N R A N G E lS+S::
::IN:*VALUE*::
CHANGE:SUB2:-‘“/O t::
CH:SUB2:-‘“/O ‘::
: A R A N G E ***::
:STRING *P*K*::
::TO:*VALUE*::
:NRANGE ,*+*: :

- 87 -

-.

::IN:+VALUE*::
COPY:SUB3:,/::
CO:SUB3:,/::
: N R A N G E ,-St :
:NUMBER *+K*: :
::TO:*VALUE*::
:+NUM+*K’l’:-1:
::BY:*VALUE*::
SET:SUBI:=::
:EQNUM **K*: :
: :DE LTA:*VALUE St :
:EQNUM **K+: :
::LENGTH:*VALUE+::
:+NUM**K+:O:
::UPLOU:*SELF*:l:
::lJPPER:*SELF*:2:
: :VERBOSE :*SELF*:3 :

--. ::TERSE:*SELF*:4:
sst

- 88 -

A P P E N D I X G - - C R B E E X A M P L E

COIUMAND D E S C R I P T I O N

+TBL-NAME* 3r=* ‘CRBE E X A M P L E - - - G E O R G E ’
QUOTES *=+ a
* P E R I O D * *=* :
IrSL&j-ENTRY+ NRANGE *DL-EX-LIST* a’” t)-=a

PARM ~~I~NUM 3 *INITIAL+ a-la * E ND *
PARM amuM a *P* *INITIAL+ a-la *END+
PARM avAL a +p* *INITIAL* a-la *END’@

* S U B - E N T R Y + VA1 *DL-EX-LIST* a’“(,=-a
+PARM* *NUH* *K* *INITIAL* a-la

* K E Y* 4 *VALUE* ala *END*
* S U B - E N T R Y * B N U M *DL-EX-LX S T * a() ‘“=-a

PARM *NUT* *INITIAL* a - l a
KEY FIRST *SELF* a o a * EN D *

* S U B - E N T R Y * L N U H *DL-EX-LIST+ a()-=‘“a
+PARM* *NW* *INITIAL* a-la

* K E Y* L A ST *SELF* a-21 *ENW
* S U B- E N T R Y* ARANGE *DC-EX-LIST* a * ” ()-=a

SPARM* *STRING* *K* *[NITI AL * aa
KEY q * C A L L * i3STRINGA 4

--. * K E Y + ’ * C A L L * aSTRINGA ‘a
* K E Y * * * C A L L * aSTRINGA “&I
* E N D *

SUB-ENTRY STRINGA +OL-EX-LIST* a*“(,-=a
PARM *STRING* *K+ *INITIAL* aa

KEY v *SELF* ha * E N D *
PARW +STRINC* +K* *INITIAL+ aa

* K E Y * ’ WALL+ aSTRINGB ‘a
* K E Y * ” * C A L L * aSTRINGB “a *ENIH

* S U B - E N T R Y + STRING8 l DL-EX-LIST* a ’” (,-=a
+PARM* * S T R I N G * SK* * I N I T I A L * SJ

* K E Y * ’ * V A L U E * a’a
KEY 11 *V A L U E* a”a *END+

PARM *STRING+ *KS *P* * I N I T I A L * aa
* K E Y * CO1 * C A L L * aCB a *ENDlc:

*PARM+ *NW* *K* *P* *INITIAL* a o a
* K E Y * SE0 * S E L F * aa
* K E Y * N O S E Q * S E L F * a l a *END11

* S U B - E N T R Y + C O L U M N *DLtEX-LIST* a/‘” (,=-a
*PARM) aCB a *K* *LNITIAL* aa

* K E Y * CO1 * V A L U E * * E N D *
* S U B - E N T R Y * C B *DL-EX-LI S T * a’“(~=+I

PARM 3c6~ a *K* *I NITIAL* aa
* K E Y * = * V A L U E * * E N D *

suB-ENTRY CB B *DC-Ex-LIST* a”‘() #-=a
SPARW *NUW *K+ * I N I T I A L * 3 - 1 3

* K E Y * (+VALUESHORT+ a , ‘ a +ENW
*PARM+ *hUY* *K* SPS * I N I T I A L * d - l a

KEY . * V A L U E * Q)a
*KEY+ 1 *SELF+ 3 - 1 3 * E N D *

* S U B - E N T R Y * D S P E C *DC-EX-LIST* a=‘(,.a
PARM aNAM a SK*

KEY = * V A L U E * * E N D *
PARM * N A M E + +K* *PS

* K E Y * (* V A L U E * a)a * E N D *
PARM GIEQNAM a *K+ *P* * I N I T I A L * aa

- 89 -

* K E Y *) * V A L U E * * E N D *
SUB-ENTRY EQNAM +DL-EX-LIST* a = ()a

PARM aEQNAMB a *K*
* K E Y * V O L * V A L U E *
* K E Y + V * V A L U E * * E N D *

SUB-ENTRY EQNAMB *DL-Ex-LIST* a=c)a
PARM * N A M E * *I(*

* K E Y * = * V A L U E * * E N D *
SUB-ENTRY STRINGC *DL-Ex-LIST* a”‘(ha

PARM *STRING* +K+ INITIAL* aa
* K E Y* q *SELF* ha * E N D *

SPARM* *S T R I N G* *K* *P* *INITIAL* aa
* K E Y * ’ *CALL+ aSTRINGD ‘ a
* K E Y * ” * C A L L * aSTRINGD “ a
* E N D *

sm-ENTRY STRI NGD *D C- E X- L IS T* a * # ()+a
PARM *STRING* *K* *INITIAL* aa

* K E Y* * *VALUE+ a*a
* K E Y* ” *V A L UE * ana * E N D *

*SUB-ENTRY+ NAM *DL-Ex-LIST+ a’() . a
PARM * N A M E *

* K E Y * , * S E L F * aACTIVEa *ENW
PARM aNAm a SK*

KEY . * V A L U E * * E N D *
SUB-c~~~~ NAMC *DC-EX-LIST* a , 0 . a

* P A R M* *NA ME+ * E N D *
PARM aNAMc ‘a *K*

* K E Y * . * V A L U E * * E N D *
REVWORD LX sT +RTN* suei *DL-Ex-L xsT* a (w “ = a
* K E Y W O R D * L *RT N* suei *DL-EX-L 1 ST* a 4 w “ = a

SPARMS ONRANGE a * I N I T I A L * aa *ENm
PARM OARANGE a *P* * I N I T I A L * aa *ENDt

* K E Y W O R D * S A V E *RTN* S U B 2 *DL-EX -1 IST* a.4 ,a
* K E Y W O R D * S *RTN* sue2 *DL-EX-LIST* a.(,a

PARM aNAM a * E N D *
PARM ~CBB (a +p* *K* *INITIAL* aa

* K E Y * (* V A L U E * * E N D *
+PARM* *NUC* +K* *P* * I N I T I A L * a - l a

KEY KE EP *SELF* a o a
* K E Y* P U RG E * S E L F* ala *E N D*

PARM *NUCl* * K * SPS *INITIAL* a-la
* K E Y* R E P L AC E *SELF* aoa
* K E Y* REPL *SELF* aoa * EN D*

KEYUORD B R I N G *RTN* S U B 3 *DL-EX-LIST* a=Oa
* K E Y W O R D * 6 *RTN* sue3 *DL-EX-LIST* a=()a

PARM aDspEc a * K * * I N I T I A L * aa
* K E Y * D * V A L U E *
* K E Y * D S N A M E * V A L U E * * E N D *

PARM *NU)r* *K* *P* *INITIAL* a-la
* K E Y* S E Q * S E L F* a o a
* K E Y* N O S E Q *SELF* ala *E~[)rt

PARM * N A M E * +P* * E N D *
PARM *NUW* *P* *INITIAL* aa *ENS

* K E Y W O R D * C H A N G E +RTN* S U B 4 *DL-EX-LIST* a-r” ‘=(, a
* K E Y W O R D * C H *RTN* sue4 *DL-EX-LIST* aqn*+)a

PARM aNRANGE a * IN I T I A L* aa *ENDS
PARN *STRING* *K* * p * *INITIAL* aa

* K E Y * q * C A L L * aSTRINGC -ra
* K E Y * ’ * C A L L * aSTRINGC ‘ a
* K E Y * ” * C A L L * OSTRINGC “ a * E N D *

*emu+ *STRING* * K * * p * *INITIAL* aa
KEY * *CALL* ~STRINGD * a
* K E Y * ” * C A L L * aSTRINGD “ a
* E N D *

PARM aCOLUMN a * P * * I N I T I A L * aa * E N D *
PARM *NU)r* *KS *P* * I N I T I A L * a - l a

* K E Y * NOTEXT * S E L F * aOa
* K E Y * NOLIST *SELF* ala
* E N D *

* E N D - T A B L E *

- 90 -

A P P E N D I X G - - C R B E E X A M P L E

T A B L E . .

C R B E E X A M P L E - - - G E O R G E 07/22/70 12t50t25.960

NRANGE:t’“()-=::
:BNUM ***t-l :
:LNUM *P**:-1:
:VAL +P*+:-1:
VAL::‘“()=-t:
:8NUM++K8:-1:
::(:*VALUE*:):
BNUM::() “‘I-r::
:8NUM888:-1:
::FIRST:*SELF*:O:
LNUM::(B-r@“::
:+NUM***:-1:
: tLA ST:*SECF*:-2 :
ARANGEz..:‘“(b-=::
:8STR[NG**K*: :
tt-:*CALL*:STRINGA -:
::‘:*CALL*:STRINGA ‘:
::“:*CALL*:STRINGA “:
STRINGA::‘“O-=::
:8STR[NG**K*: :
::-:*SELF*:-:
:*STRI NG**K+: :
::‘:1ICALL*:STRINGB ‘t
::“:‘“CALL*:STRINGB “t
STRINGB::‘“(b-r=::
:*STRTw**K*::
::‘:*VALUE*:‘:
:t”:*VAL~*:“:
:*STRING*P*K*: :
::COL:leALL*:CB :
:*NUM*P*K*:O:
2 ~sE~:*SELF*:O:
: :NOSEQ:*SELF*:l :
COLUMN:t/‘“O=~::
:CB **K+: :
: :COL * V A L U E * : :
CB::&=d:
:CBB *+K*: :
::=:‘tVAL~*::
CBB::‘“() ,-=::
:8NUM88K8:-1:
::(:*VALUE SHORT*:) ‘:
:+NUM*P*K*:-1:
: : ,:*VALUE*:) :
: :) :*SELF*t-1 :
DSPEC::=,(). ::
: N A M +*K*: :
::=:*VALlJE*::
:*NAME*P*K*::
::(:*VALUE*:):
:EQNAM *P*K*: :
:: ,:*VALUE*::

- 91.

E Q N A M : :=() : :
:EQNAMB **K*::
::VOL:*VALUE*::
::V:*VALUE*::
EQNAMB::=() ::
:*NAME**K*::
: :=: * V A L U E * : :
STRINGC::‘“()-t:
:*STRI NG**K*: :
::7:* SELF*:-:
:*STRI NG*P+K*: :
::‘:+CALL*:STRINGD ‘t
::“:+CALL*:STRINCD “:
STRINGD::‘#O-“::
:*STRI NG**K*: :
::‘:*VALUE*:‘:
: :“:*VALlJE*:“:
NAM::,O.::
:+NAME***::
: : ,:*SELF*:ACTIVE:
:NAMC +*K*: :
: 2. :*VALlJE*: :
NAMC::,Oo::
:*NA M E * * * : :
:NAMC *+K*: :
::.:*VALlJE*::
LIST:SUBl:O-‘“=::
L:SUBl:(1,“‘=: :
:NRANGE ***: :
:ARANGE *P*+: :
SAVE:Sl#32:.0::
S:SUBZ:.O::
:NAM 888: :
: C B B (*P*K*: :
::(:*VALUE8::
:*NUM*P*K*:-1:
::KEEP:*SELF*:O:
::PURGE:*SELF*:l:
:*NUM*P*K*:-1 :
: :REPLACE:*SELF*:O :
::REPL:*SELF*:O:
BRING:SUB3:=0 : :
B:SUB3:=() ::
: D S P E C **K*: :
::D:*VALUE*::
: :DSNAME :*VALUE*: :
:*NUM*P*K*:-1 :
::SEQ:*SELF+:O:
::NOSEQ:*SELF*:l:
: *NA ME *P** : :
:*NUM*fJt*: :
CHANGE:SUB4:-“‘=(I ::
CH:SUB4:-“‘=(1 ::
: N R A N G E S**: :
:*STRI NG*P*K*: :
::-:*CALL*rSTRINGC -:
::‘:*CALL*:STRINGC ‘t
::“:*CALL*:STRINGC I’ 2
:*STRING*P*K*: :
::‘:‘bCALL*:STRINGD ‘:
::“:*CALL*:STRINGD “:
:COLUMN *P*rC::
:*NUM*P*K*:-1:
::NOTEXT:*SELF*:O:
::NOLI ST:*SELF*:l:
JSS

- 92 -

