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VARI ATI ONAL - STUDY OFNONLI NEAR  SPLI NECURVES

by
E H Lee and G E. Forsythe

Stanford University

1. Linear and nonlinear splines. Let A be a finite ordered

set of points in the eulidesn plane, with Cartesian coordinates (x.¥.) »
r = 1,...,n-1, through which it is desired to pass a snooth curve. An
ol d technique in drafting is to use a mechanical spline to forma snooth
curve C that contains A. In the present day of automatic plotters,
numerically controlled mlling machines, and so on, it is nore inportant
to find a mat hemati cal or computational representation of a suitable C
than to draw it. Thus one uses some mathematical nodel of the nechani cal
spline.

By far the nost widely used model is a_linear (cubic)_ splire, Suitable

when the curve C in sone x-y coordinate systemis the graph of a

function f , so that y = f(x) , x, <x <x_ . Assune that

IN

0 n
Xo < Xy << X The linear spline can be defined as the unique
function f for which

Xn ,

[‘ ' (x) “dx (1)

0

is mnimzed anong all twice continuously differentiable functions assum ng
t he val ue v, at x, (r = 1,2,...,n-1) . (According to this definition,

f will satisfy the natural end conditions f"(xo) = f(x ) =0 . There

n
are alternative treatnents of the end conditions.)



The linear spline so defined turns out to bhe a (usually) different
cubi ¢ polynomial i n each interval(xréyxr), wi th matching val ues,
derivatives, and second derivatives (and hence curvatures) at each
mmnmnwey (r = 1,2...,n-1) . The spline will actually be a
straight line segnent for x) < x'<x and x , <X <x

0 1 1 =" ="n"

The theory of linear splines has grown enormously in the last decade
and these curves and various |inear generalizations have both practical and
theoretical inportance in the approximation of known functions, solutions
of differential equations, and so on. The reader can find an exposition,
with generalizations and applications, in Ahlberg, Nilson, and Wl sh [1].

Linear splines are invariant under linear changes in the y-coordinate
al one, as Podolsky and Demman [9] point out. Thus they are suited to
such problems as the interpolation of data, where x and y have
different neanings. On the other hand, linear splines are not invariant
under rotations of the x-y coordinate system and hence are not well.
suited to the interpolation of geonetrical points in the euclidean plane
Moreover, |inear splines cannot be used directly to define a closed curve
C inthe x.y plane

For the purposes of interpolating points in the euclidean plane it
is appropriate to find a mathematical model which is invariant under al

simlarity transformations. The nodel we treat is sometinmes called the

elastica, but we shall refer to it as a nonlinear spline. As a prelimnary

to work on actually computiig nonlinear splines, we have investigated their
precise definition, including variational properties, defining equations,

continuity conditions, and end conditions, both for open and closed curves.



The term nonlinear spline is used variously in the literature
2
)

(a) If the integrand £(x)° of (1) is multiplied by a nonconstant

wei ght factor, sometimes the function that mnimzes the altered problem
is called a nonlinear spline. (b) Suppose one is given a function o(x)
to be approximated by a linear cubic spline passing through n-1 points
(xr,w(xr)) , and that the n-1 abscissas x, are varied until the spline
best approximates ¢ in some given norm  Sonetimes the result is called
a nonlinear spline. However, in both (a) and (b) above the splines
satisfy a linear differential equation in each interval, whereas our

nonlinear splines satisfy a nonlinear differential equation.

W do not claimthat conputing nonlinear splines will necessarily be
an econom cal way to interpolate points in the x-y plane. Moreover,
nonlinear splines are not invariant under |inear changes in the y-coordinate
alone, so that they seemill-suited to the interpolation of data where x
and y are unrelated .

V% have been interested only in studying as carefully as we could the
mat hematical nature of these nonlinear splines. In this paper we present
a variational treatment of nonlinear splines, enphasizing the natura
boundary conditions of the problem W believe that our treatment of

the closed nonlinear spline may be new.

2. Previous work.  In the theory of elasticity, our mathematica

nodel of the mechanical splineis called a thin beamor elastica, and its
treatnent dates back to James and Daniel Bernoulli, Euler, Kirchhoff,

and others. The history and theory are summarized by Love [7]. None of
those treatments dealt directly with the use of the nonlinear spline to

interpolate points, and there was little discussion of closed splines.



The earliest discussion that we have seen in print of the use of
nonlinear splines for interpolation is that of Birkhoff and de Boor [2].
That paper refers to excellent |aboratory reports by Fow er and WIson [4]
and by Birkhoff, Burchard, and Thomas [3]. dass [5] briefly describes
conputations of open nonlinear splines in Cartesian coordinates.

Hosaka (6] describes the generation of nonlinear splines on a digita
differential analyzer. woodford [12] describes an iterative procedure
for interpolation with open nonlinear splines that is nuch faster than
Glass's al gorithm he also works with Cartesian coordinates.

In his Ph.D. dissertation, Mehlum (8] discusses the nature of
nonlinear open splines, again using a Cartesian coordinate systemrotated
to a convenient local orientation. He also gives an algorithmfor
conputing an approximation to the nonlinear spline by a succession of
circular arcs meeting with a continuous tangent but discontinuous

curvature.

%, Basic concepts of bending theory of thin beams. O all the

curves that pass in turn through the ordered set A of points (xﬂyr)
nentioned in the introduction, we shall consider as adm ssible only those
whose tangent direction is continuous everywhere, and whose curvature is

pi ecewi se continuous, with discontinuities in curvature perntted on

any finite set of points. A plausible suggestion for the smoothest of
these adm ssible curves is that the integral of the square of the curvature
with respect to arc length should attain a minimum This comprises a
sinple representation of the concept of a curve passing through the points
with mninum total bend anplitude, and will be utilized in the formof the

necessary condition .



5 *n 2. _
_f Kdas =0 (2)
%

where « is the curvature, s is arc length, ¢ -4 is the total length

0
of the curve, and 5 is the synbol for variation. The integral in (2) is
proportionalto the strain energy in a bent spline according to Euler-
Bernoul i beam theory, and we show in Section & that (2) is the variational
formof the conditions of equilibriumfor the spline with forces applied
only at the support points. It seems, therefore, appropriate to investigate
spline interpolation in terns of nechanical bending theory, and it wll be
shown in the present paper that this approach does lead to the introduction
of variabl e&which are particularly convenient for interpreting spline
interpolation, and perhaps al so for computing splines.

Bernoul li-Euler theory, as described in detail by Love [7], is the
sinplest form of beam theory, and considers only bending deformations,
negl ecting shear deformations and stretching of the center line of the
beam  Such an approximation is satisfactory for beams with cross-section
dimensions small conpared to the span between supports, as clearly applies
for splines. Such restricted deformations are introduced by requiring
that plane sections normal to the center line in the undeforned state
remain plane and normal to the déf ormed center line, and that the center
line of the beam does not stretch.

The forces and nonents on a beam el enent are shown in Figure 1,
where Mis the bending nonent, S is the shearing force, and Pis
the longitudinal force. (The conventionis P> 0 for tension, and
P < 0 for conpression.) The assunptions about deformation nentioned

above, combined With Hooke's | aw relating stress and strain, yield



M= ETK | (3)
where E is Young's nodulus of elasticity, | is the second nonent
of the section about the axis of bending

de | ()
K ===

ds

: . The equations of
and ¢ is the angle between the beamand the x-axis. |

equi libriumfor each unloaded span between supports, which are deduced in
Section 4 are as follows:

for nonents:

M,s = 0 (5)

for normal forces:

ds _ . (6)
E§+PK = 0;

for longitudinal forces:

ap ) (7)
E—SK = 0 .

It is convenient to work in terns of reduced force variables:

i M-, 8 -2, 8 = = (8)

Then (5) and (6) give:

5= -5, (9)
5 . L% (10)
KdSE

and (7) becomes



2 2

d 1 d« K
— [ —_— — et — ] = O ) (ll)

: 2
ds K d'32

or
1 d21< K2 - K2 _C (12)
K g2 rm =Py 5 o= by
S .

where c__, is a constant of integration for the r-th span

W nust now consi der the boundary conditions at the supports which
constrain the spline to pass through the required points Q. of A.
The | east constraining such support is a freely rotating sleeve attached
to the point q, that permts free rotation of the spline and free
sliding through the sleeve. The only support force is therefore norma
to the sleeve, and this does no work on a possible notion of the spline
through the sleeve. A nore constraining support would be a pin through
the spline which permts free rotation but no sliding, or a pin wth
rotation prevented. In none of these cases is work done by support forces
since either a force (or nonent) conponent is zero, or the associated
nmotion is zero, and such supports are ternmed workless constraints.

Figure 2 shows a spline passing through freely rotating, sliding
sl eeves at QqseesQyq wher e Q and Q, are the free ends of the
spline. The configuration of the spline could be anal yzed using the
equations given above, but a sinpler and nore revealing approach for our
purposes is to observe that this spline forns a conservative mechanica

systemwith potential energy given by the strain energy of the spline
L
n 2
U= [ (E1«7/2)as ; (13)

L



there are no other contributions to U, since the external forces are

all workless. The theory of conservative systens [II] tells us that at

a stable equilibriumconfiguration of the spline, the energy (;3) is a
local mnimum which inplies (2) for a uniformspline with El constant.
Moreover, any constraint added to the system such as changing a freely
sliding sleeve to a pin support that prevents sliding, will either increase
the potential energy in the corresponding equilibriumconfiguration, or
leave it unchanged if the added constraint happens to be conpatible with

the configuration. Thus

[ Kas (1)

will also exhibit a local mninumin the configuration shown in Figure 2,
relative to variations of the constraints. Note that the free ends %
and Q , With no forces or nonents applied, also provide workless boundary
conditions, and any constraint on their freedomof notion will increase

the energy expression (14). Thus a local mininumof the integral (1k)
corresponds to free ends and freely rotating sliding constraints at

Qs ..-»Q ;. This cannot be a global nmininumin the space of al
configurations, since a |ower value of the integral in (14) can be achieved,
as pointed out in [2], by introducing |arge |oops between supports, which,
of course, nodify the topol ogy.

In the next two sections we deduce the |east constraining support
conditions for the spline passing through the points Qy..”qn]_by
seeking the mnimumof the integral (1) directly through analysis of the
variational problem (2), and deduce the natural boundary conditions that

yield this mninum energy configuration. A though this approach Sinply



reproduces the mninmum constraint conditions shown in Figure 2, and
anticipated above on the basis of conservative system theory, it is
i ndependent |y useful, since it permts investigation of the closed spline

problemin Section 6. The latter problemcannot be treated directly by
the theory of a constrained conservative system because we nust consider

the effect of variable arc length for the closed curve, and this changes

the system more than sinply by inposing a constraint.

4. Deductions from the variational statenment. W consi der the

variational statement (2) with integration limts t, and L for a
curve constrained to pass through the points Qpreen@y 1 with end
poi nt's % and Q - The points Qo2+ +1Q,) correspond to val ues Lor +es
of the arc length s . In the present section we do not consider end
conditions. Thus we do not care whether the curve is open (as in
Figure 2) or closed Ch and Q, coincide). W shall prove in this
section that if such a curve satisfies (2) -- and is hence a spline in
our sense -- then the spline is the position of a thin beam satisfying
equations (3) -(7) of Section 3.

Because of the constraints, (2) takes the form
lr
5f [ KFas = 0 . (15)
r=1
fro

The fact that the spline passes through the points Qs ++ 20 prescribes

the follow ng constraint conditions for r = 1,...,n:

10



L
r

[ coseds-x +x ,=0, ( 16a)

[ sineds -y, *vy, =0, ( 16p)

wher e Q. has the coordi nates (xr,yr) . Note in (16a), (16b) t hat X,

and y _  are prescribed numbers for r = 1,...,n-1 , whereas %y » Yo 2 %,
and y,  are free to vary.

Vi follow the standard techniques of the calculus of variations and

introduce Lagrange multipliers A, and u._, for (16a) and (16v),

respectively (r = 1,...,n) . W take care of the constraints (16a), (16b)

by seeking a stationary value of the functioml

n lr 0 n lr
): J‘ K~ ds + z Apo1 J‘ COS 6ds - X + X 3
r=1 ' r=1 ’
r-| r-|
n lr _
+ri—:l ey | J 0 sineds -y 4y o
.| i
n gr o .
- rgl I (K= +A,_qco88+p, ., Sin o)ds
e
LI VIR C O 3 L PV C R (17)



with respect to a general smooth variation 8(s) , and variations
Bxy 5 BYy s % By, conbined with sliding through the pivots

Ss(Qr) = &1 (r = 1,..0,n-1) . (18)

r

‘ *
Setting the variation of (17)to zero and integrating by paéds, %/ ve get

the form
L [}
n Ir r ax . N 5 3
Y ( 2« %6 + [ [-255 -,y Sin e+ jcos 6106 ds
r=1 £+ ’
r-1 r-|

2 .
¢ [KS+2, ,COS O+ ;sin e]l_ 81
r

- [ + 2, cos 0 + LI TN
r-1

- dy = 0
Ay 5}(0 IJ‘OSyO = a1 an bn-1 In . (19)

¥ Inintegrating by parts, e assume that the curvature e of the

mnimzing curve i s continuously differentiable in each interval,
1. <s<1, . If the curvature «(s) of the mnimzing function

is assumed only to be piecew se continuous, but eés) i's continuous,

then it can be proved by a different argument based on a |emm of
du Bois-Reymond that «sis in fact continuously differentiable

in each interval. This justifies our introduction of the broad class
of admissible curves at the start of Section 3.

By z;,z; in the following we nean the limting values £,+0
and £ _-0 .

12



The integral termof (19) yields for r = 1,...,n :

dK : -
_gﬁ-xr_ls|n9+ur_lcose—0,!r_1<5<‘r’ (20)

whi ch can be integrated, using equations anal ogous to (16a) and (16h)

for an open interval, giving

-1

) .
«(s) = k() - L (yey, ) 4R (x-x_ ) 5 (£=1,..0m). (2D)

Identifying xkwith M, as in (8), we see that (21) comprises a nmonent

relation for the part of the spline between the arc |engths L and s ,

1
as illustrated in Figure 3. Thus the Lagrange nultiplier faators

)‘r-l/e and~ ur_l/z are sinply the force components acting on the spline

+
at i

conponents can be considered to act on any section of the spline with

(r = 1,...,n) . By equilibrium considerations, these same force

£, <s<1_, S0 that, taking conponents along and normal to the spline,

the tensile force P and shear force § are given for 1., <s <L, by
- Ayl T
P=- iz*cose- ralsine , (22a)
A W
§=Iélsin9-—%lcose. (22b)

Differential equation (20) can be alternatively integrated by
writing
dk _ dk 48 _ , dx |
ds ~ d8 ds dae
whence, in view of (22a),
2

K -
Z P (ap.y <8 < L) (23)

wher e c. is an integration constant.

1

13



Note that (20) and (22b) yield (9). Differentiating (20) with
respect to s and using (22a) give (10). Finally, (12) and (11)
follow from (23). The basic equations (5), (6), and (7) sinply express
(9) - (12) in different variables,.. and hence the equilibrium equations
(5) - (7) are consequences of the variational statement (2).

It could conversely be proved that the satisfaction of equations
(5), (6), and (7) inplies that the variational condition (2) holds. Thus
the variational condition (2) and the thin beam equations (5) - (7) provide
equi val ent foundations for the theory of nonlinear splines.

Since 8 is a continuous variation,

s0(2;) = 86(L}) (r = 1,.0.,0-1) , (2k)

and the first termof (19) then demands that

k(2) = k(L) (r = 1,...,0-1) . (25)

In view of (18), (22a), and the terns in (19) contai ning o,

we then find that

B(1]) = B(£)) (r = 1,...,n-1) . (26)

5. The open spline.  For the configuration shown in Figure 2 with

O ) ) an ] By.rl ]

variations. Hence the first and last terms in (19) demand that

free ends, oy, By, . 56(12 Se(ln) are arbitrary

K(lo) = K(ln) = >"0 = dg = )"n_]_ = Mp-1 = 0 . (27)

Thus from (22a, 22b) the end conditions becane

k(1o = f(zo) = §(zo) = k(1) = ?(zn) = é(zn) =0 . (28)

1k



Thus the variational condition (15) inplies that the open spline

satisfies the natural boundary conditions (25), (26), (28), which

are precisely the conditions associated with the |east constraining supports
depicted in Figure 2 and discussed in Section 3. In view of these

relations, (23) holds for the entire spline ¢

0 S S_<! W th
- = 'n

=0 for all r

2

'Ké"*'f’ = 0 b (29)

r-|

and hence the differential equation
gzg + %; _ 0 (30)
is valid as'a special case of (12) for the threaded spline with free
ends. This equation has been given by Birkhoff et. al. in [3]. Note
that, in view of (25), (30) requires d%ddéato be continuous across
supports, although in general dk/ds i s discontinuous, because the
lateral support force changes the shear force §, which satisfies (9).
V% wish to enphasize that our equations apply to any spline curve
that satisfies the constraints of the problem no matter what its
topology. As is pointed out in [2], there may be sets of nodes A for
which no spline exists and, if any spline exists for A, there may exist
others satisfying the same constraints, with different nunbers of |oops
bet ween some adjacent pair of nodes. W know of no theorems about the

exi stence or uniqueness of solutions to these problens.

15



6. dosed nonlinear splines, Now consider fitting a smooth

closed curve through a set of prescribed points. W wll express this
situation by utilizing the previous developnent, but requiring that the
points @, and Q be coincident at an n-th prescribed point, and that

the tangent to the curve be continuously turning also through that point.

Thus, for some integer mrelated to the nunber of |oops in the curve,

Xy X2 Y9 = Y en = eO + 2mm (31)
n lr n lr _ W
[ coseds =) [ sineds =0 ;
r:l ) I‘=l )
= Fr-l -
) (32)
!
n r
Z ‘[‘ kds = 2mm
r=1
!r'l J

The deductions from (19) are unchanged from those described heretofore,

apart fromthe contributions at s = ¢ and s =1 . To obtain a |ocal

mninum of the integral (14), in order to find a "smoothest" closed curve

through the n prescribed points, We must conpare curves of slightly

different total arc length, and this can be achieved by selecting the

variations b1, and 8¢ to be unequal. Since the tangent to the curve

prior to the variation is continuously turning, and that after the

16



variation nust also be, the variation8 at £, and #_ nust satisfy
66(10) + K(zo)azo = 8e(ln) + K(zn)Bln , (33)

It is not correct to denmand that se(zo) = 59(zn) , since elenents of

curved arc have bheen inserted into the loop in superposing the variation.

Since &1, , 8¢, ®6(1,) and se(t ) are no |onger independent, |,
the terms arising fromthese variations in (19) must be conbined with

(33)to deduce the natural boundary conditions at the support Q = 9 -

A the boundaries £, and ¢ , (19) and (22a) give:

2li(r Y00(2 ) -K(2)30(20) 1+ [K3(1) - 2B(r,) Jor,
S1kB(rg) - 2B 1) Jerg L O . (34)
Elimnating 86(t,) from (33) and (34) gives:
[KP(2y) + 2B(2) o1y + 2LK(2)) - K(2;)108(2,)
oK) - ex(eg)k(e,) - 2B(1,) 1oL, = O, (35)

where the variations &, , ©6(4) and 8¢ ~can now be consi dered

arbitrary and independent. Thus

K(lo) = K(ln) (36)
and

(€4 2B, = (€., =0, (37)

Thus (29) and (30) again apply throughout the spline. Hence the natural

boundary conditions for (15 yield the same integration constant ¢,y =0

17



in (12) for the closed spline as for the free-ended open one. However,

for the closed spline, this result does not follow fromthe |east-constraint
di scussion of conservative systems. In fact, either adding or removing

an el ement of arc fromthe optinum configuration increases the strain
energy at equilibrium and hence exhibits this property associated with

i nposing additional constraint.

7. Comments and exanples.  Wen curve fitting with snooth curves

is investigated, the variational principle (15), utilizing natural
boundary conditions, calls for continuity of xand P across supports,
as well as }he continuity of e prescribed in the formulation of the
probl em Ge;metrical di scussions of the problem commonly take into
consi deration only continuity of e and «, but this seemng onission
of Pis in fact automatically taken care of by the differential
equation (30), satisfied by the spline in each span between supports,
since (30) and (29) are synonynous.

The variational principle (2) wll yield (23) and (10), and hence
the differential equations (12) or (11), for types of support other than
the least constraining one treated in Section 4 above. These include,
for exanple, pin supports which prevent sliding, built-in supports which
prevent both displacenent and rotation, and a fixed-angle freely displacing
constraint. In general, with such supports, the constants c, in (23) wll
not be zero, and will change from span to span al ong the spline, so that
the differential equations (12) or (11) govern the deflection of the
spline spans, and not the special case (30). These comprise the more

general elastica curves discussed in [7], for which applied forces are

18



not all acting in the direction of the normal to the spline at the point
of application, or for which, in the closed spline case, the spline does
not have the optinumlength corresponding to (37). Note that in the

case of a pin support &g, nust be zero, and when rotation is prevented
Se(zr) =0, and it is such conditions which nodify the treatnent of the
previous section.

The limting case of Iinear splines corresponds to beamtheory when
the deflections y fromthe unstrained spline, considered to |lie along
the x-axis, are such that |dy/dx| << 1 . To sufficient accuracy, x can
replace arc length s and the support forces can be considered to act in
the y direction, and then the longitudinal force ? is zero throughout.
From (10) the differential equation for the spline then takes the form

2

a“k
— =0 (38)
ax® ’
with the linear approximation
2
K = Q__g (39)
ax

This imediately leads to piecew se cubic polynomals for y as a function
of x . The variational principle for linear splines is that they mnimze (1).
Schweikert [11] has treated |inear splines under tension, in which
end supports supply a positive longitudinal force B, which is constant
throughout the beam for freely sliding constraints. By l|inearization

of (10) it follows that

2 :l::
2]
Rl

19



so the solution between successive supports takes the form

y=cg tCX* Csx cosh(ox) + c), sinh(ox) |,

where o =vB. One reason for introducing tension is to renmove extraneous
points of inflection of the interpolating spline curve. The variationa
principle for linear splines under a given tension P is that they
mnimze the total energy of the system which |eads to mnimzing

X
n

[l + pera)® ax

X0

among all functions f that satisfy the constraints and have continuous
second derivatives. One could also study nonlinear open splines under
t ensi on.

The theory presented heretofore |eads to some interesting character-
istics for particular situations. For exanple, both for the open spline
with mnimmconstraints depicted in Figure 2, and the closed spline of
optimum length,.(29) requires that P be zero or negative, and zero only
where the spline arc is straight. Thus, whatever the geonetry of the
curve being fitted, tensile resultant |ongitudinal forces will never occur
(unless they are inposed at the ends).

Consider now fitting a closed spline through the vertices of an
equilateral triangle. |If the splineis bent into a circle, we see
from(3) that Mis constant, whence from(s) S=0, and from(6)
P=0 . Hence (29) is violated by a circle. To satisfy (29) sone
additional arc length nust be added to produce a conpressive force P .
The "optinmum' spline will take the formillustrated in Figure 4. A quali-
tative understanding of this deduction can be achieved by noting that
increasing the arc length for a given angle of bend tends to reduce the
contribution to the integral (1), just as adding large loops to a spline

configuration permts the integral (14 to be reduced towards zero, as

20



mentioned in [3]. Wth radius R, the I/R2

of the integrand dominates
the 2nr of the total arc length, for increasing R .However, for a
fixed arc length and total angle of bend (f Kds) , the contribution to
(14) is a nmininumwhen « is constant. Increasing the arc length of

the spline in Figure & fromthe circle configuration causes a variation in
curvature which tends to increase the integral, offsetting the reduction
associated with increase in arc length. The latter dominates initially,
to yield an optimumfit illustrated in Figure L.

This exanple permts an assessnent of the interpolation strategy
expressed in (2), since one mght regard the circunscribing circle as
provi di ng a nore natural fit through the vertices. The advantage of
increasing the arc length in reducing the integral (14) is the feature
which leads away from the constant-curvature circle. Inhibition of such

a tendency can be achieved by inposing a penalty on increase in arc |ength,

for exanple, by replacing (2) by

' ,
5 f (k“+k)ds = 0 . (ko)
y
Equation (37), and hence (29), nust then be replaced by
2
K = k
T+rP = 5 (41)

so that for this sinple case, choosing

k=g (42)

wher e K s the curvature of the circunscribing circle, yields that
circle as the optimum fit according to (k). Whether such an approach

could be generalized is an open question.
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If for a closed spline Ioop passing through prescribed points, the
arc length is slightly shorter or longer than the optinum/length given
by (29), the integral (1) will be larger than for the optinum case.

For each of these problems, with fixed arc length, (2) is satisfied by
the curve form assumed by the spline. An illustrative exanple is given
in Figure 5. For the shorter spline |oop

2
K.+ >0 (43)

2
and for the longer one

K-
F=+P <o . (4h)

These conditions will change the constant e, in the governing

1
differential equation (12), which will apply throughout the splinew th

constant c_ if the supports are freely sliding and rotating.

1
Thi s paper has treated the global problem of spline geonetry. The
computation Of spline functions to approxinmate the spline configurations
consi dered here has not been discussed in this paper, and constitutes a
chal l enging problem in nunerical analysis. For the open spline, the
curvature at the first support is zero, so that only the angle need be
determined if an initial-value approach (the so-called "shooting nethod")
is used for integration of the spline differential equation problem In
the general closed spline case, both angle and curvature at a support
nust be selected for an initial-value approach, thus posing a nore
cumbersome problem  For the problemof the equilateral triangle, symetry
can be used to reduce the conplexity of the general case. However, the
work of Woodford [12] makes it seemunlikely that shooting is a good way

to conpute splines.
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Figure 1. Forces and nonents on a beam el enent.

Figure 2. Spline passing through supports.

. Kk(s)
Fr-y
2 (x,y)
A
k(o))
(Xp-t, Yot
Figure 3. 'Forces and moments on a spline arc.
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SPLINE

+—CIRCUMECIUBING
CIRC_Z

Figure 4. spline fitted through the vertices of an equilateral triangle.

LONGER TUTAL A K LZNGTH

OPTIMUwi SPLINE

SHORTER TOTAL
ARC LENGTH

Figure 5. Cosed splines with differing arc |engths.
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