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Abstract

V¢ consider the numerical calculation of several eigenvalue problens
which require some manipulation before the standard algorithms may be
used. This includes finding the stationary values of a quadratic form
subject to linear constraints and determning the eigenvalues of a matrix
which is nodified by a matrix of rank one. W also consider severa
inverse eigenvalue problens. This includes the problem of conputing the
Gauss-Radau and Gauss-Lobatto quadrature rules. In addition, we study

several eigenval ue problens which arise in |east squares.
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0. I ntroduction and notation

In the last several years, there has been a great devel opment in
devi sing and anal yzing al gorithns for conputing eigensystens of matrix
equations. In particular, the works of H Rutishauser and J. H WIKkinson
have had great influence on the devel opnent of this subject. It often
happens in applied situations that one w shes to conpute the eigensystem
of a slightly nodified system or one w shes to specify sone of the eigenval ues
and then conpute an associated matrix. In this paper we shall consider some
of these problens and al so sone statistical problens which lead to interesting
ei genval ue problens. In general, we show how to reduce the nodified problens
to standard eigenvalue problems so that the standard algorithms may be used.
W assume that the reader has some famliarity with some of the standard
techniques for conputing eigensystens.

W ordinarily indicate matrices by capital letters such as A, B, A;
vectors by lower case letters such as X, Yy, «, and scalars by |ower case
letters. W indicate the eigenvalues of a matrix as h(X) where X may be
an expression, e.g., >\.(A2+ I) indicates the eigenval ues of A2+I , and in
a simlar fashion we indicate the singular values of a matrix by o(X)

Usual |y we order the eigenval ues and singular values of a matrix so that

A (8) < >\2(A) <. . . <$%A and cl(A) < GE(A) <L L. oN(A) . W assune

1 (
that the reader has sone fanmiliarity with singular values (cf. [9]).



1. Stationary values of a quadratic form subject to |inear constraints

Let A be a real symmetric matrix of order n, and c a given

vector with cTc =1.

In many applications (cf. [10) it is desirable to find the

stationary values of

*LAx (1.1)

~

subject to the constraints

ch =0 . (1.3)
Let
P(x) = XAX - ACCx + 2p.xTc (1.4)

where (N, u) are Lagrange nmultipliers. Differentiating (1.4), we are

led to the equation

AX - Ax + yc =0 - (1.5)

~

Miltiplying (1.5 on the left by cT and using the condition that

e ll, =1, we have

b= -clax (1.6)

Then substituting (1.6) into (1.5), we obtain

PAX = Ax (1.7)

where P = | -cc’ . Al though P and A are symmetric, PA is not

necessarily so.
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Not e that PZ:P, so that Pis a projection matrix. Thus

NPA) = >\.(P2A) = N(PAP).
The matrix PAP is symetric and hence one can use one of the standard
algorithms for finding its eigenvalues. Then if

K = PAP

and if

it follows that

Xi = PZ. (l = l,2,...,n) .

~

At |east one-eigenvalue of Kwll be equal to zero, and ¢ will be
an eigenvector associated with a zero eigenval ue.

Now suppose we replace the constraint (1.3) by the set of constraints

cTx = 0 (1.8)
where C is an nxp matrixofrank r. It can be verified that if
P=1 - cc- (1.9)

where ¢~ is a generalized inverse which satisfies

cceC=C¢C

. (1.10)
cc- = (cc)

then the stationary values are eigenvalues of K= PAP . At least r

of the eigenvalues of K wll be equal to zero, and hence it would be

desirable to deflate the matrix K so that these eigenvalues are

el i m nat ed.



By permuting the colums of C, We may conpute the orthogona

deconposi tion

¢ = {gln (1.11)

where R is an upper triangular matrix of order r , S is rx(p-r),
Q?Q =I ,and w is a pernutation matrix. The matrix Q may be
constructed as the product of r Householder transformations (cf. [8]).

A sinple cal culation shows

T |0 O
P = Q [o 1 ]Q (1.12)
n-r
= o'm
and thus
_ T T
N(PAP) = MQJQAQJQ)
= x(JQAQTJ).
Then i f
T Gi3 Gpp
G =QAQ = . s (1.13)
Gip Gpp

where Gy, isan rxr rratr0>Uand Gyp 1S an (n-r) x (n-r) matrix,

T, _
JeAQJ = [O Cop

Hence the stationary values are sinply the eigenval ues of the

(n-r) x (n-r) matrix Gop - Finally if

G VA )\-.Z. (I = 1,2,...,11-1‘) y

22 il

~
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t hen

The details of the algorithmare givenin [lo].
From equation (1.13) we see that h(G = h(A). Then by the Courant-

Fi scher theorem

M(R) < A(Gpp) S AL 5(A) (]

1,2,...,0-T) (1.14)
when

(G

%.j(A) < hj+l(A) and xj(Gzz) <A 22).

J+l
Furthermore, if the colums of the matrix C span the same space as the r

ei genvectors-associated with r smallest eigenvalues of A

xJ.(Gaa) = Ar_'_j(A). (1.15)

Thus, we see that there is a strong relationship between the eigenval ues
of A and the stationary values of the function

o(x) = xaxax xT+ 2u"cTx (1. 16)

~

where u is a vector of Lagrange nultipliers.



2. Stationary values of a bilinear form subject to linear constraints

Now | et us consider the problem of determining the non-negative stationary

val ues of

( <oy )/Clily Tlglly) (2.1)

where Ais an mx n matrix, subject to the constraints
oTx = 0, Dly = 0. (2.2)
The non-negative stationary values of (2.1) are the singular values of A
(i.e., o(A = [x(ATA)]l/e). It is easy to verify that the non-negative
stationary values of (2.1) subject to (2.2) are the singular values of
2.
PLAP) (2.3)
where B

The singular val ues of PGAP,  can be conputed using the algorithm given in
[9].
Again it is not necessary to conpute the matrices P, and Py explicitly.

c
if, as in (1.11),

B S
1{% S
C=Q 1
C 0 0 _ ¢’
D= I Ry Slﬂn
2
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t hen

rfo o T
o= %o 1 Q = I8
n-xr
I o o _ T
R P % = %hh
L.

where r is the rank of Cand s is the rank of D. Then

o(Fg APD) = C(Qg Ie Qg AQ% Ip Q‘D)

_ T
= (I A% Ip) -
Hence if
T Gy G1p
G G
21 22
wher e Gyq is rxs end G,, IS (mr) x (n-s) , then
T o O
% A%d T o ay

Thus the desired stationary values are the singular values of Gop -
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3. Sone inverse eigenvalue problens

Suppose we are given a symetric matrix A with eigenval ues

n . - n-l
{xi}izl (xi < )‘i+l) and we are given a set of values {higizl
(A, < Ayp) With
ANSA <AL (3.1)
W wish to determine the |inear constraint cT = 0 so that the

X
stationary val ues of x T Ax subject to x'x =1andck =0 (cTc = 1)
are equal to the set of [Xi]ril;zlt. From equation (1.5) we have

X = -p,(A-)\.I)-l c ,

~

and hence --

c'x = pf(a-a)te=0 (3.2)

Assunming p # 0, and given A = QAQT where A is the diagonal
matrix of eigenvalues of A and Qis the matrix of orthonormalized

ei genvectors, substitution into (3.2) gives

-
= 0
i=1 )\i_x
Wi th ) (5.3)
n
2
igl di =
= y

wher e Q1~: C . Setting A= Xj (j = 1,2,...,n-1) then leads to a
system of linear equations defining the d?. Ve shall, however, give

an explicit solution to this system
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Let the characteristic polynomal be

n-|
o) = TT@&; -»
j=1
and | et
2
n | = a;
Y = ]J_l;.()‘j-)\) 12;-‘1 Ay - A
- i a° ﬁ' (h,-N) .
=t g
JH

W wish to conpute d (de = 1) so that ¢(A) =@(N\) .

l et us equate the two polynom als at npoints.Now

n-1 _
9 (}‘k) = -';:_I;- ()"J -)\k) '
o n-1
y(N) = T'E My =N
5=
ik

Hence cp(?«.k) = ’tlf()\k) for kK = 1,2,¢.e,n , if

- E(xj-xk)

4 = —5 .
';[;l; (xj - %.k)
Ik

(3.1)

(3.5)

Then

(3.6)

The condition (3. 1) guarantees that the right-hand side of (3.6) will be

positive. Note that we nmay assign d a positive or negative value so

that there are 2" different solutions. Once the vector d has been

conputed, it is an easy matter to conpute c.
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W have seen in section 1 that the stationary values of (1.16) inter-
|l ace the eigenvalues of A. In certain statistical applications [ 4] the
: , : T
following problem arises. Gven a matrix A and a set of constraints CXx =20,

we wish to find an orthogonal matrix H so that the stationary values of
o(y) = XX - )\X’}\{‘+E,J(HC)1(: (3.7)

are equal to the (n-r) [largest eigenvalues of A .

As was pointed out in the last paragraph of section 1, the stationary
values of (3.7) will be =qual to the (n-r) largest eigenvalues of A pro-
viding the colums of HC span the space associated with the r smallest

eigenvalues of A . For sinplicity, we assume that rank (C) = p . From(1.11),

we see that we ﬁﬁy wite

- <[]

Let us assune that the colums of some matrix V span the sane space as
ei genvectors associated with the p snallest eigenvalues. V€ can construct

the deconposition

10

where WW = I, and Sis upper triangular. Then the constraints
()% = 0

are equivalent to
(R ola'x = O

and thus if His chosen to be
H WQ
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the stationary values of (3.7) will be equal to the (n-p) |argest

ei genval ues of A
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4, I ntersection of spaces

Suppose we are given two symretric nxn nMatrices A and B with

B positive definite and we wish to conpute the eigensystem for

AX = NBX . (k.1)

~

One ordinarily avoids conputing c-p %A since the matrix Cis not
symetric. Since B is positive definite, it is easy to conpute a
matrix F such that

FBF=|

and we can verify from the deternminantal equation that
h(FTAF) = x(B‘lA) .

The matrix FEAF i's obvi ously synmetric and hence one of the standard
algorithnms may be used for conputing its eigenval ues.

Now | et us consider the follow ng exanple. Suppose

>
I
w
i
O O
O m O
o o o

where € is a small positive value. Note B is no longer positive

definite. Wen xT: [1,0,0] , then Ax = Bx and hence N = 1 . Wen

X = [0,1,0] , then Ax~: e 1ex . Here N = e 1 and hence as ¢ gets

arbitrarily small, A(E) becones arbitrarily large. This eigenvalue is

. unst abl e; such probl ens have been carefully studied by Fix and Hei berger [ 5].
Finally for x* =1[0,0,11, Ax = ABx for all values of A. Thus we

have the situation of continuous eigenvalues. V& shall now exam ne ways

of elimnating the problem of continuous eigenval ues.
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The ei genval ue probl em Ax = MBx can have continuous eigenval ues
if the null space associated with A and the null space associated
with B intersect. Therefore we wish to determne a basis for the
intersection of these two null spaces. Let us assume we have deternined

X and Y so that

with
Ty _ = h.2
XX =1, and YY Iq . (4.2)
Let
z =[xyl . (%.3)

Suppose His an nxvy basis for the null space of Z with

where E is pxv and F is aqxv . Then
ZH = XE+YF =0
Hence the nullity of Z determines the rank of the basis for the
intersection of the two spaces.
Consi der the matrix
L=22%

Note nullity(L) = nullity(z) . From (k.3), we see that

| XLy
P
L =
x|
a
0 T
p
= T +
Ptq TT 0
q
= T + W (k.k)
Ptq
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Since A(L) = NI+W) = 1+x(W),
AL) =1+ o(T) . (%.5)

Therefore if cj(T) =1for j =1,2...,t, from(4.5) we see that the

nullity(L) =t . Thus if we have the singular val ue decomposition

T = XTY = UZVT
wher e

U = [El"“’ljp] s

fU

t he vectors {XEi}i=1 yield a basis for the intersection of the two
spaces. W can use the set of vectors {lei};:l to deflate A and B
simul taneously by an orthogonal simlarity transformation.

The si nguTar values of XY can be t hought of as the cosines between
the spaces generated by X and Y . An analysis of the numerical nethods
for computing angl es between |inear subspaces is given in [2]. There
are other techniques for conputing a basis for the intersection of the
subspaces, but the advantage of this nethod is that it also gives a way

of finding vectors which are alnost in the intersection of the subspaces.
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5. Eigenvalues of a matrix nodified by a rank one matrix

It is sonetines desirable to deternmine sane eigenvalues of a
di agonal matrix which is modified by a matrix of rank one. In this
section, we give an algorithm for determining in O(n2) nuneri cal

operations some or all of the eigenvalues and eigenvectors of
T

D+ouu Wwhere D = diag(di) is a diagonal matrix of order n
Let C =]D+c11uT ; we denote the eigenval ues of C by %jfxe"'”xh
and we assume A, <A, and 4, <d;., . It can be shown (cf. [14])
t hat
(1) if o>0, d; <M < dyq (i = 1,2,...yn-1) ,
d <N <d +cuTu :
n—-— n— n ~ o~ !
(2) if o< 0, di_l_g NS4 (i = 25¢0uyn) ,
d+guTu<>\. <d
1 ~a—= 1-"1"

Thus, we have precise bounds on each of the eigenvalues of C.
The eigenvalues of the matrix C satisfy the equation
T
det(D + cuu™- Al) = 0,

which after some manipulation can be shown to be equivalent to the

characteristic equation

: T (4, (5.1)
(M) = T (a-N) +o0oZTu; T(4,-N) =0. 5.1
*n i=l T izl t =1 Y
JH
Now if we wite
k k , k
(N) = T (di-A + o Zui m(a,-N)
P i=1 isl =l Y ’
JHL
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then it is easy to verify that

e (M) = (4 N g (0) ol (N (k. 0,1,.. . ,n-1)

¥ (M) = (M) ¥y, (V) (k =1,2,...,n-1) (5.2)

with yo(x) cpo(?\.) = 1.

Thus it is a sinple matter to evaluate the characteristic equation for any
value of A several well-known nmethods may be used for conputing the eigen-
values of C.  For instance, it is a sinple matter to differentiate the
expressions(5.2) with respect to A and hence determine o (A) for any
value of A Thus Newton's nethod can be used in an effective manner for
conputing the eigenval ues.

An alternative method has been given in [1] and we shall describe that

technique. Let K be a bi-diagonal matrix of the form

O : rn-l

- -

and let M= diag(p.i)'. Then KK is a symetric tri-diagonal matrix

. 2 n
with elements {ury 1 (ot T sbrfidier (Fo = Ty = Hpeq =0)
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Consi der the matrix equation
(D+ouul)x = Ax . (5.3)
Miltiplying (5.3.) on the left by K and letting x = K'Y , ve have

K(D+cuuT)KTy = KKKTy
or

(KDKT+oKuuTKI)y = )\KKTZ
Let us assume that we have reordered the elements of u (and hence of D,
al so) so that

-~ 1=u2=...=u ;=0 and 0<|up|§‘up+l]5...5|un|.

Now it is possible to determne the elenents of K so that

0
Ku=| - . (5:4)
0
u
n
L -
Specifically
. =0 for i <p,
1
ry = 9y vy 12p
and we note Iri|5 1 . Therefore if Ku satisfies (5.4), we see that

KDKT+cyKuur‘['1<:T I's a symmetric tri-diagonal matrix and so is KK
Thus we have a problem of the form Ay = ABy where A and B are

symretric, tri-diagonal matrices and B is positive definite.
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Peters and Wlkinson [ 13 ] have shown how linear interpolation nay
be used effectively for computing the eigenvalues of such matrices when
the eigenvalues are isolated. The algorithm nakes use of det(A- AB)
which is quite sinple to compute when A and B are tri-diagonal. Once
t he ei genval ues have been conputed it is easy to conpute the eigenvectors
by inverse iteration. Even if sevefél of the eigenvalues are equal, it is
often possible to conpute accurate eigenvectors. This can be acconplished
by choosing the initial vector in the inverse iteration process to be
orthogonal to all the previously conputed ei genvectors and by forcing the
conputed vector after-the inverse iteration to be orthogonal to the
previously conputed eigenvectors. In sone unusual situations, however,
this procedure may fail

The deviéé of changi ng nodified eigensystems to tri-diagaon
matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

Again we choose K so that Ku satisfies (5.4) and thus obtain the

ei genval ue problem Ay = ABy where

KDKT Ku KKT
A= ’ B =
T OI-

so that A and B are both tri-diagonal and B is positive definite.
Bounds for the eigenvalues of C can easily be established by the
terns of the eigenvalues of D and hence the linear interpolation

al gorithm may be used for determning the eigenvalues of C.
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6. Least squares probl ens

In this section we shall show how eigenvalue problens arise in |inear
| east squares problems. The first problem we shall consider is that of
performng a fit when there is error in the observations and in the data.
The approach we take here is a generalization of the one in [9]. Let A
be a given mx n matrix and let b be a given vector with m conponents.

VW wish to construct a vector x which satisfies the constraints

(A+E)x=Db+3 (6.1)
and for which
lelE:61dll = nin (6.2)

where P is a diagonal nmatrix with p, > 0, Q@ is a diagonal matrix
with q >0, and ||...]| indicates the Euclidean norm of the matrix. e

rewite (6.1) as

X X
23 [ R

or equivalently as

By + Fy = 0 (6.3)
wher e

B = [Atb]q,

F = [Eig)Q, (6-4)

<

Qur problemnowis to deternine § so that (6.3) is satisfied, and
IPH| = min
Again we use Lagrange nultipliers as a device for ninimzing ||PF|
subject to (6.3).
6-1



Consi der the function

m n+l m n+l

2
o(F) = & T p°f°. - 2 TA, % (b, + L)y, (6.5)
i=1 §=1* % o1 T ogap 19 LT
Then
F) .2
F ep,frg = AV
rs
so that we have a stationary point of (6.5) when
Fr-ay (6.6)

Note that the matrix F nust be of rank one. Substituting (6.6) into (6.3)

we have
=TT
(y'y)
and hence T
PB yy
PF = - —5—.
vy
Thus,
o yTBTPeBy
|‘|PFH = T
(y'y)

and hence|[p§| = min when j is the eigenvector associated with the smallest
ei genval ue of BIF"B. Of course a more accurate procedure is to conpute the
smal | est singular value of PB.

Then, in order to conpute g, we perform the followi ng calculations:

(a) Formthe singular value deconposition of PB, viz.,

(It is generally not necessary to conpute U)

(b) Let v be the columm vector of V associated with °min(PB)

sothat v =y . Conpute

z =Q .
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(c) From (6.4),

R
[EEN

1
—u

Note that min|PF|| = Gmin(PB) , and that

[E:6]=-[Aatblvwia™t .

~ ~oey

The solution will not be unique if the smallest singular value is
multiple. Furthermore, it will not be possible to conpute the solution
i f Z .1 =0 This will occur, for exanple, if P = I, Q:Iml’
b =0 and o (A) < || b,

Anot her probl em which arises frequently is that of finding a |east
squares solution with a quadratic constraint; we have considered this

probl em previously in [I]. W seek a vector 3”: such that

o ~ax|l, = nin (6.7)
with the constraint that

[xfl, = - (6.8)

The condition (6.8) is frequently inposed when the matrix Ais

ill-conditioned. Now |et
9(x) = (b -0 (o -A) + A x (6.9)

where Ais a Lagrange nultiplier. Differentiating (6.9), we are |led

to the equation

ATAx - ATb + Ax = 0 (6.10)
or
(8T + AD)x = ATD . (6.11)
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Note that (6.10) represents the usual normal equations that arise in the

. . T
linear |east squares problem Wwith the diagonal elenents of AA

shifted by M. The parameter A will be positive when
@ < [WBl,

and we assume that this condition is satisfied.

Since x = (ATA+AI) ™A™ | we have from (6.8) that
pTa(aTa+ A1) ™2 Ao - & = 0 . (6.12)

By repeated use of the identity

AR

det[X Y] = det(X) det(w -zx'ly) if det(X) £ 0,

we can show t hat (6.12) is equivalent to the equation

get((ATA+A1)? - o 2Ty b'A) = 0 . (6.13)

Finally if A= vz v , the singular value deconposition of A, then
ATa —vov@ , Vv =1 (6.14)
where D = ©'s  and (6.13) becones

de‘c((D+)~.I)2 - EET) =0 (6.15)

where u = o ts'UTb . Equation (6.15) has 2n roots; it can be shown

(cf. [6]) that we need the largest real root of (6.15) which we denote

by A . By asinple argument, it can be shown that A" i's the unique

root in the interval [O’ETE] ~ Thus we have the problem of determ ning

an eigenvalue of a diagonal matrix which is modified by a matrix of rank one.
As in Section 5, we can deternine a Matrix K so that Ku satisfies

(5.4) and hence (6.15) is equivalent to

det(K(D+)\.I)2KT - KEETKT) =0 . (6 16)
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The matrix G h) :K(D+)\I)2KT _ KuuwK s tri-diagonal so that it is

easy to evaluate GQh) and det Gh) . Since we have an upper and |ower

* o . . . : . x
bound on A , it is possible to use linear interpolation to find A ,
even though Gh) is quadratic in A . Nunerical experinents have

indicated it is best to conpute G(A) = K(D+ M) K -KEETKT for each
approxi mate val ue of A" rather than conputing
G h) = (x0°K - Kuu TkT) + 2 KD K +AZK K |

Anot her approach to solve for N is the following: we substitute

the deconposition (6.14) into (6.12) and are led to the equation

v
oA = £ ———5-1=0, (6.17)
n 1=1 (4, +\)
-1 _T.T

wWith u=a 2 Ub. It iseasytoverify that if

k k ui?
A m(d. +MN y ———— -1 3
‘#k( ) 5= l( + ) o1 (di N )\)2
Vo ) = (4,1 +M% g ) -uZ, & (N (k=0,1,...,n-1) (6.18)
x) = (d'k+ x) gkl (k=1,2,...,n-1)

W th

Thus, using (6.18) we can easily eval uate 'yn(%.) and %(7\) , and hence
use one of the standard root finding techniques for determning N

. : A ¥ .-1_.T
It is easy to verify that x = v(D+NI) "EU b .
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A simlar problem arises when it is required to make
[xll, =nin
when
b - axl, = 8
wher e

p > min b -ax .
X

~

Again the Lagrange nultiplier M satisfies a quadratic equation which is

simlar to the equation given by (6.14).
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7. Gauss-type quadrature rules with preassigned nodes

In many applications it is desirable to generate Gauss type quadrature
rules with preassigned no&. This is particularly true for nunerical
met hods which depend on the theory of nonents for determning bounds
(cf.[ 3 ], 4nd for solving boundary value problens [12]. W shall
show that it is possible to generate these quadrature rules as a nodified
ei genval ue problem

Let w(x) > 0 be a fixed weight function defined on the interval

[a,b]. For w(x) it is possible to &ine a sequence of polynom als
po(x), pl(x),... which are orthonormal with respect to WX) and in

whi ch pn(x) is of exact degree n so that

1 when m= n,

L}

- b
[ (%) p_(x) ulx)
a

0 when m £ n.

n
The polynomial p (x) =k 1 (x-t,), k > 0, has n distinct real roots
n n i=1 1 n

a<tl <t <L <t < b. The roots of the orthogonal polynomals play

an inmportant role in Gauss type quadrature.

Theorem Let f(x) e« CZN[a,b]; then it is possible to determne
positive vv.J so that
b

N
[ 10 e(x)ax =z

w.f(t.) + R[f]

wher e

2y » W
RIf) = — )T fa [i=nl (x-ti)]2 o(x)dx, a < 1 < b,
Thus, the CGauss type quadrature rule is exact for all polynomals of degree
< 2N-1.
Any set of orthonormal polynomals satisfies a three term recurrence

relationship:
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_ f j = 1,2,...
ijj(x) = (x-aj)pj_l(x) Bj-lpj-2(x) or J

P_l(x) =0, po(x) = 1.

W may identify (7.1) with the matrix equation

xp(x) = Jp(x) + Bypy(x)ey .
wher e

(p(x)1T = [pg(x),p,(x), -+ oy 1 ()1,
e£=[0,0,...,1],

~.

and

o B O
31 Q

-
O ‘.BN-‘laN

Suppose that the eigenval ues of Jy are conput ed so that

J.a. = N\, i = 1,2,...,N
gy = N& U 525+ +,N)
W th

T

Q. =1

3335
and

T
g.j = [qu)qzj)"‘}q.Nj]‘

Then it is shown in [II] that

sN;

(7.1)

(7.2)



370y , (7. 3)
W, = (qu) .

A very effective way to conmpute the eigenval ues of Iy and the first
conponent of the orthonornalized eigenvectors is to use the QR method of
Francis (cf. [14]).

Now | et us consider the problem of determning the quadrature rule so

t hat
i : )+ 2 v ()
f(x)w(x)ax = Tw.£(t,) + £ v, £(z
a j=l J J k=1 k k
where the nodes {zk}gtlare prescribed. It is possible to determ ne

[wj,tj}N, [vk}i;l so that we have for the remainder

(2N+M) b M N
R[f] = %ﬁm}%ﬂl J‘ Jus (X-Vk)[ Il (x-tj)]gw(x)dx, a<n<h.

a k=1l J=1

For M= 1 and zy =a orz = b, we have the Gauss-Radau type formla

and for M =2 Wwth z, =2 and Z, = b, we have the Gauss-Lobatto type

forml a

First we shall show how the CGauss-Radau type rule may be computed. For
conveni ence, we assune that z, = a Now we wi sh to determne the polynom al
pN+l(x) so that

pN+l(a) = O.

From (7.1) we see that this inplies that

0 = py,y(a) = (a-0op ,)p(a) - Beoy . (a)

or
py_1(2)

1 = Py p (e (7.4)

From equation (7.2) we have
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(Jy -eD)p(e) = - pppy(a)e

or equivalently,

(Jg-2D)é(a) = BS e (7.5)

wher e
6,]'(&) = _(Sij-l(a'))/PN(a) s (3 = 1,2,4.0,N) &
Thus,
Oy = 8+ by(a) . (746
Hence, in order to conmpute the Gauss-Radau type rule, we do the follow ng:
(a) Cenerate the matrix JN+l .
(b) Solve the system of equations (7.5) for 8 (a) .
(c) Compute Qupq DY (7.6) and use it to replace the (W1,N+1)
el enent of Il -
(d) Use the QR algorithmto conpute the eigenvalues and first

element of the eigenvector of the tri-diagonal matrix

IN Py &y

[
i}

N+1 "
By e | w1

- -

O course, one of the eigenvalues of the matrix Tl must be equal to a .
Since a < %.min(JN) , the matrix Jg-al will be positive definite
and hence Gaussian elinination without pivoting my be used to solve (7.5).
It is not even necessary to solve the conplete systemsince it is only
necessary to conpute the elenent 5N(a) . However, one may wish to use
iterative refinenent to conpute 5N(a) very precisely since for N large,

Nyin(J) may be close to a and hence the system of equations (7.5) may

be quite ill-conditioned.
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Wen z, = b, the calculation of Tel is identical except with b replacing

a in equations (7.5) and (7.6). The matrix Jy - I will be negative

definite since b > )\max(J).

To conpute the Gauss-Lobatto quadrature rule, we need to conpute a

~

mat rix Tnel such that
}\'min(‘}‘N+l) =& and Kmax(JI\Hl) = b.
Thus, we wish to determ ne pN+l(x) so that
By, (8) = by, (D) = 0. (7.7)

Now from (7.1) we have

~ B P (0 = (X = o Je(x) - By 4 ()5

so that (7.7) inplies that

0 Py(3) + By 1(8) = apy(e)

(7.8)
% 1Py(P) + By 4 (P) = oy (b)

Using the relationship (7.2),if

(I 8IN = ey
and ( 7.9)

(I IR = ey

. then
p,_,(a) 1 i (P)

.1 _ oL (7.10)

(j =1,2,...,N).

Thus, (7.8) is equivalent to the system of equations
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2
O~ APy

a
; (7.11)
Ol ™ HyPy = P

Hence, in order to conpute the CGauss-Lobatto type rule, we perform the
foll owi ng cal cul ations:

(a) Cenerate the matrix Iy

(b) Solve the systenms of equations (7.9) for A  and e

N
2

(c) Solve ( 7.11) for Oeen and By

(d) Use the QR algorithmto conpute the eigenvalues and first elenent

of the eigenvectors of the tridiagonal matrix

Galant [7 ] has given an algorithm for conmputing the Gaussian type
quadrature rules with preassigned nodes which is based on a theorem of
Christoffel which gives a method for constructing the orthogonal polynomals

with respect to a nodified weight function.
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