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Abst r act

W& consi der the wwal univariate |inear nodel E(Ny) =~>~(y , V(X) - o1 .
In Part One of this paper )5 has full colum rank, Numerically stable
and efficient computational procedures are devel oped for the |east squares
estimation of y and the error sum of squares. W enploy an orthogonal
triangular deconposition of X using Househol der transformations. A | ower
bound for the condition nunber of X is imediately obtained fromthis
deconposition.  Simlar conputational procedures are presented for the
usual P-test of the general |inear hypothesis E'Z =0 E'Z = m is
al so considered for nj;é 0 . Updatings techniques are given for adding to
or renoving from ()E, E’) arow, a set of rows or a colum.

[n Part Two, >~< has |less than full rank. Least squares estimates are
obtained using generalized inverses. The function I:'Z is estinmable
whenever it admts an unbiased estimator |inear in y W show how to
conputationally verify estimbility of ~L'Z and the equivalent testability

of L'y =0 .
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PART ONE: UNIVARIATE LI NEAR MODEL W TH FULL RANK

1. Least squares estimation and error sum of squares
W consider the univariate general |inear nodel
2
(1.1) E(y) = 753 V(y) =01,

~ ~ ~

where E(+) denotes methematical expectation and v(+) the variance-

covariance matrix. W take the design matrix X to be nxq of rank

g<n and-known; in part two we relax this assunption of full column

rank. The unknown vector y of g regression coefficients is estinated

by least squares from an observation y by mnimzing the sum of squares .

~

(L2)  ly -1ty - .

Prime denotes transposition; bold-face capital letters denote matrices
and bold |ower-case letters vectors, with rows always appearing primed.

In the case where V(,Y) = o°A in (1.1), with A known and positive
definite, we may repl ace y b)f\"fy and X by FX where F satisfies
}:}E' =I . The matrix F is not unique but it is possible to find an E
which is lower triangular from the Chol esky deconposition of LA (cf. e.g.,
Heal y, 1968).

[t is well known that the | east squares estirratej satisfies the

nornal equations

(1.3) x')fi = Xty

~ ~

and is unique when X has full rank. The matrix X'X is greatly

. R
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i nfluenced by roundoff errors and is often ill-conditioned: by this

we nean that a relatively "small" change in X will induce a correspondingly

-1

"large" change in (X'X) and in the solution y = (X’X)'ley to (1.3).

~ o~

For these reasons we prefer to work with X directly rather than XX
[cf. e.g., Longley (1967), Wampler (1969, 1970)].

It is possible to find an nxn orthogonal matrix P such that
R

(1.4 x = s PX = - ,
~ “\ O -~ 0

[ 3=y

where R is upper triangular of order gxq . This orthogonal triangular

deconposition (0TD) may be made in various ways; a very stable nunerical —

procedure (Golub, 1965) is to obtain P as the product of q Househol der
transf ormati ons.

A square matrix of the formNH = I-%liu‘ , Where E'E =1, is defined
to be a Househol der transformation. Cearly ~H = H' and

HH® = H'H = HZ =1, sothat His a symretric and orthogonal matrix.

Al'l but one of the characteristic roots of H are unity, the sinple
root being -1 .
A vector x may be transformed by a Househol der transformation to

a vector with each element zero except for the first, i.e.,
(1.5) Hx = re. : rto ,
say, where e.J isan nxl vector with each conponent O except for

the j-th whichis 1 (j =1,2,...,n) . Premultiplying (1.5) by its

transpose vyields

(1.6) X'X = x'H'Hx = r’e!



Substituting H = T-2m*' in  (1.5) gives

(1.7) X -2(utx)u = re;
premultiplication by u® yields -u'x = ru, wher e u, = e;LE , the
fir<t element in u . Substitutionin (1.7) gives x+ eruu = re,
SO that wWith x = {Xj} ,

%) %Li A C AT S A I = —xi/(rul) , 1 =2,0e.,n .

"1 first exprescion will always be conputed positive if the square root

S {1.6) is taken as

: l/?‘
g St -
e et (TP
where com(x ) =+1 i1 x, > and -1 otherwise. Then
3 > b ey oL = sen(e e/ (su i = 2540050
R E = 1/( 1) ’ e
Witer ¢

(1.11) s = +(x'x)7

N (oIS} o] 8]
This ;ives u'u = 1, lor 2u; = x‘i‘/(fi,?s“u{l) x(L/("{+ Slzl,) , 1=2,.00,n .

o~ o~

no, oD 2 2
tence 2Y ul = (s"-x)/(s"* sfxy|) = 1-(|x|/s) = 2(1-u]) . We note
=0

that 11 need not be conputed explicitly as Hx = x-2(utx)u , for which

~ o~

we need only u and u‘x In the above form it is necessary to conpute

~ o~

two square roots per Househol der transformation; if, however, we wite

H=1 -u(u'u)'lu‘ then only one square root need be cal cul ated (Businger

~ o~ o~

and Gol ub, 1965;.



Applying this procedure with x replaced by Xe, , we obtain

(1.12)  HX = (ry1858,)

wher e r,, replaces >, and X, is nx(q-1) such that
}Ele* = iy 2(11 "X )Ll y J=1,s4.,9-1 and {ﬁj+l = %E%jﬂ. . This

procedure is now repeated wth X,e; @ X and a Househol der transformation

=1 - ith ute = 0 .
iy o - 1 2ulul , say, with ure, 0 The last n-2 el enents of }le

are now anni hilated. .o Hylge, = rogHi& = vpq8) whi | e I,{,ﬁDfﬁp H,X e
bas its last n-2 conponents zero. The product H,I is orthogonal.
Turther repetitions, annihilating at the j-th stage the last n-j elenments
inthe j-th colum of the matrix X transformed previously by j-I

Househol der transformations (j = 1,...,q) , realizes P as the product

of' ¢ Householder transformations. The matrix P is not conputed

explic it ly . Details of this algorithm are given by Golub (1965), and

Businger and Gol ub (19 5) who al so give a programin Algol 60.

Partitioning P = (P,,P.,) , wWith P, nxq and P, nx (n-q) gives

~1 ~2
from(1.4)
(132) PE =R, MEo0
t 1 — t H —_ H
with PiP) =T, P{P =0 andPIP,= Iq since PP =1 . If, in

t he above al gorlthm we Sinultaneously apply the g Househol der transfor-

mations to the observation vector y , then we have

(1.14) Py = = -z ,

~ o~

say. Thus z, = Ply has expectation E(PLy) = PLXy = 0 and covariance



2 : :
mat rix V(Péy) = ch,gP, =01 q Hence z. is an easily conputed
~C~ ~ast ~al ~C

vector of wuncorrelated regrossion residuals and may be used to test for

serial correlation (cf. e.g., Gossman and Styan, 19/0). It follows that

(1,15} P P! + x;(x'x\,"lx' =1

2.2 ~ o~ o~ ~ n ’

a,s each term on the leit -hand. s de ic idenpotent and their cross-product
ic 0 ;their suwigi omrotent Wth rank the sumof the ranks n-qg and q.
Ce PP = T-X(TTY T 0 and sts = y'PPYy - (y-Xy)'(y -XY)  is

the crror sum of squarcs §_, say -- the minimum of (1.2). It is simply

=

=Ply .

compoted here as the o m of squares of the n-g elements in 2z, 5
g ~ ~Cn~

The vector of (co-related) residuals r o= X—}N(;' is often essential -
for analysis of the livear wodel (cf. e.g., Draper and Snmith, 1966).
Thouet: Lhe mabtrix P av nol Lo computed explicitly it can be retrieved
ag "torow b L0 ~ugonul der transformations when the corresponding
q o vecbors have ptec:n storod (which we recommend) . Hence we compute
P. i, gince P oo P OPRLCo= 1 . x(Xw) ¥'ly = y-Xy =r . However,
it has been observed t- Gentleman (1970) that conputing r in this fashion

may be numerically unstable.

Ve also find froo (1.4) that

e
(1.16) X'X = (R%,0)P'"; “ | =R'R .

,N\o

Substitution in (1.3) j,fieldSNRL@ = (B”.Q)?Z = R'z, , so t hat solving

(1.17) Ry = z;

gi ves y . This is expedited by R being upper triangular.



W note that R'R iS a Cholesky factorization of X*X , for which

~ o~

Heal y (1968) has given a Fortran program

The esti mator ; has covariance matrix v(y) = o

) an

unbi ased estimate is ;se(}f'?g) "l/(n-q) which is easily computed using
(1.17) as (Eéig)g'l(ri'l) '/(n-q) . The generalized variance (cf. e.g.,
Ander son, 1958) is IV(Z) | = 2q/ |x*x| , where || denotes deterninant.
In optimal design theowy a problemis to choose X so that Jxx|is

maxi m zed thus reducir - |v(¥)| as much as possible. Again using (1.16)
q
- 1o _ 2 : _
we see that l)f')fl = |h4rR~‘ = ']":rlri.l , as F‘:'S upper triangul ar. Hence

. . . 2
|v(7) | is estimated b, [gégg/ (n-q)1%/ ﬁ';rii )

A nmeasure of the ill-conditioning of a matrix is its condition nunber

which we define as thc ratio of the largest and smallest nonzero singul ar
values of the matrix. The singular values of a (possibly rectangular)
matrix A are the positive square roots of the characteristic roots of
AtA or AﬁA: . Wen the condition nunber far exceeds the rank we find
(cf. Wilkinson, 1967) “hat the matrix is extrenely ill-conditioned.

A lower bound for the condition nunber x(X) of the design matrix X
is the ratio of the la-gest and smallest (in absolute value) diagonal
el enents of Ig To see this we note first that X and X have the
sane singular values, due to the orthogonality of~P . As 1:’)5 Is merely
Bbordered by zeroes, sg(X) = sg(R , where sg(+) denotes singular

~

value. For any square matrix A of order nxn ,
(1.18) sg (A) < lens(8) | < sgy(a) 5 3 = Lieeoom

with ch(+) denoting characteristic root. The subscript j indicates



j-th largest. To prove (1.18) when A has real roots, let A\ = chJ.(A)

wWith Ay = Av . Then

~ e~

(1.19) sgi(A) = chl(A’A) = max[x'A'Ax/x'x] > VIATAV/viv =
- il ARV P

= AIAYY/viv = A2
Similarly seo(a) <. Thus
sg, (X) sg. (R) max |ch(R) | max |r. . |
(120) n(X) 1e - B ot =

2/ a sgqu)Nd a sgq(Nlj) 2 mln‘ch(f{)l a minlriil

CQther properties of w(A) are given by WIKkinson (1967).

Wiy is the condition nunber inportant and how can we use the
relationship (1.20)? Let 7 be the computed approxi mation toj whi ch
satisfies (1.3). Suppuse that we wish to determne an upper bound for

the norm of the relative error of 7 :

(e -7/

1/2 .

wherc || a |l indicates the Euclidean norm (a'a) Def i ne

(L22) r=y-X7,

whi ch we can conpute guite accurately. Then

(1.23) r-T = X(r-7) ,
and hence
(1.24)  XX( y -7) = -X'% ,



since X'r = 0 . Thus

~ o~

(1-25) 770 = 0 RE] < e LE ) TEE| = (K E/se 00 -
From (1.3), '\)E'}EZH = |X'y]] , so that
(1.26) 'yl < )5 leef(x)

Conbi ning (1.25) and (1.26), we have

@en 13-30/15)

IN

Lsgy () / sg, (017 K2 | /1K'y |

i

(0K F) / ey

Thus we see that the condition nunber may be used for determning an
upper bound for the relative error of H? | . This upper bound is the
product of two factors; the first of which, ug(g) , 1s independent of y .
However, the |ower bound provided by (1.20) would in some circunstances

give insight into the relative error. Hence, if

(1.08) [max lrii | / min lrij ‘ ]2 I XN’;;H /N X~'y~H

is large, then it is likely that the relative error in |7 | is large
The nurerical efficiency of the above orthogonal triangular
deconposition is enhanced (cf. Golub, 1965) if the colum selected for
each of the g Househol der transformations maximzes the corresponding
sum of squares. That is, at the j-th stage (j =1,...,q) we transform
that colum of the g-j+1 possibilities which maximzes the sum of
squares of its last n-j+1 conponents. The interchanges may be
sunmarized in a pernutation matrix E postmul tiplying X . Thus (1.4)

becones



t =

(1.29) X = ~ Ot s PUYXT

~

1O
1o 1

The vector z does not change and hence neither does Se . The sol ution
(1.17) changes however; substituting (1.29) into (1.3) now gives

TR'RT'Y = MR'z, , so that

~e

(1_50) R(Wtz) = El = RO ,

is solved for e, and y = m . As these interchanges only rearrange
4 2 L
the r., westill find [x'x|=TTr;; . The lower bound for the condition
-~ i=1

nunber sinplifies, however, as with these interchanges max|r ;| = |ry;] 5 -

and min‘rii‘ = |r so that »(X) > lru/rqql _

QQ‘
Gven the nxn matri x

1, -1, -1, .., -17]
0, 1, -1, .., -1
(1.31) A = S | )
n 1

~

we see that mex|r..| = min|r..| =1, and so «(A) >1, since A =R
11 11 ~ ~

when no colum interchanges are made. However, if colum interchanges

are perforned then for’ n = 10. say, |rll| = 3.6, |r | =.003383

and x(A) > 934.8. The actual value of x(A) = 1918.5 .

The For-ban 1V prograns LLSQ and DLLSQ (doubl e-precision) in the
Scientific Subroutine Package (SSP) of |BM (1968) solve the |east squares
probl em as described above. The SSP library is available at many |1BM 360

computing centers. The SSP manual gives a wite-up of the procedure and



i ndi cat es hom&} and s, are output. In addition we note that the q
di agonal elenents of R are output as , AUX(gq+l,...,2q) ', with
max'riil = AUX(qg+l) and nﬁnlrii| = AUX(2q) in absolute value. The
remai ni ng nonzero el ements of B are overwitten in corresponding
posi tions of § (input as ' A *). The vector Z s overwitten on M
(input as ' B *) and S, appears in AUX(1) *. The solution z is
output as * X '.

The number of multiplications to obtain~R i s about nq2 -q375
wher eas approxi mately nq2/2 mul tiplications are required to formthe
normal equations (1.3) wth about 'q?/6 mul tiplications needed to solve
them Thus when n-q is small, the nunber of operations is roughly the
sane for both algorithns, but when n-q is large, it requires about twice
as many operations to use the orthogonalization procedure.

The orthogonal triangular deconposition (1.4) or (1.29) is very
sinilar to the GamSchmidt deconposition. Indeed if n = g and there

is no roundoff error and all r are taken positive, then the Househol der

11
and Gram Schm dt algorithns yield precisely the sane transformation

Al though the nodified Gam Schmidt process (cf. e.g., CGolub, 1969) may be
used for solving linear |east squares problems, the conputed vectors may

not be truly orthogonal! The Househol der transformations, however, yield
vectors which are nore nearly orthogonal (WIkinson, 1965). Furthernore,

not only do the first q colums of Pspan the same space as the

col ums of X but the last n-g colums of P span the conplenment of

the space spanned by the colums of X . As we have seen above, this is

quite useful

10



2. Hypot hesis testing and estimati on under constraints

Let us consider the general Iinear hypothesis
(1 y=0

for the linear nmodel of Section 1. The contrast matrix L' is taken as
sxq of full row rank s <q . If we assume that y is nornally
distributed then L'y is N(I:'Z,UEI:'()E')E)-:LL) . With § = (>~cv>~<)‘%~cf3~r .
The numerator of the usual F-test for (2.1) is then well known to be

(2.2) &fL[L'(x'x)'lL]'lL'§ =5,

say, the "hypothesis sum of squares". Substituting (1.16) and (1.17)

into (2.2) gives

(2.3) 8 =zJ'_(R'l) 'L[L'R J(R' 1) 'Ll 1 1

L' R
h -

]
W conpute (R'l)'L = G, say, by solving R'é = L, with R* [ower
triangular. W then obtain an orthogonal triangular deconposition ofG ,

axs (q>s),

[ )

(2.4) G = (R'l)'L =Q ,
~ -~ ~ ~\o

say, where B is upper triangular s xs and the orthogonal matrix Q

~

is the product of s Householder transformations. Then G!'G = B'B ;

partitioning Q :,.(%1’%2) , Where Q Is gx s and Qy 4 X (g-s) gives
G =q,B from (2.4). Substitution in (2.3) yields



whi ch we compute by applying the s Househol der transformations of (2.4)
to a simul taneously with G and then summng the squares of the
first s conponents of the transfornmed Zq

If we test the hypothesis
(2.6) L'y = m,
wher e m is a given ¢x1 vector, not necessarily 0 , then we proceed
by conputi ng L~'§~-rrl: h,’ say, and sum the squares of the conponents of
(]~3_l)’E ; we find the latter by solving E’i-rnz rl: B't , say, for t,
with B* lower triangular.

The described procedure can be inproved upon when s > g-s . W
first obtain an orthogonal triangular deconposition of L,

Y

(2.7) L="T
~ 1o

say, where T is orthogonal and U upper triangular. Partitioning

T =(£,T,), where T is gx s and T, is ax (g-s) leads to
(2.8) L'T, = U ;L'T, = O

Thus L'y = 0if and only if y = T for sone & , now unconstr ai ned.

~

Hence

(2.9) min (y-%7)'(y~X?) = min(y - X2.0)* (v - XI,9)
L'y =0 ~ —~ ~ - o " "~ e

~

Using (1.4) and (1.14), we see that (2.9) reduces to

o _— ,
(2.10) mgn(fl RI,0) ' (2 -RI8) + ziz,

~



so that S, equal s the first termin (2.10) which is easily conputed
as in Section 1 with e replacing y and RT,, replacing X . Since

(cf. e.g., Good (1965), p. 89),

(2.12) qu(g) < “gq_s+1(§) < qu-s(}f?,e) ’
we have
(2.13)  .w(XT ) < wXT) = u(x)

Thus, by elimnating tlie constraints, the linear |east squares problem

may becone better conditioned.

The least squares estimate y* , say, of y subject to L'y =0 is

~ ~ ~ o~

obtained from the solution @ to (2.10) by

it

(2.14) o =T

1 ©»

2

If the constraints have nonnull righthand side mas in (29) then
the procedure is changed as follows. Evidently L'y = mholds if and

. =l _ . .
only if y = ‘329+El(£1 )'111 = T8 +Tw, say. Ve obtain w by solving
m=Uw, wWth U* lower triangular. Thus y is replaced by y-Xr.w

~

and hence z, by 2z;-RL,W the resulting value of Sy is therefore

o e
(2.15)  min(z, -RI W -RI.0)*(z, -RT,w - RT.0)

whi ch we conpute as in Section 1 with z -RT,w replacing y and RT,

replacing X .

13



The rel evant F-test for the hypotheses (2.1) or (2.6) is then

conputed as
e Sh/s
(210 F = sy

with the critical region formed by values of (2.16) exceeding the corres-
ponding tabulated value of F with s and n-q degrees of freedom

In some special, “hough common, situations the above conputations
sinplify considerably.

If we test a single contrast in~y equal to 0 we obtain (2.1)

with s =1 . Let us wite this as

(2.17) 'y =0

A particular case mght be testing a single regression coefficient equal

to 0. Then (R'l)'L = K becones (R'l)

~

'y = k , say, found by solving

£ = R'k as before. Then (2.3) becones

~ o~

~ 2 _
1) (D?/xx =5, .

and we conpute the denominator in (2.18) by sunmmng squares of conmponents

in k . The one-sided t-test for

(2.19) 'y >0

L . L N 2
has critical region large positive values of £'7/ [k' Se/(n-q)]l/ .

Anot her special case occurs with s = g-1 when L'y = 0 if and
only if

(2200 7 = et ,

1k



where 6 is now a scalar. The vector t is often found upon i nspection
(without transforming L ). For exanple in testing for honogeneity of
coefficients of y , we havet = e, the vector with each conponent

~

unity. Substituting t for T, in (2.10) yields

(2.21) 6 = z!Rt/t'R'Rt ,

slkadiad ~ o~ Areond

and

2
(2.22) 8, = ziz, - (f’ffff) / t'R'RE

L T

with the denom nators conputed by summ ng squares of elements of Rt

~e

15



3. Updating procedures

After a particular set of data has been analyzed it is often
pertinent to add to or remove from X and y a row (or set of rows
or to add to or renmove from )5 a colum. This happens when new informa-
tion becones available or when existing experimental units have been
classified as extreme, Or independent variables insignificant.

W begin by considering the addition of data fromm, say, further
experi mental units. Let X and Y be the corresponding data of order

mkg and nx| respectively. Following (1.4) and (1.14) we may wite

X Im
Tn O n o Im
(501) = B El -
0 P? X y
0 %

Appl yi ng q Househol der transfornations of order mtq to the first mq

rows of (3.1) yields

*
Xn Ym R, %

(5 ‘2) = ~l * 3
Rz 0z

say, where R, 'S gxq upper triangular, z, IS gxl and z, IS

mx1l . Hence

R *
A
~1 -0
G2 B o
X Yy
0z
wher e

16



Pr 0 I, ©

| -

(3.4) Py =
0 n-q 0 P!

is an orthogonal matrix formed from 2q Househol der transformations, and

has order mtn . The new residual sum of squares is z’l"z’i + Z2£ :

i.e., the previous sum of squares, zéie , augnented by the sum of squares

of the m conponents of 2. ,these conponents thenselves give m

Zq
addi tional wuncorrelated residuals.

Next, suppose we wish to add a (q+1)-t2 variable whose n values
constitute a vector X W first conpute F}i by applying in turn the
q Househol der transformations determned by the stored vectors u

(cf. residual calculations in Section 1). W need then only one further

Househol der transformation, H, say, of order n-q to annihilate the

~

last n-g-1 elements in P'x, i.e.,
3 ) T
Lo O R P R P
(3.5) P'(X,x) = | - ,
14
°o H o HEX 0 hey
wher e P = (Ll,; ) , as in 8§, and h = x'P .P2'x2-. the sum of squares of

the last n-q conponents of I:"~

The procedure for renoving an experinental unit is nmore conplicated.
The nmethod given previously by Golub and Saunders (1970), may under
certain circunstances prove unstable. W now give a new method which

shoul d provide a nore accurate solution.

7



Suppose we want to renove xi , the i-th row of X . W seek an

upper triangular matrix S, say, so that

(3.6) X*X—x.x?lz R —x.lx’?l =SS =R I-tt")R ,

~dla ~ ~ ~ ~

say, where Rt = X ; the vector t is easily conputed since R'is

| ower triangular. W now construct an orthogonal matrix Q so that

= ce. ; 2 _ pt o=t (RR) " = etx(X'X) "Iyt i
QX =ce sthus c” =t't = Xi(E E) X; = eiX(X x) e, < 1 . Ve define

~ ~ ~ e~ o~ ~ o~

t he quasi-di agonal natrices of order gxq :

* 7
Tx-1
(5'7) %k - ?k > k = l?"',q._l ’
Eq-k-l
wher e
cos @k. Sin Qk
(5-8) ® ; k = l, ooc,q-l

-Sin Gk’ CcosS Qk

Clearly Z, and @k are orthogonal . Let

(5'9) (,Ijz ,E!) = %q_-l (RJ _l’-&_l) , l - l’ooo’q_"l

w th tO:tandR

= R. W choose 6, so that Z anni hi | ates
0 - k —~q-

L

t and hence e! O; £=1,.0e5q-1 . Then the matrix

o
Sq-1+152-1 eq-1+150 =

(3.10) Q= ZyZoeeeBy g

satisfies Qt = ce, and is orthogonal. From(3.6) we may wite

~1
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2

(511) S5 =RUI-cTee)ar

which is positive definite if and only if c2> 1. It follows that
-wll ) Win s eee Wl,q—l » wlq
Wop 2 Wop o % Yo gq.1 0 Vg

(3.12) QR =W =| 0, Wgs , | V5 g-1 2 i

Y9,0-1 7 Yqq
is an upper Hessenberg matrix. Thus (3.11) becones S!S = WIDTW | with

(l_CE)l/E o

(3.13)

g
]
-

9 Eq-l

which is real when c? <1 . W conpute S by applying orthogonal

transformations to the upper Hessenberg matrix DW . Let

(3.14) S =2 8 45 k=1L. . wal,

with Sy = DW and Z, formed as 2z, in (3.7) but with o, repl aci ng
*

- Ths t = t
ek and so chosen that gk annihilates Sk+1,s.kf.k fk+12‘ff,k and t hus
t —
Sj+1 5k & = 0 - Then
* * * ¥
(3.15) s = £q.1 = Z%g1 Zq0 =+ B2 % 2N

This procedure requires about 94°/2 multi plications and 2g-1 square

roots.
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The above al gorithmcan al so be used for adding an observation but
about twice as many nunerical operations are required as in the procedure
given by (3.3) and (3.4). W also note that the problem of deleting an

observation is nunerically delicate. Since
(3.16) S'S =RYI-tt")R,

it follows that

(5-17) K(E) < X(B)/ (l-E'E)l/E

Thus if t*tis close to 1, then ”(Sl could be quite large as the
right-hand side of (3.17) is attainable.

Finally suppose we wish to renove an independent variable or
colum of x . If it is the last then no further calculations are

required; but suppose it is the first. Let

11 T2 T1q
0] r r
o2 ... To -
(3.18)  R={ | | = (e o B
0 r
aq

wher e ﬁ~is ax (g-1) and has one nmore row than an upper Hessenberg
matrix. W annihilate the elenents just below the nmain diagonal of 1'1,
1.€4, reg,. ”MBDDD; by appl yi ng orthogonal transformations of the type
(3.7) with

(5‘19) Bk = Zk R-k_l ; k = l,."’q-l ]

20



= R i T et
and 50 R e choose o, in Z_ so t hat SMlBk—lS’:{ Tit1, kb1

is annihilated; thus R, e = 0 and Rq_l is the new triangul ar

L 4
Ck+lok ok
matrix sought.
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PART Two: UNIVARIATE LI NEAR MODEL W TH LESS

THAN FULL RANK

4, Least squares estinmation and error sum of squares

W consider now the univariate general linear nodel (1.1),

(21) B =%y, V(y) =0T,

with the design matrix X of rank r < g <n . W obtain the same nornal

equations as (1.3),
(4.2) X'Xy = X'

which are consistent; their solution, however, may not be unique. Consider

a solution to (4.2) which we may wite
(k3) 7= ®RXY,

where (.)” denotes generalized inverse. W follow Pringle and Rayner (1971)

and define a generalized inverse of a matrix /-h] mxn , as any matrix A

satisfying

(4.4) AA-A = A .

Evidently A~ has order nxm . Such a generalized inverse exists but is

not unique in general; if, however, A~ satisfies (4.4) and

(k.5) A- AA-

~ ~

I
»

(5.6)  (aA)r=an

(.7) (a8)' = AA,
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then we wite A = A , the pseudo-inverse of A . When we only require

~

that (4.4) is satisfied we will wite A = gl(é) -- a g-inverse of A:
Sinilarly when (4.4) and (k4.5) are satisfied, A" = gl’a(@ ; (L), (L.5),
and (4.6): i\_ = glea(é) . The pseudo-inverse 1~x+ = g125h(£‘) . The
sol ution 20 , say, to (4.3) which nininizes Z'i equal s ){3: as is
shown, for exanple, by Peters and WIKkinson (1970). CQur concern, however,

focuses nore on estimable functions of y , rather than y per_se so we

~ ~

will not discuss here conputation of ;o . W& define an estinmable function

of Y as a vect or L~'7~vvhi ch adm ts an unbi ased estimtor of the form
K'g , Wwhere L'Nis s xq, say, and Ig' ., sxn . The least squares

estimate is then~L~'; = L'~(X~'X)~'X~'y so that Kt = 5'()5')5)')5' . W shal |

see (Section 5) that V\,hen~L'~y is estimable, E.'(}f'f)')f' is unique for

al | (>§*>~<)‘ = gl(f'f) . Rather than form XX, find a gl()}")f) and then

postmultiply it by X*, we conpute a g125(§) directly, noting that G

is a gl(é) if and only if it can be witten as (é'ix)'i\' for some

gl({,\'é) = (JNWN&)' [Pringle and Rayner (1971), p. 26].

W proceed as in Section 1 to orthogonally transf orm X by Househol der

transformations with colum interchanges. If X has rank r then after r

Househol der transformations we obtain, cf. (1.29),

1
7o)
1.2

(4.8)

1 X<
i
t g

' H P*XM=(" )
~ T 0

1O
1O 1
1O

where R is upper triangular, rxr, Sis rx (g-r) , and m is a
pernutation matrix of order gqxgq . W now claimthat

R-l

1O

(h9) X =m v e

o

1O
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I 0 % R S

W have XX* =P| ~ ~ |P',clearly symetric. Hence XX =P| ~ ~|m
. x gL o .

while XXX =1}~ ~ e =X so that (k.9) is proved. The solution
-~ ~\ o ~ ~

e

}= Xyto (4.2) afforded by (4.9) is often called a basic solution as it

contains at nost Q-r nonzero elements.
Thus (4.9) accomodates our purposes; noreover we do not have a

stronger g-inverse than is needed. As in Section 1 we partition

P =(P),Py) , but now let P, be nx r and B, Nnx(n-r) . From (4.8)

2
it follows, cf. (1.13), that

(4.10) PIXT = (R, S)

(L.11) PLX = O

Following (1.14) we now wite
P!y

()'l’-lg) Pty~ . = =
Ply

~C~

I

1N 1N
|
1N
-

wher e zy is now rx1 and Z, (n-r) xI . Thus z

of wuncorrelated residuals; noreover

5 I's again a vector

(4:33) BB XK = I

as in (1.15), with P, P} i denpotent rank n-r and X(X*X)-X* symmetric

- idempotent rank r . By (4.11) their cross-product is O and so their

sumis idenpotent rank (n-r)+r = n and hence I as claimed. Thus

2L

it

1P



(L.1k) z} 2 =y*(I —X(X'X)-X'):)Nr

~ e~ o~ o~

is the residual sum of squares, conputed as the sum of squares of the

n-r components in Z -

The vector of (correlated) residuals * = ¥-X7 = (}-§(§'§)_}E')Z =P, Py

as in Section 1, and using (%.13) it follows that (4.14) equals r'r .
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5. Estimating estimble functions and testing testable hypotheses

As mentioned in Section 4 we are not directly concerned with the

W define L'y

~ o~

of Y whenever it admts an unbiased estimator which is linear iny ,

estimtion per se of y . to be an estimable function

K'y , say. Thus

(5.1) L'y = E(K'y) = K"X »
helds for all oy o Heuve
(5.2) L' = K'X .

Acin Section > we take L' to be s xq , but nowrelax the assunption of

full rowrank taking r(L) =t <r . W obtain
L?
{(5.%) v ~ = (),

directly from (5.2). Substituting (L4.8) into (5.3) gives

[ o] L1y L5
(b .h) rf -7 T = (R = r(X) =r,
R,5 R, O - ~
ol ~ oy
~\ 0,0

where we partition
(5.5) L'm = (T:i,jé) s

The matrix L' is the contrast

~ o~

with L! s x (g-1) .

matrix L' with its columns pernuted according to the interchanges which

sxr , and Lé
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rearrange the colums of X to make the first r colums linearly
i ndependent.  Then Ly arethe corresponding r colums of L' or L'T.
We apply V > r louseholder transfornations of order str, whose

product is v*, say, so that

L', L!

) 1’22 T U
(5.6) V' o=
“\ R, S [~ 0 0
wher e m is a permutation matrix, and T is upper triangular vxv .

If (5.0) is achieved at the r-th stage, i.e., v=r, then&w S
estimable. If not, then L'y is not estimble.
An alternative procedure which is often easy to verify theoretically

follows and is included for conpleteness.

THEOREM 5.1. The function L'y is estimble if and only if

(5.7) LY(X'X) X'X = L'
for any (xX'x)° = gl(X'X) .

Pr oof . W show that (5.2) and (5.7) are equivalent. Cearly (5.7)
inplies 5.2); conversely

(5.8) LY(X'X) X'X = K'X(X'X) X'Xx = KX =1L,

~ o o~ e~ ~ o~

since X(X*X) -X*X = X [cf. Pringle and Rayner (1971), p. 26].
QED.
W may use (5.7) to conputationally verify estimability as foll ows.

Substituting (4.8) and (4.9) into (5.7), with X* = (X'X)X* gives

~ o~
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(5.9) Ll v~ 7 = L

Substituting (5.5) into (5.9) yields

(52 MRS -1

To verify (5.10), therefore, we solve RW= S for W, say, which equals

R'ls, with R upper triangular. W then exam ne L'Lw—Lé and if close

enough to 0 concl ude L'y estimabl e.

For the renmainder of this section we wll assume L!y estinable.

~ o~

From (4.3),

~ - *
(5.11) L'y = L'(X'X) X'y = L'X y ,

~ o~

where X = (X*X)-X = g123(X) , cf. (4.9). Thus
. R o 1
(5.12) L'y =L'W|~ ~ [Py =LIR "z, ,

using (4.12) and (5.5). W conpute L'; , therefore, by solving i{y !
for W, say, whi ch equal s B-lfl , With R~ upper triangular. W then
premul tiply by H whi ch contains the r colums of E' correspondi ng

to the r linearly independent colums of X which vyielded R~ W note
t hat IL';~i s uni quely determ ned by (5.11) for any (Xj)g)— = gl(§'§) .

To see this, set L' = K'X from (5.2),sot hat L:(X:X)‘XN' = 13')3()5")9')_(»' =

K'X(X'X)+X’ = L'(X'X)+X' , since X(X*X)-X* is unique [cf. Pringle and

~ o~ A e ~ o~ e

Rayner (1971), p. 25].
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Ve define the general |inear hypothesis
(5.13) L'y =0

as testable whenever L'y is estimable. The nunerator of the usual F-test

~ o~

for testable (5.13) is then, cf. (2.2),
(5.1 PLLOGHTILT = 8y

To see that (5.14) is invariant over choices of (X*X)- , notice that
L'(X'X) L = K'X(X'X) X'K = K'X(X'X)+X'K = L'(X'X)+L from (5.2). Mreover,
(5.14) is also-invariant over choices of [L'(X'X) L] ; witing

X = (x*x) X' we find that (5.14) may be witten

(5.15) ' (X)LLX (K)TILXy =5,

using (5.7) and (5.11). Sh is uniquely defined since for any A,
A(A*A)"A* is unique [cf. Pringle and Rayner (1971), p. 25].

~ o~ o~

To conpute S, we see from (4.9) and (5.11) that (5.15) maybe witten

1 1, -1 -
(5.16) 8y =2{® )'LLIR (R ) L] LiR Tz

W obtain an orthogonal triangular deconposition of

(517 &= (&', = Q T

§
13
10
1O 1Q

say, where B is upper triangular t xt, with t=r(L) = r(Ll) by (5.10).
The orthogonal matrix Q is the product of t Househol der transformations,

while the permutation matrix T, rearranges t he col ums of Ly TX8,
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to make the first t linearly independent. Substituting (5.17) into

(5.16) yields

*

(5180 8 =208 27,
* . .
where G = g123(§) is given by
. 7t o
(5.19) G =1,{~ ~}Qf
- P

We partition Q = (9:1’(%2) , Wwhere Q; is rxt and Q, rx (r-t) .

[1f t=r, Q = Q.] Then (5.18) reduces to

— 13 t
(5.20) Sy = 21997

as at (2.5). W conmpute (5.20) by applying the t Househol der transfor-

mations of Q in (5.17) to z, sinultaneously with G and then suming

1
the squares of the first +t conponents of the transforned =z

If we test the hypothesis

(5.21) L'y = m

and L' is s xgwithrowrank t < s then mnust satisfy the sane
s-t restrictions that apply to the rows of L', i.e., (5.21) nust be
consistent. Then the nunerator sum of squares is uniquely given by
(5.22)  (3'L-m")[L'(X'X)LI(LT -m) =8, ;

following (5.15) and (5.16) we see that

(5.23) L'(X*X) L = LiR'l(R"l)'Ll = GG
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for which we want a gl-inverse. W use
LEMMA 5.1. |f A" = g125(A) , then

(5.2%) AN = g (ath)

Proof. From (k.4), (4.5) and (4.6) we have

(5.25) ARFA = A AAAT = A AN S (A")ar

~ ~ ~ ~ ~ o~~~

*, % * ¥
Hence A (A )'A'A = A*AA*A = A*A Thus A'A[A (A )'A'A] = A AA*A = A'A

~ N~ o~ -~ ~ o~ e~ ~ o~ o~

and [4"(A7) ATRIA ()" = &7 Ay (8)" = &)

~

QED.

From Lemma 5 .1 we obtain
(5.26) G (6)" = [L'(x'X)"L]"
- l’zﬁ-l( B-l) Moy

from (5.19), where we partition My = (T,,rzl’ﬂee) , With Ty sxt,

identifying t |linearly independent colums of L rx..Hence

l )

~ -l —l ~
(5.27) 8y = ('L -mTyB "(B M3 (L'7 -m)

First Nﬁf -m is conmputed and rearranged to form ﬁél(L'? -m) = h , say.

~ e ~ ~

Then h = B'k is solved for k , where B*is lower triangular. Finally

~ o~ ~

S, is found as the sum of squares of the conponents in

-1. -1 ~
ko= (B = (37 my (L - m

The relevant F-test for the hypot heses (5.13) or (5.21) is then

conputed as
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S/t
(5.28) F= _367(:0—-1:7 ’
cf. (2.19, with the critical region forned by values of (5.28) exceeding
the corresponding tabul ated value of F with t and n-r degrees of
freedom
The above procedures sinplify slightly when the contrast matrix L',
sxq , has full rank s <r :r(Xz . In that case (5.23) becones non-

singular and the results of Lemma 5.1 are not needed. W use

LEMMA 5.2. Wen, L'y is estinable,

(5.29) r[L*'(X*'X) L] = r(L) ,

where r(-) denotes rank.

Pr oof . Using (5.7), rg}) = rilngx:x):xlx] < r[LP(X'X) X'] =

rlLt (X0 X x{(xX%) "}'n] = L (X'X) L] < (1)

QED
When L*, s xaq, has full rowrank s <r the deconposition (5.17)
becones
B
(5:30) ¢ =l ~ Ity
0
say, Wwhere Moy is now sx s and nay equal IS (no colum interchanges).

Formula (5.27) applies with essentially no change.

W defer discussion of updating techniques for the less than full rank
case and extensions to multivariate nodels to a further paper. A conputer
programin Fortran |V for the I1BM 360 is being devel oped for the procedures

di scussed in this paper.
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