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A LOWER BOUND FOR SORTING NETWORKS

THAT USE THE DIVIDE-SORT-MERGE STRATEGY

bY

David C. Van Voorhis

ABSTRACT

Let Mgk
k+l

> represent the minimum number of comparators

required by a network that merges g sorted multisets containing

gk members each. In this paper we prove that M,bzk+l) 2

g M,(gk) + g k-1 q 2 l(h)g/tI .= From this relation we are

able to show that an N-sorter network which uses the g-way divide-

sort-merge strategy must contain at least order N( log2N) 2

comparators.
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A network with N inputs and N outputs is called an N-sorter

network, or simply an N-sorter, if for any multiset
*

of inputs

I = E il' 5’ ..*, iN) it produces as output the multiset 0 = (o
l'O2'

l **,o& where: 1) 0 is a permutation of I; and 2) o I; o
3 k

if j < k. R. C. Bose and R. J. Nelson [ 2 ] have suggested con-

structing sorting networks using ranks of a basic comparator cell,

which is essentially a 2-sorter. For example, Fig. 1 depicts a

b-sorter network that uses 2 comparators labeled A,B,C,D,E. (Note

that comparators A-D move the smallest input to o1 and the largest

input to
O4’

and then comparator E orders the remaining two

L

inputs.)

From an engineering viewpoint it may be desirable to use as few

comparators as possible when constructing an N-sorter, (An alternate

design objective would be to minimize the delay required to sort N

items.) Let S(N) represent the minimum number of comparators re-

quired by a network that sorts N inputs. R. W. Floyd and D. E. Knuth

[ 3 ] have determined, S(N) for N 5 8 by proving a lower bound for

S(N) that is precisely equal to the number of comparators actually

contained in the most economical N-sorter known. However, for N > 8,

the value of SW and even the asymptotic behavior of the function

remain an open question. The strongest lower bound known for S(N)

increases as N( l%,N) 7 whereas the strongest upper bound known --

i.e. the number of comparators actually required by the most economi-

cal N-sorter yet constructed -- increases as N(log2N)2. (See

D. Van Voorhis [ 11 , f, ] .)

-
* A multiset is like a set except that it may contain repetitions of

elements. See D. E. Knuth [ 1 ] .
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Fig. 1. 4-sorter network.
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Fig. 2. 14-sorter that uses the 4-way

divide-sort-merge strategy.
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For N > 34 the most economical N-sorter networks yet constructed

use the g-way divide-sort-merge strategy. That is, they consist of:

i) g sorting networks of size Nl'N*' Ng. . . . where

Ni = ~(N+eWg J 7 that also use the g-way divide-

.. sort-merge strategy; followed by

ii) a network that combines the outputs of the Nl" N2-9

. . ..Ng-sorter networks into a single sorted sequence.
.

This network is called a g-way merge network.

'The g-way divide-sort-merge strategy is illustrated in Fig. 2 for the

case N=l4, g=4. In this paper we show that an N-sorter network

which uses the g-way strategy, g 2 2, must contain at least order

N(lw2N)2 comparators.

Let Sg(N) represent the minimum number of comparators required

by an N-sorter network that uses the g-way strategy. Then Sg(N)

satisfies the recurrence relation

sgw , = c
lr;i<g

Sg(Ni) + Mg(N), ( >1

where N - 1 (N+g-i)/g .Ji-
and Mg(N) is the minimum number of com-

parators required by a network that merges g sorted multisets of size

N&’ Ng.. . . , In order to determine the asymptotic growth of Sg(N)

k
we may restrict out attention to the values N = g . From (1) we obtain

k+l
sgk 1 = g sgkk) + Mg(gk+lL (2)

Theorem 1 below provides a lower bound for Mg(gk), which in turn allows

- us to bound It is convenient to use one lemma.
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Lemma 1: Mg(rd 2 r Mg(g) + 2& t (~-1)&J.
r

(3)

Proof:

Consider the network T that contains Mg(rg) comparators and

that will merge g sorted multisets containing r members each. Let

the inputs to T, namely X = [x pX2’.**‘Xrg 9J be numbered so that

the g sorted multisets of inputs are

(4)

Note that if we consider X to be an rxg array, with
'(i,j> =

x(i-l)g+jJ
then the g columns of X are ordered. Fig. 3 illustrates

X for the case r = 3, g = 5.

The comparators in T may be divided into two distinct classes as

follows. A comparator is said to be in class A if it compares two ele-

ments in the same row of X and in class B if it compares elements in

different rows. We shall prove that the two terms in the right-hand-

side of (3) are lower bounds, respectively, for the number of class A

and class B comparators in T.

Since T is a g-way merge network, it must complete the ordering

of any rxg array X that has sorted columns. In particular, it

must order X when

i

0, i d;

x(i,j)  = 1,2,..., or g, i = 4; (5)

( g+l, i > 8,



6

xl *2 x3 x4 x5

x6 X7 X8 x9 xlo

xll “iz 49 xl4 x1S

m3. 3. Inputs to T,

Fig. 4.
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where  4 E [l,r]. That is, it must complete the ordering of X when

the first &l rows of X each contain r O's, the last r-$ rows

each contain r (g+l) ' s, and the ath row contains values in Pd
(This situation is illustrated in Fig. 4(a) for the case r = 3, g = 5,

k = 2.) Since (5) may be satisfied when the tth row of X contains

any permutation of the numbers 1,2,...,g, T must contain at least

Mg(g) comparators that sort the
th

4 row. And since no class B com-

parator that compares an element in the $th row to an element in

another row will cause an interchange, these Mgk) comparators must

all be class A. Letting & vary from 1 to r we verify that T

must contain at least r M (g) class A comparators,
g

Mg(g) for each row.

Now suppose that the inputs to T are given by

0, i 5 &, j 5 L(h)gAJ;

1 9 otherwise,
(6)

where & E [2,r]. That is, suppose that the first 4 rows of X

each contain L cw&j O’S and that the remaining elements of X

are 1. Since X contains only 8 I(&-l)g&J 5 (&l)g O's, all

of the O's in X belong in the first &l rows. And since no com-

parator will move a 0 from the
th
& row to a higher indexed row, T

must contain at least L bwg/&j class B comparators that connect an

- element in the
th

4 row to an element in a lower indexed row. Letting

x4 very from 2 to r we conclude that the second term in the right-

hand-side of (3) provides a lower bound for the number of class B

comparators in T.

Q.E.D.
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The second term in theright-hand-side of (3) is a function of the

two variables r and g, namely

u(r,g> =
2sL L(-elhm*r

With this definition we are now ready to prove Theorem 1.

*
Theorem 1: Mg(rg2) 2 g Mg(rg) + r O(g,g>~

(7)

(8)

Proof:

Consider the merge network 5! that

and that will merge g sorted multisets

0

contains comparators

containing rg members each.

Let the rgL inputs X = [xl,x2,...,x rg2l
to 4 be numbered so

that the g sorted multisets of inputs are

c =
3 u Ix(i-l)g+jj'

lSj<g.
1riSrg

If we consider X to be an rg x g array, with
x(i,j> = x(i-l)g+jJ

then the g columns '(*, j )  = ‘j
are each ordered.

It is convenient .to partition the rg rows of X, given by

'(i,*) = $$, cx(i,j)l'
lsirrg, ( 0)1

* Theorem 1 is a generalization of the following theorem proved by
R. W. Floyd [ 3 ]: M2(h) 2 2M2(2n) + n.
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into g partitions containing r rows each. We define these partitions

according to

P = v
x(i,*Y

lSPg, (11)
CL (p-l)r<i+r

..

so that Pl consists of the first r rows, . . . , and P contains
g

the last r rows of X. These partitions are illustrated in Fig. 5

forthecase r=j, g=5.
.

The comparators in 4 may be divided into two classes, according

to whether the two elements compared are in the same partition or in

different partitions. Now each partition, which contains r rows of

* x, may be considered to be an rx g array with ordered columns.

Therefore, 4 must contain at least Mg(rg) comparators within each

of the g partitions, which explains the first term in the right-hand-

side of (8). The second term in the right-hand-side of (8) is a bound

for the number of comparators that join elements in different partitions;

the derivation of the term follows the proof of Lemma 1.

Q.E.D.

k-l
We may use Theorem 1, with r = g , to obtain the recurrence

relation

k+l k+l
Mgk ) r g Mp(pk) + ag g ., ( 2)1

where
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a =
g

ohd/g2.

With the boundary condition

sgw = rll

Equations (12) and (2) lead to

(13)

( 4)1

.

( 5)1Mg(gkfl)  2 [agk + (7)/d]  fick+l,

(16)

From (16) we observe that SO(N) is bounded by L(N), where

J-J(N) - 3a,N(lC%gN)2

. (7)1 .

From (7) and (13) we can easily verify that ag > 0, g 2 2. There-

fore, the minimum number of comparators required by an N-sorter network

that uses the g-way divide-sort-merge strategy grows asymptotically as

N(log2N)2.
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