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A LOAER BOUND FOR SORTI NG NETWORKS

THAT USE THE DI VI DE- SORT- MERGE STRATEGY
by

David C. Van Voorhis

ABSTRACT

+ ..
Let Mg(gk I) represent the ninimum nunber of conparators

required by a network that nerges g sorted nultisets containing

. k+1
gk menbers each. In this paper we prove that Mg(g )

2
k k-1 _g . .
gM (g) + 0 "I, L(t-1)e/2] Fromthis relation we are
« - ) .
able to show that an N-sorter network which usesthe g-way divide-
. 2
sort-nerge strategy nmust contain at |east order N(logzN)

conpar at or s.



A network with N inputs and N outputs is called an N-sorter
network, or simply an N-sorter, if for any multiset* of inputs
| = {11,12,...,1N} it produces as output the multiset 0 = {01,02,
| MH@D@ where: 1) O is a pernutation of I; and 2) oj <0,
if j < k. R C Bose and R J. Nelson [ 2 ] have suggested con-
structing sorting networks using ranks of a basic conparator cell
which is essentially a 2-sorter, For exanple, Fig. 1 depicts a
b-sorter network that uses 5 conparators labeled A B CD,E (Note
that conparators A-D nove the smallest input to o, and the |argest

1

input to o and then conparator E orders the renaining two

L
i nputs.)

From an engineering viewpoint it may be desirable to use as few
conparators as possible when constructing an N-sorter, (An alternate
desi gn objective would be to mininmze the delay required to sort N
itenms.) Let S(N) represent the mnimum nunber of conparators re-
quired by a network that sorts N inputs. R W. Floyd and D. E. Knuth
[ 3 ] have determined, S(N) for N < 8 by proving a | ower bound for
S(N) that is precisely equal to the number of conparators actually
contained in the nost econonical N-sorter known. However, for N > 8,
the value of S(N) and even the asynptotic behavior of the function
remain an open question. The strongest |ower bound known for S(N)

i ncreases as N(logeN), wher eas the strongest upper bound known --
i .e. the nunber of conparators actually required by the npbst econom -

. 2
cal N-sorter yet constructed -- increases as N(logeN) . (See

D. Van Voorhis [ 4, 571.)

* A multiset is |like a set except that it nmay contain repetitions of
elements. See D. E. Knuth [ 1 ].
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For N > 34 the npst economical N-sorter networks yet constructed

use the g-way divide-sort-nmerge strategy. That is, they consist of:

i) g sorting networks of size Nl’Nz""'Ng wher e

Ni = |(N+g-i)/g |, that also use the g-way divide-
sort-merge strategy; followed by

ii) a network that conbines the outputs of the Ny~ No-,

.,N -sorter networks into a single sorted sequence.
g

This network is called a g-way nmerge network.

"The g-way divide-sort-merge strategy is illustrated in Fig. 2 for the

case N =14, g = k. In this paper we show that an N-sorter network

whi ch uses the g-way strategy, g =2, nust contain at |east order
N(logzN)2 conpar at or s.

Let Sg(N) represent the minimum nunber of conparators required
by an N-sorter network that uses the g-way strategy. Then Sg(N)

satisfies the recurrence rel ation

00, = TS0 4w, (1)

wher e N, = | (N+g-i)/g | and Mg(N) is the mni mum nunber of com-

parators required by a network that nerges g sorted multisets of size

NN, ,Ng. In order to deternmine the asynptotic growth of sg(N)
. . k .
we may restrict out attention to the values N = g . From (1) we obtain
K+l k k+1
S = S M . 2
L& ) e S,(g) + Mg ) (2)

Theorem 1 bel ow provides a | ower bound for Mg(gk), which in turn allows

us to bound sg(gk). It is convenient to use one |emm.



Lemma 1: M > M
[(r8) = r M (g) +

X 2-1)e/L .
et L (2-1)e/L | (3)

Proof :

Consi der the network T that contains Mg(rg) conparators and
that will merge g sorted nmultisets containing r nenmbers each. Let
the inputs to T, nanely X = {xl,xz,...,xrg}, be nunbered so that

the g sorted nmultisets of inputs are

c, = U ({x/, 3, 1sj<g. ()
J 1<i<r (1 1)g+,]
Note that if we consider X to be an ryxg array, wth x(i j) =
)
x(i-l)g+j’ then the g colums of X are ordered. Fig. 3 illustrates
X for the case r =3,g=5.

The conparators in T may be divided into two distinct classes as
follows. A conparator is said to be in class Aif it conpares two ele-
ments in the sanme rowof X and in class Bif it conpares elements in
different rows. W shall prove that the two terms in the right-hand-

side of (3) are lower bounds, respectively, for the number of class A

and class B conparators in T

Since T is a g-way nerge network, it nust conplete the ordering
of any rxeg array X that has sorted col ums. In particular, it

nmust order X when

0, 1 <4
x(i,j) = 1,2,..., or g, I = ’&; (5)

g+l, i > 'f/,
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where £ € [1,r]. That is, it must conplete the ordering of X when
the first £-1 rows of X each contain r Os, the last r~f rows
each contain r (g+tl)'s, and the &th row contains values in [1,g].
(This situation is illustrated in Fig. 4(a) for the case r =3,g=5,
k = 2.) Since (5) may be satisfied when the »Eth row of X contains
any pernutation of the nunbers 1,2,...,g, T nust contain at |east
Mg(g) conparators that sort the )?,th row. And since no class B com
parator that conpares an element in the zﬁth rowto an elenent in
another row will cause an interchange, these Mg(g) conmparators must
all be class A Letting £ vary from 1 to r we verify that T
must contain at least r Mg(g) class A conparators, Mg(g) for each row

Now suppose that the inputs to T are given by

0, 1 <4,3=<(A1)ed);
X(1,5) = (6)

1, ot herw se,

where £ € [2,r]. That is, suppose that the first £ rows of X
each contain | (4-1)g/d] 0's and that the renamining elenents of X
are 1. Since X contains only £ [(£-1)e/d] <({-1)g 0's, all
of the Os in X belong in the first £-1 rows. And since no com-
parator will nmove a 0 fromthe «Eth row to a higher indexed row, T
must contain at |east L(»E—l)g/«?,j class B conparators that connect an

- elenment in the {’,th row to an elenent in a lower indexed row Letting

£ very from2 to r we conclude that the second termin the right-
hand-si de of (3) provides a |ower bound for the nunmber of class B

conparators in T.

QED.



The second term in theright-hand-side of (3) is a function of the

two variables r and g, nanely

LE~1)e/L].
oy e &

U(r,g)

Wth this definition we are now ready to prove Theorem 1.
* 2
Theorem 1: Mg(rg) > g Mg(rg) + r o(g,g). (8)

Pr oof :
: é . 2
Consi der the merge network that contains Mg(rg ) conparators
and that will nerge g sorted nultisets containing rg nembers each.
N
(=S .
Let the rg inputs X = {xl’x2"°"xrg2} to  be numbered so

that the g sorted multisets of inputs are

C. = k_) {x(i—l)g+j}’ 1<j<g. (9)

J 1<i<rg
i i X/o o\ = X, .
If we consider X to be an rg x g array, wth (1,3) (i-1)g+3’

then the g columms X . =C, are each ordered.
(¥,0) J

It is convenient .to partition the rg rows of X, given by

=U{x

X
(i)*) 1Sj$g

(i,j)}’ lsisrg} (lO)

* Theorem 1 is a generalization of the followi ng theorem proved by
R W Floyd [3 ]: Mz(hn) > 2M2(2n) + n,



into g partitions containing r rows each. W define these partitions

according to

P = U X(i *)’ 15“-58; (11)
H (p,—l)r<i$p.r ’
so that Pl consists of the first r rows, . . . , and Pg cont ai ns
the last r rows of X These partitions are illustrated in Fig. 5

forthecase r =3, g =5.

The conparators in ) may be divided into two classes, according
to whether the two elenments conpared are in the sane partition or in
different partitions. Now each partition, which contains r rows of
* X, my be considered to be an r x g array with ordered colums.

Therefore, Q nust contain at least M (rg) conparators within each

a
of the g partitions, which explains the first termin the right-hand-
side of (8). The second termin the right-hand-side of (8)is a bound

for the nunber of conparators that join elements in different partitions;

the derivation of the termfollows the proof of Lenmm 1.

QED
k-1 :
W may use Theorem1, with [ =g . 1o obtain the recurrence
relation
wEe) 2 g m(e) + a e, (12)
g g 4

wher e
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a_ = olge)e’ (13)
Wth the boundary condition
M () = s.(e) = T, (14)
Equations (12) and (2) lead to
k+1 k+1 '
M (7)) = [ak+ (We)le ) (15)
k 2 k
s, = [k 4 (Ve) - )] 6" (16)
From (16) we observe that Sé(N) is bounded by L(N), where
L(N) ~ %a N(log N)2
g g
- 3a_(log,) " N(10gN) (17)
= 2g 2 2 . '
From (7) and (13) we can easily verify that a, > O, g=22  There-
fore, the mninum nunber of conparators required by an N-sorter network

that uses the g-way divide-sort-merge strategy grows asynptotically as

N(logeN)z.
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