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LARGE [g,d] SORTI NG NETWORKS
by

David C. Van Voorhis

ABSTRACT

Wth only a few exceptions the mninumconparator N-sorter networks
enploy the generalized "divide-sort-nerge" strategy. That is, the N
inputs are divided anobng g = 2 smaller sorting networks -- of size
N ,Nps.eosN, where N = T N __ that comprise the initial portion of
the N-sorter network. The remainder of the N-sorter is a conparator
network that nerges the outputs of the N-, Ny oo and Ny - sorter
networks into a single sorted sequence. The nost economical nerge
networks yet designed, known as the "[g,d]" merge networks, consist of d
smal ler merge networks -- where d is a common divisor of Np»Ns, .. .,Ng .
followed by a special conparator network |abeled a "[g,d] f-network."

In this paper we describe special constructions for [er,er] f-networks,
r > 1, which enable us to reduce the nunber of conparators required by a

- 2
large N-sorter network from .25N (log,N) - .25N(1log_N) + Q(N) to

.25N(log2N)2 - .37N(log2N) + O(N).
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| ntroduction

A conparator network with 4 inputs is illustrated in Frig. |(a).

Each of the 5 conparators, labeled A, B, C, D, and E, conpares its
two inputs and enmits the snmaller on its higher output lead and the |arger
on its lower output lead. An abbreviated diagram for this conparator Let-
work is given in Fig. I(b), where each comparator is replaced by a vertical
line connecting the two conparands.

A conparator network with N input and output leads is called an

N-sorter network, or sinply an N-sorter, if for any set of inputs | =

{11,12,...,1N}, the resulting outputs 0 = {01’02""’°N} satisfy:

1) 0 is a pernutation of |; and 2) oj < o if j < k. The net -
work depicted in Fig. 1 is a b-sorter, since conparators A through D
move the smallest input to 01 and the largest input to 0),s and then
conparator E orders the remaining two inputs.

The nost econonical general strategy known for constructing N-sorter

networks, the [g,d] strategy, is introduced in [ 2 J. Although it rep-

resents an extension of the earlier paper, the present paper is self-
contained. The earlier paper describes the [g,d] strategy for arbitrary
g,d, and gives specific results for Nsorter networks with N <36. The
present paper describes the especially efficient networks that have been

di scovered for the case g =d = ¥,

* Since we wish to allow for the possibility that two or nore inputs
have the sane value, we probably should refer to | and 0 as
"multisets,” rather than as "sets." And we should then refer to
particular nenbers of | as a "submultiset" of |, rather than as
a "subset." (See D. E Knuth [ 1 ].) However, we prefer to use the
nore fanmiliar terms “"set" and "subset," and will do so consistently,
even when all menbers of | are required to have one of the val ues

O or 1.
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b-sorter network.



1I. [g,d] Sorting Networks

One way to determne whether a conparator network with N inputs
and N outputs is an N-sorter network is to verify that it will sort
all N! pernutations of the nunbers 1, 2, . . ..Nas inputs. However,

N

the follow ng theorem reduces to 2  the number of input patterns

required to test a conparator network.

Theorem 1:  (Zero-One Principle)
A conparator network with N inputs and N outputs is an N-
sorter network if and only if it will sort all oN  conbinations of

N i nputs where each input is either 0 or 1.
Proof: See references 2,3, andlk,

Al t hough N grows nuch nore slowy than NI, it is not feasible
to test large networks for 2N different conbinations of inputs.
Therefore, if we desire large sorting networks, we must build them
in such a way that we can guarantee "by construction” that they wll
sort all conbinations of inputs. The most economical strategy known for
designing large sorting networks, the [g,d] strategy. is introduced in
[ 23]3. Inthe remainder of this section we present a brief description
of the [g,d] networks.

The purpose of the [g,d] N-sorter network, where N = gd, 1S to
accept as input the unordered set | = {11,12,-..}1};} and to produce
as output the set 0 ={°1’°2’ . ..p,ﬁ}, where 0 is a pernutation of I,

and o) < 02 < ... = ox° In order to specify the internal structure of



the [g,d] (gd)-sorter network precisely, we find it convenient to

consider | to be a g Xd array, with | i . The r ows
‘ y (@,8) = *(o-1)d+p :
and d colums of | are given by
I = I 1l < H 1
(a)*) 1;;5(1{ (a)B)}, a=e ( )
I = .
() T M el TR (2)

Using this notation, we define the [g,d]_(gd)-sorter network as
i d-sorters for | l<ag=<g; followed b
) g (a,*)’ g y

ii) d g-sorters for 1<p<d; followed by

I
(*,8)’
iii) a special conparator network called a [g,d] f-network,

which is defined bel ow.

It has been shown [ 2, 5] that the g+d snall sorting networks
ini) and ii) leave the rows and colums of | sorted. In order to
di stinguish the original unordered set | fromthe set with sorted rows
and colums, we relabel the latter V = (vl,vg,...,vN}. The {g,d]
f-network is defined informally to be a network that contains whatever
comparators are sufficient to transformthe partially ordered set V into
the conpletely ordered set O.

The Zero-One Principle guarantees that a conparator network which
begins with g d-sorters and d g-sorters is a (gd)-sorter network if it
sorts | when each member of | is either 0 or 1. Therefore, when
designing a [g,d] f-network that will complete the ordering of V, we
may assume -- W thout |oss of generality -- that all menbers of V are
either 0 or 1. W nmeke this assunption throughout the renainder of

this paper.



[f the nunber of Os in V .« is denoted Z(V i
(*,3) ( ,j))’ then it can

(-x-
be shown that since the rows and colums of V are sorted,

2(Vig, %)) S 2(V(gq x)) 5. . .S 2(V(y ) 2(Veg x)) 4 3)
Z(Vix,q)) < 2(V(x goq)) 50 S 2(Viy 1y) < 2(V(x q)) € )
We are now in a position to make the follow ng definition.

Definition 1:

A sequence of conparators is called a [g,d] f-network for N = td

itens if and only if it will conplete the ordering of the partially
ordered set V = {vl,vz,...,vN}, where a) the colums V(*, iy 1<j<d,
are ordered and b) the nunber of Os in V(* 3) satisfies (4).
b
The best f-networks known for g,d = 2,4 are given in Table 1.
Each of the tabulated f-networks is described by a sequence of tenplates

of the form V where 1 € a,p<d, j 20, and a <jd + 8

(1,0)V(1+5,8)
-- followed by a range for i, which is specified in terms of t = Nd.
Let f[g,d](N) represent the nininum nunber of conparators required
by a [g,d] f-network for N itens. (This function is only defined when
Nis anmltiple of d.) Since we have not proved that the f-networks in

Table 1 are nininal, we have |abeled the number of conparators they

. A . . . .
require a[g,d](N)' Not e t hat f[g,d](N) is linear in N, i.e. that

a[é,d](N) = g,a] V- Plg,a]’ (5)

where a[g a] is (1/d) times the nunber of templates required by the
’

[g,d] f-network and b[ is a positive constant.

g:d]



Le,d f-network for N-sorter, N =1td
4] f[g:d] (N)
[2,2] Vii,2)V(i+1,1)? 1<i <t t-1 = &N-1
Vi1,3) Y (1+1,1)? 1 <i st
(2,4] V(i,h):v(i+1,2)’ 1 <i < t-l Lt-3 = N-3
V(i,E):v(i,3)’ 1<ic<t;
v(i,h):v(nl,l)’ 1<i <t-|
(4,2] Vii,2)"V(1+2,1)’ 1<i <t-2 2t-3 = N3
V(i’g):v(i+1,1), l1<i st-|
V(i,3):v(i+2’1)’ 1 <1 <t 2
V(i’u):v(i+2,2)’ l1<i <t-2
Vii,2)V(1+1,1)’ 1<ist-l
[h,4] Vii,h) Vi, 3) 1<i st 8t-11 = 2N-11
Vi1,3) V(i+1,1)’ 1<i <t-l
V(i,ll-):v(i+l,2)’ 1 <i <t-l
V(1,2)V(4,3)’ 2 <i <t-l
Table 1. Small f-networks.




W may use the [g,d] strategy recursively to obtain N-sorters for
arbitrarily large N, provided we can construct [g,d] f-networks for
large N.  Theorems 2 and 3 below, which are proved in [ 2 ], describe
two methods for constructing large f-networks using several copies of

smal l er f-networks.

Theorem 2:
Let the set V = {vl,vz,...,vN}, where N = tsd, be considered a
t x s xdarray, with V(i,j,k) = V(i-:i)sd+(j—1)d+k' Then we can
construct a [g,sd] f-network for V using:
i) d [g,s] f-networks for V(*’*,k), 1<k <d;
foll owed by

i) one [g,d] f-network for V.

Theorem 3:
Let V be as in Theorem 2. Then we can construct an [sg,d]
f-network for V using:
- 1< j<s;
i) s [g,d] f-networks for V(*,j,*), J
foll owed by

i) one [s,d] f-network for V.

As an exanmple of the constructions described by Theorems 2 and 3,

r
suppose that we desire to construct @ [2,2°] f-network for the set
v={v,v, .. ey 1}_, where N = t-2'. According to Theorem 3, we shoul d
- . -1
consider VtobeatX2x2 " array, and use i) 277" (2,2] f-networks
-1 . or-1
for v(*,*,k), 1<k 2" , followed by ii) a [2,2r ] f-network for V.
From Table 1 we find that the [2,2] f-network for V(x x k) requires the

conparators V(i’g’k):v(i+1,l,k), 1<j <t-l, sothat all of the



conmparators required by i) are described by V(

l<sistl, 1sks2

1,2,k) V(i+,1,k)’

It is not really necessary to consider vto beat Xs Xd array
in order to apply Theorens 2 and 3, although this assunption does
sinplify the description of the [g,sd] and (sg,d] f-networks. In the
next section we find it necessary to describe a [2,27] and a [2",2]
f-network for at x 2 array. It is readily verified that the
conmparators prescribed by Theorens 2 and 3 for these two f-networks

are those given in Corollaries 1 and 2 bel ow.

Corol lary 1:

Let the set v = {Vl’v2""’vN}’ N = t-2r, 'be considered a t X 2"

array. Then we can construct a [2,2r] f-network for V using:

i)  the #(N-2") conparators V(i,s+2r-| )Se/i +,s)"

r-1 .

1<istl, 1<sss<s2 ; followed by

ii) one [2,21--1] f-network for V.

Corol lary 2:
Let V be as in Corollary 1. Then we can construct a [2",2]

f-network for V using:

r L3
i) the #(N-27) conparators V(i,2s)'v(i+1,28-1)’
1<1<t1, 1ss<2'"; followed by
ii) one [2r-l ,2] f-network for V.
The nunber of conparators required by the best f-network that can

be constructed out of smaller f-networks using the construction of

Theorem 2 and/ or Theorem 3is given by



Q[g,d](N) = . Srriqln< ) . gm'pn< ] F(g,d,N,q,p) , (6)
gmdq=0 2<q+p | |
dmdp-=20
wher e
F(g,d,N,q,p) = q-p~?[g/q,d/p] (N/(q-p) ) + ’f‘[q,p] (¥)
+ T g/q,p) V) 2 gy V). ()

Not e t hat a[g,l](hb Q[l,d](N) =0, so that: a) if g =1, then (7)
describes a construction that uses only Theorem2; b) if p =1, then
(7) describes the use of Theorem3 alone; and c¢) if p,q > 1, then (7) .
describes a network built using both theorens. The case p=qgq=11is
not allowed, since it would reduce (6) to an identity.

W may use Equations (5)-(7) to show that the nunber of conpar-

ators required by the best [21,23] f-network that can be constructed

according to Theorens 2 and 3 is given by

AL .
f[21,2J] = a[21’2_j]N - b[21’2j], (8)
wher e
a[21,2j] = . Smrn< Lo Smsn< ; a[el-r,l s] + a[2r’es] (9)
O<r +s

br i .- _ max max 2 i-r A-s (10)



10

Starting wth a[2’2] _ é’b[2,2] = 1, which we obtain from Table 1,
we may use (9) and (10)to show that the nost economical [2,4],(4,2],

and [4,4] f-networks that can be constructed using Theorens 2 and 3are

described by

82,4] = ®[u,2] =

Pe,u) = Py, = 3

(11)
"[4,4] = &

",u) = 7

The [2,4] and [4,2] f-networks listed in Table 1 are, in fact,
constructed according to Theorem 2 and Theorem 3, respectively. However,
the [4,4] f-network given in Table 1, which achieves b[h,l&] =11, is the
smal | est exanple of ,a nore economical construction that has been

di scovered for [2r,2r] f-networks, r > 1. This construction is described

in the next section.
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111. Constructing [2%,27] f-net works
In this section we describe a particularly efficient method for
constructing [2r,2r] f-networks, r > 1. The construction depends

upon the concept of a "redundant" conparator. Now the purpose of

: i and to interchange
the comparat or ViV i's to compare v, and VB i g
the two if v, > vg, which is tosay, if vy =1 and vy =0 The
conpar at or va;vB is said to be "redundant"” if it can be shown that,
as a result of previous conparators, (v = 1) = (vB =1). A

redundant conparator never nekes any interchanges; therefore, the
network performance is not altered by renmoving any redundant com
parators.

The nmethod used in this section for constructing a [2r,2r]
f-network is: a) to determine the tenplates required by the
[2,2"] f-network derived using Theorems 2and 3; b) to reorder
the tenplates in such a way that, although the resulting network
still orders V, some of the conparators become redundant; and
c) to remove the redundant conparators. The number of conparators
required by the efficient [2°,2"] f-network is just the number
determined by Equations (8)-(10), ninus the number that becone
redundant when the tenplates are reordered. Since the economica
construction does not reduce the nunber of tenplates, the linear
coefficient a[er’gr] is not changed from(9). W shall see that
the inprovenent is reflected by an increase in Pppf ory OVer (10).

Suppose that we desire to construct a [2r,2r] f-network for the
set V= (v),V5,...,vy} , where N = t-oF. According to Theorem 2,

|

r I-
the [25,2"] f-network can be constructed using: @ [2,2
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f-network for the odd menbers of v, |abeled v, a [2r,2r'|] f - networ k
for the even menbers Ve and a [2r,2] f-network. Furthernore, according
to Theorem 3, each of the [25,2¥ '] f-networks can itself be built out
of two [2 ,25717 and one [2,2571] f-networks. The successive |evels
of detail for the resulting [2‘”,21'] f-network are displayed in Fig. 2.

Considering Vto be at X 2f array, we define the six subsets of V

appearing in Fig. 2 as follows.

or = N j%d Vs, (12)
Yoz = i\eﬁen J'\O{d {v(i’j)} (43)
e T Ny en AERY (1%)
Ve2 = ikeden j\e-\%en {V(i,J)} (15)
Vo T Vo1 Vor (16)
Vo =V Ve (17)
These subsets are illustrated for the case t =2" =k in Fig. 3,and

for the case t + 10, 2" =8in Fig. 6.
W may use Corollary 2 to express the [2r,2] f-network in

r-1
Fig. 2(b) as #(N-2") conparators followed by a [2 2] f-network
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V1 01
v3 [zr.zr'-l:| 02
y f-net wor k ‘ - 0,
) for V, R )
Vit | [27,2] )
f-net work .
v, L for v .
N [zr’zr-l] .
: f-netwofk .
for V | = .
. e
N °N
(a)
V, — I::°1
1 . [21"1 2!"] .
L for V) : (2,24 ©2
f - net wof k 3
v | v
2r+1 .\ [21»_-1 , 2::--‘].] . for Vo . .
— for v, . [2f,21
f-network
Vo ™1 ..r1 r1 for Vv .
'Y [2 '2 ] . r—1
. for vy, , . (2,20 7] .
f-net work .
v ) " . .
2r42 s |p2r 1,2:' 1] : for Vv
. for Veo L._..ON
(b)

Fig. 2, (25,2 f-network constructed using

(a) Theorem 2 and (b) Theorem 3 twice.
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for V. ~The resulting [2r,2r] f-network contains the follow ng
four groups of comparators, which appear sequentiallly.
r-1 r-1

1) Four [2 ,er ] f-networks for Vo1 VoorVer? e2'
2) Two [2,2r_1] f-networks for v_and V_;

3) The %(N-27) conmparators V :V
(i,2s)° " (i+1,2s-1)’
1<is<t-l, 1< sszr-'l;
r-1

L) A [2° 7,2] f-network for V.

The econoni cal [2r,2r] f-networks take advantage of the follow ng
observation (which is proved below): |f we interchange the order of
2) and 3), then not only does the resulting network still order V,
but also 2" 1 of the conparators in the [2r'1,2] f-network become
redundant .

Before proving this observation, we shall illustrate the con-
struction, using the [4,4] 16-sorter as an exanple. The partial
ordering in the intermediate set Vis illustrated in Fig. 3(a),
with an arrow from Vo to VB representing the relation Vo S VB'
The dashed lines in Fig. 3(b) represent the four [2,2] f-networks
required by 1) for the four sets Vo1? Voor Verr Veor The dashed
lines in 3(c) through 3(e) represent, respectively: the 6 conpara-
tors called for in 3); the [2,2] f-networks for v and v_ required
by 2); and the [2,2] f-network for V given in 4).

The conparators illustrated in 3(b) through 3(e) are exactly
those described for the [4,4] f-network in Table 1 --
plus two extra conparators in 3(e), nanely V2=V3 and vy Vs

These two conparators are redundant. The partial ordering in V

depicted in Fig. 3(a) requires that vl =0 if Z(V) 2 1, and that
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f-network for

Fig. 3.

[4,4] 16-sorter.
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V2 =0 orvs = 0 if Z(V) 2 ) The Conparator V_.:v in 3(0)

2 5
guar ant ees that v, = 0if zZ(Vv) =2 2. Ther ef or e,
(v, = 1) = (2(v) <2
= (V3 = 1), (19)

so that the conparator v2:v3 is redundant. By synmetry, the
conpar at or vm:v15 is al so redundant
Al 't hough the econonical [2r,2r] f-network is a nodification of

the network depicted in Fig. 2 and described by (18), it still begins

. r-1 r
with four [2° ',2 '] f-networks for Vor VooV and Vv, In

el’ 2°

Fig. 4 we display successive levels of detail for a third possible con-

struction for a [2r,2r] f-network. Note that it, too, begins with

f our [2r_|,5_ ] f-networks for Vg, Y5 Vgpr and V,, although

2’
the remainder of the network differs fromthat in Fig. 2. Al three

[2r,2r] f-networks share the construction depicted in Fig. 5, namely

r—1]

four [2r'|,2 f-networks followed by a special conparator network

that we shall call an [r] h-network.

An [r] h-network is defined informally to be a network that
contains whatever conparators are sufficient to conplete the
ordering in V. Fig. 2 and -Fig. 4k illustrate two different [r]

h- net wor ks.
In order to define an h-network precisely, let us consider the

=19 ¢ _networks.

partial ordering in V achieved by the four [2r'|,2
Clearly they order the sets Vo1r Voor Ver Vo Since the construction
of Fig. 2 and (18) guarantees that a [2,2r'1] f-network will conplete

the ordering of v, once V;l and Vbz are ordered

) + 2r-1'

2(V,,) < 2(Voy) < 2(Vop (20)



Vors2

Vv,

v1 | 1272

2 | f-net for

Vi2s-1,%,%)

1T V°1UV31

v

v2r+1 [zr-l'zr]

o —

22 f-net for
. V(zs’*t*)
| VoM

[2,27]
f-net work
for v

Fig. 4. [25,27] f-network for V constructed using

(a)
! 1 Tt
252 (2l2 1 |
for Vor— | f-net for
v
- 4 "(28-1,%,*)
for V - o e
2 R\//A
s 2t 2 A [271,2]
| for Vg, F f-net for
[r-i r-1 V(ZS'*’*
2t o .
| for 'vn,, vozu Ve2
(b)

[2,27]
f-net work
for V

(a) Theorem 3 and (b) Theorem 2 twi ce.

17
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V.
1 [zr-l r-13
for v1
r 1
2T+ : [zr-%’zr—il :
| fort v, ‘ 1
h- net wor k
for V
V2 . [Zr-i r-]i__'
__Z__ for Ve
2r+2 . l-_zzk-l.z:r--‘l.:I
) fOI’ Ve2 L
Fig. 5. [25,2"] f-network,

|



Similarly, since another [2,2r'1] f-network will order vV, once

are ordered,

V and Ve

el 2

Z(Vez) < z(vel) < Z(VeE) + or-1 (21)

: . . : : -1
According to the construction depicted in Fig. 4, one [2r s 2]

f-network will order V01UVe1 and another wll order VOZ\/VGZ.

once Vol’vo2’ve1’ and Vez are all ordered. Therefore,

r-1
2(Vg) s 2(V;) s 2(v,) + 20 75 (22)
r-1
2(v ) <2(V,p) S 2Vgp) + & (23)
We are now ready for the following formal definition.

Definition 2:

. r
A sequence of conparators is called an_[r] h-network for N = t«2

itens if and only if it wll conplete the ordering of the partially
ordered set V = {Vl’ve""’vN}’ where a) the four subsets of V
defined by (12)-(15) are each ordered and b) the nunber of Os in

these subsets satisfies (20)-(23).

From out discussion of Fig. 2 we conclude that one possible
construction of an [r] h-network consists of items 2),3), and L)

from (18). Lenma 1 shows that we may interchange the order of 2) and

3) in (18).
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Lema 1:
Let the set V = {Vl’v2""’vN}’ where N =t.2" and t is even, be

considered a t x 2 array. Then we can construct an [r] h-network for

V using:
. r .
i) the #(N-2") conparators V(i,QS)'V(i+1,2s-1)’
l<i <t-l, 1<s <« 2r_1, that produce the inter-
medi ate set v followed by
ii) one [2,2r'|] f-network for 4)0 and anot her [2,2r'|]
f-network for Vi foll oned by
iii) one [Er'l,ejf-netv\nrkfor V.
Proof :

The conplete proof of Lenma 1 is given in Appendix A  Essentially
we show that the conparators in i) tend to move Os fromV, to V,
while maintaining the partial ordering in the four subsets of V.

Specifically, we prove that 001, 002, Qel’ and Oez are all ordered and

t hat

z(oog) < z(/x)ol) SZ(<>02) + 2" (2u)
29,p) = 29, s28p) + 27 (25)
2¥,) = 2%,) = 28, + 2" (26)

Therefore, the [2,'2r-lj f-networks in ii) will conplete the ordering

of Vo and /\\re, so that the [2r'|,2] f-network in iii) will then order V.
QE. D
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We can use Corollary 1 to express the [2,2r-1] f-network for 00

9
*T(i+1,s)’

- -2
1<i<t-l, 1<s=<2" 1, s odd, followed by a [2,2r ] f-network.

S -1
inii) of Lenma 1 as the %(#-2" ") conparators O(i’s+2r-|)

Similarly, we can use Corollary 1 to express the [2,2r_1] f - net wor k
for /\}e as %(tN-2r_1) conparators followed by a [2,2r'2] f - net wor k.

This leads to the followi ng recursive construction for an [r]

h- net wor k.

Theorem 4:
Let V be as in Lenma 1. Then we can construct an [r] h-network
for V using:
r
i) the #(N-27) conparators V(i",2s):v(i+1,2s—1)’
1<i <t-I, 1<s < gr’l, that produce the inter-
nedi ate set V. followed by
.. r - .
ii) the #(N-2") conparators V(i,s+2f l)‘<>(1+1,s)’
1<i<st-1, 1<s szr'l, 1 <k <2, that produce

the internediate set V; followed by

iii) an [r-1] h-network for V.

Proof :

Lemma 1 and Corollary 1 inply that the intermediate set V can be

ordered by: a [2’2r-2] f-network for '\70 and anot her [2,2r ]
f-network for ?ie, followed by a [2H ,2] f-network for V. As noted
above, these three f-networks constitute one exanple of an [r-1]
h-network. (Sinply replace r in Fig. 2 by r-1.) A conplete proof of
Theorem 4, which shows that the number of Os in the four subsets of
V satisfies (20)-(23) with r replaced by r-1, is given in Appendix B.

QE.D.
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Consider the [r] h-network illustrated in Fig. 2,nanely a
[2,2r'1] f-network for v and a [2,2r'1] f-network for v_ followed by
a [2r,2] f-network for V. W may use Corollary 1 to express the
r-1
(2,27 7] f-network for v, as the sequence of tenplates 0198, pses. 3095

where a) o 1 is the tenplate V <i <t-l,

(i,s+2r_|):v(i+1,s)’ 1

l<s< 2r-|| s odd; and b) the sequence ap,a ...,alrepresents t he

p-1’
tenplates for the [2,2p] f-network for v, We may use Corollary 1 to

express the [2,2r_1] f-network for v, as a simlar sequence of tenplates
Br., Propr. .sBy- Since the tenplates % and BP are identical except
t hat 05 requires s odd and BP requires s even, we can conbine the two
t empl at es and into a single tenplate T_.
nmp % BP g Y P
In a sinmlar manner we nay use Corollary 2 to express the [er,ej

f-network for V as the sequence of tenplates T T, ..,nl,WMere a)

-1’
|

. . r-i.
n. 1S the tenplate V 1<is<t-1l,1<s<2 ; and

(1,2s) V(1+1,25-1)

b) the sequence Ty T ..»m; fepresents the tenplates for the [2P,2]

p_l’ .
f-network for V. The [r] h-network illustrated in Fig. 2my then be

represented as the Sequence T _,,T . o, ueT1sMps My g9...97p" However

Theorem 4 enbodies the followi ng corollary.

Corol lary 3:
Let V be as in Lemma 1; let the two sequences of tenplates

\ l- -+,T, and x_,x 0Ty be as defined above. Then the

‘r-1’ r-2°° 1 r-17

foll owi ng sequence of tenplates constitutes an [r] h-network for V.

T L T (27)

r’Tr—l, r-
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The partial ordering in the intermediate set V achieved by the
[27,2"] (47)-sorter network is not conpletely specified by (20)-(23).
Since the odd rows of V contain nenbers of Vo1 alternated wth menbers
of V_,, whi |l e odd columms of V consist of menbers of Vv, separat ed by

menmber s of Vo9 and since the rows and colums of V are ordered,
Z(Vol) < Z(Vel) +Z(V02) + 1. (28)

If the nunber of I's in A is represented by |ve2|, then we can show

2
by symmetry that when t is even,

Ivezl < Ivell + lvogl + 1. (29)

Ve shall see that the additional ordering in V specified by (28) and
(29) guarantees that o' - 2 of the conparators in the [r] h-network
for V described by Corollary 3 are redundant. To show this, it is

convenient to use two | emmas.

Lemma 2:

Let V = {vl,v ,...,-vN], where N =t2° > 2" and t is even.

2

Suppose that the four subsets Vo1 Voor Vepo and Ve of V are each

2
ordered and that they satisfy (20)-(23). Suppose al so that

2(v,,) < 251 = 2(v,) < 2(Vg) (30)

Mod <2770 = [Vl = Vol (31)
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Then if we apply the [r] h-network described by Theorem 4 to V, the
r . r-1
2" conparators V(i,2s)'v(1+1,2s-1)’ i €{1,t-1}, 1 s <2 | are

redundant .

Proof :
r
The #(N-2°) conparators Vi,28) V(141,28-1)7 1<is<t-1,
1<s < 2r'1, are illustrated in Fig. 6 for the case t = 10, 2% =8.
1’

witten (vel)s’ wWith the s menber of Voo (VO2)S. Suppose t hat

-1, where 1< s <2 |

th
The conpar at or V(1,2s)=v(2,2s-1) conpares the s  nenber of V_

(v Then, since v, and v_, are ordered
el o

el)s 2

we may use (30) to show that

(v !

r'_
el)s =1= Z(Vel) <s =2

=2z(V ,) < Z(V,,) < s

= (VOZ)S =1. (32)

Therefore, the copparators (Vel)s=(V02)s or V(1,25)3V(2,23_1),
1<s < 21-—1’ are redundant.

If t is even, then the conparator V(t-1,2s):v(t,25-1)’

- r-1
1<ss2" 1, may be rewritten as (Vel)a+s:(V02)a+S, where a = 3N-2

r-1 .
- v
Suppose t hat (voz)a+s =0, where 1 s <2 . Then since V_, and V,

are ordered, we may use (31) to show that

- r-1
(V02)a+s =0 = V°2] < 2r l—s+1 <2

= vl < [Vl <2 s

= (V = 0. (33)

el)a+s
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The contrapositive of (33)is (Vel)a+s =1= (voz)a+s = 1, so that

h rators V : r-|

the conparators (t-1,2s) v(t,es-l)’ g Sss2 , are al so redundant.
QE. D

Lemma 3:

Let v = {vl,v2,...,vN}, where XN = t.2° > 2% and t is even.
Suppose that the four subsets Vo1 Voor Vers and Voo of V are each
ordered and that they satisfy (20)-(23),(28)and (29). Then if we
apply the [r] h-network described by Theoreml4 to V, the subsets of
the intermediate set V satisfy (20)-(23) and (28)-(31), with r repl aced

by r-I.

Proof :

The proof of Lemma 3 is given in Appendix C

Consider the [r] h-network described by the sequence of tenplates
given by (27), where n. operates on a set V, T, 1 operates on 9 and
L operates on V. |f the subsets of the original set V satisfy the
hypot heses of Lemma 3, then Lenma 3 shows that V satisfies the
hypot heses of both Lemma 2 and Lenmma 3. Lenma 2 shows then that 2r-|
of the conparators in x|, are redundant; repeat ed use of Lemmas 2 and
3 shows t hat 2" conparators in T are redundant, 1 <sp <r-l. This

inspires the follow ng definition.



27

Definition 3:

Let V = {Vl’VE""’VN}’ where N = t-2L, be considered a

t x2° array. Then a reduced [r] h-network or an [r]

&net wor k consists of:
. r Ir
i) the %(N-27)-2" conparators V(i,zs)‘v(i+1,2s-1)’

2<i st-2, 1 <s s 2r"1, that produce the internmediate

A
set V; followed by

a) nothing, if r = 1; or
r A A
b) the %(N-27) conparators V(i,s+2r'1)‘v(i+1,s)’

l<istl, 1<sc< 21 that produce
the internediate set V; followed by an [r-1] 4 -

network for V.

It is readily verified that the [r] 4 -network requires

z

o1 P _ o - 2 fewer comparators than the [r] h-network.

Theorem 5 shows that if V is the internediate set for the [2r,2r]
(4¥)-sorter network, then the [r-1] h-network in iii) of Theorem
L may be replaced by an [r-1] 4 -network, thereby saving of-2

compar at ors.

Theorem 5:

W may conplete the ordering of the internediate set Vv achieved
inthe [2%,27] (4F)-sorter network using:

. r-1 r-1
i) four [2 ,2 ] f-networks for the subsets VOl' V02.
\'

\' fol | owed by

e2’
i) the [r] h-network described by Theoremk4 with the [r-I]

el'

h-network for the intermediate set V replaced by an

[r-1] &network.

e |
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Thi s theorem summarizes the results of Theorem4, Lenma 2, and

Lemma 3.

The nunber of conparators required by the econom cal [er,2r]

f-network described by Theorem 5 is given by

A A
f[2r’2r](N) = icer-l,zr—lj(hi) FN-2" 4 {[r—lj(N) (34)

wher e {tr_ll(N) is the nunber of conparators required by the [r-1]
&network. W may use Definition 3 to show that £[r4] (N) satisfies

the recurrence relation

A () = 4 (0 + N - o™ (35)
with the boundary condition

() = -3 (36)
The solution to (35) and (36) is

g () = (=-8) ¥ - (27 -5).

A
Ve may use (37) along with the boundary condition f12,21(N =

#N - 1to solve (34). In the notation of the last section,

A

8
fre7, 2N (M) = ot e TPt ety )
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wher e
ar,r T -—%r‘? (39)
[%,27] 7 ’ 3
b- . r ,.r =&hr -3.2" &+ 2 (40)
(27,27] ~ 3 3
Wen i #j and i,j>, the nost econonical [21,2‘1] f - net wor ks

known use the econoni cal [2r,2r] f-networks as building blocks for
the construction of Theorems 2 and 3. The nunber of conparators
required by these networks is given by Equations (8)-(10). It is

readily verified (by induction) that

arpt oIy = #(i-3), (41)
whi ch reduces to (39) when i =j =r. No closed formsolution is
known for b-.i . j, with arbitrary i,j, and i # j, although the

[2%,2]

following special result can be proved.

(2ki_1)
(21—1) b[21,21],

i ki, =

bt (k2)

wher e b[21,2i] is given by (40).

W have cal cul ated b[2|,211 for i,j <32, and give the results

for i,j <8 in Table 2. The symmetry of (10) inplies that

Prat,2d) = Prad,ety (43)
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which is observed in Table 2. For i <] <32 we find that the

right-hand side of (10) is mnimzed if and only if r =0 and s = j

(mod i). Therefore, for i <j s 32, we may express br,i ,j in the
(e7,27]

following recurrence relation.

-1 i}
b[21,2:j] _ 2 b[21,2i] b[21,2j 1]_ (bk)

Ve hypot hesi ze that (44) holds for all 1 < j; however, no closed form

solution is known for (44).
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2 3 L 5 6 7 8

;[ 1 3 7 15 31 63 127 255
3 11 25 55 113 231 465 935

T 25 63 133 277 567 1141 2293
15 55 133 295 605 1235 2493 5015
31 113 277 605 1271 2573 5197 10445

63 231 567 1235 2573 5271 10605 21315

S V- 465 1141 2493 5197 10605 21463 43053
E 255 935 2293 5015 104h5 21315 43053 86615

Table 2.

Small values of be.1 .
[2},29]
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V. (2m)—sorter Net wor ks

The mi ni mum nunber of conparators required by a network that
sorts N inputs is denoted S(N. Let GN) represent the nininum
nunber of conparators required by an N-sorter network that makes
repeated use of the [g,d] strategy. In this section we exam ne
the asynptotic growh of G(N), restricting our attention to the
special case that Nis a power of 2. (Results with [g,d] networks
for N<36are given in [ 2 ].) If N= 2m, then since N = gd,
g and d are also powers of 2. Cdearly G(2m) satisfies the

follow ng recurrence relation.

A
¢(2™ = nmin 2f 6(@™T) + 2™ g(2") + ¢ I m

O<r<m (27,27 7]

(291} . (45)

W have cal cul ated G(2m) for m <64 and give the results for
A
f

A
m < 16 in Table 3. Note that since f | (N = (N),

ot et e ot
we may restrict r to the range [#m] < r <m. The colum entitled Ty
gives those values of r€[l4ml,m-1] that nininize the right-hand-side
of (45). For exanple, when m = 4 the mininumis achieved only for
r =2, whereas when m =5the m ni mum occurs for both r =3 and
r = 4,

VWien m is even, our results in the last section indicate that
A

f
[21‘ 2m—r] o
that'the right-hand-side of (45) should be nininized by r = [#m], so

(2") is nininized by r = #m. e mght expect, therefore,

that when m is even the optimal (Em)-sorter network shoul d be
"square." However, we observe from Table 3that the mininum al nost

al ways occurs when r is a power of 2. This is explained as follows.



m N=2" r, G(N) rg S(N)
1 2 1 1
2 L 1 5 5
3 8 2 19 19
L 16 2 61 60
5 32 3,4 187 4 185
6 64 L 525 L 521
7 128 L4 1427 b 1419
8 256 b 3705 4 3673
9 512 6 5T 5,8 9395
10 1024 6,8 23357 6,8 23229
11 2048 8 56787 8 56531
12 4096 8 135417 8 134649
13 8192 8 319827 8 318291
14 16384 8  Th3h21 8  ThO349
15 32768 8 1714003 8 1707859
16 65536 8 3907497 8 3891113

A
Table 3. @(2") and s(2") for m <16,

33
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A [g,d] (2m)-sorter network begins with 2" 2-sorters. The
remai nder of the (2")-sorter is a succession of f-networks inter-
spersed with 2-sorters. \Wen m = 2k, each of the f-networks in the
(2m)—sorter can be one of the efficient square f-networks described
in the last section; therefore, the (em)-sorter networks are
particularly efficient whemmn = 2k. Now we show bel ow t hat
G(em) ~ %‘me2m, whereas from Equations (8)and (41) we know that
2 I (2") ~ #r(m-r)2". Since r 2 [#m], this nmeans that the
dgﬁi r,1§nt t]erm in (45) is 2m_rG(2r).' By choosing r to be a power
of 2, we naxinmize the efficiency of the largest conponent of the
(2™)-sorter.

As noted above, when m = 2k t he (2m)-sorter network can re-
strict itself to the efficient square f-networks. This construction
leads to the following recurrence relation.

A
a(2™) = 2" g(2") + £ (™), mIl (46)

)

Using (38)- (40) and the boundary condition G2) = 1, we find

that the solution to (46) is

r K
a(2") = 1‘[*112 -Gt odm + %1 M- wIl (47)
Wer e
r
o =% g o (&) ( 48)
O=sr<k

Si nce o, converges rapidly to .107, the asynptotic growh of

G(N) may be expressed as
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2
G(N) = .250 N (logyN)" - .357 N (log.N) + O(N). (49)
A
Let S(N) represent the nunmber of conparators required by the
A

most econoni cal N-sorter network known. For m <3, 8(2") = g(2").
However, M W Geen [3] has designed a l6-sorter network which
requires only 60 conparators, whereas G(16) =61. For m > 4, the nost
econoni cal (2m)—sorter network uses the [g,d] strategy, encorporating
many copi es of Green's economical 16-sorter. Therefore, for m > 4,

A
s(2") satisfies

A A A
s(2™) = nin oF g(2"H) s 2T g(2%)
[#m]sram
A
+ f[zr,em-r](Em) , m > 4. (50)

We have incl uded AS(E'm) in Table 3, along with the values of r,
| abel ed res that mnimze the right-hand-side of (60). Again we
observe that the mninmumnornally occurs when r is a power of 2, which
| eads to the sanme recurrence relation obtained above for G

A A A k.

s(27) = 2o+ s(2m_) + f[2m,2m](22m), . (51)

A

Using (38)-(40) and the boundary condition s(16) = 60 we find that

A

s(2) =l[,}m2—(%17;+ck)m+-§-‘1 A A N )
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A
The asynptotic growh of S(N) is given by

A
S(N = .250 N (1og2N)2 - 372 N (log N) + A(N). (53)
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L' Concl usi on

Prior to the [g,d] strategy, the nost econonical N-sorter network
known (for nost values of N), used: i) a [#N]-sorter; ii) a L&NJ-sorter,
and iii) a ([#N7,L#N]) nerge network designed by K. E. Batcher [6]. A
cl ose exanmination of Batcher's N-sorter network for the set | =
{11,12,. . .,iN}, where N = 2d, reveals the following. If | is
considered to be a 2 x d array, then Batcher's (2d)-sorter network

begins with 2 d-sorters, one for | and one for I fol | owed
(1,%) (

2,%)’
by d 2-sorters for | (*,3) 1< j=<d, Therefore, Batcher's (2d)-sorter
network uses what we would call the [2,d] strategy. The [g,d] strategy
is simply an extension of Batcher's strategy to include values of g > 2.
The nunber of conparators required by Batcher's N-sorter network

is denoted B(N). Wth the boundary condition B(1) = 0, Batcher shows

t hat
B = (3" - dm + 1) 2" -1 n20; (54)

Using the Green's 16-sorter as a boundary condition, i.e. using

B(16) = 60 leads to
B(Em) = (&me - -,1—"m + % M1, m=2 4 (55)

Gven the [2,2] f-network in Table 1, Theorems 2 and 3 guarantee
the existence of [21,2‘j] f-networks for arbitrary i,j. Let E(Em)
represent the nunber of conparators required by a [g,d] (2m)—sorter
that uses only the f-networks constructed according to Theorens 2 and 3

fromthe [2,2] f-network. Then the boundary condition 5(1) =0 leads to
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TE™) = Go® -3m + 1) 2"-1, mz20; (56)

which is exactly the sane as (54). However, using the Green's 16-sorter

as a boundary condition leads to

1 2 19

E(zm)=(ﬂm—mm+l)2m-l,tz=l{l:’

(57)

The savings of (57) over (55)is possible because the [g,d] (zm)-sorter
can take better advantage of Green's 16-sorter. For exanple, the

[24,2l++k] (28+k)-sorter can use 25+k copies of the efficient lé6-sorter,

b4k .
8+k) sorter can only use 2 copi es.

whereas Batcher's [2,28+k] (2
We have seen that the existence theorens for [21,2'1] f - net wor ks
(i.e. Theorens 2 and 3) lead to N-sorter networks that require
~£N(10g2N) fewer conparators than the best networks previously known.
In addition, we found that reordering the conparators in the [Er,2r]
f-networks prescribed by the existence theorens |leads to the nore
substantial savings of ~ (o, + -()—,})N(logaN) conparators. (Conpare

g(e’“) given by (52) with B(2") given by (55).)
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Appendix A:  Proof of Lemma 1

Lemma 1:
Let the set VvV = {Vl’ve"”’vN}’ where N = t2" and t is even
be considered a t x 2 array. Then we can construct an [r]

h-network for V using:

A r
i) the #(N-27) comparators V(i,28) V(1+1,25-1)’

l<si<t-l, 1=<sx< 2r-1, that produce the inter-

A
medi ate set V; followed by

- A -
i) one |:2,2r l] f-network for v, and anot her [2,2r |

]

A
f-network for v fol | owed by

- A
i) one [2r |,2]f-netvvorkfor V.

Proof :

According to Definition 2, the conparators described by i) through
iii) constitute an [r] h-network if and only if they will conplete the
ordering of V given that a) the four subsets of V defined by (12)-
(15) are each ordered and b) the number of Os in these subsets
satisfies (20)-(23).

Let us assune that the partial ordering in V satisfies a) and

b). Then, as noted in the text, to prove the |emm we need to show that

A A A A .
Os in
Vorr Voor Verr and Ve2 are all ordered and that the nunber of

A
these subsets of Vv satisfies (24)-(26). |If we let (V01)j represent

th

the |j menber of A then the conparators in i) may be expressed as

1}

1<j < &N (58)
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(Vez)J . (Vol)j+2r-1 ’ 1 Sj < l"’N—gr-l. (59)
(See Fig. 6.) Therefore,
A
(vel )3 = (vel)J A(VOZ)j’ 1 <3< %N; (60)
9 i
(Voo )j = (Vo) | V(Voz)j’ 1<j<4$N; (61)
- . r-1
Gy - (Vep)y AlVgy) gypr=1 » 151 < &v277 (62)
2’ (V) | s w2l < o<
r-1
(v..) 1<j=<2 ;
V) = 3 (63)

(Vo)y vV (Vgplyor-1 - 271 oy cay,

Here "A' and *" represent the boolean "and" and "or" functions,
A

so that, for instance, (Ve1)3= 1 iff (vel)j = (VOE)J = 1.
It is easy to verify that, since v_,, v‘,’d\e, Voys and V,, are all

A
ordered, Equations (60)-(63) inply that Vo Voor Vo and V,, are

all ordered as well. Furthernore,
2V, = &1+ min(a(vy) , wv,) -2 L, (61)
2(7,,) = min [2(V ;) » Z(V,,)] 5 (65)
z(V_)) = max [2(V ) » 2(Vop)1 s (66)

2(V,) = max [2(v,,) » 2(v,) - 2771 . (67)
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A A
From (65) and (66) we see that z(v02) < Z(vel); al so, (64) and
A A _
(67) inply that Z(Vol) < Z(Vee) ¢ 271 Ve may use (20)-(23) and
A A A A
(64)-(6T) to show that Z(Vee) < Z(Vo2) and that z(V,,) < z(V_ ;).

These relations are all summarized by
A A A A A -l
z2(V_,) < 2(Vp) < 2(Vyy) < 2(V,) s2(v,) 27 (68)

_since Rel ation (68) enbodies Relations (24)-(26), the |emm is proved.

QE D
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Appendi x B:  Proof of Theoremuk

Theorem 4:
Let V be as in Lemma 1. Then we can construct an [r] h-network
for V using:
r
1) the #(N-2") conparators V(1,28) Y (141, 25-1
. _ _ A
1<ss2 l, that produce the internediate set V; followed

)’1S|St'|,

by
2) i A A
conparators v(i,s+2r"1)'v(i+1,s)’

1<i st-1, 1Ss52r-l, that produce the

ii) the #(n-2""

intermediate set V; followed by

iii) an [r-1] h-network for V.

Pr oof :

Ve may use Lemma 1 and Corollary 1 to show that a [2,2"2] f-

network will order 'Vo and that another [2,2r'2] f-network will
or der v, Therefore, each of the four subsets Vo1r Voor Vers and
Vez is ordered. Furthernore, the nunber of OsS in these subsets
satisfies
r=-2
. &
z2(V,) = 2(V ) < 2(V,) + 25 (69)
~ r-2
Z(““fe2) = Z(vel) = Z,(Ve2) e . (70)

In order to prove that an [r-1] h-network will conplete the ordering of

V, we nust show that the number of Os in the four subsets also satisfies
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~ ~ r-2; (71)
z(V,,) < z(¥;) = z(V,) + 2
~ ~ I‘-2
z(V,) < z2(V,) = z(\7e2) + 25 (72)
Now the four subsets Voy VO2, Vey? and Vo of v are defined

by (12)-(15), with t replaced by 2t and with r replaced by r-I,

~ . r-1 .
so that v is considered to be a 2t X 2 array. However, since
A

the conparators listed ini) and ii) assume that V and V are
t X 2" arrays, it is convenient to consider ¥ to be t x 2"
as well. In this case the four subsets of V are given by
v, = U Y { (1, 3 )}; (13)
1<is<t j odd
. r-1
js2
¥ = v ; %)
V02 = u U { V(i, J)}’ (
1<i<t j odd
. r-1
j>2
v = v ; (75)
Vel = U ) U { v(i,j)}’
1<ist j even .
i< 2
T, = U U T, (76)
1<i<t j even !
- r-1
|]> 2

(See Fig. T-)

W may use the right-hand-sides of (73)-(76), with V replaced by
A

A
v, to define four sinilar subsets X, X 55 X

of .
" 01’ and Xe

2
For exanple, we define

Xy = W ud {O(i,j)g’ (77)
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Using this notation we can express the conparators in ii) as
(X)), :(X.-) 5 1<j<in2 "2 (78)
02’3 * ‘o1’ j+2r~<e’? 4 |
(X ). ¢+ (X ), -T2 1<j< lN—Qr'z (79)
e2’j * ‘\Tel’/j+2 ’ & '
These conparators are illustrated in Fig. 8.
A A
Fromthe proof of Lemma 1 we know that the four subsets Vo1 Voor
A A A
Vel' and Ve2 of v are each ordered and that the number of Os in

these subsets satisfies (68). Let us represent the nunber of Os in

A

VOl as

A

- r-2
z(v ) = a o1 2 + Yop (80)

where oy, B;, and Yy, are integers sati sfying

0 < aol < t;

0 < B, = L (81)

0 < vy, < 2r-2.

A , _— o
Ve can represent V , [N terms of simlar coefficients &, g and

02’

Yo, Note that (68) inplies that @, <Qa; <0, + 1
. A .
The subset xol of V includes the first of 2 menbers of each row
A r-2 A .
of vy, and the first 2 menbers of each row of V. (See Fig. 8).

A

Si nce vo and V02 are each ordered,

1
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2(X,) = (@) #0020+ Ay *hy (82)
wher e
: 2
A = 21‘- + (1= )
(a _a ) - 1l B01 5 ( B01 Yol’ (83)
01 = o2 My = B2 (1B W
02 o2’ o2
' r-2
A = B_,2 + (1-g )'Y P)
(0‘01 Q 2+1) - 1 02 o 02’ 'o2 (8k)
- Ny = Bq2 o+ (1-B_1)Y. e
2 ol ol’ ‘ol
The first Qo "rows" of XOl' gi ven by
A .
B M CH VR e S 74 (&)
j < 2r—l

each contain 2r-2 O's. The next two "rows" contain >\1 and x2 O s,

respectively. Note that if 0 <i, <X < 2r'2, then the subset X ,
is not ordered.
A r-2
The sé&set X 5 of v includes the last 2 menbers of each
A A _
row of V01 and Voo (See Fig. 8.) Therefore,
of 2 (86)
Z(X02) = (oz01 + a°2) + My + Hos
wher e
1 = PoiYor’
(0t _ @ ) = 1 ore (87)
01 = o2 = BN
Mo = Fo2'o2’
(B = BooYor’

(@pp = %a*t) = j (85)
Z”g = Bo1Yo1*
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The first o, + @ "rows" of X are all Os; the next two
ol 02 02
"rows" contain Hq and Ko O, respectively. Not e t hat x02 is

. . -2
not ordered if Hy > 0, since H; < 2r .

The conparators given by (78)-(79) transform the internedi ate set
A

Vinto the set V. As indicated in Fig. 8, the U owr of X992

is conpared, itemby item with the (i+1)St "row' of X
ith

. the "row
1’

"row of ¥V . while the "row

containing nore O'sbecones the 02

with fewer O'sbecomes the (i+) St "row of ¥

ol* Ther ef or e,

2(¥,,) = (a01+a02)2r_2 +ny + minlu; A5 (89)
z('w"/"oz) = (oz01+ozo2)ar—2 + max[ul,xzj + Hye (90)

W may refer back to the definitions of )‘i and uy to verify

that (89)-(90) inply that

z(Vol) - 272, min[z(eog) , z(vol) —2r'2]; (91)
2(702) = max[z(eoa), Z(C’ol) —2r_2]. (92)

For exanple, if «

1 = %ps  then (89) reduces to

r-2 r-
2(V,1) (0105127~ 4 Bg12

W

2
+ (1—501)Y°1
-2
+ min[B01Y01 ) 6022r + (1-B02)'Y°2]

r-2

I

A A
min[Z(Vol) ? Z(VOQ) ~Bo2Yo2 + Bol2



ko

v v ™2 inmplies th = d th
Now Z(Vol) < Z(Voa) + 2 inplies that g, =B , and that

A A
0 < Z(Vol) - Z(V02) = Y1 = Yoo < 21-—2, so that (93) becones

2

A A r=c _
Z(Vol) = min[Z(Vol) ’ Z(Vog) + 2 Yo1 ]
A
= z(vol)
A -2
A r .
= min[z(V_ ) » 2(V ) + 2 7k (9%)
A A r-2 . . _ -0
wher eas Z(Vol) 2 Z(VOE) + 2 inplies that g, =1, B,, = 0,
0 <y, _Y02<2r'2, so that (93) becones
A A r=-2
2(V,,) = minf2(V), z(Vpy) + 27 1. (95)

Equations (94%) and (95) are equivalent to (91).

In a simlar manner we can show t hat

z(?fel) = 252 min[Z(/\>e2) , z(oel) -2r'2]; (96)
z(V,) = max[z(/\;ee) , z("x)el) - 2%72y; (97)

Equations (91) - (92), (96) - (97), and (68) together inply (71)-(72);
as noted above, this is sufficient to prove the theorem

QED.
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Appendix C. Proof of Lemm 3

Lemma 3:

Let V = {vl,v2,...,vN}, where N = t2" > 27 and t is even.
Suppose that the four subsets Vo1 Vopr Ver? and Voo of V are
each ordered and that they satisfy (20)-(23),(28), and (29). Then
if we apply the [r] h-network described by Theorem4 to V, the
subsets of the internediate set V satisfy (20)-(23) and (28)-(31),

with r replaced by r-1I.

Proof :
The proof of Theorem k4 indicates that if the subsets of V are
ordered and satisfy (20)-(23), then the subsets of V are also or-

dered and satisfy (20)-(23), with r replaced by r-1. Ve shal |

prove that if the subsets of V satisfy (28) as well, then
Z(Vol) = Z(‘?el) + Zﬁo2) + 1 (98)
r-2 ~
z(V,,) < 2 = z(V,) < z(V,). (99)

The proof that (29) inplies that the subsets of Vv satisfy (29) and

(31), with r replaced by r-1, follows fromsymetry.
Suppose t hat Z(Vel) = 2r_2. Then (99) does not apply. And since

the proof of Theorem 4 deronstrates that

~ r-2
Z({;Ol) < Z(vog) + 2 2 (100)
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Equation (98) hol ds when Z('Vel) > 2772,

~ -2
Now suppose that (28) holds and that Z(Vel) < 27°, Then from

(96) we see that

2(7,) = a(V,,) <2 (101)
Equations (101) and (66) i nply that

2(V,,) < o2, (102)

2(v,,) < 2% (103)

And we may use (21), (28), and (102)-(103) to concl ude that

z(V < 2572, (104)

e2)

2(v ) < o™ 1, (105)

o

Equati ons (102)-(105) categorize the distribution of OS in vV,

we may use these values in (64)-(67) to show that

z(@ol) = z(vol) SZ(Voe) + z(vel) + 1
< Z(Q’oe) + 2r-2., (106)
z(/\>°2) = min[2(V ;) , 2(V )] < "2, (107)



maxl2(V ;) , 2(v,)] < 275

A
z(Vel)

2

A r-
z(v, z(vel) < 207,

5)

And finally, (91)=(92) and (96) -(97) then inply that

2(,)) = 20g) = 2(V,);

A
z(V ) = 2(Vy,) -= minlz(V ) , 2(Vgy)1s
z('\"'el) = z(cel) = max[Z(Voz) ’ Z(Vel)];
Z Ve2) = z(eee) = Z(Vez)'

52

(108)

(1109)

(110)

(111)

(112)

(113)

From (111)-(112) we see that Z(Voz) < Z(Vel) so that (99) holds, and

t hat z(ffoe) + Z(Vel) = Z(Vol) + Z(Vel)’ so that (98) holds as well.

QE D
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