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LARGE [g,d]  SORTING NETWORKS

bY

David C. Van Voorhis

ABSTRACT

With only a few exceptions the minimum-comparator N-sorter networks

employ the generalized "divide-sort-merge" strategy. That is, the N

inputs are divided among g 2 2 smaller sorting networks -- of size

N1’N2’...‘Ng9 where N = g
ck~1 Nk --

that comprise the initial portion of

the N-sorter network. The remainder of the N-sorter is a comparator

network that merges the outputs of the Nl-, N2-, . . . . and N -sorterg

networks into a single sorted sequence. The most economical merge

networks yet designed, known as the M[g,d]'  merge networks, consist of d

smaller merge networks -- where d is a common divisor of N1☺p l l l ,Ng --

followed by a special comparator network labeled a "[g,d]  f-network."

In this paper we describe special constructions for [2r,2r]  f-networks,

r > 1, which enable us to reduce the number of comparators required by a

large N-sorter network from .2pNm(log2N)
2 - .25N(log2N)  + O(N) to

.27N(log2N)2  - .37N(log2N) + O(N).
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I. Introduction

A comparator network with 4 inputs is illustrated in Fig. l(a).

Each of the 5 comparators, labeled A, B, C, D, and E, compares its

two inputs and emits the smaller on its higher output lead and the larger

on its lower output lead. An abbreviated diagram for this comparator Let-
.

work is given in Fig. l(b), where each comparator is replaced by a vertical

line connecting the two comparands.

A comparator network with N input and output leads is called an

*
N-sorter network, or simply an N-sorter, if for any set of inputs I =

c .
i1’12,“*9 Ni 3, the resulting outputs 0 = (ol,02,...,oN] satisfy:

1) 0 is a permutation of I; and 2) oj I ok if j < k. The net-

work depicted in Fig. 1 is a b-sorter, since comparators A through D

move the smallest input to 01 and the largest input to O4’ and then

comparator E orders the remaining two inputs.

The most economical general strategy known for constructing N-sorter

networks, the [g,d] strategy, is introduced in [ 2 ]. Although it rep-

resents an extension of the earlier paper, the present paper is self-

contained. The earlier paper describes the [g,d] strategy for arbitrary

g,d, and gives specific results for N-sorter networks with N < 36. The

present paper describes the especially efficient networks that have been

discovered for the case g = d = 2r.

* Since we wish to allow for the possibility that two or more inputs
have the same value, we probably should refer to I and 0 as
"mu1tisets," rather than as "sets." And we should then refer to
particular members of I asa "submultiset" of I, rather than as

a "subset." (See D. E. Knuth [ 1 I.) However, we prefer to use the
more familiar terms "set" and "subset," and will do so consistently,
even when all members of I are required to have one of the values
0 or 1.
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Fig. 1. b-sorter network.
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11. C&d1 Sorting Networks

One way to determine whether a comparator network with N inputs

and N outputs is an N-sorter network is to verify that it will sort

all N1 permutations of the numbers 1, 2, . . ..N as inputs. However,

the following theorem reduces to 2N the number of input patterns

required to test a comparator network.

,Theorem  1: (Zero-One Principle)

A comparator network with N inputs and N outputs is an N-

sorter network if and only if it will sort all 2N combinations of

N inputs where each input is either 0 or 1.

Proof: See references 2, 3, and 4.

Although eN grows much more slowly than N!, it is not feasible

to test large networks for 2N different combinations of inputs.

Therefore, if we desire large sorting networks, we must build them

in such a way that we can guarantee "by construction" that they will

sort all combinations of inputs. The most economical strategy known for

designing large sorting networks, the [g,d] strategy, is introduced in

c 2 I. In the remainder of this section we present a brief description

of the [g,d] networks.

The purpose of the [g,d]  N-sorter network, where N = gd, is to

accept as input the unordered set I = (i l1’59 � l l 9 Ni 3
and to produce

as output the set 0 = (O 1Jo2.’ l �*) N t01 where 0 is a permutation of I,

and so s...so
Ol 2 No

In order to specify the internal structure of



the WI (d- sorter network precisely, we find it convenient to

consider I to be a g X d array, with I
(w) = i(a-l)d+B'

The g rows

and d columns of I are given by

Using this notation, we define the [g,d]-(gd)-sorter network as

i) g d-sorters for I
@,*)'

1sasg; followed by

ii) d g-sorters for I
(*,a)'

lI;pSd; followed by

iii) a special comparator network called a [g,d] f-network,

which is defined below.

It has been shown [ 2 , 5 ] that the g+d small sorting networks

in i) and ii) leave the rows and columns of I sorted. In order to

distinguish the original unordered set I from the set with sorted rows

and columns, we relabel the latter V = (v1’v2’“” Nv 3* The t-g,dl

f-network is defined informally to be a network that contains whatever

comparators are sufficient to transform the partially ordered set V into

the completely ordered set 0.

The Zero-One Principle guarantees that a comparator network which

begins with g d-sorters and d g-sorters is a (gd)-sorter network if it

sorts I when each.member  of I is either 0 or 1. Therefore, when

designing a [g,d] f-network that will complete the ordering of V, we

may assume -- without loss of generality -- that all members of V are

either 0 or 1. We make this assumption throughout the remainder of

- this paper.



If the number of O's in V
(*A)

is denoted Z(V >(*A> '
then it can

be shown that since the rows and columns of V are sorted,

z(yg,*))  s qg-l,*))  * l  l  l  z2 z(V(11�))  * qg,*))  + d;

�(�(�,d))  * z(v(+,d-l))  s l  * *  s z(v(�,l))  s �(�(+,d))  + g*

We are now in a position to make the following definition.

Definition 1:

A sequence of comparators is called a [g,d] f-network for N = td

items if and only if it will complete the ordering of the partially

ordered set V = (vl,v2,...,vN),  where a) the columns V
(*, 3 1'

lr;j<d,

are ordered and b) the number of O’s in V
(*A >

satisfies (4).

The best f-networks known for g,d = 2,4 are given in Table 1.

Each of the tabulated f-networks is described by a sequence of templates

of the form V~i,QI):V~i+j,B) -- where 1 < a, B S d, j 2 0, and a < jd f @

-- followed by a range for i, which is specified in terms of t = N/d.

Let fC&dl (N) represent the minimum number of comparators required

by a [g,d]  f-network for N items. (This function is only defined when

N is a multiple of d.) Since we have not proved that the f-networks in

Table 1 are minimal, we have labeled the number of comparators they

require aCp,dN)’ Note that 9Cf3,dl (N) is linear in N, i.e. that

a ’
[g,d](N) = a[g,d] N - b[g,d]'

where a[g,d]
is (l/d) times the number of templates required by the

(9

[g,d] f-network and bCfibdl is a positive constant.



C&d1

Cwl

P,41

Pb21

II?,41

f-network for N-sorter, N = td

'(i,2)"(i+l,l)' 1 5 i 5 t-l.

v(i,3)'v(i+l,l)p 1 5 i 5 t-l;

v(i,4)'v(i+1,2)9 1 I i 5 t-l;

'(i,2)"(i,3)>
lSi.St;

v(i,4)'v(i+l,l)'
1 S i S t-l.

v(i,2)'v(i+2,1)J 1 5 i I t-2;

v(i,2)'v(i+l,l)9 1 S i I; t-l,

v(i,3)'v(i+2,1)p
1 S i S t-2;

'(i,4)"(i+2,2)' 1 S i S t-2;

v(i,2)'v(i+l,l)' 1 I i 5 t-l;

'(i,4)"(i+1,3)' 1 5 i 5 t-l;

v(i,3)'v(i+l,l)9 1 I; i 5 t-l;

v(i,4)'v(i+1,2)' 1 S i 5 t-l;

'(i,2)"(i,3)' 2 I i 5 t-l;

v(i,4)'v(i+l,l)9
-1 I i S t-l.

A
f[g,dl (N)

t-l = *N-l

4t-3 = N-3

2t-3 = N-3

8t-11 = 2N-11

-i

!

Table 1. Small f-networks.
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We may use the [g,d] strategy recursively to obtain N-sorters for

arbitrarily large N, provided we can construct [g,d] f-networks for

large N. Theorems 2 and 3 below, which are proved in [ 2 1, describe

two methods for constructing large f-networks using several copies of

smaller f-networks.

Theorem 2:
. - .

Let the set V = (vl,v2,...,vN~,  where N = tsd, be considered a

t x s x d array, with V (i,j,k) = v (i-i)sd+(j-l)d+k'
Then we can

construct a [g,sd] f-network for V using:

i> d [g,s]  f-networks for V
(*,*A

1SkSd;

followed by

ii) one [g,d] f-network for V.

Theorem 3:

Let V be as in Theorem 2. Then we can construct an [sg,d]

f-network for V using:

i> s [g,d] f-networks for V
(*A*>

1SjSs;

followed by

ii) one [s,d].f-network for V.

As an example of the constructions described by Theorems 2 and 3, ,

suppose that we desire to construct a [2,2']  f-network for the set

r
v = Cv+5’ l � � 9 N

v ), where N = t-2 . According to Theorem 3, we should
.

consider V to be a t X 2 X 2
r-l

array, and use i) 2r-1 [2,2]  f-networks

for '(*,*,k)'
1 5 k S 2r-1, followed by ii) a [2,2r-1] f-network for V.

From Table 1 we find that the [2,2) f-network for Voc,*,Q
requires the

comparators V (i,2,k):V(i+l,l,k), 15 i 5 t-l, so that all of the
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comparators required by i) are described by V
(i,2,k):V

r-l
(i+l,l,k

lSiSt-l,lSkS2  .

It is not really necessary to consider V to be a t X s X d array

in order to apply Theorems 2 and 3, although this assumption does

simplify the description of the [g,sd] and [sg,d]  f-networks. In the

next section we find it necessary to describe a [2,2r]  and a [2r,2]

f-network for a t X 2r array. It is readily verified that the

comparators prescribed by Theorems 2 and 3 for these two f-networks

are those given in Corollaries 1 and 2 below.

Corollary 1:

Let the set V = (vl,v2,...,vN),  N = to2r, 'be considered a t X 2r

array. Then we can construct a [2,2r]  f-network for V using:

i> the +(N-2r) comparators V
(i,s+2

r-l :V
) (i+l,s)'

l~iSt-l,lssS2
r-l

; followed by

ii) one [2,2r-1] f-network for V.

Corollary 2:

Let V be as in Corollary 1. Then we can construct a [2',2]

f-network for V using:

i> the *(NOES) comparators V
(i,2s):v(i+1,2s-1)'

l~iSt-l,l~sS2
r-l

; followed by

ii) one [2
r-l

,2] f-network for V.

The number of comparators required by the best f-network that can

be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is given by
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a
C&d1 ( >N = min min

I I

F(ww%P) J (6)
lsq<g lSp<d

g mod q = 0 2<q+p
d mod p = 0

where

F(g,d,N,q,p)  = q*P’ a[g/q,d/p] W(w) > + Q[q,p] w

+ q*
a
k/q,Pl

(N/q) + p.3
[s,d/Pl(N’P)* (7)

Note that acg l](N) = a,, d](N) = 0, so that: a) if q = 1, then (7)
9 9

describes a construction that uses only Theorem 2; b) if p = 1, then

(7) describes the use of Theorem 3 alone; and c) if p,q > 1, then (7) 5

describes a network built using both theorems. The case p = q = 1 is

not allowed, since it would reduce (6) to an identity.

We may use Equations (p)-(7) to show that the number of compar-

ators required by the best [2',2j] f-network that can be constructed

according to Theorems 2 and 3 is given by

aC2i,2jl = min min
OSr<iOss<j

O < r + s  ,
I a[2i-r j-s,2 ] + aC2r,2sl

aC2 i-r,23 + a[$p] , ;

1

A
f[2i,2jl = y2i,2jlN - bC2i,2jl,

where

(9)
\

(8)

r+s
b[2i,2j] =

max max 2 b
OSr<iOSs<j C2

i-r j-s
92 3

( 011 '

O < r + s  '

+ 2rb i-r
+ b[2r,2s] [2 ,2s]

+ 2sbC2r,2j-sl
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Starting with a
[2,2] = ii9 b[2,2]

= 1, which we obtain from Table 1,

we may use (9) and (10) to show that the most economical [2,4], [4,2],

and [4,4] f-networks that can be constructed using Theorems 2 and 3 are

described by

"[2,4]  = “[4,2]  = ';

b[2,4]  = b[4,2]  = 3;
( 111

a[4,4] = 2;

b[4,4] = ge

The [2,4] and [4,2] f-networks listed in Table 1 are, in fact,

constructed according to Theorem 2 and Theorem 3, respectively. However,

the [4,4] f-network given in Table 1, which achieves b
c4,41

= 11, is the

smallest example of ,a more economical construction that has been

discovered for [2r,2r] f-networks, r > 1. This construction is described

in the next section.



11

I I I . Constructing [ 2r,2r] f-networks

In this section we describe a particularly efficient method for

constructing [2r,2r] f-networks, r > 1. The construction depends

upon the concept of a "redundant" comparator. Now the purpose of

the comparator v :v and v
Q! B

is to compare va B
and to interchange

the two if V~ > v The
B
, which is to say, if va = 1 and vP = 0.

comparator v :v
a B

is said to be "redundant" if it can be shown that,

as a result of previous comparators, (va
= 1) * (v

B
= 1). A

redundant comparator never makes any interchanges; therefore, the

network performance is not altered by removing any redundant com-

parators.

The method used in this section for constructing a [2r,2r]

f-network is: a) to determine the templates required by the

[2r,2r] f-network derived using Theorems 2 and 3; b) to reorder

the templates in such a way that, although the resulting network

still orders V, some of the comparators become redundant; and

4 to remove the redundant comparators. The number of comparators

required by the efficient [2r,2r] f-network is just the number

determined by Equations (8).(IO), minus the number that become

redundant when the templates are reordered. Since the economical

construction does not reduce the number of templates, the linear

coefficient a[2r,2r, is not changed from (9). We shall see that

the improvement is reflected by an increase in b[ 25 2r]
over (10).

Suppose that we desire to construct a [2r,2r] f-network for the

set V = {vpvp-9 vN) , where N = t*2r. According to Theorem 2,

the [2r,2r] f-network can be constructed using: a CC2r-l 1
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f-network for the odd members of V, labeled Vo; a [2r,2
r-l

] f-network

for the even members Ve; and a [2r,2]  f-network. Furthermore, according

to Theorem 3, each of the [2r,2r-1] f-networks can itself be built out

of two [2
r-l ,2r-1]  and one [2,2r-1] f-networks. The successive levels

of detail for the resulting [2r,2r]  f-network are displayed in Fig. 2.

Considering V to be a t X 2r array, we define the six subsets of V

appearing in Fig. 2 as follows.

V01 = u
i odd

LJ I'(i,j$
j odd

V02 = u
i even

Vel = w
i odd

u iV(i j)J
j even 9

Ve2 = w
i even

w I'(i,j)l
j even

v. = volu vo2

‘e = ‘el w ‘e2

( 2)1

(13)

( 4)1

( 3)1

( a1

(17)

These subsets are illustrated for the case t = 2r = 4 in Fig. 3, and

for the case t + 10, 2r = 8 in Fig. 6.

We may use Corollary 2 to express the [2r,2]  f-network in

r-l
Fig. 2(b) as g(N02~) comparators followed by a [2 ,2] f-network



c

yi
.

3 A [2r,2r-1]
c

f-network
s
l

for V.

?+l -y-L

v2
v4

vN

4-

'[2r,2r-1]
8

f-network '0 8
l for Ve _ ,

l A

f-network

for V

.
vl . ' C2r-l,2r-lI  .

a 8 c2,2*11  ’
f-network '8

v2r+l . 'I CZr;l ,2r-l,
1

l l

b l

for V.
. lfor Vo2 , -. .

b + 1

.

*

1

v2 l A c2r-l,2r-ll  .

I

I
8 0

8 for Vel , 8 ,,c wpll
4 e

f-networke - .
yzr+2 8

1
II2

r-l,2r-l, l

b b for V, * ,
t for Ve2 , 0

-
l

(b)

-01
-02
- 0

3
l

l

cc2 1
f-network
for V

.

.

Fig. 2, [2r,2r] f-network constructed using

(a) Theorem 2 and (b) Theorem 3 twice.
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for V. The resulting [2r,2r] f-network contains the following

four groups of comparators, which appear sequentially.

1) Four [2
r-l r-l

,2 ] f-networks for V
01'

V
02>'elJ e2'

v l

2) Two [2,2r-1] f-networks for V. and Ve;

3) The *(NOES) comparators V
(i,2s)'v(i+l,2s-l)9

1 5 i 5 t-l,
r-1

lSsS2 ;

4) A [2r-1 ,2] f-network for V.

The economical [2r,2r] f-networks take advantage of the following

observation (which is proved below): If we interchange the order of

2) and 3), then not only does the resulting network still order V,

but also 2r-1 of the comparators in the [2r-1,2] f-network become

redundant.

Before proving this observation, we shall illustrate the con-

struction, using the [4,4] 160sorter as an example. The partial

ordering in the intermediate set V is illustrated in Fig. j(a),

with an arrow from
L!

to v
B

representing the relation 5V
% f3*

The dashed lines in Fig. 3(b) represent the four [2,2] f-networks

required by 1) for the four sets Vol, Vo2, Vel, Ve2. The dashed

lines in 3(c) through 3(e) represent, respectively: the 6 compara-

tors called for in 3); the [2,2] f-networks for V. and Ve required

bY 2); and the [2,2] f-network for V given in 4).

The comparators illustrated in 3(b) through 3(e) are exactly

those described for the [4,4] f-network in Table 1 --

plus two extra comparators in 3(e), namely v :v
2 3 and v14:vw

These two comparators are redundant. The partial ordering in V

depicted in Fig. 3(a) requires that vl = 0 if Z(V) 2 1, and that
-
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(4

(d)

c

Fig. 3. f-network for

[4,4] i6-sorter.

Key: Vol = (j ;

v=;02 LJ

v =(3;el

v -e2 A .
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v2
=O orv =5 0 if Z(V) 2 2. The comparator v2 :v5 in3

guarantees that v2 = 0 if Z(V) 2 2. Therefore,

( v2 = 1) * (z(v) < 2)

a cv 3 = 11,

( 1C

( 9)1

so that the comparator
v2:v3

is redundant. By symmetry, the

comparator v 14 :v15 is also redundant.

Although the economical [2r,2r] f-network is a modification of

the network depicted in Fig. 2 and described by (18), it still begins

with four [2
r-l r-l

,2 ] f-networks for V
01' 02'' 'e19

and V
e2'

In

Fig. 4 we display successive levels of detail for a third possible con-

struction for a [2r,2r] f-network. Note that it, too, begins with

four [2
r-l r-l

,2 ] f-networks for V01' 02'' 'e19
and V

e2'
although

the remainder of the network differs from that in Fig. 2. All three

[2r,2r] f-networks share the construction depicted in Fig. 5, namely

four [2
r-l

,2r-1] f-networks followed by a special comparator network

that we shall call an [r] h-network.

An [r] h-network is defined informally to be a network that

contains whatever comparators are sufficient to complete the

ordering in V. Fig. 2 and -Fig. 4 illustrate two different [r]

h-networks.

In order to define an h-network precisely, let us consider the

partial ordering in V achieved by the four [2
r-l

,2r-1] f-networks.

Clearly they order the sets Vol, Vo2, Vel, Ve2. Since the construction

of Fig. 2 and (18) guarantees that a [2,2r-1] f-network will complete

the ordering of Vo, once Vol and V
02

are ordered,

z(vo2)  s Z(Vol)  s Wo2) + 2r-1* (20)
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vl

v2 4

12r1,2rl

. f-net for

' v(2s-l,*,*)
b

- vol"vel

.

.

.

[2,2r 3
f-network

-I

- [2r-1,2r]

f-net for
l

Ve (2s,*,*)
0 -V WV02 e2-

+
for

- Ol
- O2
-03

.

I

.

.

.

.

r- t-q

: [2pi*2r-q : c2r-1,2 3 ,
. for Vol l ) f-net for b

c2,2r  I
f-network

1 for V

4 V
.

[2y2*l  I :
(2s,*,*) l

.

* ‘02” ‘e2 ’.
-

b)

- Ol
- O2
- 03

l

.

.

.

l

- ON

Fig, 4. [2',zr] f-network for V constructed using

(a) Theorem 3 and (b) Theorem 2 twice.



18

t 7
1 I

9 0 [pp] l

I -O1
l . L

. for Vol l l O2
.

b l O3
v2r+l l IN r1,2r-1]  ;

I 0

l Cz

I: 1
l

l
. rI for' Vo2 1 b

W-- - h-network
e

l for V
.

9 a [pJ9  ’
A b

l e

b for Vel b l

1

. 4
.

1 r 1

b r-1 r-1
a C2 21 :
, for Ve2 43 1 I

. .-ON

Fig, 5. [zr,zr] f-network.
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Similarly, since another [2,$-l] f-network will order V
e'

once

V
el

and V
e2

are ordered,

Z(V,2) s z(vel) * '('e2) + 2r-1

According to the construction depicted in Fig. 4, one [2 r-1, 21

f-network will order voluvel
and another will order V u

02
V
e2'

once V V V
01' 02' el'

and V
e2

are all ordered. Therefore,

z(veJ 5 z(voJ 5 z(v,J + 9-l;

Z(Ve2) 5 Z(Vo2> ’ ‘(‘e2) + 2r-1*

( 21)

(22)

(23)

We are now ready for the following formal definition.

Definition 2:

A sequence of comparators is called an [r] h-network for N = te2r

items if and only if it will complete the ordering of the partially

ordered set V = {vl,v2,...,vN], where a) the four subsets of V

defined by-(12).(15) are each ordered and b) the number of O's in

these subsets satisfies (20).(23).

From out discussion of Fig. 2 we conclude that one possible

construction of an [r] h-network consists of items 21, 3)r and 4)

from (18). Lemma 1 shows that we may interchange the order of 2) and

3) in (18).
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Lemma 1:

Let the set V = (v1,v2,...,vNj,  where N = t.2r and t is even, be

considered a t x 2r array. Then we can construct an [r] h-network for

V using:

i) the a(N02~) comparators V (i,2s):v(i+1,2s-l)9

1 S i 5 t-l, 1 < s < 2r-1, that produce the inter-

mediate set v ; followed by

ii) one [2,2
r-l

] f-network for V. and another [2,2 r-l ]

f-network for ve; followed by

iii) one [2
r-l

,2] f-network for V .

Proof:

The complete proof of Lemma 1 is given in Appendix A. Essentially

we show that the comparators in i) tend to move O's from V0 to ve,

while maintaining the partial ordering in the four subsets of V.

Specifically, we prove that Vol, Vo2, Vel, and Ve2 are all ordered and
that

z(Vo2) s z(Vol) s z(Qo2)  + 2?

z(Ve2) 5 Z(Vel) 5 de21 + -e

z(V
e

) 5 z(Vo) 5 Z(Ve) + P-

(24)

(25)

(26)

' r-l
Therefore, the [2,2 ] f-networks in ii) will complete the ordering

of V and Ve, so that the [2
r-l ,2] f-network in iii) will then order V .

0

Q.E.D.
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We can use Corollary 1 to express the [2,2r-1] f-network for 0
0

in ii) of Lemma 1 as the &(&-2r-1)
A

comparators V(i,s+2
r-l :V) (i+l,s)'

1 I; i 5 t-l, 1 < s zz 2r-1, s odd, followed by a [2,2 r-2] f-network.

Similarly, we can use Corollary 1 to express the [2,2r-1]  f-network

for ae as $2(*N-2'-l) comparators followed by a [ 2,2
r-2

] f-network.

This leads to the following recursive construction for an Lr)

h-network.

Theorem 4:

Let V be as in Lemma 1. Then we can construct an [r] h-network

for V using:

i>

ii) the $2(N02~) comparators V
(i,s+2

r-l 3
)' (i+l,s)'

iii)

the *(N-2') comparators V (i,2s)'v(i+1,2s-1)9

1 I; i < t-l, 1 < s < 2r-1, that produce the inter-

mediate set V ; followed by

1 I; i I; t-l, 1 I; s 5 21r-l, 1 5 k 5 2, that produce

the intermediate set ?; followed by

an [r-l] h-network for "v.

Proof:

Lemma 1 and Corollary 1 imply that the intermediate set y can be

r-2 r-2
ordered by: a I2,2 ] f-network for To and another [2,2 ]

f-network for ye, .followed  by a [2
r-l

,2] f-network for ??. As noted

above, these three f-networks constitute one example of an [r-l]

-

h-network. (Simply replace r in Fig. 2 by r-l.) A complete proof of

Theorem 4, which shows that the number of O's in the four subsets of

Y satisfies (20).(23) with r replaced by r-l, is given in Appendix B.

Q.E.D.
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Consider the [r] h-network illustrated in Fig. 2, namely a

[2,2r'l] f-network for V. and a [2,2r-1) f-network for Ve followed by

a [2l-,2] f-network for V. We may use Corollary 1 to express the

[ 2,2r-1] f-network for V. as the sequence of templates a!
r-1�

a
r-2>  � l jal☺

where a) ar 1 is the template V
(i,s+2

r-l :V
> (i+l,s)'

1 5 i < t-l,

l<s52
r-l

, s odd; and b) the sequence a CXp’ p-l’-‘-’ a represents the1

templates for the [ 2,2'] f-network for Vo. We may use Corollary 1 to

express the [2,2r-1] f-ne workt for Ve as a similar sequence of templates

B r-l, Br-2J l * l ,B,*
Since the templates a and p are identical except

P- P

that alp requires s odd and @
P

requires s even, we can combine the two

templates a and p
P P

into a single template T
P*

In a similar manner we may use Corollary 2 to express the [2r,2)

f-network for V as the sequence of templates sr,nr-l,...,fll,  where a)

fir is the template V lsi<t-l,lss5  2
r-l

(i,2s)'v(i+1,2s-1)'
; and

b) the sequence g
p3fip-l�  l l 41

represents the templates for the [2',2]

f-network for V. The [r] h-network illustrated in Fig. 2 may then be

represented as the

Theorem 4 embodies

sequence 7
r-19

7
r-29 l �*t ?1,Xr�flr-19  l l l +*

However,

the following corollary.

Corollary 3:

Let V be as in Lemma 1; let the two sequences of templates

I- r-l9 r-2y"'9TlI- and fir’fir-l’ . . ., ~1 be as defined above. Then the

following sequence of templates constitutes an [r] h-network for V.

‘I[r”r,l ’, r-l' . . . ,7p1  l (27)
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The partial ordering in the intermediate set V achieved by the

[2r,2r] (4')-sorter network is not completely specified by (2O)-(23).

Since the odd rows of V contain members of Vol alternated with members

of Vel' while odd columns of V consist of members of Vol separated by

members of Vo2, and since the rows and columns of V are ordered,

z(vol) g z(v,J + wo2> + l* (28)

If the number of l's in Ve2 is represented by IV,,l, then we can show

by symmetry that when t is even,

I IV
e2 ' I'ell + Iv021 + ‘* (29)

We shall see that the additional ordering in V specified by (28) and

(29) guarantees that 2r - 2 of the comparators in the [r] h-network

for V described by Corollary 3 are redundant. To show this, it is

convenient to use two lemmas.

Lemma2:

Let V = E vl,v2,...,vN], where N = t*2r  > 2r and t is even.

Suppose that the four subsets Vol, Vo2, Vel, and Ve2 of V are each

ordered and that they satisfy (2O)-(23). Suppose also that

wel> < 2r-1 * z(vo2) s Z(Vel>  ;

I IV02 <2r-1 zs Iv,,1 si Iv,,l l

(30)

(31)



24

Then if we apply the [r] h-network described by Theorem 4 to V, the

2r comparators V i E [1,t-11, 1 S 8 S 2
r-l

(i,2s):v(i+1,2s-1)'
, are

redundant.

Proof:

The $(N-2r) comparators V(i,2s):v(i+1,2s-1)' l 5 i S t-1,

1 S s 5; 2r-1, are illustrated in Fig. 6 for the case t = 10, 2r = 8.

th
The comparator V(l,2s):V(2,2s-1) compares the s member Qf Vel,

written (Vel)s, with the sth member of V02' (vo2)s'
Suppose that

('ells =
r-l

l,wherelsss2 . Then, since Vel and Vo2 are ordered

we may use (30) to show that

(‘el>s = l* Z(V,l) < s s 2
r-l

* z(vo2) 5 Z(vel>  < s

*(v ) =l.
02 s

(32)

Therefore, the comparators (Vel)s:(Vo2)s  Or V(l,2s):V(2,2s.4'

1 5 s < 2r-1, are redundant.

If t is even, then the comparator V(t-1,2s):V(t,2s-1)~

r-1, may be rewritten as (Vel)a+s:(Vo2)a+s, where a = $N-2
r-l

lSsS2 .

Suppose that (Vo2)a+s = 0, where 1 s s s 2
r-l

. Then since Vo2 and Vel

are ordered, we may use (31) to show that

('02)a+s = O * Iv,,l e2r-l-s+l 5 2
r-l

* Ivell s Ivo21 < 2r-1-s+l

* CVel)a+S = O* (33)



f-
/

F&Av30 dv31 /
0v39

L

,

Fig. 6. The comparators v(i,2*)'v(i+l,2*-l)'

Key: Voi = 0 ; vo2 * a ;

v =el 0 ; v =e2 n .
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The contrapositive of (33) is (Vel)a+s = 1 =$ (Vo2)a+s = 1, so that

the comparators V
(t-1,2s):V(t,2s-1)' 1 s s s 2

r-l
, are also redundant.

Q.E.D.

Lemma3:

Let v = [v~,v~,...,v~),,  where N f t*2r > 2r and t is even.

Suppose that the four subsets Vol, Vo2, Vel, and Ve2 of V are each

ordered and that they satisfy (2O)-(23),  (28) and (29). Then if we

apply the [r] h-network described by Theorem 4 to V, the lubsets of

the intermediate set 7 satisfy (x))-(23) and (28)-(31),  with r replaced

by r-l.

Proof:

The proof of Lemma 3 is given in Appendix C.

Consider the [r] h-network described by the sequence of templates

given by (27), where YC, operates on a set V, 7r 1 operates on 0, and

Ycr-l
operates on 7. If the subsets of the original set V satisfy the

hypotheses of Lemma 3, then Lemma 3 shows that ?? satisfies the

hypotheses of both Lemma 2 and Lemma 3. Lemma 2 shows then that 2
r-l

of the comparators in ZJC
r-l

are redundant; repeated use of Lemmas 2 and

3 shows that 2" comparators in fi are redundant, 1 5 p < r-l. This
P

inspires the following definition.
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Definition 3:

Let V = [vl,v2,...,vN3,
r

where N=t*2, be considered a

t X 2r array. Then a reduced [r] h-network or an [r]

&network consists of:

i> the $(N-2r)-2r comparators V
(i,26)'v(i+l,2s-1)9

2 5 i S t-2, 1 S s 5 2r-1, that produce the intermediate
A

set V; followed by

4 nothing, if r = 1; or
A A

b) the g(N-2r) comparators V(i,s+2r-l):V(i+l s))
9

r-l
l<iIt-l,lSs<2 , that produce

the intermediate set 7; followed by an [r-l] & -

network for 7.

It is readily verified that the [r] & -network requires

y
p=l

p = $-+I - 2 fewer comparators than the [r] h-network.

Theorem 3 shows that if V is the intermediate set for the [2r,2r]

(br)-sorter  network, then the cr-11 h-network in iii) of Theorem

4 may be replaced by an [r-l] 8 -network, thereby saving $02

comparators.

Theorem 3:

We may complete the ordering of the intermediate set V achieved

in the [ilr,2']  (4.~)~sorter  network using:

j-1 four [2
r-l r-l

,2 ] f-networks for the subsets V V
01' 02'

v v;
el' e2

followed by

ii) the [r] h-network described by Theorem 4 with the [r-l]

h-network for the intermediate set 7 replaced by an

[r-l] &network.
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This theorem summarizes the results of Theorem 4, Lemma 2, and

Lemma 3.

The number of comparators required by the economical [2r,2r]

f-network described by Theorem 5 is given by

A A
fC2r,2rl(N) = 4 f~2r-l,2r-l,(~N) + N - zr + $r-l,w (34)

where( 54 (N) is the number of comparators required by the [r-l]

&network. We may use Definition 3 to show that r-l]
(N) satisfies

the recurrence relation

5#) = &,(N) + N - zr+‘,

with the boundary condition

%l]CN) = +N-3.

(35)

The solution to (35) and (36) is

%#) = (r-9) N - (zH2 : 5>* .

A

We may use (37) along with the boundary condition f[2,2](N) =

& -.l to solve (34). In the notation of the last section,

(36)

A

f[2r,2’1(N)  = 43[$$]N - b[2y]9 (38)



where

a[g21‘]  = 9 r2 9

4 4’b[2r,2r] = 3
- 3.2r + 3
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(39)

(40)

When i # j and i,j>l, the most economical [2 i j,2 ] f-networks

known use the economical [2r,2r] f-networks as building blocks for

the construction of Theorems 2 and 3. The number of comparators

required by these networks is given by Equations (8).(10). It is

readily verified (by induction) that

a[2i,2j] = a<w>,

which reduces to (39) when i = j = r. No closed form solution is

known for bC2i,2j, with arbitrary i,j, and i # j, although the

following special result can be proved.

(2ki-l)
b[2i,2ki] = (2i 1) b[2i,2i]9

(41)

W)

.

where bC2i,2il is given by (40).

We have calculated b i jc2 2 1 for i,j 5 32, and give the results

for i,j s 8 in Table 2. The symmetry of (10) implies that

b[2i,2j] = b[2j,2il, (43)



30

which is observed in Table 2. For i < j 5 32 we find that the

right-hand side of (10) is minimized if and only if r = 0 and s 5 j

(mod i). Therefore, for i S j 5 32, we may express bc2i,2jl in the

following recurrence relation.

b[2i,2j] =
2j’i

b[2i,2i] + bL2i,2j-i,  l (44)

We hypothesize that (44) holds for all i S j; however, no closed form

solution is known for (44).
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3 11

7 25

15 55

31 113

63 231

15 31 63 127 255 '

55 ll3 231 465 935

133 277 567 1141 2293

295 605 1235 2493 5015

605 _ 1271 2573 5197 10445

1235 2573 5271 10605 21315

2493 5197 10605 21463 43053

5015 10445 21315 43053 86615

Table 2. @mall values of
b[2i,2d]e
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IV. (2m)-sorter  Networks

The minimum number of comparators required by a network that

sorts N inputs is denoted S(N). Let G(N) represent the minimum

number of comparators required by an N-sorter network that makes

repeated use of the [g,d] strategy. In this section we examine

the asymptotic growth of G(N) t restricting our attention to the

special case that N is a power of 2. (Results with [g,dl networks

for N I 36 are given in [ 2 1.) If N = 2m, then since N = gd,

g and d are also powers of 2. Clearly G(2m) satisfies the

following recurrence relation.

G(2m) = min 2r G(2m-r) + 2m-r G(2r) + ;
m

(2 >
o<ra [2r,2m-r]

We have calculated G(2111) for m I 64 and give the results for
A

m<16 inTable3. Note that since f
c2i,2j]

(N) = :
[2j,27

w,

we may restrict r to the range bl rr<m. The column entitled rG

gives those values of rE-[@d,m-i] that minimize the right-hand-side

of (45). For example, when m = 4 the minimum is achieved only for

r = 2, whereas when m = 5 the minimum occurs for both r = 3 and

r = 4.

When m is even, our results in the last section indicate that
A m

f[2r 2m-r]
(2 1 is minimized by

that'the right-hand-side of (45)

r = +m. We might expect, therefore,

should be minimized by r = T&l, so

that when m is even the optimal (2m)-sorter network should be

"square." However, we observe from Table 3 that the minimum almost

always occurs when r is a power of 2. This is explained as follows.
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m N=2m
rG G(N) 5

A

S(N)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2 1 1

4 1 5 5

8 2 19 19

16 2 61 60

32 394 187 4 185

64 4 525 4 521

128 4 1427 4 1419

256 4 3705 4 3673

512 6 9457 598 9395

1024 698 23357 698 23229

2048 8 56787 8 56531

4096 8 135417 8 134649

8192 8 319827 8 318291

16384 8 743421 8 740349

32768 8 1714003 8 1707859

65536 8 >gW+97 8 38gllq

Table 3. G(zrn) and G(2m) for m s 16.
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A [g,d] (2m)-sorter network begins with 2m 2-sorters. The

remainder of the (2"> -sorter is a succession of f-networks inter-

spersed with 2-sorters. When m = 2k, each of the f-networks in the

(2m)-sorter can be one of the efficient square f-networks described

in the last section; therefore, the (2m)-sorter networks are

particularly efficient whem m = 2k. Now we show below that

G(2m) - &n22", whereas from Equations (8) and (41) we know that
A

f[2r,2m-r,
(2"> - &(m-r)2m. Since r 2 r*l, this means that the

(45) is 2m-rG(2r).- By choosing r to be a powerdominant term in

of 2, we maximize the efficiency of the largest component of the

m
(2 > -sorter.

As noted above, when m = 2k the (2m)-sorter network can re-

strict itself to the efficient square f-networks. This construction

leads to the following recurrence relation.

G(22m) = 2m+1 G(2m) + : @v

k
m=2;

c2m,2m, ' k 2 0.

using  (38). (40) and the boundary condition G(2) = 1, we find

that the solution to (46) is

G(zm) = $-II'  - (; + ak)m + 4
C 1 2m - $,

Where

,-(e'+r)
.

(46)

(47)

( 48)

-

Since Ok converges rapidly to .107, the asymptotic growth of

G(N) may be expressed as
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G(N), = .250 N (log2N)2 - 0357 N (logp) + O(N). (49)

A
Let S(N) represent the number of comparators required by the

most economical N-sorter network known. For m s 3, $2m) = G(2m).

However, M. W. Green [3] has designed a l&sorter network which

requires only 60 comparators, whereas ~(16) = 61. For m > 4, the most

economical (2m)-sorter  network uses the [g,d]  strategy, encorporating

many copies of Green's economical 160sorter. Therefore, for m > 4,
A e
S(2m) satisfies

A A
s(2m) = min 2r G(2rn.4)  + 2m-r s(2r)

rtP1 a?a I
A

+ fc2r,2m-r,(2m) , m > 4 .
I

(50)

A
We have included S(2m)  in Table 3, along with the values of r,

labeled rs, that minimize the right-hand-side of (50). Again we

observe that the minimum normally occurs when r is a power of 2, which

leads to the same recurrence relation obtained above for G.

A
s(2a) = 2m+1

A A

Wrn! + f[2m,2m,(2
2m

Using (38).(40) and the boundary condition t(16) = 60 we find that

(51)

A
S(zm) =l

C

4$ m2 - (3 + ok) m + 3 1 (52)
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A
The asymptotic growth of S(N) is given by

A
S(N) = .250 N (log2N)2 - .372 N (log2N) + O(N). (53)
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v. Conclusion

Prior to the [g,d)  strategy, the most economical N-sorter network

known (for most values of N), used: i) a [*NJ-sorter; ii) a L&NJ-sorter;

and iii) a (rhl,L&J) merge network designed by K. E. Batcher [63. A

close examination of Batcher's N-sorter network for the set I =

c il’ i2’ . . ..iNj. where N = 2d, reveals the following. If I is

considered to be a 2 X d array, then Batcher's (2d)-sorter  network

begins with 2 d-sorters, one for I
cl,*)

and one for I(2,S),  followed

by d 2-sorters for I
(*, j 1'

lsjsd ! Therefore, Batcher's (2d)-sorter

network uses what we would call the [2,d] strategy. The [g,d] strategy

is simply an extension of Batcher's strategy to include values of g > 2.

The number of comparators required by Batcher's N-sorter network

is denoted B(N). With the boundary condition B(1) = 0, Batcher shows

that

B(2m) = (+m2 - +m + 1) 2m - 1, mZ 0;

Using the Green's 16-sorter as a boundary condition, i.e. using

B(16) = 60 leads to

B(2m) = ($m' - irn + g 2m - 1, m r 4;

(54)

(55)

Given the [2,2] f-network in Table 1, Theorems 2 and 3 guarantee
,

the existence of [2i j,2 ] f-networks for arbitrary i,j. Let Z(2m)

represent the number of comparators required by a [g,d]  (2m)-sorter

that uses only the f-networks constructed according to Theorems 2 and 3

from the [2,2]  f-network. Then the boundary condition z(l) = 0 leads to
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q2m) = (&II2 - +IIl + 1) 2m - 1, mT 0; (56)

which is exactly the same as (54). However, using the Green's 16.sorter

as a boundary condition leads to

32”) = (+ m2 - $m + 1) 2m - 1, t 5 ik9
1 (57)

The savings of (57) over (55) is possible because the [g,d] (2m)-sorter

can take better advantage of Green's 160sorter. For example, the

4 4+k
[2 ,2 ] (2

8+k
)-sorter can use 25+k copies of the efficient 160sorter,

whereas Batcher's [2,2
8+k, (28+k)

sorter can only use 2
4+k copies.

i 3
We have seen that the existence theorems for [2 ,2 ] f-networks

(i.e. Theorems 2 and 3) lead to N-sorter networks that require

- $ Nlog2N) fewer comparators than the best networks previously known.

In addition, we found that reordering the comparators in the [2r,2r]

f-networks prescribed by the existence theorems leads to the more

substantial savings of - (ok + (Compare

A
&N(log2N) comparators.

S(2m) given by (52) with B(2m) given by (55).)
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Appendix A: Proof of Lemma 1

Lemma 1:

Let the set V = (vl,v2,...,vN], where N = t*2r and t is even

be considered a t X 2r array. Then we can construct an [r]

h-network for V using:

i> t h e  $(N4f) comparators V(i,2s):V(i+l,2s-l),

1 S i 5 t-l, 15 SS 2r-1, that produce the inter-

A
mediate set V; followed by

r-l A
ii) one [2,2 ] f-network for V. and another [2,2

r-l
]

n
f-network for Ve; followed by

r-l A
iii) one [2 ,2] f-network for V.

Proof:

According to Definition 2, the comparators described by i) through

iii) constitute an [r] h-network if and only if they will complete the

ordering of V given that a) the four subsets of V defined by (12).

(15) are each ordered and b) the number of O's in these subsets

satisfies (20)-(23).

Let us assume that the partial ordering in V satisfies a) and

b)* Then, as noted in the text, to prove the lemma we need to show that

A A A A

'OS '02~ 'el'
and V are all ordered and that the number of O's in

e2

these subsets of ^v satisfies (24).(26). If we let (V )01 j
represent

the j
th member of Volt then the comparators in i) may be expressed as

('el)j ' (v,,)j, 1 i j 5 &N; (58 1
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(‘e2)J. : (vol)j+2r-l 9 1 g j s &N-2r-1.

(See Fig. 6.) Therefore,

(/\ >V
el 3 = Wellj A (v,,>,,

CA >V02 j = CVel) j " (‘,,)jP

(59)

(60)

(61)

(Ve21j A wol> j+$4 9 1 < j 5 *N-2-l;
( 62)

(52) j I kN-2'-' s j s +N;

CA 1V
(vOl) j

r-l
., 15352 ;

olj =
(Vollj V (Ve2)j-2r-l

9
zrwl 5 j +N.

(63)

Here "A" 11 1tand V represent the boolean "and" and "or" functions,

A
so that, for instance, (V ) = 1

el 3
iff (vel)j = (vo2)j ='l.

It is easy to verify that, since Vol, Vo2, Vel, and V82
are all

A A A A
ordered, Equations (60)-(63) imply that Vol, Vo2, Vel, and Ve2

are

all ordered as well. Furthermore,

z(Gol) = 2r-1 + min [Z(Ve2) t Z(Vol> - 2
r-l

1 9

z(Co2)  = ‘min [Z(Vel>  9 Wo2)l  9

z(Qel) = max [Z(Ve2) 9 ZWo2)1 9

Z(f)e2)  = m= [Z(Ve2)  9 Z(Vol> - 2r’ll l

(64)

(65 >

(66 >

(67 )
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From (65) and (66) we see that Z(co2) also, (64) and

(67) imply that z(Z,) 5 z(Ge2) + 2r-1. We may use (20).(23) and

(W-(67)  to show that Z(Ge2) < Z(Go2) and that Z(cel) s Z(Gol).

These relations are all summarized by

Z(Ce2) 5 z(co2) ' '('el) s z(Gol) * z(te21 + 2

r-l
l

(68)

*Since  Relation (68) embodies Relations (24).(26),  the lemma is proved.

Q.E.D.
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Appendix B: Proof of Theorem 4

Theorem 4:

Let V beasinLemma1. Then we can construct an [r] h-network

for V using:

2) the *(N-2r) comparators V(i 2s):v(i+1,2s-1), 1 5 i 5 t-l,
Y

r-l A
15852 , that produce the intermediate set V; followed

bY

ii) the i(N-2r'2)
r\ A

comparators - v(i,s+2*-l)~v(i+l,s)~

1 5 i 5 t-1, 1 s 8 S 2-l, that produce the

intermediate set ?; followed by

iii) an [r-l] h-network for 7.

Proof:

We may use Lemma 1 and Corollary 1 to show that a [2,2r-21 f-

network will order To and that another [2,2
r-2

] f-network will

order Ye. Therefore, each of the four subsets y '$! 701' 02' el'
and

'e2
is ordered. Furthermore, the number of O's in these subsets

satisfies

z(7f02)  s zflol)  s mo2>  + zrg2;

zfle2)  5 z(vel) g z(Ve2> + so2.

(6%

In order to prove that an [r-l] h-network will complete the ordering of

% we must show that the number of O's in the four subsets also satisfies
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zFel) 5 z(Vol) s z(Ye,)  + zro2; (71)

z(Ye2) 2 z(To2)  s zFe2)  + gro2; (72)

Now the four subsets yol, and Te2 of y are defined

bY (12)~P5), with t replaced by

so that '3 is considered to be a

the comparators listed in i) and

t X 2r arrays, it is convenient to

2t and with r replaced by r-l,

2t x 2
r-l

array. However, since

A
ii) assume that V and V are

consider 'ii to be t X 2r

as well. In this case the four subsets of 7 are given by

Yol

c3b2

'el

'e2

(See Fig. %)

v u
1SSt 3 oddrml

( v(i, j ,a;

jS2 ,.

u v
lSi<=t j oddrel

( yi, j+;

j>2

\ v
xist 3 evenrol

c yi,j)3;

jS 2

u
1sist

v
j evenrol
j> 2

c y(i, j)j*

(73)

(74)

(75 >

(76)

We may use the right-hand-sides of (73).(76), with y replaced by

A A

v, to define four similar subsets X
01'

X0,, Xel, and X of v.
e2

For example, we define

X =
01 u u IT >

V 3
l<iSt j Oddr-l

i,j ,

3s2

( 77)
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Using this notation we can express the comparators in ii) as

(Xoe)J
. : Cxol> j+2rm2 9

(Xe2’J. ’ (xel)j+2r-2 9

lsj <iN-2
r-2

;

1Sj <iN-2
r-2

.

(78)

(79)

These comparators are illustrated in Fig. 8.
A A

. From the proof of Lemma 1 we know that the four subsets Vol, Vo2,

A A A
Vel'

and V
e2

of V are each ordered and that the number of O's in

these subsets satisfies (68). Let us represent the number of O's in

A
V
01

as

z(Z,) = ao12r-1 + @o12
r-2

+ YolJ

where a
01' Bol9 and Y,, are integers satisfying

0 s aol * ht;

0 5 PO1 5 1;
r-2

0 s yol < 2 .

(80)

(81)

A
We can represent Vo2 in terms of similar coefficients aO,,  PO,, and

Y0 2 ’
Note that (68) implies that ao2 5 a01 5 ao2 + 1.

The subset x01
A

of V includes the first 2
r-2 members of each row

A A
of v01

and the first 2
r-2 members of each row of V0 2 ’

(See Fig. 8).

Since Co1
A

and Vo2 are each ordered,
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A
Fig. 8, The comparators c(i,s+2r' yV(i+l,a)'

Key: Xol - 0 ; Xo2 = [51 ;

Xel 0 ; Xe2 n .
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z(xol) = (clol + ao2)2r-2 + Al + $9

where

(a01 = 01,2)

(a01 = ao2+1) *

The first a01 + ao2

A

"rows" of X01'
given by

u Ev 3
j oddrwl (WA

,15i5aol+a
02'

jS2

each contain 2
r-2

0's. The next two "rows" contain hl and X2 O's,

respectively. Note that if 0 < A2 s Xl < 2r-2, then the subset Xol

is not ordered.
A

The s&set Xo2 of V includes the last 2
r-2

members of each

A A
row of V

01
and Vo2. (See Fig. 8.) Therefore,

z(xo2> = (01,l + ao,>2
r-2

+ crl + CL29

where

(a01 = a,2)
=a

i

P1 = @ol'y,l'

cr2 = B,,r,,;

,

(
\ IJ.1 = @02Yo2'

a01 = 0102+1)  *

1 CL2 = ~olYol"

(83)

(84)

(85)

(87)

(88)
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The first a01 + ao2 "rows" of X
02

are all O's; the next two

"rows" contain % and p2 O’s, respectively. Note that Xo2 is

not ordered if p2 > 0, since CL1 < 2
r-2

.

The comparators given by (78)-(79) transform the intermediate set
A
V into the set 7. As indicated in Fig. 8, the i

th
"row" of X

02

is compared, item by item, with the (i+l)st "row" of X01; the " row"

th
containing more O’s becomes the i " row" of To2 while the " row"

*with fewer O’s becomes the (i+l)
st "row" of

yOl*
Therefore,

ZFol> = (ao~+ao2)2r-2 + hl + mi4pI,h21;

zFo2)  = (OIo-po2br-2 + m=4j-+21 + CL20

(89)

(90)

We may refer back to the definitions of Ai and pi to verify

that (89)-(go) imply that

z(Yol) = 2r-2 + min[Z(Go2) , z(vol> - 2r-2];

zflo2)  = max[Z$021 , z(Gol) - 2r-23.

For example, if a01 = ao2, then (89) reduces to

ZFol> *= (~opo1Pr-2 + Po12r-2 + (l-Bol)Yol

+ mi4BolYol ., PO3r-2 + (w302)Yo21

minCz(^l) 9 z(^2)
r-2

= - ~02Yo2 + @o12

- PB,,)Y()l  I l

(91)

(92)

(93)
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Now z(Col)  < z(Go2) + 2r-2 implies that ~,l = PO2 and that

- z(I),,) = Yol - Y,2 < zp2, so that (93) becomes

zfio,) = min[Z(ffol) J z(oo2) + 2r-2 - Yol I

= min[Z(t),l) 9 Z(^2) + 2r-2J;

whereas z($,) 2 z(Co2) + 2r-2 implies that @,l = 1, PO2 = 0,

0 s Y,l - Y,2 < 2r-2, SO that (93) becomes

ZFol) = min[Z(^,) , Z(Go2) + zrW2]a

Equations (94) and (95) are equivalent to (91).

In a similar manner we can show that

zFel) = 2r-2 + min[zc^,, , z($,l, - 2r-2];

z(7e2) = m=Lde21 , Z(I\Vel)  - 2r-23:

(94)

(95)

(96)

(97)

Equations (91) - (921, (96) - (97)) and (68) together imply (7l)-(72);

as noted above, this is sufficient to prove the theorem.

Q.E.D.
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Appendix C: Proof of Lemma 3

Lemma 3:

Let V = (vl,v2,...,vN3, where N = t*2r > 2r and t is even.

Suppose that the four subsets Vol, Vo2, Vel, and Ve2 of V are

each ordered and that they satisfy (2O)-(23),  (28), and (29). Then

if we apply the [r] h-network described by Theorem 4 to V, the

subsets of the intermediate set y satisfy (20).(23) and (28)~(31),

with r replaced by r-l.

Proof:

The proof of Theorem 4 indicates that if the subsets of V are

ordered and satisfy (2O)-(23), then the subsets of 7 are also or-

dered and satisfy (20).(23), with r replaced by r-1. We shall

prove that if the subsets of V satisfy (28) as well, then

zflol) g zFe,) + zFo2)  + 1;

z(+Tel) < 2r-2 * zfio2) 5 z(Tel).

(98)

(99)

The proof that (29) implies that the subsets of '2! satisfy (29) and

(31) , with r replaced by r-l, follows from symmetry.

Suppose that Zfiel) 2 2r-2. Then (99) does not apply. And since

the proof of Theorem 4 demonstrates that

zfiol> 2 z(702)  + 2r-29 (100)
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Equation (98) holds when zFel) 2 2r-2.

Now suppose that (28) holds and that z(Vel) < 2r-2. Then from

(96) we see that

‘Fe,> = Z(Cel)  < F2.

Equations (101) and (66) imply that

z(vel) < 2r-2;

z(vo2> < 2r-2*

( 101)

002)

(103)

And we may use (21), (28), and (lO2)-(103) to conclude that

z(ve2) < 2r-2; (104)

z(vol) < 9-l. (105)

Equations (102)-(105) categorize the distribution of O's in V;

we may use these values in (64)-(67) to show that

dol) = z(voJ 5 z(vo2> + Z(V,l) + l
g z(Avo2) + 2

r-2.9

z(^2)  = miWvo2)  9 z(vel)] < 2r-2;

( 106)

(107)



Zoe2)  = z(vel) < 2r-2.
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( 108)

( 109)

And finally, @l)-(92) and (96).(97) then imply that

ZPol>  = do,) = z(vol); (110 1

zfio2) = z($2) -= min13(Vo2)  9 We,U; (111)

zFel> = ‘(‘el) = m=[Z(Vo2>  3 WeJ;

A
Zfie2) = z(ve2) = '('e2)*

(112)

(113)

From (ill)-(112) we see that Z(yo2) 5 Zfiel) so that (99) holds, and

that ZFo2) + Zflel) = Z(Vol) + Z(Vel)j so that (98) holds as we11*

Q.E.D.
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