
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-151

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS240

r

-

CORRECTNESS OFTWOCOMPILERS FOR A LISP SUBSET

BY

RALPH L. LONDON

OCTOBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

STANFORG ARTIFICIAL INTELLIGENCE PWJECT
MEMO AIwl51

OCTOBER 1971

COYF~JTER SCIENCE DEPARTMWT
W'ORT CS-24?J

.
CORRECTNESS OF Ti40 COMPILERS FOR A LISP SUBSET

by

Ralph L. London

AQSTQACT: lJJltW;;:n;; sFC~ct~~~~,~~ductlon, proofs of correctness
L LISP compilers for the PDP-10

comPuter are dven, I&Wed a r e t h e rationale f o r
presenting these PrOOfSt a dlscusslon of the oroofs, and
the changes needed to the second comp\(er to oomp(ete Its
Proof,

To be Presented at the hnferencs on Proving Assertions about
bogramS, New Mexico State University, January 1972,

This research was supported in part by the Advanoed Research
Projects Agency -of the Office of the Secretary of Defense under
Contract SD-183 and in part by the National Aeronautfcs and Space
AdminiStratIon under Contract NSR B5-020-500,

The views and conclJslons contained In thk document are those
of the author and should not be Interpreted as necessarily
r9DrQsenting the offii;ia(pOlicfss, either expressed or ImpI i@dr of
the Advanced Research Projects Agency, the Natbal Aeronautics and
spaces AdmInIstration, or the U, 5, Government,

Reproauced In the USA, Available from the Cleartnghouse for
Federal Scbntlfic a n d Technkal Ipformation (or Its SIJCC~~SO~S~~
Springfield, Virginia 22151, Prlce: Ful I SIZB CODY fs3,0111;
c.icrofkhe copy Wh95,

CORRECTNESS GF TWO COMPILERS FOR A LISP SU6SET

Ralph L, London

IVTRODUCTION AND JUsTIFICATIGN

This paper contafns proofs of correctness of each of two usef&
running compi(ers, named CO and C4, The source language for both
oomph lers Is the same subset of pure (baslc) LiSRr which subset
exciUdes special o r S;(Obai variables, function names as arguments,
and the form label: the @bJect language fs essentially assembly oode
for the PDP-10 COw3Uter t and the compilers themselves are written
rscur$lvely in RLISP (Hearn 197@), a version of Lisp with AlgolWlike
syntW, The compflers were writ-ten by John McCarthy as oapt of a
sgrfes of progressively more optlmlzlna compllers for US8 In a 00UrSe
at Stanford entitled "Computfng WI th Symbollo ExpreSsions Only
later have these compilers been consIdered for proving correctness,
A listirg of the compilers and sample output are in the AppendIces,

The proof P4 of correctness of the compiler C4 Is a mod]ffcatfon
and extension of the proof PO for CB, The organization of thlS Dawr
iS first to prove 33 correct exclusively, A brief discussion of the
proof appears Just after the proof, Then using the same machtnery
that IS defined, end using much of the proof PO, the compiler C4 1s
proved correct, This serial organlzatlon, reflaot/ng the essential
chronology of the work, seems Preferable to Provfng the two ~ompilers~
in+ parallel, The reader shou(d now ignore c4 (and P4) u&l the
stzrt of P4, except to note that the input and overal 1 statement of
correctness are the sarre as for CO,

To prove the correctness of a como~ler is a frequently heard
cha i (eve, The present proof partly responds to the chal'lenget The
compiler is sufficiently lengthy and comolex not to be vfewed as
mere!Y another cooked-up research example, AS evidence of this,
bihitfield Riffle has shown the comciler capable of comptllng itself
successfully, - Yet the comptler has certain toy-problem aspects, for
axarfple accepting a subset of full LISP, the inefficiency of the
fesu!th object code, anti the simple parser, It is certainly not a
Oroduction compiler, Nevertheless, exhibiting yet another proof
sesrrs JuctIfIed since (;I a compiler 1s somewhat different from Other
algcrittms that have oeen proved (there are at least two programs
59it-3 Bxecuted, the compiler and the object program8 and, to a lesser
extent, the source oroaramn); (11) there has oeen llttle progress In
orovtng cornPI lets correct beyond the work of McCarthy 8
painter(i9671, paipter(19671, Kaplan(l967)r hrstallW69L and
Qrstall 8 Landin (196% although tne work of McGowan(l971) should
be rrsntionedf Wi> there remains the WorthwhIle goa1 of being ab -
to prove camoIlers correct; (iv) this proof has been made to serve a s
tb9 nucleus of a proof of correctness of a more optlmiztng comY let-.
In the existing series; (v) the Informal proof serves as the basis of
more formalized Pfocfs~ the latter being necessary If a proof 7f

correctrass is to be chesked b y a roof checker (Milnrr 1972)) and
(vi) the ccrrectness of the complier iS not immediately ObvjOU!B~

THE PROBLEM STATEyEqT, NOTATION, AND PLAN OF ATTACK

The reader iS assumed to have a basic knowledge of Lispr say
from Wfi4ssman's (1967) primer, The inout to the oompiler 1s (DE NAME
(args) body), 3E is for Define Expression and NAME 1s the name of
the function being como!led, The quantity (ar9s) h the list of
arguffents (formal parameters) for the function NAME and body fs the
body Of the function, The cal I Ins COnvention IS that a defined
function f of tV ? aJ a r g uments, say argl, arg2, neI)R argN, w\ 1’1 find
run-time values of those arguments In sucoessive accumulators
starting In acl, which holds argl, and the result Uargl, arg2, Iao
arg&) will be returned in acl, This convention applies also to any
function c'ai I camp1 led by the oompiier in response to a caii in the
source code, e.g. the caii to CAR in WE SIMPLE (X) (CAR X)), In
0articular the call may be a recursive tail, 8.9,

(DE CGFIPLEX (X Y, (CON0 ((NULL X1 (CONS Y X1)
(T KQMPLEx (CDR Xl Y)))),

We now give a more detailed and more Precbe description Of the
allo\rcable syntax and Its intended meaning, T h e ilst (args) 1s a list
;;,;roms excluding AIL, T, and numerk-atomsi body is an ekeSsfOn

expresslon is defined recursively below (N L 0 in aii relevant
cases); The value of a3 expressIon EXP, denoted V EXP, is.

1 recudvely defined at the same time (as an "Informailtation~~ of the
Lisp EVAL function),

(i) atom, in particular NIL, L o r a n u m e r i c - a t o m , V a t o m :
V NIL = QUOTE NIL) C0 In this comRiierJ~
v T = (QUOTE T), where a non-NIL value is considered equal

to L' TV
V numeric-atom : (QuoTE numeric-atom), and
V other atom J its binding0 l,e, run-time value which may

not be a funOtiOn name(

Cif) (AND EXPl EXP2 (Co EXPN)‘, V AND-expression = T If all v EXP‘I
a r e non-NIL otherwIse ML, V (AND) : T, AND evaluates
its arquments from left to rignt until either NIL IS found
in which case the remaining arguments are not evaluated8 Or
until the last argument ls evaluated,

(iii) (OR EXPl EXP2 tiBe EXPN), U OR-expression s T if any V CXPi is
non-W. otherwise NIL, V (OR) = NIL, OR evaluates Its
arguments from ieft to right until aither norNIL 1s found
In which case the remaining arguments are not evaiuatedr or
until the last argument is evaluated,

(iv) (NOT EXP), V NOT-expression f T if V EXP IS NIL otherwise NIL,

2

(VI (CON0 (ExP1 EXW) (EW3 EXP4) e v * (EXPC2N-13 E;XPC2Nl)),
determlned

V COND-exDresskn Is undefined,

(vi 1 (QUOTE EXPL V QUQTE-expression = EXP, Le, EXP unevaluated,

(vii) (fname EXPl EXP2 ,,, EXPNJ where fname # AND, OR, ROTI COND,
QUOTE, V function-exPtessi@n = fname(V EXPl, V EXP2, ,,*@I
V EXPN), f,e, tho value of the function fname aWlad t o
Its evaluated arguments V EXPl, V EXP2, vetI V EXPN, The
arguments are evaluated once before the function fs called,

(viii) ((LAMBDA (aton atom2 Bm9 atomN1 EXP) EXPl EXP2 I(g EXPN)
w h e r e atom! Z NIL, T, nUmeriCa4tOth V l,.AM8DAaexoreSSiOn is
determIned a s follows. A LAMBOA-exoreeslon defines a
function which has no explfclt (atOmIcI name, V LAMBDA-
expression is the value of this fun&ton aPP(lad to its
evaluated arguments V EXPI, V EXQ2, ,ct) V EXPN, In other
wrds, V LAMBDA-expressIon t V EXP where V EXP fs cOml?Uted
after the substltutlons atom1 * V EXPl, atom2 * V EXP2,
*,o atonN + V EXPN have been made In EXP, If there is a
clash o f bound varfablesr the conventlon fs that the
tnnermost bindIng governs,

Since function names are forbidden as arguments, the ekpresslon
((LAMBDA (X> (X>) Y) means a call to the function X of no arguments
rather than a call to the functfon argument Y, The above syntax
forblds ((XW (((X)))C etc, as expressions,

The compiler is proved correct under the assumptton that its
input is syntactically correct, Since no error checking fs done by
the compiler, nothing Is clalmed for the rssultsI if anal of
incorrect Input, Correct input also means, for example, that a Ifst
of formal parameters consists of distinct atoms and that the number
of formal Parameters is always eciual to the number of actual
Graneters, There are nresumab/y many other such conditions,
vlolzltlons of some gf which may have reasonable Interpretations,

The statement of correctness of the oompller I s that the
cornplIer-produced object code, when executed1 leaves a result In acl
equal to the v3 I ue of the source language function acpl'ied to the
sare arguments, The object code takes its N arguments from the
a~cutrulators acl, n 9 I I acN, If A = al a2 ctc aN represents the
3rgumenta, then the correctness statement may be restated as
requirkq that the eauation

v ((DE: NAVE (args) body) A) z cOntentS Of @Cl

3

holds after executing the list of compiler-produced fnstructlons

COMP(NAYE, (argsb body)

starting with aci holdIns a\ for 1LML

The fOllOwIn facts about the ?DP-I.0 computer are from 6 writauD
.

by McCarthy: The WP-13 has a 36 bit word and an 18 bit address, In
fnstructlons and in accumulators used as index reglste.rs this 1s the
right Part of the word where the least stgniflcant bits ?n arithmetic
reslbe,

There are 16 general registers which serve Stmultane0u8ly a s
accufrUl0btS (receivbg the results of arlthmatic oPerat)on@ld ind8k
registers (.modlfybg the nornIna addresses of Instructtons to form
effective addresses),
effecthe address of

and RS the first 16 registers of memory (if the
lrwtructlon is- less than 16, then the

fnstructlon uses the cz:rezsponding general register as its ODerand),

Al I hstructions have the same format and are written for the
LAP assembly woman; in the form

(<op name> <accumulator> <address> <index register)),

ThU5 (hOVE 1 3 P) causes accumulator 1 to receive the contents of a
memOry.register whose address IS -j+c(p)J 1 lee

7

+<the contents of
germa I register P>, In the followtng descrtpt on of !nstructtons,
<ef> derotes the effectfve address of an instruotlon,

MOVE
MOVE1
HLQii (used
H!W2 (used
SUR
JHSl
JUMPE
JUMPN
CA%. (used
C A MN ('I s c, d
P'JSkJ

POPJ

c(ac) * c(Xef>)
c(ac) + <ef>

In C4 onlYI cfleft h a l f ac) *' right half f o(<ef>)
In C4 only) c(rlght half ac) cc(rlsht hat? of o(Cef>l

ctac) * o(ac) - c(Cef>)
9 t <ef)
i P 7c ac) s 0 then go to <ef>
if c(ac) Ir 0 then go to <ef>

In C4 only) If c(ac-1 s cMeef>) then sktp next jngtructlon
In C4 onty) If c(acl # c(<ef>) then skip next lnstructjon

c(c(rtsht half of ac)) * c(<eW;the contents
of each half of ac Is Increased by one
VOPJ PI is used to return from Q subroutine

These Instructions are adequate for cornpIling basalt Ltap code
with the addttton of the subroutlne cal(tng pseudo-instruction, (CALL
n (E <sub01 is used for calllng the Lisp subroutlne <sub0 with n
arqurants, The convention is that the arguments will be stored in
successive accumulators beginnIng wtth accumulator Ir and the result
YIII be returnea in accumufator 1, In oartkular the funotlons ATO M

srld CONS are cal led with (CALL 1 (E ATOM)) and (CALL 2 (E CONS))
respectively, Note that the instruct/on (SUB P (C 0 0 3 3)) Just
de-1 8t8s t h 0 'COT, three elements of the stack P, (PUSH P ad 1s Used

4

t o p u t c(ac) o n the s t a c k P, This ends the f a c t s about t h e PDP-10
compUtVe

To show the result and effect of executing a section of a$S@mbly
coder notation O f hand-dmulation, desk-checkfng, o r trac]ng of cede
fS used. It is best explained by example, StartIns with N
accuruiators each holding R value and an e m p t y stack P, namely

t h e Ilq? of Instructtons

Wnsttuctlons to leave al-in acl)
(PUSH P 1)

0 m

(Instructions to leave aN In acl)
(PUSH p ~1
(rlOVE 1 1-N p>
(MOVE 2 2-h) P)

(MOVE N c? PI
(SUf3 P K 0 0 f-4 N?)
(CALL N (E rTam$)?)

gives the trace

aclbl* al* cu2+ ,,, aN* al* nameW1 a2),, aN)
ac2/a2* u2* undsf

w e m
acNjaN+ YW undef
Plq* 9+ ,,, aK* ,

T h u s t h e value name(al. a2 ,,, UN) iS tn a& undef (an u n d e f i n e d
quantity) is i n Rci f o r 29% sinde these accumulators are unsafe
OV$?l- navel and the stack P Is unaltered f r o m the star t , The t r a o e
shahs the f i n a l r e s u l t o f traclngi t h e IntermedIate results are
tscorded b u t m a r k e d b y an asterisk (*) a s b e i n g no longer iresent,

The plan of a t t a c k Is as fol(owsl

ti> Prove correct 3 auxfllary Procedures CMKPUSH(N,M), PRUP(VARS,N),
and LOADAC(~J,K) 3 which are not part of the mafn fecurshmess
of the comni ler (~WJV~S 14%

(il? under t h e assumption of no conditional exwvssions or boieai-1
expressions (f,e, no COND, AND, OR, NOT), prove the cambIer '
correct (Wearems l-3 and termination), and

(iii) Prove the cornplIer correct wltnout the restrtctive assumption

5

of (ii) (theorems 4-7).

The proof techniques to be used are mainly those shown in
London(l9701, The factorization into (ii) and (liil, convenient for
construct t ng, for oresentfng, and for reading the proof, shows how
one can Grove an algortthm in suftable segments rather than havfng to
do it all at once, If the reader omits t h e o r e m s 4-7 of fitih the 1
broof of correctness of an interesting subcompiler results, In this
part recurslon is sti i i a) lowed in the sense that the COrnD’f ler 4 I I
correctly combiie a recursive function, But the obJecf code may not
terminate if such a recursive functibn 1s called she there is no '
branching to “stop the recursion?

The number lne of the lemmas and theorems reflects the order of
their discovery and proof, The arder could be altered by rnWllng
theorems 1 and 7 and by placbg theorem 3 as the last theorem if the
sole interest wer8 to prove the enttre cOmPiier,

PROOF OF AUXILIARY FUNCTIONS FOR C0

The LISP ooeratfon CONS is denoted In RLISP by an tnf!w dot(,):
A,3 = (CONS A B) By inspection of the whole oomoiler, It fol lows
that all numericky-valued quantities are integers, l is used as an
end-of-proof marker,

Lema 1, If N > fl and M > 0, then MKPUSH(N,M) =

((PUSH P MI
(PUSH P M+l)

@ * Q
(PUSH P N)) ,

If M > 0, then MKPUSH(0,M) = NIL, 8

Proof, Backwards jnduotfon On M, If M > N, MKPUStl(N,M) * NIL e
If M = N, we have (PUSH P M),NIL = ((PUSH P N)), Assumg the I emma
for M I N and consider M-1 > 0,

MKPUSH(N,M-1) I (PUSH P M-l),MKPUSH(N,M) since N > M-1

= (PUSH P M-l),
((PUSH P M)
(PUSH P M+l)

* P *

(PUSH P Y)? bjr induction hypothesis for M

= ((PUSH ? M-1)
(PUSH P M)
(PUSH P Wl)

(PUSH P N)) by definition of CONS, l

6

Alternative notatton may be used to avoid the three dots (,,,I
h the lemma and in the proof, Analogously to the sigma notation for
indicating s-urns (e,g, sigma(I=lrNIA[iJ), define a list functional L:

L(l=M,N,WUSH P 0)) = N I L if N < 11

L(i=MpN,(PUSH P I)) = (PUS:~PNMI,~(i=M+lrN,(PUSH P i))
"

wereas sfgma denates iterated addltlon, L denotes Iterated COW3ing~

The lemma is restated as MKPUSWNBM) = L(i=M,N,(PUSH P f>>, The
proof of the inductfan step becomes

hKPUSH.(N,Md) = (W&H P M-~),MKPUSH(fk,W

= (PUSH P M=l),L(f=Y,N-,(PUSH P 1,)

= L(i=M-l,N,(PUSH P 111,

Similar notation may be used for lemmas 2 and 3 below,

Lefrma 2, Let VARS = (xi x2 eve xM1, Then PRUP(VARS,N) x W&N)
(x2,N+l) fifiq (xM,N+y-1)). This list of pairs is called tha PRUP
list, short for 'Vpajr-up.'V

Proof, Inductlon on k If M : 0) then PRUP(VARSrN) = NIL since
NULL VARS, Assume for M 2 D and consider M+l,

PHUP(VARS,N) = (CAR VARS,N?,PRUP(CDR VARS,N+,I) since M+l>Q ~mpltes
not NULL VARS

= (xl,p&((x2,N+l) ape (xCM+lJ,N+MI) by thn fnductkn
hypothesis for CDR VARS

= (o&N) (x&N+l) ,,, (x[M+lJ,N+M)? by use of e I *

Lerrna 3, L~ADA?N,K) -= ((MOV& K N PI
(MOVE K+l N+l P)

(MOVE K-N 0 P)) ,

Proof, aackwzrds induction on K', If N > 0, the result 1s NIL ,
If 11 =_iZi, we have (MOVE K 3 P),NIL = ((MOVE K-0 0 P)), Assume the
lenpa for N 5 G and consider N-1,

LOACAC(N4,K) = (MOVE K ~-1 P),LOACAC(N,K+l) sinoe N-1 < 0

= (MOVE K N-1 P),((MOVE K+l N P) ",, (MOVE K&l-N 0 P))
bY \ndUctiOn hypothesis for N

= ((MOVE K h-1 P) (MOVE K+l N PI n,) (MOVE K*(N-I) 0 P))
by use of . and artthmatic, l

THE RUN-TIME STACK

The obJect code uses a run-time stack in a rather standard way
for hold/w the actual Parameters of both function calls and LAMBDA
expresston evaluat:ons, A s each actual oarametar (blndirg) I s
evaluated, It 1s pushed onto the stack, TWs sufftces for a LAMBQA
expression but not for a funotlon, After all of the latter;@ aotual
nararreters are evaluated and Pushed onto the stack, al I are moved to
the accumulators and popped from the stack fn order to satisfy t h e
conventlans for CallM pi function,
function deflnltion is to push the

The first task of the cbmoi(ed
actual Darameters back to the

stack from the accumulators, Thus for both a funotlon and a LAMBDA
expresston, the respective code body accesses or obtains the acrtua I
oarapeter from the stack,

We forgo Stating the various possible stack confIgurations In
full generality to avoid SrJresumably) less than tranaparant notatfon,
What 1s In Pr!nciole requtred can be seen by an sxamr>iel

(DE F (A B, (G A ((LAM3DA (A& (CAR A)) B) A 6))

This must be c~tnr>iled ldentlcallv t0

(D'E F (A B) (G A ((LAMBDA (AI.) (CAR Al)) B) A B))

where the bound A of the LAMBDA expresston has been renamed Al, The
accessible variables of F are A and 31 those of the LAMBDA ejcpress]on
are 41 and B, At the point of complltng the argument A of CAR Al th6
stack P (at run-time) will be

PI A II A t3 a
ma-a-a-awaa I~-~Iaa*"I"aIII" "cIIIIIaaaaam""a
actual the ffrst actual parameter
parnlreters actual oarameter corresoonUng
to the cat I to the Cal I of G to Al
of F

The cornpIle-time PRUP ljst will be ((A,4) (A.11 (13,211 or, usjng Al,
((Al,41 (A,11 (8.2)) Note the absence of a 3 since that spot holds
a temporary value and'not the value of an actual parameter uaab(e In
the body of the LAMBDA expressfon (tn this example either Al or B but
not A),

Thus the comol latlon of the argument A of FAH A (at cage 3 of
COMPEXP with M =' -4 as ft would be) produces a MOVE lnvolvlng the top
of the stack, namely (MOVE 1 M+4 PI r; (MOVE 1 0 PI, and not VmVE 1
M+l PI (MOVL 1 -3 PI,
produce YM~vE i M+2 P)

A COmPflatb~n Of B at this point would
: (+lOVE: 1 -2 P),

8

After campfltng the fqutth, and last, actual Parameter of G, the
stack will be

. actua! parameters actual parameters
to the call of F to the call of c

. We shal I need tg show that the prowr rup-time stack
conflgutatlon Is set UB and maIntaIned and that the quanthy M and
the Integers In the PSuP !lst together prsduce the correct acoesshg
from the stack P , The auantIty -M gives the number of stack
iocati0ns currently acceSSfble by the funotlon being CornplIed, Let
us cjeflne the predicate STACKOK(h,PRUP) to mean (1) -M fs the oorreot
number of stack (OOatlOnS, and (111 M and the Integers In the PRUP
list at 0omp?le-time together produce the correct afxwdlng o f the
stack at run-time, The definition of STACKOK lncludas t h e
representation of "what the compiler knows SO fart’ concerning the
location In the stack of variables and temoorary values, As Dart of
QO error checkfng the complier assumes an inf tnlte r u n - t Ime stack
with no tests for stack overflow, The Proof accordingly makes the
same assumptlon,

PROOF OF ThE MAIN THEOREMS FOR CB

The ma I n proof technlaue used for theorems ir 2, and 4-7 1s
structural lnductlon on express(ons, Each theorem states what a
procedure of the compiler does:
COMPLIS, 4 for COMPAN~OR,

theorems 1 and 7 for COMPEXPI 2 for
5 for COMBOOLI and 6 for COMCONO, huh o f

these procedures IS recursive and also can call many of the other
Drocedures, To prove thesa theorems for an arbitrary expression EXP,
the followlng induction hypothesis Is used for each theorem:
Theorems 1, 2, and 4-7 have al i been proved for all subexpress~ons of
EXP, To invoke one of these theorems inductively on a SUbexpr8Ssibn,
it is necessary to vertfy that al I hypotheses o f that theorem a r e
satfsfled,

The length of the list X wf l l be denoted by L X, Al 1 prOo8dlJres
0f the compiler except for‘PRUP produce as values a list of comPil8d
in.strUttionS, as: ma:/ be verlfled by inspection (In aart!cujar notrng
each one-line code generation is a one-element lfst and otherwIse the
APPDO functbn 1s us8dL The auantitks VPR and M, whfch appear a s
actual parameters to the procedures ln theorems 1, 2, and 4-7, are
unchanged by these procedures fn view af the definltfon of funotional
evaluat-ion.

.
Theorem 1 [Definftion of COMPEXP(EXP,M,VPR)J, Assume the

following 0ondltlons hold at the call of COMPEXP(EXP,M,VPR):

Cl: EXP Is an expresston,
c2: MS@ and -M is the number of stack tocations currently aoceS8ible

by the function being compiledc

9

c 3 : bariables ClJtfent(y accessible t0 EXP are Xl, X2r eeI) XK wtth
k ,< -M,

c 4 : VPR IS a PRvP Ilst o f K pairs (xl,J), lsJiC+, of the our;;;;;y
accgSSible VhrlableS where the \nnefmOSt occurrence (Of a
parameter) of a duplicated variable ne.me a~~eats f)rst on VPR,

((E(7) (BIB) (0.6, (A,11 (8,2) (c,3)),
c5: $?;un-time the stack P contains the values of the vnrlables and

temporary values as
PlXl x2 O#(XC-N

\cthere XC-M3 is at the HOD of the stack,
126: STACKOK(M,VPR),
c7: EXP Is an atom (#NIL, 27, fnumeflcpatom) 3 EXP IS a varfabl9 Xl,

IllSKI on the VPR ljst,

ResulL After execution of the list, 1, of lnstructlons produced by
COMPEXP, the accumulator acl contains V EXP, P 1s safe over the
execution o f I. Note that the accumulators are Unsafe over the
execution of 1,

Proof of definjt/on of COWExP (under t h e assumotlon o f n o
cond!tlonai of Boolean exDresslonsl theorem 7 prove8 COMPEXP with
such expresslons), Structural lnduotlon on EXP, Basis stcrpl EXP la
an atOr, slther ML, T, a numeric-atom, or other atom, It EXP 1s
NIL, then ease 1 of COMPEXP produces ((MOVE1 1 a)) so aol holds 0 *
v NIL, If EXP Is TI then case 2 Produces ((MOVE1 1 (QUOTE 7))) 80 aci
h o l d s (Q U O T E 1) = V T, If EXP Is a numeric-atom, than aabe 2
oroduc~s ((MOVE1 1 (QUOTE numeric-atom))) so aol h o l d 8 WUQTE
nu7eric=atom), the correct value,. If EXP 1s an other atom, than case
3 Droduoes ((MOVE 1 M+CDR ASSOC(EXP,VPR) PI), By c7 let EXP = xl
aDDear first on VPR In the Dalr CXl,J), By CL) CDR ASSOC(EXP,VPR) s
CDR (Xl,J> = J. By C5 and C6 the tnstructlon (MOVE 1 M+J PI loads
acl Beth V Xl, h(ote $,lJs-11 =) M+14M+JI0, l,e. a valid stack acoe8s,

Induction step: CAR EXP and CDR EXP are always defined at oages
4-7 (a total of 10 oacurrenoes) since NOT ATOM EXP because case 3
failed, If' EXP = QUOTE a), then case 6 Is the first to hold
producfng ((MOvEI 1 (QUOTE a))) EM reoulred,

If EYP = (fname W with fname-not one of ANQ, OR, NOT, COW,
QUOTE, then case 7 fs the first to hold, EXP thus Is a Inon-sDeofBl)
functi& t0 be evaluated using arguments of the Ifst QI 1~ (arl u2 e 9 *
aN) where Y = L ar ? 0, Tha Ilst of instructlonS produced 1s

(<COMPLIS((~),M,VPR))
Cl.OADAC(l-Nnl))
(SUB P CC 0 0 "J NN
(CALL hi (E fname))) B

Condltlons Dl-97 (SW3 theorem 2) for Inductlve'ly lnvoklng COMPLIS
hoId as follows~

10

01: Oefinition Of (a),
n2: c2,
33: C3 on U, a SubPart of EXP,
34,05,D6: C4,CS,C6r respectlvejy,
3 7 : Assumption of syntactical ly ootrect input,

Using the definitions of COMPLIS and LOADAC, we obtain

mm- ((lnsttuctlons to leave V 4 In acl)
wUSh P 1)

COWLIS e @ *
(Instructions to leave V aN in acl)

*-I (PUSH P 1)
(MOVE 1 1-N P)

LaADAC, (MOVE 2 2-N P)
* e *

-W- (MOVE N 0 P)
(SUB P (C 0 0 N N))
(CALL N (E fname))) ,

Tracing these instructions, namely

sclial* al* a2+ eo aN* al+ fname(V al,V a2,,,,,v aN)
a&?/32+ a2* und8f

e @ *
acfWN* q+ undef
Piq* 020))a aN*

giV8S the desired result
fnamdv aLV a&.,,,V aN),

(including the case N a 0) D;;;;~V :XP =
Note that t h e lnstruotlon K

fnafrd) may be a recursive call since the standard oanventions of
argurrents and returned va I ue are obeyed@ and the arguments are
stacked (saved) by th8 called function, Recall that function names
are forbidden aS arguments SO a formal parameter name may be called
by a CALL Instruction,

Finally If EXP = ((LAMBDA WI 01 G')# then only cam 8 holds,
Since case 7 falls, NOT ATOM CAR EXP, Let N = i,, 8 = L QI by COV'eCt
hWL The list-Of fnstruotions produced is

.
((CO~PLIS((~),M,VPR))
(COMPEXP(@,M-Nr4PPEND(PRUP((a),l-M),VPR)))
(SUB P (C 0 Tt N N))) o

Conditions Dl=D7 for inductively invoking COMPLIS hold as follOWS:

ix: 08finitian of (& 02: C2, 03: C3 on (HP a subpart of EXP,
D4,D5,06: c4,c5,c6, r8Sp8ctiV8iy, 07: Syntactlcslly correct Ynput,

Conoitions cl-c7 for inductiveiy lnvoklng COMPEXP hold 88 follows:

11

Cl: P Is an expressfon by the syntax deflnltlon lnvolvlng LAMBDA,
c2: h-N 5 i!l since M s 0 and N 1 8, There are now -(M-N) 31 -M+N stack

locations currently acceaslble,
C3: Vattables c u r r e n t l y accessible to 13 ar8 Xl X2, ctr) X[K+N}, l,b,

there are now K+N vatfables al lowed I n Pt K+N 5 -M+N dnae
K I TM

C4: Cefinltion of PRUP and C4, C% and C6 applied to vPR, The new
pairs are put fjrst, The nsw lndtces are 1-M f -M+l through +l+N,

C5: C5 for Xl, q8.J XC-M> together wlth COMWJS(WJM&W~ for
xt-h+13J emo X[-M+Nl,

C6: C6J C4 just aboveJ and C5 Just above,
c7: Syntactlcally Correct Input and the augmented PRUP lfst,

CIence tracing these !nstructlo~sJ namly

agl(XC-M+l37 ,,, XC-M+NJ* V EXP
PlXl x2 O(# XC-M] XC-M+lJ* (a-0 XC++NJ*

ghes the desired result (lncludlns the case N r 0)) stnoe COMPLIS
essentially makes the substltutlons at * v 61 and then COMPEXP
c o m p u t e s \! p which 1s now V.EXP,

1~ all cases the stack P Is safe over the execution of I, Note
that VPR remains unaltered even in the LAMBDA ease beoause hero the
augmented QRUP list ln the call to COMPEXP is a copy only I(ot that
recursive cal Ii when that oall finishes the outer VPR ilst is
tntactie

T h e o r e m 3 CDeflnltlon of C~MPLIS~UJMJVPR)~, Assume the
f~llcwl~~ candltlons hold at the call of COWLISWM,VPR):

Dlt L' t (ul u2 oq uN) ta a list o f a r g u m e n t s ,
D ; COMPEXP's Ca,
05: Variables cur rent Iy acce~alble to the members of U are Xlr X2J

00 XK with K s -M,
Dd,Ij>,Dgr COMPfXP's c4J c5# c6J resPe~t/vebb

~7: cOMPEXF'S t7 dth EXP r e p l a c e d b y UL

Result, COMPLIS : ((/nstruottona t o (cave V ul tn acl)
(PUSH P 1)

(&&tlons t o (8aYB V UN h aci)

(PUSH P 1)) o

Proof -of deftnjtion of COMPLIS, Structural lnduotlon on U,
Eas4 s step: U is NULL, whence CCMPLIS = NIL, Induction step! Sfnoe
tr., ;f NIL, COMPLIS(U,MJVPR)

I

= ((CC~?PEXP(UIJMJVPR)I
WUSH P 1)
(COMPLIS((u2 (((uNJJM-~JVPR))) e

I.2

Condtttons Cl47 for lnductivqiy Invoking COMPEXP hold by B17Wr
resPectlvelYc Hence Invoking COMPEXP shows

(COW'EXP(U~,M,VPR)) = (Instructions to leave V ul in a611

with the stack P safe, (PUSH P 1) stacks V ul on the too of P,
Conditions D3,-07 fo,r tnvoklng the InductIon hypothesis fOf COMPLIS
hold as fol(owsI

01: By 01 for u,
02: BY 02 and (PUSH F' 1) which means there are now =(M4) E -M+l

stack locatIonS, the top one being a t0mPOrarY va)Ue~
03: By B3 (i(5 -3 3 K 5 -M+l),
04: By 0%
D5: by D5 and (PUSH P 11, P Is PlXl X2 efi, XC-W V ul e
06: By 06 and D5 just above,
0 7 : By 07,

Hence the induction hyoothesls shows COMPLIS((u2 eae uN),M-1rVPB) =

((tnstructtons to leave v u2 In acl)
WUSH P 1)

Q * a
(tnstructlons to leave V UN In ac2)
(PUSH P 11) ,

((instructions to leave V ul In acl)
(PUSH P 1,

t * 0
(Instructforts to leave V UN in aci)
(PUSH P 11) (@

Theorem 3 [Correctness of the comaller3, Let A g al a2 We) aN
be an arbitrary list of actual parameters, Starting with act hold!,ng
ai, ISILN, and after executfon of the IISt, I, of Instruatlans
oroduced by COMP(NAME,(args)rbody) we have

V ((DE NAME (args) body) AI = contents of acl

and the stack P Is Safe over the execution of I,

Proot, Let N = L (args), COMP(NAME,(argsI,body)

= ((LAP NAME SUBW
(MKPUSH(N,1,)
(COMPEXP(bOdY,RY,P~UP((argS~,l)l)
;;;;Jpp;C f! ii' N N))

NIL 1

13

= ((LAP NAME SUBW
--I (PUSH P 1)
MKPUSH (PUSH P 2)

* * 8
II)-- (PUSH P N)
COMPEXP (Instructtons to leaue V body in sol)
m-- (SUB P (C 0 0 N N))

(POPJ P)
NIL)

by using the deflnltlons of MKPUSH and COMPEXP although ft remains to
she,,,, that MKPUSH and COMPfXP may be Invoked, She N, L 0 ~4 may
invoke MKPUSH, The condltlors C1-C7 for COMPEXP hold as follows1

Cl: body is an expresslon by the asaumotlon of syntaoticolly correct
Input. ,

C2: -N = -LENGTH (args) L Iz, -mN : N 1s the correct numbs ot staok
locations since oreclsaly L targ8) lo6atlons are acoassfble,

C3: the acoesslble variables are al, a2 .,,I aN,
C4: By deflnltton of PRUP((args),l),
C5t By the number N of (PUSH P '11 Instruotlons,
C6: STACKOK(-N,PSUP) holds by the definkion of PRUP and the order of

the PUSH instructions8
C7: BY syntactl tally correct input a n d the dsthklon of PRUP(VARS,l),

Thus starting with acf holding ai for 1$15N1 we have the trace

acllal+ V body
ao2(a2* undef

8 e @
aoN laN* undef
Pia 2* a * **. aN*)

Since V body = ((DE N A M E (arm) b o d y) A) and since the stack P 1s
safe, the result 1s proved, (I f condltlonal and Boolean r~pms8lbns
are allowed, then theorem 7 Is needed,) *

Theorem 4 [Oeftnjtfon of COMPANDOR(U,M,L,FLCIVPR)~, Assume, the
following conditions hold at the call of COMPANOOR(U,MtL,FLC,VPR)I

El: U = (ul u2 .., UN) 18 a list of Boolean eXpressIons,
E2: COMPExP's C2,
E3: COWlAS’s 03,
E4,E5,E6; COMPEXP's C4,C5,C6, respectively,
E7: COMPLIS,s 07,
E8! L ls a label.
E91 FCC Is T or NIL,

Result, CDMPANDOR produces a Ikt, I, of lnstructlons given by

RG I Algoi equivalent of I
-““- I ~““~~““““IaIIIIIIIII~a~a~
NIL I If NOT ~1 then go to I.;

I if NOT u2 then go to LI
I @ * a
I if NOT UN then go to LI

at-a- l ~r"~~~~"~~~a~~~a~~~w~~awa
7 1 if ul then go to L;

1 if ~2 then go to tn.;
I e * 8
I if uN then go to L;

with the statement labeled L not In I, P is safe over the execution
of I ,

Proof of deflnjtion of COMPANDOR, Structurff) inductIon on U,
Bask step! u 1s NULL whence COMPANDOR = NIL, Induction step!
Assure FLG = T, COMPANDOR(U,M,L,FLG,VPR)

= ~~CO~lBDoL(ulr~,L,FLG,VPR)~
WOMPANDOR((u2 .*I uWrW.,FLGcVPRW by de!f'nitlon of

COMPANDOR slnce U Z NULL

= ((If ul then go to LI)
(COMPANDOR((u2 e e 8 uN)rM,L,FL~rvPWI by Inductively

Invoking COMBOOL on the Boolean exprwsibn ui

= ((if ui then go to L0
(lf u2 then go to L!k

9 0 e
(If UN then go to L;)) by induotlvely Invoking COMPANDOR

on the list a
tnvoking COYPANDO ii

,tc UN); E2”&’ hold prior to
since P Ia safe over "If ul

then go to Lp and both M and VPR are unaltered
by COMHOOL,

L is in neither-the first InStruc-tlon nor fn fnStruCt@ns 2 through N
whence L Is outside I, Slmilatly the stacr< P Is safe, The cam FLG
= NIL 1s proved slm!larly, e

Thecrenr 5 CDeffnftion of COMBOOL(P,M,L,FLG,VPR)1, Assume the
folJaw!ng condlttons hold at the call of COM~OOL(PIM,L,FLG,VPR)~

Fli P is a 8001ean exprosslon,
F2-p7! COMPEXP’s C2-C7, reJpactlve!y, with EXP rep/aced by p ,
F8: L fs a (abet,
F9: FLc Is T or NIL,

Result@ COMl3OOL produces a iht, I , of instructfons sf~n by

U.G I Algot equivalent of I
-*a- l ~LIL~.I”~“I”IIIZ~“o~.a~a
NIL I if NOT P then go to L;

T 1 ffPthengotoLt

4 t h the statement labeled L not In 1, P is safe over the execution
of I,

Prodf of definftton of COMBOOL, Structural hductfon on P.
Assume FLG = 7, Rassls step: P Is an atom, COMBOOL(P,M,L,FLG,VRR~

= WXWExP(P,M,VPR))
(JUMPN 1 L)) by case 1 of COMBOOL

3 ((hstructlons to leave V P i-n acl)
(JUMPN 1 L)) by 9%ductlvely*t lnvoklng COMPEXP (more

~reclss(y, b y reS)eatIng on the atom p tha basis 1
step’\, of the proof of COMPEXP; induction is
Invalid since the P in COMPEXP Is not a sub-
structure of P in COMBOOLI

= (if P then go to LI) by checking 2 C83M~

Inductfon stec: CAR P and CDR P are always defined at oases 24
since NOT ATOM P because case 1 failed, Also CADR P Is defined at
case 4 since the NOT operator must have an argument,

If P = (ANO ;I), then from case 2b (4th FLG = T) COMBOOL

= ((COMPANDOR((a),M,LI,NIL,VPR))
(JRST 0 L) Cthe 0 1s redundant]
L1) by letting GENSYMO be the label Li,,# L

SInCe e a c h calt to CENSYM gives a UnlqU@
va I ue

= ((if NOT al then go to Lli)
(If YOT a2 then go‘ to LW

a * @
(lf r\lOT aN then go to Ll;)
(JRST 0 L>
IA> by Inductively lnvoklng COMPANDOR on (011,

a Boolean list

F (lf P then go to LI Ll:) by cheaklng c1ase8 that define
AND (Including evatuatlon On!Y until t h e
first N I L al and the c a s e (AND) with NULL
“1,

If P = (OR a), then from case 3a (with FLG 0 TI COMBOOL

-

16

= (COMPANOOR((a),M,L,T,VPR))

0 ((If al then go to LCI
(If a2 then go to L0

W' aN%en go to LIH by induotlvejy Invokfng COMPANOOR
o n WI8 a Boalean list

3 Cif P then go to LII by cheoklng ua88s that define OR
(Including evaluatton o n l y until the tirst
non-NIL =I and the ease (OR) with NULL &

If P 2 (NOT al), then from ease 4 CQMBOOL

= (COMBOOL((Q~),M,L,NO~ FLbVPR))

= (If NOT "1 then go to LH by lnductfvely Invoking COMBOOL
on VW, a one-element Boolean list

=: (if P then go to LH by deflnltion of P,

If Q IS any o t h e r B o o l e a n express(on, t h e n casg 5 yj&lds

((COMPEXP(P,M,VPFW
(JUMPN 1 L>),

Immediate tnducttve invoking of COMPEXP IS lnvalld because the P I n
COMPEXP 1s not a subst?uOture of P In COMBOOL, 5ut cOntfOl’s
reaching case 5 of COMBOOL means P Is not an atom (case 1) and means
CAR P Is nefther AND, OR, NOT (oases 2-41, Thus COMPEXP(P,M,VPR) will
be computed by one of its case$ 5-8 all of whose prooeduree are
called with substructures of P, (It b crticlal to avold ease 4 of
COMPEXP t o avoid t h e c y c l e COM8OOL(P,,,) * COMPEXPW,,,) *
COM50OL(P,,, 1.1 COWEXP(P,M,VPR) may be calculated by repeatIng the
proof of cases 5-8 on P (see theorems 7 and 1); this yields the same
cakulatton as the basis step for COMOOL, Since the dsflnitfon of
GENSYMO guarantees unique labels be\na generated8 the label L I$ not
in the ntnstructlons to leave V P in acWt

The case FLG = NIL IS proved simtlarly, l

T h e o r e m 6 [Deffnltion of COMCONG(U,M,L,VPR)l, Assume the
following condltfons h o l d a t t h e call o f COMCONDWM,LIVPRI:

.
Gl: U-= (tul 1~21 (~3 u4))), (uC2N-13 uf2Nl)) 1s a Il$t of pairs of

expr~sslons, t h e first o f e a c h oair being a Boolean axoresslon,
C2471 COMPEXP's C2-C7, r@sPeOtlvely~ with EXP replaced with uJ,
G8: L fs a label,

Result. COMCONG gives a l i s t , 11 o f I n s t r u c t i o n s equlva!ent t o t h e
Algo!

17

acl 1= if ul then u2 else If u3 then u4 0 @ e e l s e
ff ~t2hH.l then uC2Nl: L:

P Is safe over the 8%8cUtion Of 1, If no uc21w13 IS non-NIL8 the
value In acl 1s undefined, In other words acl ts V COND-expreasior,

Proof of deffnptton of COMCOND, Structural lnduotlon on U,
8aslS step: U Is NULL whence CI)MCOND oroduces, as rOWire& Just the
label Lt 9 Induction step: NGT NVLL U and correct syntax imply CAAR
u, CADAR U, a n d CDR U ar8 always defined, COMCOND(U,M&VPR)

= c(COMBObL(u~,M,Ll,NIL,VQR)) -
(CCF?PEXP(U~,M,VPR))
(JRST L)
L

s (OMCOND(WJ~ ~4)E 09 (uC2W13 uC2NlW,M,L,VPR)))
by lettlrg CENSYM_O be the lab81 Ll $ L

= ((lf NOT ul than go to Ll;)
(instructions to leave V u2 in acl)
(JRST ~1
L1
(aclr= If u3 then u4 PO a 81Se It u[2N-13 then u[2NJI Lt))

by inductlwly lnvoklng COMBQOL, COMPEyP, and
CDMCOND

= (acl:=if ~1 then u2 e 0 8 else if uC2N-13 then,u[2NJ1 LX)
by checking cases Involvkm V ul,

? fs safe as required, The case of no uf2i-1) being nowNIL gives an
undefb?ed result aS r8ouir9d (in particular for N 8 ld), e

Theorem 7, COMPExP(EXP&VPR) as deffned 'fn theorem 1 also holds
for conditlonal and Boolean expressions,

Proof, (An addltton to the Proof Of t h e o r e m i,) Basjs step!
VacuOUS, Induction stm: If ExP = (B o o l e a n W wfth BOolean one of
AND, OR, NOT, then case 4 is the first t0 hold, COMPEXP(EXP,M,VPR)

= ((COMBOCL(EXP,M,Ll,NIL,VPR))
(MOVE1 1 (QUOTE T))
(JRST g L2)
Ll
(MOvEI 1 0)

_ L2) where Ll f L2 are the two GENSyMO labels

= ((tf NOT EXP then go to Lli)
(r+lOVEI 1 (Q~DTE l-1)
(JRST cI L2)
Ll
(MOVES 1 0,
LH by rewatlw the proof of CCISOS 2*4, all

18

involvlng substructutesr of CQMBOOL(EXP,O
since C188 4 of COMPEXP means CAR EXP is
either AND, OR, NOT,

.

If V EXP = T, t h e n acl holds (Q U O T E T) a s reauired hoe the MOVE1 1
(QUOTE T)) and the (JRST 0 L2) instruotlons are exeouted, If V EZXP t
NILI then acl holds 0 as resulted since oontfoi goes to Ll and the
(MOVE1 1 0) ts executed,

.
If EXP = (CON9 ar), then case 5 1s the first to hoid, COMPEXP a

COMCONO((a),M,L,VPR) using the label L for CENSYW, InvokTng
COMCOND inductively shows t h e reauired WUe# aooord!ng to the
definition of CON& is in acl, 8

TERMINATION OF THE cOWILER C@

Except t o COMP in theorem -3, add the statement ‘*and the
orocedure terminate@ to the result of each procedure dsfln'ftfon of
the cOmpiler, The induction hypothes is will show terminatfon Of each
procedure call on a substructure, The induction step is now reduced
to essentiallu ffstraight-I ine code” w h i c h terminates, COMP twdnates
since MKPUSH and COMPEXP do,

To show that COMBOOL and COMPEXP terminate when one ts called
from the other on the original StrUCtUrO, We can rePeat a PrOOf Part
as has done in the proofs of theorems 5 and 7,

DISCUSSION Of THE PROOF P0

The process of constructing thfs proof may be vIewed as
discOWring enough of the a s s u m p t i o n s about the input a n d the
orogramfring conventions used In writing th8 compiler, a8 atatlng
them, and as provfng them to be preserved or conslatfmtfy folfowed
over al I the procedures o f the compiler, Tha sucoessfui
factorization fnvolvfng conditional and Boolean exoreaslons was
useful in doing thfs, The recursion of ths compiler has been handled
b y t h e s t a t e m e n t s of the t h e o r e m s , inoludtng t h r e e d o t s (,,,I as
needed, and b*y the use of structural induction, In addltlon, some
lessons of top?down programming (DiJkstra 1970)~ stepwlse rsflnsment
Wirth 197118 and Hoare's (1971) aaproach were applied in the Proof
Process although informally,

It Is noteworthy that the proof P~ooess uncovered no errors in
the corr~iler, A irevious version of this paper omitted COmPieteb
numeric-atoms although condition C7 (then wrItten WIthout the clauSe
” # numeric-atom") unlntentionallY excluded them, DTfT'le notioed
t h e i r OriS9iOn w h e n the COmpf Jer aborted whlie oomplltng a factorfal
function, Since numeric-atoms are needed for m/f-oom! Iatlon, cascl!
2 of COMPEXP was changed to include numerio-atoms, NO Other changes
were made to the eompi Isr, The previous version of this paper dfd
not exclude the use of NIL, T, and numeric-atoms as formal parameters
nor the US8 of f;nct]on names as arguments, They must be excluded

19

since the corrrplisr fai Is on these Inputs,

Uesbite tha cCIt?Diler 3 being written surely functlonal)y~ thfs
Droof nay tie usefully VIewed as employing lnductlve assertions, When
applied t o fecUfSivfj procQd'Jrf3s O f the kind tn the cbmpiler, the
Tethod verlf ieS t 11 e conditions necassary for calling a procedure
(i,c(udipg a reclrrsfve call). The result ,,f the procedure is the,
used to Show what f, true after t he call (even If the procedu es are
called rrer31y as 3rgxnents to tne APPWD functton), Thts 1s de same
way A standard i terative program fs prove&

Unexplored so far are the lnolicatlons for aUtOmat I c Proof
checking, of the lengtll Of tnis informal, but hopefully r7gorous
croof" bxt iS the Proof R4,

THE COWILE~ cv AyO PROOF of CORRECTNESS P4

The lnout t o the cor~pi jer C4 and the overal I statement of
correctness are the Sa?e as for C0, T h e compller C4 Is Shi jar in
structure to CD, has twit? as many Ilnes of code as CO, and p r o d u c e s
about half as many fnstructions for a given function as C0, In
response the proof P 4 contains eleven new theorems and lemmas
(Theorerrs o-12 a n d Lemmas 4-9) corresponding to the eleven new
functiOM In C4, Also P 4 contains m~dlftcaWons to the proofs
(mainly addItiona cases) of theorems 1, 3~ and 5-t reflecting the
chanWS in C 4 to t h e functions of cd, The slmllar structure allows
much of the proof PC, witnout change, to become a part of P4, In
~artlcUl?rp the statements of lemmas 1 and 2 and theorems A-7 are
unchanged (Lr3ADAC, the subJect of lemma \I, I3 a completely new
function) becaus9 the
acco~~~lishes th9

general/y more efficient compiled code OfTEz
sane oversll effect as does the code of C0,

Proofs of the new theorems and the Proofs of modlfftations In P4 are
t h e “sare k I nd” of proofs aS in Pa, (Diffie has selt=comrA led C4
successfully also,)

McCarthy described the three rnRin dfffersqces between Ct and C4
in a wr/teup, The second difference is the ma f n SOUPC6 of
iTorovenent in the coppiled code as we1 I as the main reason for the
l e n g t h of P4,

<i 1 W h e n the argument of CAR or CaR is a variable, C4 cOrnplIes a
O-IIJG@ 1 i PI or (HRRt@ 1 f PI which gets the result through the
stack without first compiling the argument into an ac’cumu(ator,

(ii) When X4 has to set up the arguments cf a function In the
ac.cUfrUlators, On genera), C4 must conpUte tne arguments one at a time
and s a v e t h e m c n t h e s t a c k , and then loati the accumulators from the
stack, however, ;f one of the arguments 13 a varlablet 1s a WOted
exOreSSiOn8 Or can be ot;talned from a variable by e chain of CARS and
EIRS, then It neec not be computed until the time of load\ng
eccurfulators Sirlc0 it ~a', be carlrputed using only the aOcUmUlatOr fn
wh-ich-lt iS Wanted,

20

(19) CB c o m p u t e s Boolean e x p r e s s i o n s badly and generates maw
unnecessary labels and JRSTS, C4 Is more sophi stlcated abbut this,

c4 uses four addltfonal PDP-10 lnsttucttonst HLRW HRREs,
pG and c*MN.
Indirect

The flret two are ussd,C;lth the Q-blgn denotfng
referenoe, t o abtaln CAR and 1 respectively, A n

assurrgtion of P4 is that the instructIOn HLRU means ofno) -
CAR(o(<ef>)) and that HRRt@ means c(ac) * CDR(ct<ef>)), Because CAR
and CDR are COmPfled Open rather than clOSedr as would be the 0aSe
for an arbitrary funct'ton call, It must be exp(itltly ernphasfzed that
CAR and CDR of 'rt NIL, or numer/c-atom are Oonaldered 'fnoorrect
InPut, Since r?lULL and EQ are cornPIled oc)en, the Va{ueS Of both must
be exPlioitly defined fOr P4:

v (NULL EXP) = T Iff v EXP = NIL,

V (EQ EXPl EXP2) = T tff V- E:XPl 3 V EXP2

with these definitions and motlvatlon, the proof P4r organized in
b o t t o m - w style, followsr

The listings of the two compliers were checked by hand to
dfscover the differences, The same set cf differences was obtained
when the llstings were computer-compared by a ff I@ oomParirron uti iby
orogram, These differences showed where new theorems were needed and
where old proofs needed modlflcatlon.

Lemma 4 CDafjnttfon o f CCCHAIWEXFW, Assume EXP Is
man-atOvlc expression, CCCHAIWEXP) o T If and only If EXP 1s of thr
form

(CPR (OR (,,,(CPR a))))

with at least one P, Each fl IS either A or D (thus Droduclng CAR Or
CDR) and a is an a t o m , In other words1 CCCHAIN(EXR) = 7 fff EXR ie a
car-cdr chain.

Proof, Inductton on the number 111 of leading p's h EV, Basis
steps: If N = O-then CCCHAIN gives NIL because CAR EXP 1s neither CAR
nbr CDR, If N = 1 thgn EXP = (CPR a), The result Is T because CPR
1s CAR or CDR and (r Is an atom, CCCHAIN a 1s not Oalled,

Induction step: If EXP = (CPU? (CP?R (to (CPNR a))), with N 2
2, then CPlR ls CAR or CDR so the left p a rt of the AND Is true,
Sjnce N 2 2, W32R (,,,(CPNR a))) Is not an at Oh CCCHAIN may be
invoked lnduotlvely, yielding T and hence CCCHA IN EXP gives T, *

Lemma 5 CDefinftlon of CL*SSlW v)j, Input a8sumotlbns:

U 1s a l i s t o f expressions (ul u2 #Or UN),
V is an S-@%DreSSiOn,

21

Resulta Let cl be the c(aSSifYing integer of Uf, namely

Ul I cf
"w"w"w-w-~wwwwww--ww- ----l
T, N IL.8 numeric-atofl 1 P
Other titQn3 I 1
quoted 8Xpf8sSion I 2
car-cdr chain I3
other 8xPreSS;Orl I 4

CLASSlcb, V) = (cN,uW,L., ((c2,u2),((cl,ul).V))))

PrOOf, Structural inductton on U, Basis step: NJLL u gbes v,
Induction step: XASEl(CDR U, (cl,ul),V) =
(cN,uNL(.,, ~~c2,u2:~,~~cl,ul~,v~~~, Ivote that ul in CCCHAIN ul, is
non-atOrric ’ since the first test for ATOM ~1 failed, For the spsctal
case v = NIL the result reduces to the list of oairs ((cN,uN) a * 9
(c2,u2> ~CLUl)) , 4b

Lemma 6 [Definftion of CLASS2(U, VI FLG)], Input assumtlonsf

U fs a list of pairs ((&UN) I 0 a (&U2) kl,ul)) with cl as defined
in CLASSI,

V is an s-8xpr8SSiOn,
FLG = T or NIL,

i783Uitc Let j be the greatest integer, ff anyI such that OJ : 4 in U,

FLG i Result
"w-c I cIw-~ww"w"wwwww-ww"cwww-wwwww""ww"aww"ww~~~"~~"~~w~
T 1 k~,ul),((c2,u2),., ,((cW,uN),V)) wlth OJ now 5

WWW" I w-w-www"wwwwwww"w-wwwww-wwwwwwwww"www"ww~~~~~"w~*""
NIL I (cl,ul),(Cc2,u2~.., o ((cN,uN),V)) with cJ stjll 4

In mrds, th8 list 0f pairs 1s r8ver58d and the fjrSt 4 1s chan$ed to
5 ,

Proof. Structural induct\on 09 il, Sasis step: NULL u gives v,
Induction Step: If-FLG = T and ci\J f -4 t h e n CLASSZWDR U, (5,uN)d/),
NILI =. kl,ulL((~2,u2),,, ,((5,uN),V)) with cl? c2, eeo cCN-13 a s
in U, If FL? z T or CN # 4 then CLASSZKDR U, WJ,uN),V, FLC) =
(CL ulLw5Lu2) 9 * m ((cN,uN),V)) with the ci's as In
the result, Agail: whev V

the table of
= ?tIL, the result r8dUoeS to the (1st Of

natrs ((~1.~1) (c2,$) aev kN,uN% 8

Lema 7 CD8f;n;tiOn of CLASSIFY(U)Zl, Assume U = (ul u2 et4 UN).
L8t dl be the classifying int8ger Of Ul aS in CLASS1 8xc;eot the last
other expression has dl Of 5 Iwtead o f 4, Then CLASSIFY(U) =
((dl.1~1) (d2.u~) *)a (dN,u"J)) e

Proof, CompoSftion of CLASS1 with iJ as NIL and CLASS2 with V as
NIL and FLG 3s T. @-

22

--
: .,p

’

Thecprem 8 [Deffnltion of COMPLIWZ, MI K, VPW, Indut
assurrptlons:

i! is a CLASSIFY'ed lfst of pajrs c(dK,uK) (dCK+lJ,utK+lJ),,,(dNIUN)),
Condftlons DI,-D7 of COMPLIS of Theotsm 2,

Result, L e t el, ,ctl eCJ-13 denote those subscripts, if any8 in i?
for which dl is equal to 4, and let ej denote thus one di, V arw
equal to 5,

CDMPLlS s ((Instructtons to leave V u[el] In aoll
(PUSH p 11

e t 0
(InstructIons to leave V uCeCJI1J3 In acl)
(PUSH P 1)
(Instructions to leave V u[eJJ In acCe,j]))

Ngte that this COIlP/JS 1s a new functbn from that of Theorem 2, The
function STACKUP(U, rl, VPR) Is identical to the old COMPLIS,

Proof, Structural lnductfon on 2, Basis step8 NULL z gives
ML, InductIon stfg: If dK 1 4 then ei = Ye COMPEXP(uK, r?r VPR>
hdUOthe)Y PW’cjU,es

~Instructlons to leave V ucel] In acl)

In vlew of the WJW P lb then COMPLIS((~dCK+lJ,u[K+ij),,,(dN,uN,),
M-l, K+l, VPR) fnductively comPletes the desked result,

If dK= 5 then eJ = K and there are no (mope) 49, CoMPEXWuK,
M, VPR) lnductb+wfy Produces

(Instructtons to leave V uCeJ3 In acl)

If K = 1 We, eJ = 118 n3 further lnstruotlon Is needrsd n o r
generated because V uCeJ3 IS already fn sol, OtherwIse It K ir 1, the
instructton (MOVE K 1) 1s generated to leave V uCsJ3 in aoCeJ1 f:
acCK3,

If dK is neither 4 nor 5, COMPLIS(<(dCK+lJ,uCK~~J) Opt (dbuN%
MD K+l, VPR) inductively glues the d@sb@d result, *

Theorem 9 [Def\nition of COMPCEXP~ N& MI VPR)Jm Input
assUnPW0rW

EXP IS a car-cdr chain (CDlR CCf32R f ,,,WWR a)))) where N Z ii each
pi is elther A or D; and a 1s an atom # 7'~ NIL, numorlo-at&n,

Condltlons C2-C6 and C7 for a from COMPEXP of Theorem 1,

Result. COMPC = ((acCN2J := CfllR acCN23)
(accN21 :c CP2R acCN23)

a * *

23

~ (acCr\J23 := CPNR a))

3nlb accumulator pd2 is used,

Proof, Ind;rctlofi on the number J of p's In EXP, Dsftne 61 to
1 be L or R according as pi IS A or D, dasls step; If N : 1 then EXP

= (CUR QI), Since ATI)M al COMPC produces

((YelRz$ N 2 IY+CDR ASSOC& \I?R) PII

wh f ch is ((ac[PJ2J := Ci31R a)), the last line of the r e s u l t ,
IndUctIOn step: If N 2 2 then NOT ATOM (Ca2R (,,,(CPNR a))), bnce
COHN prodclces

(lGlRZ@ N2 N2)
,' cot1Pc(<:32? (,,,(C@NR ~)))~ 42, MI VPR)

YhiCh invokinq COfWC inductlV8lg, becomes

((acCN21 := CPlR acCW2 3 1
(acCN23 := $023 acCN23)

9) 4
(acCN2 J := CpYR a))

Iddentally, t h e assumption that UP is a car-cdt chain makes
uqnecessary t h e error c h e c k at the first IIn O f COMPC* *

Theorsm 13 COefinltiGn o f l,.OAUAC(Z, M2, N2, M, 'OWL I tvut
assw@ians:

3 is a CLASSIFYted list of ps.irs.
z = ((dCN23,uCWl) (dCN2+13,uCN2+11) ,t, (dN,uN))

Conaftlons 919D'I o f CClV?l.IS o f Theoraln 2,
Let 81‘ 02, to,0 9[1-M23 d e n o t e t*ose subscr~bts, i f any, in if for

hhich di is equal t o 4, The stack P sontatns the values of the
l-M2 UCeI's as follows

PI v UC813 v ;rf823 0 e 0 V uCl-M2J
L9t eJ0 with j > l-V& d e n o t e t.he oQe dl 0 If any0 8qUal t0 5, A33ume

acC8jl holds V ,,[8j31

?8SUit, LOADAC = ((I n s t r u c t i o n s t o l e a v e V uCN23) I n aoCbJ2J)
(Instructions to leave V u[NZ+lJ In acCY2+1J)

(Instructtons to leave V UN fn acN))

Each l i n e Of iqstructions uses only the accumulator mentioned, The
stack P is unaltered, (The aj-th line fn,ol,,iny ac[ejl ts m!ssln!J,)

Proof, Structural induction o n 2, B a s i s stept NULL t gives
?\1ILI IvhJctlon St8D: SIX cases bassd o n t h e c)ass/fylng !nteeer
dCY21. If dCN23 = 1 then UC%?] fs an other atom, LOADAC produws

24

(MOVE rJ2 M+CDR ASSOC(uCN23, VPRI P)
0 LOAOAC(((dCN2+lJ,uCN2+1~))(a (dN,utWr M2r N2+1, Mr VPR)

The MOVE Instructjan leaves V uCN23 In acENil using only rcCN23,
Inductfvely t h e LOADAC Dart oompletes the result fncludbvI the
unalteratlOn Of tne stack, Th8 use Of the Inft% dot follow8 the
conventions that th 8 ValU8 Of LOADAC IS a list of tnstruotlons,

If dCN23 = ?I or 2 then uCN~J is either T, NIL, or nUmer~Q’atWIIl
or a quoted exPre$Sfon, T h e p r o o f s at-8 e a c h simtlar to the case
dCN2a 3 i, The generated inStrUGtlOnS arB# rWp8ottVslY,

(MOVE1 N2 (QUOTE uCN23)

a n d
(MOVE1 N2 ,,CN23>

with each fOtlOw8d b y the same LOADAC term as In the First ease,
B o t h MOVE1 instructions l e a v e V uCN23 In acCN23 using only aofN23,
and agaln the LOAWC term Inductluely compl8tea the result,

I f dCN23 1 3 then utN23 Is a car-c& chaln, Syntactically
correct inaut lmpjles the atom a at the end of the chain 1s neither
T, NIL, nor numerfc- atom, Thus COMPC may be invoked, Slnae a
car-cdr chain Is executed from rfoht to left, the REVERSE tunctlon is
n6ed@dc LOADAC Produces

UacCN2J := C$NR a)
.o

(acCN23 t= C32R acCN23)
(acCN2J = CRlR acCN2;1)
(same LO:DAC term as first case))

The first N iines are

(Instruct!ons to leave V uCN23 In acCN2J)

and the LOAOAC term tnduct‘lvsly completes the result,

I f dtN23 5 then acCN2J. IS not altered,
LOADAC(((dCN2+1,.u~~h+iJ) 0)) (dNwuNH, lr N2+1, Mr VPR) hdu~thaly ’
gives the result, (T h e constant 1 as the seoond argument fn thfs
call to LOAUC means l-M2 z i-1 z 91, 14, the staok input condit\on
of LOADAC Is vacuous,)

Flnallyr If dC!'J2J = 4 then the last test of LOADAC prbducas

(MOVE r\(2 ~2 P)

which, using only acCN2Jt leaves V ufN23 In acCN2J because there are
l-M2 -t-12+1 of the (V uCatW3 In the stack,
LOA~AC((~d~~2+l~.uCN2+13) 01 fdN,utWr M2+1, N2+1, M, VPR)

25

tnducttvelv oOmDl8tes the r89uit since there is now one fewer 4 tn
the remainfng dCN2+1J ,,, dN, Even though the stack Is unal‘tered,
the stauk segment Of interest 1s now from V ir[e23 to V uCl-I42] whloh
the stack Input condltlon lnduotlvely renumbers a8 v ufal3 to
v uC4421, l

Lerrma 8 CDefinttion of CCOUNTWJ, Assume Z Is a CLASSIFYted -
list of palrs ((dl,ul) (d2,u2) ,,e (dN,uNJ)), CCOUNT gives the number
of dl,s that are 4, Th;s number Is denoted by #4,

Proof, Structural fnduotlon on 2, Basis step: NULL 21 gjves 0,
Inductlon step t If dl = 4 then 1 + CCOUNT ((d2,u2) ()(fdNeuNl)
fnductive(y gfves t h e result, If dl* 4 then CCOUNT ((d2,u2) t,e
(dN,uN)) Inductively gives the result, l

Larrma' 9, If N L 0 then SUBSTACK N is th8 same funotlon as
LIST LIS'WSUB, 'P,LIST('C,m,O,N,r~)), -

Proof, If N = 0 t h e n NIL Is LIST LIST('SUBJ 'PJ LIST(;C, 8~ 0,

0 , WI, If N > W then It is o/ear. l

Theorem 11 COefinltlon o f cOMPLISA(U, M, VW 1, Inout
assumPti0nS:

u = (ul u2 0.9 UN) 1s a Ifst of arguments,
Condltlons U2-07 of COMPLIS of Theorem 2,

Result, ad holds V ul for iliSN, The stack P IS Safe Over the out-
out af COMPLISA,

Proof. CO~PLIS(CLASSIFY U , M, 1 , VPR) places ?he class ,4
argW8ntS on the stack in the order reaulred f o r LOADAC, COWLIs
also leaves the class 5 argument, say uJ, !n aoj, It 1s 0ermTsslble
to inVOk8

LOADAC(((dl,ul) (d2,u2) we) (dN.uW), 9.0#40 1, Mm#4, VPR)

since W there are now -(M-f141 = -M+#4 acceaslble staok locatlonsJ
<ii> there are 10(19#4) 3 g4 o‘f the Ccl's which are 41 (flj) the staok
P contains the class 4 arguments In the proper order by the result of
COMFLIS, anti (Iv) acJ holds V UJ by the last IIn8 of th8 result of
COMPLIS, After SUBSTACK #4~ the result 0s established,

The order of first COMPLIS and then LOADAC avolds th8 need to
stack a non-class 4 argument since after the class 5 argument Is
computed by COMPLIS, LOADAC may assume the safety of ai 1 aolJ 151SN2,
Q

T h e o r e m 12 CDeffnltlon of CCMPAWORlW, M, LJ l-21 FE, VPR),
Inout assumptions:

26

U = (ul u2 ()) UN),
Conaitlon$ El-E9 of COMPANDOR of Theorem 4,
L2 1s a label different from La

Result. COMPANDORl pro#,tce~ a lib 1~ of bstruotlons hen by

FLG I Algo eaulvalent of 1
cww-
NIL I

w"~"~w~"""www""ww"-wwww-ww---
If NOT ul then go to Lt

1 If YOT u2 than go to LI
I @ e 8
I if !$OT UC+13 then go to LI
1 If UN then go to L2;

WWIW I w"~w~*""~w"wwww"ww*"www~"ww-w
T I If ul then go to LI

I 14 ~2 then go to L; -
I @ @ e
I if ;rC+ll then go to L;
I If NOT UN then go 'Co Lzi

If, homver, U is N U L L t h e n the Algo) equivalent produoed 1s "90 to
1.21," The statements labeled L and L2 are not h I, ? is 3ah over
the exeoutlon of I,

Proof, Structural lnductlon on U, NULL U gives "go to L2tP
Inductton step: Assume FLG 1 TV If NULL (~2 #tr UN), f,e, N 2 1,
t h e n

COMPANDORl z COMBOOL(u1, M, L2, NIL, VPR)

f if NOT ~1 then go to L2;

a3 tWW!~ed, if NOT NULL (~2 0)8 UN), i.8, N 1 2r then

WJOMBQOL(ul, M, L, FLG, VPR))
(COflPANDD~l~(u2 e,(uW, M, L, L2r FLG, VPR))

inductlV8lY yi\lW t h e PBSU% Note tnat (u2).. UN) is not NULL fn
t he inductive call, The unfquen6ss of the label generatfon mechanbm
will help show t h a t t h e labels L a n d Lz are out3lde 1, The caw FLG
= NIL IS essentially identlcalm 4,

.
Theorsrn 1 3 CZeflnttfon of COMBOOL(P, M, L, FLG, WW1, Input

assunptians are the save as COMBOOL of Th8orem 5, COMBOOL produces a
I ist, I, of Instructions given by (the same a3 Theorem 5)

FLC I Algcl equivajent of 1
WLW" ~"~w"w"w"wwwwwww-www-w---
NIL I if NOT P then CIO to L;
VW-r I "~~w""~w~wwI""w"*wLwwwww
T i if P then go to L;

27

with the statement labeled L not in I, p Is safe over the exscUtl0n
of I,

Proof. (Modificatfons to the proof of theorev 5,) Assume FLC s
L Add a case P = T which from case 0,l produces (JRST BI L) as
required, Add a case P = KQ a fl) with 01 and P eipresStOnS,
InductlvWY invoke COMPlJSAtb PI, M, VPR). COMBOOL produces from .
case la1

((acl. holds V a)
(ac2 holds V P)
KAMN 1 2)
(JRST 0 l.1)

= (lf tEQ a 03) then go to L1)

= (if P then go to L;)

Modify the P = UWO a) case. If a 1s non-NULL then after
eva(uatIng COMPAWO!?l((a), Me L-1, L, NIL, VPR), the result CalI’ows by
noting the equivalence of

((If NOT uN then go to LlH
(JRST L)
w

and

((if UN then go to Li)
Ll)

If a is NULL, than ((JRST L) Ll) results In both Instancrs,

Under the assumption FLG f 11 the P = (OR Qo case 1s unohang8dt

Add the case P = (NULL a) with u an expreSslon, COMBQOL
ntodUcm5 from case 4.1

((COMPEXP((a), Y,‘VPR)) _
(JUMPE 1 L))

= ((lnstructlons ta leave V a In acl)
(JUMPE 1 L))

-= (If P then go to L;)

These cases with FLG = NL are moved shllarlyc The t8StS In -
COMGOOL are sltghtly different: T is treated separately rather than
aS an atom; the E$ and N U L L functjons are treated S8Para’bly rather
than as arbitrary functions in the last test, these dtffsrences do
not affect the result of S3MBOOL, @

-

2s

T h e o r e m 14 CDeflnitlon of COMCONDW M , LI VPR)l, Same as
COYCOND of Theorem 6,

Proof, To the proof of Theorem 6 aad two cases to the (nduot]on
step cprregponding t o the second and third tests of COMCOND, The
second test asks if the pair (ul ~2) Is th8 Pafr WWJLL ar) NIL), If
so COMCOND produces

((COMPEXP(a, M, VPR))
(JUMPE 1 L)
(COMCOyD(((u3 ~4) mew (uC2N-13 uC2N3)b MI L, VPR)))

= ((lnstrUctfons to leave V QI fn acl)
(JUYPE 1 L)
(ad := if us then u4 ,,,81S@ If uf;ZN-1

b y ihdu,tire(y invoktng CO PEW anda
then uC2N ; in.:)>

i! OMCQNO

= (acl := tf NULL a then NIL else if u3 then u4 B9a ~188
if uC2N-13 then uc2i\lgi L:)

by ch@cklng two cases on NULL at 'ff NULL a
than acl already holds 0 * V NIL,

The third test asks if (ul ~2) 1s (T ~2). If so any sucoeed/ng
oairs may be Ignored, COMCOND p?OdUc@S

((COMPEXP(u2, MI VPR))
L)

as required, 0

Theorem 15 [Deftnftfon o f COMPEXWEXP, M, vPW1, Saina as
Theorems 1 and 7,

Proof, (Modfficatlons to the Proofs of Theorems 1 and 7,) Add a
case for EXP = (CAR a), 9y correct syntax, u # T, NIL4 numeric-atom,
If Q is an atom, case 3,la produces

WLRZ-@ 1 y+CX? ASSOC(aF VPW PI

A-s in Theorem 1, case 38 Y+CDR ASSOCW VPW Is corrsctr by the
definition of HLRfQ, acl nolds V EXP, IF a is not an atom, than case
3,lb holds. Invoking COWEXPV, ti, VPR) inducttvely leaves V a tn
aclt from whtch (HLRp 1 1) produces CAR V = = V EXP In acl as
reauir-@de The additional case for EXP = (COR a) IS Identfoal to the
case for CAR except for HRRZtr,

Case 4, The first case o f T)leorem 7 also handl@s the fUWtf0n
EC3 since Theorem 13 handles EQ,

Case 7, EXP = (fname a) where QL consfsts of N arguments,
COMPEXP produces

29

(fCO~PLISA((u), M, V-?))
(CALL :4 (E fnamd))

T h i s is c o r r e c t , ite, acl holds V EXP fn view of the dsfhittona of
COMPLISA and CALL,

Case 8, STACKUP 1s ldentkal with COMPCIS of Theorem 2, use
Lemrra 9 on SUBSTACK, l

.

Theorem 16 Korrectness of the oomrd 1~3, Same as Theorem 3,

Proof, Same as Theorem 3 but using Lemma 9, 0

Termination of C4 follows by essgntfalJy the same argument a s
used for C0, CLASSIFY and SUtJSTAW Jotn COMP as exceptions 8ince
neither Is recUrSlVe, COWLISA can be shown to termbats by redlac'lng
its two calls (In ZOYPEXP, case 7 and COMBOOL, case 1,1) by the body
of COMPL.ISAi this substftution 4 I I allow the body t o r e f e r e n c e
subStrUctUreS dtrectly. Thts Completes the proof P4 ot the comp/lsr
c4.

The process of constructing P4 UnooVered sfx errors in C4 as
arjginally written, In addition to the numeric-atom problam tn CO,
Three were found early on by attemPtIng to show that CARa and CORs In
C 4 were always well-defined, 1,~. not appiiad to atoms, Althouoh no
further errors were expected, the other three surfaoed a f t e r
carefUlly stating t h e theorems and then dlscovatinq where the aroof
could not be completed, Each case that telled led very quickly to the
construction of a counter-example t0 the statement Of OOrreOtn98S,
and furthermore showed what changes to C4 would be puff[bient, These
change8 were made (by London) and the proof was completed,

The changes made to C4 are shown in the llatlng of the comBi Ier
in Appendix 2, Each change Is now elaborated!

Ci> COMPEXP, case 2, Same change to C0 for numerlo-atoma,

(ii) COYCOND, line 2 and COMBOOL, case 1, Found by ohecklng C A RS
and CDRs far being :del (-defined, Countar~exampIes are Boolean at0mlc
variables,

(Iti) COMPANDOPI, lines I-2, Pound as in UU, Only counter=examPles
are (AND) and (OH), Incorrectness in the first Proposed change W
NULL U THEN NIL ELSEI, which seems correct, was only discovered by
checking the case N = 0 In P = (AND a) of Theorem 13,

(iv) LO4DAC, case CAAFi Z = 0 and CLASS18 lines 3-5, Found by con-
sidering the case gf TI NIL, a n d numeric-atom8 as actual peram@t8r8
to a fun&Ion In the atom cafe for LOAOAC in Theorem 10,

30

(VI LOADAC, case CAAR Z = 5, Fond by noting that the result for
LOA3AC in Theorem lfl did not Inductively follow tf dfN23 = 5,
:ounter-examples are fur&Ion calls with a class 5 argumentl al 1
succeeding arguments failed to be compf led at all,

(vi, COHBOOL, case 5, F o u n d b y recansfderfng the case of a LAMBDA
exDresslon in Booleaq c o n t e x t (for example an a r g u m e n t to AND, OR, ot
CO!\JD) at the l a s t case o f T h e o r e m 5 Welch case failed in Theorem 13,

As a check the changes anlj the comoleted Woof P& London
usec the changed 1:4’& cawile some of McCarthy's test functions and
aIs0 a set of re~resentatlVf3 counter=examPles, The test functions
gave identical outwt as the origIna C4 (another use of the ft le
comparison utwtu program) m The counter-examples gave oorrect
output as determined by a hand i%Pect~On,

AS noted, John M c C a r t h y m a d e the COmPllWs WJailablQ to mat Rod

1, Fjurstall and Ahltffeld Dlffle orovided maw sttmulattns
discussions and suggestion%

31

REFEREYCES

Surstall, R, M,, 1949, Proving proPertIes of programs by structural
induction, hmputef J,, 12, 1, February, pp, 41-48,

BurstaIl, i?, % S Landiw P, J,, 19fW Programs and theTr proofs: An
algebraic a?pf3w% Plachine Intailigence 4, B, Msltzer 8 D.
Michie (eds,)# 4rrrericafl Elsevierr p% i7-43.

3i,jkstra, E, ‘h’,, 1970, Notes on structured programming, T,H,-Report
7&wSi(43, Technological UniveWty Eindhaven, The Netherlands,
Second Edition, AwiJ,

barn, A, C,, 1973, REDkJCE 2 user’s manual8 Artlficlal Intel i lgence
Ms~o AIM-13-3, Stanford University, October,

hoare, c, A, R,, 1971, Proof of a Prbgram: FIND, COmm, ACM, 14, 1,
January, PP~ 39-45,

xar>lan, D, M,, 1967) Correctness of a cornPlIer for Algolwlike
programi, Artificial Intelligence Memo No, 48, Stanford
University, July,

Lowon, R, L,, 137B. PPohV? PrOgQtmS Correct: Some techn\ques and
examples, @If, 1% 2, pp. 168-182.

YcCarthy, J, 8 Painter, J, A,, 1967, Correctness of a com0l Isr f0f
arithmetic expresslOM8 Proceedings of a SymPOskm ?n h3Plied
Mathematics, Vol. 1% J. T. Schwartz (e&L Amsr I can
Mathematical S&sty, pp,33-41,

ticGo\(ian, C, L.I 1371, AT inciuctive woof technicrue for fnterpreter
eOulva/ence, Fwmal Semantics Of Progranmhg pmsau~g~s~ R.
3ustin fed,), ventics=Hall, to anpear.

1L;i lnerr R 1972, Ir~plarer&Wor~ a n d appi htions o f Scott's logic
for cJInputabje functiwls, Proceedings of a Conference on Ptoving
AssertIons- aba;Jt ProQwms, .Assaciation for Computing Machinery,
to appear,

.
Painter, 3. A,# Iv57 I Semwltic correctness of a oompller for an

IanYJage, ,\r%ificial Intelligence Memo No, 44 CalsoAlgOi-i Ike
Ph. 0, thesis], Stanford University, March,

yje/Ssman, z,, 1967, Lisp I,,5 P r i m e r , Ukkenson Publishinu CO,

tufirth, 4.8 197i, Wo~ram dwNopment b y stepw/se refinement, COmm.
ACM, 14, 4, Apr; 1, pp, 221-%27,

32

APPE;\J31)(1 - A LISTING OF THE COMPILER C0

.

F5:)(~'7 CGMPL FILE c i3mhl SCALAR t;
EVAL(,OUT?UT , ('DSK: , L I S T (CAR FILE a 'LAP))Q
EVAL(rINPUT , C'DSK: , FILE))$
INW'T fiWL)F
WTC(T,NIL)$

j90F: z + ERRSET(~EGI!)h
IF A T O M 2 TN1\1 G O T O DONEis
t * CAR t$
IF CAR Z E'3 ‘3E THF:h

b;EGIti SCALAR PROC;
?ROG c C(j’;P(C,iD~ z,CADDR @ADJDR ~1%
~~APC<FUNCTI3Y<PRINT>,pRo~)$

9UTC(NIL,YIL>S
PRINT LIST<:A!IR &LENGTH PRO611
WTC(T,NILQ

E al
ELSE P?IrJT 2%
l;o TO LOO?'S

[;G!q\JE : OUTC(NIL,T)?i
tNCWIL,T>S
RGTURN ‘E’JDCOW E N D ;

CW!P(FIJ,VARS,EXP) t
tLAElBC)a “1;

APPEKI (
LIST LISTi'LAP,FN,'SUBR 11
MKf'UW~N,l),
col*IPExP(ExP, -N,PRUP(VARS,l)),
LIST LIST ('Sub ,'P ,LIST('C ,bfl,V,N))~
‘(gwPj P) NIL)))

LENGTH VARS;

?&P(VARS,N) c IF rd&~ !,ARS THEN NIL
ELSE (CAti VARS , "4) , PRUPGOR VARS,N+l)t

ww~SHtN,M) * IF fj<x THEN ?.jIL LLSE LISTvPUSh ,'P tMMKPUSH(N~~+W

. CG?vEXP(~XP,M,VPR) +
Cl3 If f’.jlJ~L EXF THE& ’ f (:lOVt’.l i G))

c23 ELSE IF E)(P EiJ *T OR NlJMRERF EXP THLN
LIST LIST(‘YOVEI, 1, (LISTWJUOTE, CXP)))

',31 PLSE IF ATOq 1:XP THE3
L1ST LISTt'YOVt: ,l,M+CI)R ASSW(EXP,VPR),'P)

101 ELSE IF CAR KXP EQ ‘AND O!? CAP EXP EO 'OR OR
C A R EXP EQ '!\iOT THEY

33

.

c51

C63
c73

f83

(LAMWA Ll,L%; APPEND(CO~BOOL(EXP,M,Ll,NIL,VPR)I
LIST('(MOVtiI 1 (QUOTE TH,LIST('JRSt r0rL2h
Ll,'(MOVEI 1 GHrl.2)))

(GEySYM(),GENSYMO)
ELSE IF CAR EXP EQ 'CON0 THEN

COMcOND(CDR EXP,M,GENSYMO,VPR~
ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST('MOVEI,l,EXP)
ELSE IF ATOM CAR EXP THEN

(LAMBDA Ni APPEND(COMPLIS(CDR EXP,M,VPR),
LOaRAC(l-Nrl),
L I S T LISTVSUB ’ 'P ,LISTVC ,0’0,N,N))’

L I S T LIST('CALL ,N,
LISTt'E ,CAR ExPH))

LENGTH COR EXP
ELSE IF CAAR ExP EQ 'LAMBDA THEN

(L A M B D A Nj APPENO(COMPLIS(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M-N,
APPEND(PRUP(CAOAR EXP,l-M?,VRR)),
LIST LISTwsU8 ’ 'P ,LISTVC ,D,B,N,N)?~)

LENGTH CDR ExP!

cOMPLIS(lJ,M,VPR) -
IF NULL U THEN NIL
ELSE APPEND(COMPEXP(CAR U,M,VPR),

'((PUSH P 1%
COMPLIS(CDR U,M-l,VPR));

LOADAC(N,K) + IF N>0 THEN NIL ELSE LIST('MOVE ,K,N,'P 1,
LOADAC(N+l,K+l);

COMCOND(U,M,L,VPR) .
IF NULL U THEN LIST L
ELSE (LAMBDA Ll; APPENO(

COMROOL(CAAR U,M,Ll,NIL,VPR),
COMpEXP(CA@AP U,M,VPR),
LIST(LIST('JRST ,L),Ll),
COMCOND(CDh U,M,L,VPR)I)

GLNSYM(1;

~ cOMBOOL(P,M,L,FLG,VPR) *
Cl3 IF ATOM P THEN APPENC(COMPEXP(P,M,VPR),

LIST LIST(IF FLG THEN 'JUMPN
ELSE 'JUMPE ,l,L))

c2
2

ELSE IF CAR P EQ 'AND THEN
a3 (IF NOT FLG THEN COMQANOOR(CDR P,M,L,NIL,VPR)

Cbl ELSE (LAMBDA Llr APPENO(
COMPANUOR(CDR P,M,Ll,NIL,VPRh

LIST LIST('JRST ,O,L),
L I S T Ll))

GfrJSYM() 1
133 ELSE IF CAR P EQ 'OR THEN

Cal (IF FLG THEN COMPAN6OR(CDR P,M,L,T,VPR)

34

Cbl ELS[: (LAYutB@A Ll; APPENi)t
COMPANOORKDR P,M,Lf,T,Vf’R),
LIST t,.IST<‘JfW ALL
L I S T Ll))

GE$SYM())
143 ELSE IF CAR P 59 ‘FKV WE25

co~gx)L(c~!?R P,M,L,NOT FLWIPR)
. c51 E L S E APPEW(COMPEXWP,~,~PRI,

LIST LISTfIF FLG THEN 'JUMPN
ELSE 'JNIPE ,l,L)Ii

CC~~FANDOR(Il,?l,L,FLS,v?R) l IF NULL iJ W3 NIL
ELSE APPEIdD(CSEEC3L(CAR U,M,L,FLC,VPR),

CJ”PANDOR(CD3 U,:l,L,FLG,VPR));

AFPEWIX 2 - A LISTI$G O F THE MJRE OPTIMIZING C O M P I L E R C4

T h e c h a n g e s naedsd t o comr?leb th@ Droof o f c o r r e c t n e s s o f C4
a r e shclsv i n this listin - - delations enclosed b e t w e e n t h e s y m b o l s c
awA 3 and additfons enclosed between the symbols [and J with t h e
lstter two also beins used to number cases, The eight changes are at
CO”dFEXP, case 2; SO%WD, 1 ine 2: LOADAC, cases CAAR 2: z a and MAR if

5.
I-2:

CLASSj., I inss 3-5; CW3OOL, c a s e s 1 a n d 5; a n d COMPAN?OQl, l i n e s

FEXFfi C G M P L F I L E - BESIN S C A L A R 2;1
fVAL(rOUTPUT , ('i3SK: , LIST (C A R F I L E , 'LAP)))?
EVALVIW~T , ('3SK: , FILL))Sr;

INU’T ,NIL)$
CUTC(T,ML)$

LWF: t - ERRSET(PtA~())F
I F ATOM E TgFY/ Go T O DWEE
ir - CAR Z3
IF CAR if EC? 'DE T!-iE?I

i+Er,IQ S C A L A R PPOG;
PROG - COt'P(CA3Q 2 ,<ADDH pCAD9DR ~1%
pAPC(FUtJCT I ;t;(PRINT)rPROG)$
OUTC(NIL,ML)$
P R I N T LIST(CA!JR t,LEkJGTH PHOG)~
OUTC(T,NIiJ$

ENif
E L S E PRIV $3
G O T O LC;3P%

DG‘k : OUTC(NIL,T)?i
INC(NIL,T)%
RETURN IE?:DSO?V EW;

uuuu+u9uuu+*u+u+u~u~uuu~uuuuuuuu*uuuuuuuuuuuuuuuuu~uuuu*u#u~u*u*uu~uu

F o r t h e rmraoses Df t h i s paDdr# the comiier starts heret a b o v e h e r e
may be ignored,
u9uuu+ouu+uuuuuuu~u~uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu**u*u#u~~uuu~u~uuuu

CW(FN,VARS,EXk 6
(LA!l!3?3A VP9,Q;

APX'JY
L I S T LIST('LAP,FN,'SUBR 1,
MKPUSY(N,i),
C~MPEY~(EXP,-t~,VPR),
SiJFSTAC!(rJ,
'i(?WJ W I\III.)))

(PRUPWAQS ,:),LENSTd VARS):

SUPSTACK b.J +. I F tiil=?i WE'?i VI!.
E L S E L I S T L:STvS~JEj ,‘F-‘ ,LIST(‘C ,&~~,!d,N));

Pf?UP(VARS,N) * IF NULL VARS THEN N I L
6 ELSE (CAR VARS , N) , PRUP(CDR VARS,N+l);

tiKPUSH(N,M) + IF N<y THEN NIL ELSE LISWPUSH ,'P rM),MKPUSH(NIM+l)I

CCMPEXP(EXR,M,VPR) +
Cl3 IF NULL EXP THEN ‘((MO\/EI i a))
c23 ELSE IF EXP EQ ‘T cTHEN ‘((MCVEI 1 (QUOTE T)))=

[OR NUMBERP EXP THEN
LIST LIST(‘MWI, 1, (LISTWWOTE, EXP)))]

C31 ELSE IF ATOM EXP THEN
~1s~ LIST(‘MOVE ,l,M+CDR ASSOC(EXP,VPR),'P)

f3,ll ELSE IF CAR EXP EQ ‘CAR THEN
C a l (IF ATOM CAUR EXP THEN

LIST LIST('HLRt@ ,L
M+CDR ASSOC(CADR EXP,VPR),'P)

cb’ ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
‘((HLRB 11))))

c3.21 ELSE IF CAR EXP EQ ‘COR THEN
Ca3 (IF ATOM CADR EXP THEN

LIST LIST('MRRZ@ rl,
M+CDR ASSQC(CADR EXP,VPR,,'P)

cb3 ELSE APPEND(SO~PEXP(CADR EXPdI,VPR),
'((HRRZe 1 1))))

143 ELSE IF CAR EXP EQ ‘AND OR CAR EXP fiC 'OR OR
CA? EXP EQ 'NOT OR CAR EXP EQ 'EQ THEN

(LAMBDA L1,L2; APPEND(
COMEUIOUE P,M,Ll,NIL,VPR),

LTST(‘(MOVEI 1. ((3 OTE T)),LIST('JRST r0d.21,ii
Ll,'(MWEI 1 0LL2W

(GE~JSYMO,GENSYMW
C5J ELSE IF CAR EXP EQ 'COND THEN

coMc0~~~(CUR ExP,M,GENSYMO,VPR)
C63 ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST('MOVEI,l,ExP~
c73 ELSE IF A T OM ClAs EXP THEN

APPEND(COMPLISA(CDR ExP,M,VPR),
LIST LISTt'CALL ,LENCTH CDR ExP,

LIST('E ,CAR ExPW
C83 ELSE IF CAAR EXP EC ‘LAMHDA THEN

(LAMRDA N; APPEND(STACKUR(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M-Nr
APPEND(PRUP(CACAR EXP,lmM?,VPR)),
SURSTACK N))

LENGTH CDR EXPt

STACKUP(U&VRR) + IF NULL U THEN NIL
ELSE APPEW(COMPEXR(CAR U,M,VPR),

‘((PUSH P 111,
STACWJP(CDR U,M-1,VPR));

37

CCChAIN EXP c (C A R ExP EQ ‘ C A R O R GAR EXP EQ ‘CDR) A N D .
(rrTC:I CAOR EXP O R CCCHAIN CAUR EXP);

I F ATOM L-XP THEN E R R O R ‘WMPC
E L S E I F C A R EX? Ed ‘CAR T!iW

(If- ATOM CAUR EXP THEN
L I S T LIST(‘HLR?S ,W,M+CDR ASSOCKAOR EXF’,VpR),‘p)
ELSf LIST(‘HLRZs ,N2rMLLCOMW(CAW EXP,N~,!I,VPR))

ELSE IF AT%4 CADR EW T H E N
LIST LISTVHWZe ,N2,:1+CDR ASSOC(CADR EXP,VpR),'P)
ELSZ LIST('43We ,!42,N2),COMPC(CAOR EXP,N2,M,VPR);

COKGND(U,M,L,VPRj .=
IFNULLUTK~~LKTL

E L S E I F CWT A T O M C,iAR U AN&l
C A A A H U fs‘“JULL. AW NlJLL CADAR U T H E N

APPE~~3(COMPEXP<CA~AAR G,M,VPRj,
LIST LIST('JUW'E ,lrl.),
CCMCONd(CdR U,M,L,VPR>)

E L S E I F CAAR U EQ ‘T THEN
4?PKNS(C3MPEX?(CA94R !J,M’,VPR),LIST L)

E L S E (LA:lSOA L1; APPENij(
C~Y~)OOL(CAAH U,M,Ll,W,,VPR),
CSMPFXP(CA~AR U,M,VPR),
LISXLIST(‘JfW ,a,Lj,Li),
WMC3ND(C3R U,M,L,VPR))j

GLNWMi j;

C!jWLISA(U,!l,VPR) -
(LAMBDA if; ApPEKd (

C?'IPL 1 s (%,)I, 1, VPR j ,
L3AZAC(Z~i-CCX:iT t,l,%CCOUNT t,VPR),
SJtq$TACK C C O U N T t))

CLASSIFY 1);

Cccujh!T t - IF WLL Z THE~J $3 E:LSF: -It’ CAAI;I 2 = 4 THEN ~+CCQUNT CDH f
E L S E CCOUyT C3R ti

IF NULL Z Tr’EY “i I L
ELSE: IF CA&~ 2 z 1 THEN

L: S T (’ PQVE ,N2,M+CW? ASSOC(CW,R t,VPR),'P)
,LOADAO(CDR Z,H2,N2+l,M,VPR)

cELSE IF C&R I = 3 THEN
lwIS~(‘kv/EI, t&2, (LISTf’QUOTE, WAR 2)))

,LOADAC(CDR t,q2,W+l,M,VPR)I
ELSE IF CAAP Z = 2 ‘WEN

lJS*(‘l4pEI tN2,CDAR ?j
,LOAgAC(CDR Z,iG,N2+l,il,VPR)

E L S E ;F CAG? Z =3 THEN

APPEMXREVEHSE COMW(CUAR t,N2,M,VRR)r
LOADAWCDR Z,M&N2+lrM,Vf'R))

. E L S E I,: CAAR Z t 5 THEN cNIL3 CLOADACWDR t,l,NZ+i,M,VPR)J
E L S E LiST(‘MOVF: ,N2,M2A’ 1,

LQADACfCDR 2,M2+i,N2+1,M,VPR)1

COMPLIS(t,WW’~fU c
IF NULL t THEN NIL
ELSE IF CAAR 2 = 4 THEN APPENPt

COMPEXP(CDAR t,M,VRR)r
\ '((PUSH P 111,

COMPLIQCDR Z+l,K+l,VPR))
ELSE IF CAAg if = 5 THEN APPENDf

CQMPEXP(CDAR trM,VPR),
IF K=l THEN NIL
ELSE LIST LISTf'MOVE ,K,l))

ELSE COMPLISWX? t,M,K+l,VPR))

CLASSIFY U - cLASS2tCLASSl(U,NIL),NIL,T);

CLASSl(U,V] - IF NULL U THEN V
ELSE I F ATW CAR U THEN

[(IF CAR U = 'NIL OR CAR U a 'f OR NUMBERP CAR U THEN
CLASSltCPR U, (0) CAR U,,V)
ELSE] CLASSlfCOR U, (1 . CAR U~,V)t,l

ELSE IF CAAR U = 'QUOTE THEN CLASSt(CDR U,(2) CAR lJ),V)
ELSE IF CCCHAIN CAR U THEN CLASSltCDR Up(3 (CAR U),V)
ELSE CLASS~(CDR 11d4 , CAR U),V)i

CLASS2WVrFLGj - IF NULL U THEN V
ELSE IF FLG AND (CAAR U = 4) THEN

CLASS2tCDR Ud5 a COAR U),V,NIL)
ELSE CLASS'LfCDR U&AR U e V~FLWI

MKJhSf L e= LIST LISTt'JRST r&L)1

coMEOOL(P,M,L,FLG,VPR) c
CO,13 IF P EQ ‘T THEN (IF FLG THEN MKJRST L ELSE NIL)
Cl3 CELSE IF ATOH P THEN APPENDf

COMPEXPtP, M, VPR),
L I S T LIST (IF FLG THEN 'JlJMPN

ELSE 'JUMPE ,l,L))3
Cl,13 ELSE IF C A R P EO 'EQ THEN APPENDt

COMPLISAtCDR P,M,Vf'R),
IF FLG THEN '((CAMN 121) ELSE '((CAME 12%
MKJRST L1

c2
2

ELSE IF CAR P EQ 'AND THEN ;
a <IF NOT FLG THEN COMPANDORfCDR f',M,L,NIL,VPR)

cb 3 ELSE (LAMBDA Ll; APPEND{
iOMPANDORltCOR P,M,Ll,L,NIL,VPRI,

LIST Ll))
GENSYMO)

-
3 9

Cal (IF FLG THE!: COWAWOR(COR P,V,L,T,VPR)
Cbl ELSE (LAWDA Ll; APPEW(

COMPANDOFWCUR P,M,Ll,L,T,W?),
LIST Ll))

GEidSYY())
I33 E L S E I F C A R P Er, ‘!dC;T T H E N

C3M500L:CAW3 P,M,l,.,NOj Fl,.G,VPR)
CLlJ ELSE IF CAFi P EC ’ NULL THEN APPLW (

COMPEXWCADR P,M,VPR),
LIST LIST(IF FLG THEN ‘JBIMPE

ELSE ‘SlJWN ,l,L))
CT] E L S E cIF i,T~tl CAR P THEW APf’EtiU(

CO~PEXP(P,fq/PR),
LiST LIST(IF FLG THEN ‘JUMPN

ELSE ‘JUMPY ,l,L));

CC:lPANOO~(‘J,M,L,FLG,Vc9) * IF- tJuLL iJ -idEN NIL
ELSE APPEN~(C3MZOOL(CAR i.J,M,L,FLG,VPR),

CO’lPANUCP(CDR ti,fl,L,FLG,‘#R));

CO~FANDSRl<;J,M,L,LZ,FLG,~/~~) 6 [IF W’LL U THEN MKJRST L2
ELSE3 I F %uULL CGH iJ TtiE:J COMFOoL (C A R U, M , L2, N O T FLG, VPQ)
Q.SE APPE?D(C~M~O~L(CAR U,M,L,FLG,VPR),

C~~W4OfYX(CDR U,M,L,L&FLG,VPR));

APPEr\jDIX 3 - SA?“;PLE CIlT?C;T OF 0111 4N9 C4 FOR A REVERSE FUNCTiON

Code fror?: CVI

(LA? REV SUBR)
(PiJSh P 1)
(Pxh P 21
(MOLE. 1 -1 PI
(PiJSh P 1)
(MOSE i c? PI
(S!Jb P (C M 65 1 1))
(CALL 1 (E NULL))
(J!JbPt 1. L2)
(MOVE 1 U PI
(JRST Ll)
I2
(K3LEi 1 (Q U O T E T))
(JJWE 1 L3)
<Yo\E 1 -1 P)
(WJW P 1)
(YOLE 1 fl w
m.J5 P (C '3 0 1 1))
(C'ALL 1 (f CD!?))
(P1JS.h p 1)
(M O L E 1 -2 P)
(Push P 1)
(M3kE 1 J7 "I
(SiJS P (C D 13 1 1))
(CALL 1 (E C A R))
(PUS+ P 1)
(MTVE 1 -2 PI
WiJSh p 1)
mr)vE 1 -1, Y)
(KWE 2 c P;
(St!c! P (C 0 fl 2 2))
(CALL, 2 (E CONS))
(P!JSb P 1)
(:lovE 1 -1 P)
(MLq/E 2 B P)

\

(‘j!Jc P (C 0 VI 2 2))
<CALL 2 iE REV))
(J%T Ll)
L3
Ll
(S;,S P (C a i;: 2 2))
(PWJ P)
N I L

-

WJ!JLL XI y) (T (R<\r (CU)R XI WINS (CA!? X) Y))))) \

1:0Pm0nts Code from C4

heacset
stack first arg
stwk s e c o n d a r g
cOr?put~ x
stsck it
t8cdi x
adJ. stack by 1
r,al I NULL
i f not &?ILL jump
recai 1 V
juqz for return
the label L%
coqwte T
if riot T jumn
COrlPlJtf?):

red I X

CD?

rscail X

recall CUR X
r e c a l l CWS, resp,

transfer CDJS
conpute CDK X

roturn

9'?d o f CO;18

(LAP REV SUBR)
(PUSH P 1)
(PUSH P 2)

(MOVE 1 -1 ?I

(JUtlPN 1 L2)
O-lOVE 1 ii? P)
(JRST L:)
L2

(YLRjCm 1 -1 PI

MOVE 2 ,3J p)

(CALL 2 K CQNSH

VIOVE 2 1)

(CALL 2 (E REV))

Ll
(SUB P (C J a 2 2))
(POPS P)
ML

-_r/, -.‘._

