STANFORD ARTI FI dAL I NTELLI GANCE PROECT MEMD A M 151

COMPUTER SQ ENCE DEPARTMENT REPORT NO. CS 240

CORRECTNESS OFTVDCOMPI LERS FOR A LI SP SUBSET

BY
RALPH L. LONDON

OCTOBER 1971

COMPUTER SCI ENCE DEPARTMENT STANFORD UN VERSI TY

\mid 0
\square
（

Ral ph L, London

ABSTRACT: Using mainly structural induction, proofs of correctness of each of two punning H. 150 compilers for the PDP-10 computer are glven, lncludedaretherationale for presenting these proofs, a discussion of the opoofs, and the changes neenea to the second compller to oompletelts Proof,

To be Presented at the Conference on Proving Assertions about Programs, New Mexico State Uni versity, January 1972,

This pesearch was supported in part by the Advanoed Research Projects Agency - of the Office of the Secretary of Defense under Contract SD 183 and in Dart by the National Aeronautics and Space Administration under Contract NSR 05-020-500.

The views and conclusions containedin this document are those of the author and should not be Interpreted as necessarily reprasenting the officlalooliclas, efther expressed or imolied, of the Advanced Research Projects Agency, thenational Aeronautlos and Space Administration, or the U. S. Government,

Reprooucedin the USA, Available from the Clearinghouse for Federal scientific and Technleal Information (or Its suceessors), Springield, Virginia 22151. Prlee: Full size CODY $\$ 3.00$; microflche cony $\$ 2.95$.

CORRECTNESS OF TVD COMPI LERS FOR A LISP SUBSET

by
Ralph L. London

introduction And Justification

This paper contalins proofs of correctness of each of two useful, running compilers, named $C O$ and C4. The source language for both compilers ls the same subset of pure (basic) Lisp, which subset exeludes special or global variables, function names as argunents, and the form label: the object language isessentlally assembly code for the PDP-10 comouter; and the compilers thensel ves are uritten recursively in RLISp (Hearn 1g70), a version of Lisp with Algol-like syntax. The compilers were wiltten by John MtCarthy as papt of a series of progressively more ontimizing compllers for use in a course at Stanford entitled "Computing with Symbolio Expressions." Only later have these compilers been conslderad for proving correctness, Alisting of the compilers and sample output are In the appendices.

The proof P4 of correctness of the compiler C4is a modification and extension of the proof $P O$ for $C D$. The organlzation of this paper is first to prove © \varnothing correct exclusively, Abplef discussion of the proof appears Just after the proof, Then using the same machlnepy that is defined, and using much of the proof $P \theta_{\text {, the comoiler C4 is }}$ proved correct, this serial organlzation, peflecting the essential chronol ogy of the work, seens Preferable to proving the tuo compllers in parallel, The reader should now ignore C4 (and P4) untll the start of p4, except to note that the input and overal| statement of correctness are the sameas for CQ,

To prove the correctness of a comoller is a frequently heard chai lenge, The present proof partly responds to the challenge: The compiler is sufficiently lengthy and comolex not to be vfewed as merely another cooked-up research example, As evidence of this, whitfield ciffle has shown the compiler capable of complilng itself successfully, Yet the comoller has certaln toy-problem aspects, for exarple accepting a subset of full LISD, the Ineficiency of the resulting object code, anti the slmpleparser, It is certainly not a oroduction compiler, Neverthel ess, exhibiting yet another proof seers Justifled since (i) a compiler is sonewhat different from Other alocpithms that have oeen proved (there are at least two programs beirg executad, the compiler and the object orogram, and, to a lesser extent, the soupce orogram); (ll) there has deenllttie progress in oroving complleps correct beyond the nork of McCarthy 8 painter(1967), painter(1967), Kaplan(1967), Burstal|(1969), and Burstall 8 Landin (1969), although tne uork of MeGowan(1971) snould be rantioned; (lii) there remalns the worthwhllegoal of belng ab to prove comollers correct; (iv) thls proof has been made to serve as the nucleus of a proof of correctness of a more ootimizing comp:|er in the existing series; (v) the Infornal proof serves as the basis of morg formallzed procfs, the latter being necessary if a proof of
coprectness is to be chesked byaproof checker (Milner1972): and (vi) the coprectnass of the complier is not imediately obvious.

THE PROGLEM STATEMENT, NOTATION AND PLAN OF ATTACK
The reader is assumed to have a basic knowledge of Lispisay from Weissman's (1967) orimer. The Inout to the compllerls (DE NAME (apgs) body), $\quad \mathrm{E}$ is for Define Expression and NAME Is thename of the function being comoiled. The quantity (args) is the llst of argurents (formal parameters) for the function NME and bodyls the body of the function, The calling convention lsthat a defined function f of $N \geq 0$ arguments, say argi,arg2,...,argNiwilifind run-time values of those arguments In successive accumulators starting in aci, which holds argi, and the result f(argi,arg2,.... argis) will be returned in acl, This convention applies also to any function call complled by the compllerin response to acallin the source code, e.g, the callto CAR in VE SIMPLE (x) (CAR X)), In dartlcular the call may be a recursive call, e.g.
(DE COMPLEX $(X Y)(C O N D((N U L L X)$ (CONS $Y X))$ (T(COMPLEX (CDR X) Y)))),

We now give a nore detailed and more precise description of the allowable syntax and its intended meaning, Thellst (apgs) lsallst of atoms excluding NIL, T, and numeple-atoms; body is an expession where expression is defined recursively bel ow $(N \geq 0$ in ai relevant eases). The value of an expresslon EXP, denoted VEXP, is recurslvely defined at the sane tine (as an IInformallzation" of the Lisp EVAL function),
(i) atom, in particular NIL,T, or a numeric-atom, V atom:
$\mathbf{V N L}=(Q U O T E N L$ [In thls complier],
$v T=($ QUOTE T), where a non-NL val ue is considered equal to \vee T,
V numericatom = (QUOTE numeric-atom), and
V other atom $=$ its binding, l.e. run-time value which may not be a function name,
(ii) (AND EXP1 EXP2 ,..EXPN), V ANDexpression $=$ Tif all $v E X P i$ are non-NL othepwlse NIL, $V(A N D)=T, \quad A N D$ eval uates its apguments from leftoplontuntli either NiL ls found in which case the remaining argunents are not ovaluated, Or until the last argunent is eval uated,
(1 ii) (OR EXP1 EXP2 ... EXPN), U OR-expression $=T$ if any VEPI is non-NIL otherwise NIL, $V(O R)=N I L, \quad O R$ eval uates Its arguments from ieft to right until althernon-NILIs found In which case the remaining argunents are not ovaluated, or until the last argunent is eval uated,
(iv) (NOT EXP), V NOT- expression $=T$ if V EXPIsNIL otherwise NIL.
(v) (COND (EXP1 EXP2) (EXP3 EXP4) ... (EXP[2N-1] EXP[2N])). \checkmark COND-expression is determined as follows. The expressions EXP1. EXP3. EXP[2N-1] are evaluated startlng with EXP1 untll the first EXP[2l-1] is pound whose value is non-NIL, V COND-expression is then V Exp[2lJ. If mo Exp[2i-1] exists with non-NIL value, then \mathbf{V} COND-expression is undefined.
(vi) (QUOTE EXP), V QUOTE-expression = EXP, i, e, EXP unevaluated,
(vii) (fname EXP1 EXP2...EXPN) where fnane $\nexists A N D, O R$, NOT, COND, QUOTE, $\quad V$ function-expression = fname(VEXP1, VEXP2, :., $V E X P N$), i, e, tho value of the function fname apolled to Its eval uated arguments V EXP1, VEXP2,....VEXPN, The argunents are evaluated once before the function is called,
(viii) ((LAMBUA (atom1 atom2 ... atomN) EXP) EXP1 EXP2 ...EXPN) where atomi $\neq \mathrm{NIL}$, T, numeric-atom. VLAMBDA-exopesslon is determined as follows. A LAMBDA-expresslon defines a function which has no expl|cit (atomic) name, VLAMBDAm expression is the value of this function applied to its eval uated arguments VEXP1,VEXP2, ..:VEXPN, In other words, V LAMBDA-expression $=\mathbf{V}$ EXP where V EXP is comouted after the substitutlons atom1 *VEXP1, atom2 * VXP2, ... atomN •VEXPN have been nade in EXP. If there is a clash of bound varlables, the convention is that the Innermost binding governs,

SInce function nanes are forbidden as argunents, the expression ((LAMBDA (X) (X)) Y) neans a call to the function X of no arguments rather than a call to the function argunent Y. The above syntax forbids $((x)),(((x)))$, etc, as expressions,

The comoiler is proved correct under the assumption that its input is syntactically correct, since no error checking is done by the compiler, nothing Is claimed for the pesults, if any, of incorrect Input, Correct input also means, for example, that a ||st of fornal paraneters consists of distinct atons and that the nunber of fopmal Parameters is always equal to the number of actual oarareters. There are oresumably many other such conditions, violations of some of which may have reasonable Interpretations,

The statement of correctness of the compller Is that the compller-ppoduced object code, when execjted, leaves a result In acl eaual to the value of the source language function appliod to the same arguments, The object code takes its N arguments from the accurulators acl, ...l acN. If $A=a l a 2 \ldots a N$ represents the argurents, then the correctness statement may be restated as requipino that the equation

$$
V((D E \text { NAME (args) body) } A)=\text { contents of ac1 }
$$

holds after executing the l|st of compiler-produced Instpuctlons

> COMP (NAME, (args), body)
starting with aci holding al for $1 \leq 1 \leq N$.
The followingfacts about the pDP-10 computer ar from di writefp
MECarthy: The $00 P-10$ has a 36 bit uord and an 18 bit address, by MECarthy: The $P O P-10$ has a 36 bit uord and an is bit address,
insipuctions and in accumul ators used as index pegisters this ls the right part of the nord where the least signiflcant bits ln arithmetic reslde.

There are 16 general registers whlch sepve slmultaneouslya s accumulators (receiving the results of arlthmeticoderations)index registeps (modifying the nominal addresses of Instructtons to form effective addresses), and as the first 16 reglsteps of menory (if the effective address of an instruction is less than 16, then the instruction uses the copresponding general register as itsooepand).

AlI Instructions have the same format and are witten for the LAF assembly programin the form
(<OD nane> <accumilator> <address> <index register)),
Thus (MOVE $13 P$) causes accumulator 1 to recelvethe contents of a memopy pegister whose address ls $3+c(P), 1, \theta, 3+\langle t h e c o n t e n t s ~ o f ~$ general register $P>$, In the following description of instruetions, <ef> denotes the effective address of an instruotion.

MDVE

```
c(ac) * c(\langleef\rangle)
\(c(a c)\) - \(\langle\theta f\)
```

MOVE 1
HLRZ (usea in C4 on|y) e(lefthalfac) * pight halif, ofo(<ei>)
HRRE (used In C4 only) c(plght half ac) re(plght half of o(<ef>)
SUB $c(a c) \cdot c(a c)-c(\langle\theta f\rangle)$
JRST
JUMPE
JUMPN
CA'化 (used In C4 on(y) If c(ac) =c(<ef>) then skipnextinstruction CANN (used In C4 on y) If $c(a c) \neq c(\langle e f\rangle)$ then skip next Instifuction PUSH $c(c(r i g h t ~ h a l f ~ o f ~ a c)) ~ c(\langle\theta f\rangle) ;$ the contents of each half of ac Is Increased by one (POPJ P) Is used to return from a subroutine

These Instructions are adequate for complling basiclisp code with the addition of the subpoutine calling oseudo-instruction, (CALL n (E <subp>) is used for calling the Lisp subroutine 〈subp> with n argurents. The convention is that the argunents wlll be stored in successive accumul at ors beginning with accumal at or 1, and the result will be returnea in accumulator 1, inparticular the funotions AtOm and CONS are called with (CALL 1 (E ATOM)) and (CALL 2 (E CONS)) respectively, Note that the Instruction (SUB P (C O D 3 3)) Just deletes tha ton three eloments of the stack P, (PUSH Fac)lsused
to putc(ac) o n thestackP. Thls ends the facts about the PDP-10 computar.

To show the result and effect of executing a section of assembly code, notation ofhand-simulation, deskechecking, or tracing of cede is used. it is best explained by examole, stapting with N accurulatops each holding a value and an emptystackp, namely

$$
\begin{gathered}
\operatorname{aci} \mid \alpha 1 \\
\operatorname{ac} \mid \alpha 2 \\
\operatorname{acNi}^{\prime} \alpha_{N} \\
P \|
\end{gathered}
$$

the list of Instructions

```
((instructions to leave \alphai in ac1)
(PUSH P1)
                                    ..'
                                    (Instructions to leave \alphaN In aci)
                                    (PUSH D 1)
                (MOVE 1 1-N P)
                (MDVE 2 2-h) P)
                (MD'VE'` N Q P)
                (SUB P (C 0 0 NN))
                (CALL N (E name)))
```

gives the trace

```
ac1|\alpha1* al* \alpha2* .., \alphaN* \alpha1* name(a1 \alpha2 ,., \alphaN)
ac2|\alpha2* \alpha2* undsf
acN'|N* aN* undef
    Pl\mp@subsup{\alpha}{1** *2* .., \alphaN* ,}{}=,
```

Thus thevaluename($\alpha 1, \alpha 2 \ldots \alpha N$) is in aci, undef (an undefined auantity is in acifor $2 \leq 1 \leq$ Nsince these accumulators are unsafe over name, and the stack P is unaltered from the start, Thetraoe shows the final resultof traclng; the intermediate results are recordedbut marked byan asterlsk(*) as being no longer present,

The $p l a n$ of attack 15 as follows:
(i) Prove correct 3 auxlliary Procedures [MKPUSH(N,M), PRUP(VARS,N), and LDADAC(N,K)Jwhichare not part of the nafn pecupsiveness of the combiler (lemras 1-3),
(ii) under the assumption of no conditional expressions or Boolean expressions (i.e, noCOND, AND, OR, NOT), prove the compiler correct(theoremsi-3 and termination), and
(iii) Prove the complier correct witnout the restrictiveassumption
of (i) (theorens 4-7).
The proof techniques to be used are mainly those shown in London(1970), The factorization into (ii) and(ili), conveni ent por construct ing, for presenting, and for peading the proop, shows how one can Grove an algorlthm in sultable segnents pathor than havingto do it all at once, lfthereader omlts theorems 4-7 of (ili), the broof of correctness of an interesting subcomollop results, In this part recursion is sti i allowed in the sense that the comollep will correctly complle a recursive function, But the object code may not terminate if such a recursive functionlscalledsince there is no branching to "stop the recursion?

The number ing of the lemmas and theorens peflects the order of their discovery and proof, The opdercould be altered by mepaling theorens 1 and 7 and $b_{y} p l a c i n g$ theorem 3 as the last theorem if the sole interest were to prove the entire compller.

PROOF OF AUXI LI ARY FUNCTI ONS FOR Cø
The LISD oderation CONS is denoted In RLISP by an Inilx dot(,): $A, 3=(\operatorname{CONS} A B)$, Ry inspoction of the whole comoller, It fol lous that all numerical|y-valued quantlties are integers, e is used as an end- of-proof marker,

Lemma 1. If $N>$ and $M>日$, then $\operatorname{MKPUSH}(N, M)=$
((PUSH P M)
(PUSH P $M+1$)

! \cdot '

(PUSH P N)),
If $\mathbf{M}>\varepsilon$, then $\operatorname{MKPUSH}(D, M)=N I L$.
Proof, Backwards induction On M, If $\mathbf{M}>\mathbf{N}, \operatorname{MKPUSH}(N, M)=N I L$. If $M=N$, we have (PUSH $P M$),NIL $=((P U S H P N))$, Assume the Iemma for $M \leq N$ and consider M1>0.

```
MKPUSH(N,M-1) = (PUSH P M-1).MKPUSH(N,M) since N >Mm1
    =(PUSH P M-1).
    ((PUSH P M)
            (PUSH P M+1)
            **
            (PUSH P N)) by induction hypothesis for M
                =((PUSH P M-1)
            (PUSH P M)
            (PUSH P M+1)
            (PUSH P N)) by definition of CONS, -
```

Alernative notation nay be used to avoid the three dots (,..) in the lemma and in the proof, Anal ogously to the sigma notation for indicating s-urns (e,g.sigma(l=1,N,A[|]), define a l|st funetlonall:

$$
\begin{aligned}
& L(1=M, N,(P U S H \quad \mathbf{P} 1))=\text { NIL IPNくM } \\
& L(i=M, N,(P U S H P i))=(P U S H P M), L(I=M+1, N,(P U S H P \text { i) }) \\
& \text { If } N \geq M
\end{aligned}
$$

Whereas sigmadenotes iterated adition, L denotes lteratad consing.
The lemm is restated as MKPUSH(N,M)=L(I=M,N,(PUSHP\|), The proof of the induction step becones

```
MKPUSH(N,M-1) = (PUSH P M-1),MKPUSH(N,M)
    =(PUSH P M-1).L(i=M,N,(PUSH P |))
    =L(i=M-1,N,(PUSH P |)).
```

Similar notation may be used for lemas 2 and 3 below,
Lemma 2, Let VARS = (xi $x 2 \ldots x M)$. Then $\operatorname{PRUP}(V A R S, N)=((x 1, N)$ $(x 2, N+1) \ldots(x M, N+M-1))$, This list of pairs is called tha PRUP list, short for "pair-up."

Proof, Induction on M, If $M=0$, then $\operatorname{PRUP}(V A R S, N)=N L$ since NUL VARS, Assune for $M \geq 0$ and consider $M+1$,

```
\(\operatorname{PRUP}(V A R S, N)=(\) CAR VARS,N),PRUP(CDR VARS, \(N+1)\) since \(M+1>0\) lmplles
``` not NUL VARS
\[
\begin{array}{r}
=(x 1, N),((x 2, N+1) \ldots(x[M+1], N+M)) \text { by the Induction } \\
\text { hyDothesis for CDRVARS }
\end{array} \quad \begin{aligned}
=\left((x 1, N)\left(x^{2}, N+1\right) \ldots(x[M+1], N+M)\right) \text { by use of } \ldots,
\end{aligned}
\]

Lemma 3, LOADAO(N,K) \(=(\) (MOVE \(K \mathbf{N} P)\)
(MOVE K+1 N+1 P)
(MDVE \({ }^{\prime} \mathrm{K}^{\prime} \mathrm{N} 0 \mathrm{P}\))),
Proof, Backwards induction on \(N\), If \(N>D\), the result is NIL,
 lemina for \(N \leq \mathbb{E}\) and consider \(N-1\).
```

LOADAC(N-1,K)=(MDVE KN-1 P).LOADAC(N,K+1) since N-1< <
=(MDVE K N-1 P).((MOVEK+1 NP)...(MDVE K+1-N O P))
by induction hypothesis for N

```
\[
\begin{aligned}
& =((\operatorname{MDVE} K \mathrm{~N}-1 \mathrm{P})(\text { MDVE } K+1 \mathrm{NP}) \ldots(\operatorname{MDVE} K-(N-1) \mathrm{O} P)) \\
& \text { by use of . and arlthmetle. - }
\end{aligned}
\]

\section*{THE RUN-TI ME STACK}

The object code uses a run-time stack in a rather standard way for holding the actual Parameters of both functioncalls and LAMBDA expession evaluations, A seach actual papameter (binding) Is eval uated, It is pushed onto the stack, Thls suffices for a LAMBDA expression but not for a funotion. After all of the lattepis actual parameters are eval uated and pushed onto the stack, al lape noved to the accumalators ano popped from the stack in order to satisfy the conventions for calilng a function. The first task of the comolled function definitionis to push the actual parameters back to the stack from the accumulators. Thus for both a funotion and a LAMBDA expression, the respective code body accesses op obtains the actua I parameter from the stack,

We forgo stating the vaplous possible stack conflgurations In full generallty to avold ipresumably) less than transparent notation. What is in princiolereaulred can be seen by an examole:

\section*{(DEF (A E) (G \(A((L A M B D A(A)(C A R A)) B) A B))\)}

This must be comoliedidentically to
\[
(D E F(A B)(G \quad A \quad((\operatorname{LAMBDA} \quad(A 1)(C A R A 1)) B) A B))
\]
where the bound \(A\) of the LAMEDA oxDpession has been renaned \(A 1_{1}\) The accessible varlables of \(F\) are \(A\) and \(B\) i those of the LAMBDA exppession are \(A 1\) and \(B\), At the ooint of complling the argunent \(A\) of CAR \(A\), the stack \(P\) (at run-tine) will be

The complientime PRUP list will be ((A.4)(A.1) (B,2)) op, using A1, ((A1.4) (A,1) (B,2)), Note the absence of a 3 since that spot hol ds a terporapy value and not the value ofan actual parameter usablo In the body of the LAMBDA expression (ln thls example elthepAior B but not A).

Thus the comoliation of the argument \(A\) of CARA(atease 3 of COMPEXP with \(M=-4\) asit uould be) produces a MDVE involving the top of the stack, namel y (MDVE \(1 M+4 P\)) \(=(\) MDVE 10 P), and not (MOVE 1 \(M+1 P)=(M D V E 1-3 P)\). A compllation of 8 at this dolnt would produce \((\) MOVE \(1 M+2 P)=(M O V E 1-2 P)\).

After complifing the foupth, and last, actual Parameter of \(G\), the stack wll| be
\begin{tabular}{ll}
\(P \mid A B\) & \(A\) CAR \(B\) AB \\
actua! parameters & actual parameters \\
to the callof \(F\) & to the call of \(G\)
\end{tabular}

We shall need to show that the proper run-time stack configupation Is set up and malntalned, and that the quantlty \(M\) and the Integers Inthepruplist together produce the corpactaceessing from the stack \(P\), The auantity \(-M\) gives the number of stack locations currently accessible by the function being comolled, Let us deflne the predicate STACKOK(M, PRUP) to nean (1)-Mis the oorrect number of stack locations, and (il) \(M\) and the Integers In the PRUP Iist at complle-time together produce the correct aocessing of the stack at run-time, The definition of STACKOK Includes the representation of "what the compiler knous So par" concerning the location In the stack of variables and tempopary values, As Dart of no error checking the complier assumes an inf inlte run-time stack with no tests for stack overflow The proofaccordingly makes the same assumptlon,

PROOF OF THE MAIN THEOREMS FOR CD
The maln proof techniaue used for theorens 1, 2, and 4-7 is structural Induction on expresslans, Each theorem states what a procedure of the compiler does: theorens 1 and 7 for COMPEXP, 2 for COMPLIS, 4 for COMPANDOR, 5 for COMBOOL, and 6 for COMCONO, Each of these procedures is recursive and al so can call many of the other procedures, To prove theso theorens for an arbltrary expression Exp, the following induction hypothesis is used for each theorem Theorens 1, 2, and 4-7 have all been proved for all subexpiesslons of EXP, To invoke one of these theorens inductively on a subexoression, it is necessary to verify that all hypotheses of that theorem are satisfled.

The length of the |lst \(X\) wl|| be denoted by \(L X\), Alprocedupes of the compiler except for PRUP produce as val ues a iist of complied instructions, as: mav be verlfled by inspection (In particularnoting each one-line code generation is a one- el ement llst and otherwlse the APPEND function is used). The quantities VPR and M, which appear as actual paraneters to the procedures in theorens 1, 2, and 4-7, are unchanged by these procedures in view of the definition of funotional evaluation.

Theorem 1 [Definition of COMPEXP(EXP,M,VPR)]. Assume the following conditions hol at the call of COMPEXP(EXP,M,VPR):

Cl: EXP Is an expression.
\(C^{2: ~} M \leq \emptyset\) and \(-M\) is the number of stack locations currently aocessible by the function being compiled,
c 3: Variables currenty accesslble to Exp are \(\mathrm{X} 1, \mathrm{X}\) (, XK with \(K \leq-M\),
c4: VPR is a FRYP\|sto f K Dalps (xl, J), \(1 \leq J \leq-M\), of the ouppently accessiblevariables where the lmnermost occurrence (of a formal parameter) of a duplicated variable nemeadodersifest on VPR,

C5: At pun-time the stack \(P\) contains the values of the vaplables and temporary val ues as
\(P \mid \times 1 \times 2 \ldots \times[-M]\)
where \(X[-M]\) is at the \(I O D\) of the stack,
C6: STACKOK (M,VPR).
 \(1 \leq 1 \leq K\), on the VPR\|st,

Result, After execution of the llst, ! of Instructions produced by COMPEXP, the accumlat acl contalns VEXP, \(P\) is safe over the execution of !. Note that the accumalators are Unsafe over the execution of l.

Proof of definition of COMPEXP (under the assumotionof no conditional or Bool ean expressionsi theorem 7 proves COMPEXP with such expressions), Structural Induction on Exp, Basis stepl EXP Is an ator, elther NIL, T, a numerleatom, or other atom, If EXP Is NIL, then case 1 of COMPEXP produces ((MOVEI 1)) so aol holds \(0=\) \(V\) NL, If EXPIST, then case 2 produces ((MOVEl 1 (QuOTE T))) so aci holds(QUOTET) =VT, If EXP Is a numeric-atom than ease 2 produces ((MOVEI 1 (QUOTE numeric-atom)) so ac1 hold8 (QUOTE numeric-atom), the correct value,. If EXP is an other atom, than case
 appear first on VPR in the Dalr (XI.J), By C4 CDR ASSOC(EXP,VPR) = CDR \((X \mid, j)=j\). By C5 and C6 the instruction (MDVE \(1 \mathrm{MH} P\)) loads

Induction step: CAR EXP and CDR EXP are al mays deflnedateases 4-7 (a total of 10 oocurrences) since NOT ATOM EXP because case 3 failed, If' Exp = (QUOTE \(\alpha\)), then case 6 Is the fipst to hold producing ((MOVEI 1 (QUOTE a))) as required.

If EXP \(=\) (fname a) with fname not one of AND, OR, NOT, COND, QUOTE, then case7 isthe lipst to hold, EXP thus Is a(non-spoclal) function to be evaluated using argunents of the llstam(a1 \(\alpha\) 2 ... \(\alpha N\)) where \(N=L \alpha \geq 0\), Tha list of Instructions produced Is
```

( (COMPLIS( $(x), M, V P R))$
(LOADAC(1-N,1))
(SUB PCCOMN))
(CALL $N(E$ fname))).

```

Conditions D1-07 (see theorem 2) for Inductively invoking COMPLIS nold as follows:
```

D1: Definitlon of (a),
02: C2.
33: C3 on U, a subpart of EXP.
D4,05,06: C4,C5,C6, respectlvely,
37: Assumptlon of syntactlcallyooppect input,

```

Using the definitions of COMPLIS and LOADAC, we obtain
```

((Instructlons to leaveval In aci)

```
 (PUSH P 1)

COMPLIS
```

        (Instructions to leave V \alphaN in aci)
    ```
 (PUSH P 1)
 (MDVE 1 1-N P)
LOADAC. (MDVE 2 2-N P)
\(\ldots \quad\left(M O \dot{V}^{\prime}{ }^{\prime} N O\right.\) P)
 (SUB P (COMN)
 (CALL \(N(E \quad\) fname))) ,

Tracing these instructions, namely
```

ac1|\alpha1* \alpha1* \alpha2* ... \alphaN* \alpha1* fname(V \alpha1,V \alpha2,···...vaN)
ac2|a2*a2* undef
!.'
gCN|\alphaN* ON* undep

```

gives the desired result (including the cason=0)sinco VEXP = fname (V \(\alpha 1, V \alpha 2, \ldots, V \alpha N\)), Note that the Instruction (CALL \(N\) (E fnames) nay be a recursive call since the standard conventions of arguments and returned \(v_{a l} u_{0}\) are obeyed, and the arguments are stacked (saved) by the called function, Recall that function names are forbidden as argunents SO a fopmal paraneter nane maybe called by a CALL I nstruction,

Finally If \(E X^{P}=((\operatorname{LAMBDA}(\alpha) \beta) \in)\), then only case8 holds, Sincecase 7 falls, NOT ATOM CAR EXP. Let \(N=L \in=L\) a by coprect inout, The ilst of instpuctions produced is
```

((COMPLIS((\epsilon),M,VPR))
(COMPEXP(\beta,M-N,APPEND(PRUP((\alpha),1-M),VPR)))

```
 (SUB P (C O R N)) .

Conditions D1-D7for inductively invoking COMPLIS hold as follows:
01: Definitlon of (\(\epsilon\)), 02: C2.03:C3 on (\(\epsilon\)), a subpart of EXP, D4,05,D6: C4,C5,C6, respectively, D7: Syntactically corpect inout, Conditionsci-c7 for inductively invaking COMPEXP hold as follows:

C1: B Is an expression by the syntax definitioninvolvinglamBDA.
C2: \(M-N \leq D\) since \(M \leq 0\) and \(N \geq 0\), There ape now \(-(M-N)=-M+N\) stack locations cuprentlyaccesslble,
C3: Varlables currently accesslbleto aroxi x2....! X[K+NJ, I.e. there are now \(K+N\) varlables allowed \(\ln \beta, K+N \leq-M+N\) since \(K \leq-M\)
C4: Cefinltion of PRUP and C4,C5,andC6apDII日d to VPR, The new palrs are put first. The new indees are \(1-M=-M+1\) through \(-M+N\). C5: C5 for \(X 1, \ldots . . \quad X[-M y\) together with COMPLIS((E),M,VPR)) iop \(x[-M+1], \ldots, x[-M+N]\),
C6:C6,C4 just above, and C5 Justabove,
C7: Syntactically coppect inout and the augmented PRUP \||st.
Hence tracling these instructions, namely
\[
\begin{aligned}
& \text { aci|X[-M+1]* ... X[-M+N]*VEXP } \\
& P \mid x 1 \times 2 \ldots X[-M] \times[-M+1] * \ldots X[-M+N] *
\end{aligned}
\]
gives the desired result (Including the case \(N=0\)), slnce COMPLIS essentially makes the substltutlons at \(v \in l\) and then COMPEXP computes V \(\beta\) which is now V.EXP.

In all cases the stack \(P\) Is safo over the execution of li Note that VPR remalns unaltered even In theLAMBDA ease because hore the augrented PRUP Ilst In the call to COMPEXP isacody only fop that recupsive calli when that oall finishes the outer VPR ilstis intact."

Theorem 3 [Definltion of COMPL[S(U,M,VPR)]. Assume the followirg conditions hold at \(t_{h_{e}}\) call of COMPLIS(U,M,VPR):

D1: U = (ul u2 ... UN) isallst of arguments,
\(0_{2}\) COMPEXP's C2.
O : Variables currently accessible to the nenbers of \(U\) arexiox2, \(\because, X^{\prime}\) with \(K \leq-M\),
D4, \(05^{\prime}, D_{6}^{\prime}:\) COMPEXP, s C4, ' \(C_{5}, C_{6}\), Pespectively, D7: COMPEXF's C7 with EXPreplaced by UJ.

Result, COMPLIS \(=\) ((instructions \(t\) o leavevuilnaci) (PUSH P 1)
(insंtructionstoleave \(V\) unin aci)
(PUSH 1)).

Proof of definition of COMPLIS. Structural Induetion on \(\mathbf{U}\), Easis step: Uis NULL whence COMPLIS = \(N L\), Induction stedi Since \(U \neq N I L, \operatorname{COMPLIS}(U, M, V P R)\)
```

=((COMPEXP(U1,M,VPR))
(PUSH P 1)
(COMPLIS((u2 ... UN),M=1,VPR))).

```

Conditions C1-C7 for Inductivaly Invoking COMPEXP hold by D1-D7, pespectively, Hence invoking COMPEXP shows
(COMPEXP(u1,M,VPR)) \(=\) (Instructions to leave \(V\) ul in aci)
with the stack \(P\) safe, (PUSH P 1) stacks \(V u 1\) on the too of \(P\), Conditions D1-D7 for invoking the Induetion hyoothesis for COMPLIS hold as follows:

01: By D1 for U.
\(D^{2}\) : By \(D^{2}\) and (PUSH F 1) which means there are now \(=(M-1)=-M+1\) stack locations, the top one bei ng a temporary value. 03: Ey \(03(K \leq-N D K \leq-M+1)\).
04: By D4.
D5: Ey D5 and (PUSH P 1), P Is P|X1 X2 ... X[-MJ V u1. D6: By DG and D5 just above, 07: By 07.

Hence the induction hypothesis shous COMPLIS((U2,..UN),M-1,VPR)=
((Instructions to leave \(V\) u2 In aci) (PUSH P 1)
-•a
(instructions to leave \(V u N\) in ac2) (PUSH P 1)),

Hence COMPLIS(U,M,VFF) \(=\)
((instructions to leave \(V\) ui In aci) (PUSH P 1)
11. (Instructions to leave \(V\) un in aci) (PUSH P 1)).

Theorem 3 [Correctness of the comollep], Let \(\mathbf{A}=\mathbf{a l}\) a2 ..., aN be an arbitrary list of actual parameters, starting with aclholding ai, \(1 \leq 1 \leq N\), and after execution of the listil, of instructions oroduced by COMP (NAME, (args),body) we have
\[
V((D E \text { NAME (args) body) } A)=\text { contents of aci }
\]
and the stack \(P\) is Safe over the execution of \(l\).
```

Proot, Let N = L (apgs), COMP(NAME,(args),body)
=((LAP NAME SUZR)
(MKPUSH(N,1))
(CDMPEXP(body,-N,PRUP((args),1)))
(SUB P (C \& NN))
(POPJP)
NL )

```
\[
=((\text { LAP NAME SUBR })
\]

\section*{MKPUSH \\ COMPEXP} (PUSH P 1) (PUSH P 2)
(PUS'H' \({ }^{\prime}\) N)
(instructlons to leake \(V\) body in aci) (SUB \(P(C O D N N)\)) (POPJ P)
NIL)
by using the definitions of MKPUSH and COMPEXP although It pemalns to show that MKPUSH and COMPEXP may be Inyoked. SInce \(N \geq 0\) wo may invoke MKPUSH. The conditions Ci-C7for COMPEXP hold as followsi
d: body is an expression by the assumption of syntacticaliy corpect Inout. ,
C2: \(-N=-\) LENGTH (args) \(\leq \ell,--N=N\) is the correct number of stack Iocations since opeciselyl (argsilocationsare acoessible.
C3: the accessible variables are al, a2 ..., aN,
C4: By definition of \(\operatorname{PRUP}((a r g s), 1)\),
C5: By the number \(N\) of (PUSH P I) Instiuctions,
C6: STACKOK(- NiPRUP) holds by the definition of PRUP and the opder of the PUSH instructions,
C7: By syntacticallycoprectinout and the deflnition of pRUP(VARS, 1),
Thus stapting with acf holding alfor \(1 \leq 1 \leq N\), we have the trace
```

acila1* V body
ac2la2* undef
'.'
aON|aN* undef
Plal* a ** ... aN* .

```

Since \(V\) body \(=((D E\) NAME (args) body) A)andslncethestackPls safe, the result is proved, (I conditionalandBoolean expressions are allowed, then theorem 7 is needed,) -

Theorem 4 [Definition of \(\operatorname{COMPANDOR(U,M,L,FLG,VPR)],~Assume~the~}\) following conditions hol at the call of \(\operatorname{COMPANDOR(U,M,L,FLG,VPR):~}\)

El: \(\mathbf{U}=\left(u 1 u_{2} \ldots, u N\right)\) is a list of Booleanexpressions,
E2: COMPEXP's C2.
E3: COMPLIS's D3.
E4,E5,E6: COMPEXP's C4,C5,C6, Pespectively,
E.7: COMPLIS's 07.

E8: Lis a label.
E9: FLG Is T or NL,

Result, COMPANDOR produces a list, \(l\), of instructions given by
FLG | Algol equivalent of I

NL I if NOT ul then go to L;
if not \(u N\) then go to \(L\) :
at-a-

\(T 1\) if \(\mathrm{Ul}_{1}\) then go to L ;
I if \(u N\) then go to \(L\);
with the statement labeled \(L\) not \(I n I, P\) is safe over the execution of I ,

Proof of definition of COMPANDOR, Structural Induction on \(U\), Basis step: \(U\) is NUL whence COMPANDOR \(=\mathbf{N L}\), Induction step: Assure FLG \(=\) T. COMPANDOR(U,M,L,FLG,VPR)
```

=((COMBOOL(U1,M,L,FLG,VPR))
(COMPANDOR((U2 ... UN),M,L,FLG,VPR))) by deflinitionof COMPANDOR slice U $\mathbf{\neq}$ ML

```
\(=\) ((\(1 f u 1\) then go to Lis) (COMPANDOR((U2,.. UN), M,L,FLG,VPR))) by Inductively Invoking COMBDOL on the Boolean expressionul
\(=((\mid f u 1\) then go to \(L ;\}\) (if ut then go to Li)
(if uN then go to \(L ; i\)) by inductively invoking COMPANDOR on the list (\(\left.\psi_{2}, \| U N\right): E_{2}=E 7\) hold prior to invoking COMPANDOR since \(P\) is safe over "if ul then go to \(L\);" and both M and VPR are unaltered by COMBOOL.

L is in neither-the first instruction nor Ininstructions 2 through n whence \(L\) is outside ! SImilarly the stack P Is safe, The case f = NL is proved similarly,

Theorem 5 [Definition of COMBOOL(P,M,L,FLG,VPR)], Assume the following conditions hold at the call of COMBOOL(P,M,L,FLG,VPR):

F1: Pisa Boolean expression.
F2-F7: COMPEXP'sC2-C7, respectively, with EXP replaced by,
F8: L Isalabel.
F9: FLG Is T or NIL.
```

Result, COMBOOL npoduces a list, I , of instructions given by

```
FLG |A|golequlvalent of I
NIL I if NOT \(P\) then go to \(L\);
 \(T\) l li \(P\) then go to b :

4th the statenent labeled \(L\) not \(\ln \downarrow\), \(P\) is safe over the execution of I ,

Prodf of definition of COMBOOL, Structural Induction on P. Assume \(F L G=T\), Basis steD: \(P\) Is an atom COMBOOL(P,M,L,FLG,VPR)
```

$=((C D M P E X P(P, M, V P R))$
(JJMPN 1 L)) by case 1 of COMBOOL

```
 F((Instructions to leaye VP i-n aci)
 (JUMPN 1 L)) by "Inductlvely" Invoklng COMPEXP (nore precisely, b y repeating on the atomp the basls sted of the proof of COMPEXP; inductionis Invalid since the \(P\) in COMPEXP is not a substructure of \(P\) in COMBOOL)
=(if \(P\) then go to Li) by checking 2cases,
Induction step: CAR \(P\) and CDRParealways deflned at cases 2-5 since NOT ATOMP because case 1 failed, Also CADR \(P\) is defined at casefsince the NOT operator must have an argunent,
```

If P = (AND a), then from case 2b (w/th FLG = T)COMBOOL
=((COMPANDOR((\alpha),M,LI,NIL,VPR))
(JRST O L) [the D is pedundant]
L1) by letting GENSYM() be the label Li\#L
=((if NOT al then go to L1:)
(lf NOT a2 then go to L1|)
(if NOTaN then go to L1;)
(JRST D L)
L1) by inductively invoking COMPANDOR on (\alpha),
a Bool ean list
= (|fPthen go to L:LI:) by checklng cases that deflne
AND (Including ovaluationonly untll the
flpstNILal and the case(AND) with NULL
\alpha),

```
If \(P=(O R \alpha)\), then from case \(3 a(w \mid t h F L G=T) C O M B O O L\)
\[
\begin{aligned}
= & (\operatorname{COMPANDOR}((\alpha), M, L, T, V P R)) \\
= & (\text { (if } \alpha 1 \text { then go to } L!) \\
& (i f \text { a2 then go to } L ;) \\
& (1 f \alpha N \text { then go to Li)) by Induotively |nvok|ng COMPANOOR } \\
& \text { o n }(\alpha) \text {, a Booleanlist }
\end{aligned}
\]
\(=\) (if Pthen go to Li) by cheoklng cases that deflne OR (lncluding evaluation only until the ifst non-NL \(\alpha\) and the case(OR) with NUL \(\alpha\)),

If \(P=(N O T \alpha 1)\), then from oase 4 COMBOOL
\(=(\operatorname{COMBOOL}((\alpha 1), M, L, N O T\) FLG,VPR \())\)
\(=\) (if NOT al then go to Li) by Inductively Invoking COMBOOL on (\(\alpha 1\)), a one-el ement Bool ean llst
\(=\) (if \(P\) then go to Li) by definition of \(P\).
If Pisanyother Booleanexpresslon, thencasesylelds
((COMPEXP(P,M,VPR))
(JUMPN 1 L\()\)).
Immediate inductive invoking of COMPEXP Is invalld because the \(P\) In COMPEXP is not a substructure of \(P\) In COMBOOL, But control's reaching case 5 of COMBOOL means \(P\) is not an atom (case1) and means CAR \(P\) Is nelther AND, OR, NOT (cases 2-4), Thus COMPEXP(P,M,VPR) Wl|l be computed by one of its cases 5-8 all of whose procedupes are called with substructures of \(P\). flt ls ericial to avold case 4 of COMPEXP t o avoid the cycIe COMBOOL(P...) \(\Rightarrow\) COMPEXP(P...) \(\rightarrow\) COMBOOL (P...).) COMPEXP (P,M,VPR) may be calculated by popeating the proof of cases 5-8 on \(P\) (see theorens 7 and 1): thls ylelds the same calculation as the basis step for COMBOOL, Since the doflnttion of GENSYMD guarantees unlaue label belng generated, the laboli is not in the "instructions to leave V Pinaci."

The case \(\mathrm{FLG}=\mathbf{N L}\) is proved similarly, -
Theorem 6 [Definition of COMCOND(U,M,L,VPR)], Assume the followingcondtionshold at the call of COMCOND(U,M,L,VPR):

G1: \(U=\left(\left(u 1 u^{2}\right)(u 3 u 4), \ldots(u[2 N-1] u[2 N])\right)\) is a list of palps of expresslons, thefipst of e ach Dalpbelng a Booleanexpession, G2-G7: COMPEXP's C2-C7, respectively, with EXP replaced with uj, G8: Lis a label,

Result. COMCOND gives a list, I, of Instructions equivalent to the Algo!
```

ac1:= if u1 then u2 else lfu3 then u4 ... else
ifu[2N-1] then u[2N];L:

```

P Is safe over the execution of l, If no u[2|-1JIs non-NIL, the value In aci is undefined, In other words acl:=VCOND-expression.

Proof of definition of COMCOND. Structural induction on \(U\). Basls step: U Is NULL whence COMCOND produces, as reaulied, just the I abel L: Induction step: NOT NULL \(U\) and coprect syntax imply CAAR U, CADAR \(U\), and CDRUapealways defined, COMCOND(U,M,h,VPR)
```

= ((COMBOOL(U1,M,LI,N\L,VPR))
(COMPEXP(u2,M,VPR))
(JRST L)
L
. (CMMCOND(((u3 u4) ... (u[2N-1] u[2N])),M,L,VPR)))
by letting GENSYM() be the labo| L1 \#L
=((1f NOT u1 than go to L1|)
(Instructions to leave V u2 in aci)
(JRST L)
L1
(ac1:=if u3 then u4..., else |f u[2N-1] then u[2Ny; L!))
by inductively InvokIng COMBOOL, COMPEXP, and
COMCONO
= (ac1:=if u1 then u2 ... e|se if u[2N-1]then u[2N]: L:)
by chocklngcases involving V ul.

```

Pissafeas required, The easeof no u[2l-1]belng nonoNiL glves an undefined result as required (in particular for \(N=0\)),

Theorem 7. COMPEXP(EXP, M,VPR)as definadin theorem 1 also holds for conditional and Bool ean expressions.

Proof, (An addition to the proof of theorem 1,) Basls step: Vacuous, Induction step: If EXP = (Boolean \(\alpha\))with Boolean one of AND, OR, NOT, then case 4 is the flist to hold. COMPEXP(EXP,M, VPR)
```

=((COMBOOL(EXP,M,LI,NIL,VPR))
(MOVEI 1 (QUOTE T))
(JRST O L2)
LI
(MOVEI 1 0)
L2) where L1 f L2ape the two GENSyM() |abe|s
=((tf NOTEXP then go to L1:)
(MOVEI 1 (QUOTE T))
(JRST 0 L2)
LI
(MOVEI 1 0)
(C) by repeating the ppoof of cases 2-4, all

```
involving substructures, of COMBOOL(EXP..) since case 4 of COMPEXP neans CAR EXP is ei ther AND, OR, NOT,

If \(V\) EXP \(=\) Tithenaciholds (Q U O TE T) as reaulped slnce the (MOVE! 1 (QUOTE T))and the (JRST D L2) instpuctions are oxoouted, If VEXP= NIL, then acl holds 0 as resulted since contral goes to \(L 1\) and the (MOVEI 1 D) is executed,
```

If EXP $=(\operatorname{COND} \alpha)$, then case 5 is the first to hold, COMPEXP = COMCOND( (a), M,L,VPR) using the label $L$ for GENSYM(). InvokIng COMCOND inductively shows the reauired value, accopding to the

``` definition of COND, is inaci,

\section*{TERM NATI ON OF THE COMPILERCD}

Except to COMP in theorem 3, add the statement "and the procedure terminates" totheresult of each procedure deflnltion of the compiler. The induction hypothesis wlll show termination of each procedure call on a substructure, The induction step is now reduced to essentially "straight-llne code" whichterminates, COMP terminates si nce MKPUSH and COMPEXP do,

To show that COMBOOL and COMPEXP terminate when one is called from the other on the original structure, We can redeat a proof Part as was done in the proofs of theorens 5 and 7,

\section*{DISCUSSION Of THE PROOF PD}

The process of constructing this proof may be viewed as discovering enough of the assumptions about the input and the programilng conventions used in uriting the compiler, as stating them, and as proving them to be preserved or consistentiy followed over al the crocedures o f the compiler, The sucossiul factorization involving conditional and Boolean expressions was useful in doing this. The recursion of tha compiler has been handled bythe statements ofthe theorems, lnoluding three dots (, i, as needed, and by the use of structural induction, In additiom, some lessons of top-down programing (DIJkstra 1970), stepwlse rsflnsment (Wirth 1971), and Hoare's (1971) approach were applled in the proof process although informally,

It is noteworthy that the proopprocess uncovered no erpors in the corpiler, A orevious versi on of this paper omited comoletely numeric-atons although condition C7 (then wilten wlthout the clause " \(\neq\) numericeatom") unintentionally excluded them Difile noticed their orisslonwhenthe complierabortedwhllecomplilnag pactorlal function, Since nuneric-atons are needed for self-00moliation, case 2 of COMPEXP uas changed to include numerlo-atoms, No Other changes wepe made to the sompliar, The previous version of thls paper did not excl ude the use of \(\mathbf{N L}, T\), and nuneric-atons as formal paraneters nor the use of function nanes as argunents, They must be excluded
since the compligrfails on these inouts.
Uespite tine comoiler's belng written purely functionally, this oroof may oe usefully viewed as employing inductive assertions, When adoliedtorecursive procedupes \(O f\) the kind tn the comoller, the method verlfies the conditions necessary for calling a procedure (incpuding a recursivecall). The pesult of the procedure is then used to show what is true after the call (even if the procedupes are called reraly as argments to tne APPEND function). This is the same way Astandard iterative program is proved.

Unexplored so far are the implications for automatlc proof checking, of the length Of tnis informal, but hopefully rigorous proof. Nextis the Proof P4.

THE COMDILER CG \(\triangle\) NDPRDOF of CORRECTNESS P4
The inout to the compl|er 64 and the overall statement of correctness are the same as for \(C D, \quad T h e c o m p l l e r C 4 l s\) similar in structure to CD, has twice as many lines of code as CD, and produces about half as many instpuctions for a glven function as ca. In response the proof P4 contains eleven new theorens and lemmas (Theorers 8-12a \(n\) d Lemmas 4-9) corresponding to the olevennew functions in C4. Also P4 contalns modiflcations to the proofs (mainly additional cases) of theorens 1,3 , and \(5-7\) reflecting the changes in C4 tothefunctions of \(C D\). The simllar structure allows much of the proof PQ, witnout change, to becone a part of P4, In particular, the statements of leinmas 1 and 2 and theorens 1-7 are unchanged (LDADAC, the subject of Iemma 3 , is a completely new function) because the jenerallymore efficient complled code of C4 accorolishes the same overall effect as does the code of CD. The proofs of the new theorens and the Proofs of modiflcationsin P4 are the "sartekInd" of proofs as in PD. CDiffie has self-compiled C4 successfully al so,)

MECarthy described the three maln differences betneen \(C \mathbb{Z}\) and \(C 4\) in a writeup, The second difference is the min soupce of improverentin the compiled code as well as the main reason for the lengthof 4 .
(i) When the argument of CAR or \(C D R\) is a variable, C4 comolles a (HLRZO 1 iP) or (HRRZ@ 1 | P) which gets the result through the stack without first compiling the argunent into an accumulator,
(ii) When \({ }^{-C 4}\) has to set up the arguments cf a function In the accurulators, On general, \(C 4\) must compute the argunents one at a time and save them cn the stack, and then loac the accumal ators from the stack, however, if one of the arguments is a varlable, is a quoted expression, Or can be ottalned from a variable by a chain of CARS and CDRs, then it need not be computed until the time of loading accurulators since it can be computed using only the accumulator in which_ltis VAnted,
(iil)Ce computes Bool ean expressions bady and generates many unnecessary Iabels and JRSTs. C4 Is nore sodhlstlcatedabout this,
c4 uses four additional PDP-10 instpuctionsi HLRZA, HRRZQ, CAME, and CAMN. The flrst two are used, with the pesion denoting indirect reference, to obtaln CAR and CDR, respectively, A \(n\) assumption of P4 is that the instruction HLRZe means o(ac). \(\operatorname{CAR}(\mathrm{c}(\langle\theta \rho\rangle))\) and that HRRZe means \(\mathrm{c}(\mathrm{ac}) \cdot \operatorname{CDR}(\mathrm{c}(\langle\mathrm{ef}\rangle))\), Because CAR and CDR are compiled opon rather than closed, as would be the case for an apbitrapy function call: it must be explloltiyemphasizedthat CAR and CDR of T, NIL, or numerle-atom are consldered ineoprect input, Since NULL and EQ are complledooen, the values of both must be explicitly defined for P4:
```

V (NLL EXP) = T iff V EXP = NIL
V (EQ EXP1 EXP2) = T Iff V EXP1 = V EXP2

```
with these dofinitions and motivation, the proof p4, organized in bottom w style, follows.

The listings of the two compllers were checked by hand to discover the differences, Thesame set of diferences was obtained when the llstings ware computer-compared by a fileoomparisonutllity orogram. These differences showed where new theorems were needed and where old proofs needed modification.

Lemma 4 [Dafinition of CCCHAIN(EXP)], Assume EXP is a non-atoric expression, CCCHAIN(EXP) \(=T\) if and only ifEXP|sof the form
\[
(C \beta R(C \beta R(. . .(C \beta R \alpha)))\rangle
\]
with at least one \(\beta\), Each \(\beta\) is elther \(A\) or \(D\) (thus producing CAR Or CDR) and a is an atom In other words, CCCHAIN(EXP)=TiffEXP is a car-cdr chai \(n\).

Proof, Induction on the number \(N\) of leading \(\mathrm{B}^{\prime} \mathrm{s} \ln \mathrm{EXP}\), Basls steps: If \(N=\emptyset\) then CCCHAN gives \(N L\) because CAR EXP is nelther CAR nor CDR, If \(N=1\) then EXP \(=(C \beta R \alpha)\), The result is t because CBR is CAR or CDR and \(\alpha\) Is an atom CCCHAlN a is not called,

Induction step: If EXP \(=(C \beta 1 R(C \beta 2 R(\ldots,(C \beta N R \alpha))))\) with \(N \geq\) 2, then CB1R is CAR or CDR so the left part of the AND Is true, Since \(N \geq 2\), (Cß2R (,..(CBNR \(\alpha))\)) Is not an at om, CCCHAIN may be invoked inductively, ylelding \(T\) and hence CCCHAIN Exp gives T. -

Lemma 5 [Definition of CLASSI \((U, V)\) J. Inout assumptions:
Uísalisto fexpressions (u1 u2 ... uN).
Vis an s-oxoression.

Result. Let ci be the classlfying integer of ul, namely
\begin{tabular}{|c|c|}
\hline \(u 1\) & I cl \\
\hline , NIL. 8 nume & 0 \\
\hline other atom & I \\
\hline unted expression & 12 \\
\hline car-cdr chain & 13 \\
\hline ther expressio & \\
\hline
\end{tabular}

CLASS1(U, V) \(=(c N, u N),(\ldots((c 2, u 2),((c 1, U 1), V)))\).
Proof. Structural induction on \(U\). Basis sted: NULL ulves V. Induetion step: CLASS1(CDR \(U,(c 1, u 1), V)=\) (\(C N, U N\)). (...(\((c 2 . u 2 ;),((c 1, u 1), V))\). Vote that \(u 1\) in CCCHAIN ul is non-atoric since the first test for ATOM ul falled. For the spaclal case \(V=N L\) the result reduces to the list of palrs (\(\quad \mathrm{CN}, \mathrm{uN}\)) ... (c2.ט2)(ci.u1)),

Lemma 6 [Definition of CLASS2(U, V, fLG)]. Input assumotions:
Uis a list of pairs (\((C N, U N) \ldots(c 2, U 2)(c 1, U 1))\) with clas defined in CLASS1. Vis an S*expression. FLG \(=T\) or \(\mathbf{N L}\),

Result, Let \(j\) be the areatest integer, ifany, such that \(c J=4\) in \(u\). FLG i Result

In words, the list of pairs is reversed and the first 4 is changea to 5,

Proof. Structural induction on \(U\). Basis step: NUL ugives v, Induction step: If-FLG = Tand \(c N=-4\) then CLASS2(CDR U, (5, UN), V), \(N I L)=(c 1.41),\left(\left(c^{2} .42\right) \ldots((5, u N), V)\right)\) with c1, c2,..... cicN-1] as in U. If FLG \(\neq T\) or \(C N \neq 4\) then CLASS2(CDR U, (CN,UN),V,FLG) = \((c \perp . U 1),((c 2,42) \ldots .((c N, U N), V))\) with the \(c i \prime s\) as \(\ln\) the table of the result, Again, when \(V=N I L\), the result reduces to thellst \(O\)

Lemma 7 [Definition of CLASSIFY(U)]. Assume \(U=(U 1\) U2... UN). Let dl be the classifying integer of ulas in CLASS1 exeeot the last other expression nas dl of 5 instead of 4, Then CLASSIFY(U) = ((d1.u1) (d2.u2) ... (dN. UN)) .

Proof, Composition of CLASS1 with \(v\) as NL and CLASS2 with \(v\) as NIL and FLG as T.

Theorem 8 [Definition of COMPLIS(Z, \(M, K\), VPR)J, Inout assumptions:
\(z\) is a CLASSIfY'ed list of pairs ((dK,uK) (d[K+1],u[K+1])...(dN,uN)). Conditlons DI-D7 of COMPLIS of Theopgm 2.

Result, Let \(\theta 1, \ldots, \theta[J-1]\) denote those subscripts, ifany, in \(z\) for which di is equal to 4 , and let ej denote the one di, if any, equal to 5 .
```

COMPLIS = ((Instructions to leave V u[e1] In aci)
(PUSH P 1)
(Instructions to leave vu[e[j-1]]|n aci)
(PUSH P 1)
(Instructions to leave V u[ej]|n ac[ej]))

```

Note that thls COMPLIS is a new function from that of Thoopem 2, The function STACKUP(U, \(M\), VPR) is identical to the old COMPLIS.

Proof, Structural Induction on \(Z\), Basis sted: NULL \(Z\) glves
 induetively produces
(Instructions to leave \(V\) [e1] In aci)
In view of the (PUSH P 1), then COMPLIS(((d[K+1J,u[K+1]),..(dN,UN)), \(M-1, K+1, V P R)\) inductively comoletes the desiped result,

If \(d K=5\) then eJ \(=K\) and there are no (more) 4's, COMPEXP(uk, M, VPR) Inductively Produces
(Instructions to leave \(V\) u[ej] In aci)
If \(K=1\) (i,e, ej \(=1\)), no further Instruotion ls neoded nor generated because \(V\) u[ej]is alreadyin aci. otherwiself \(K \neq 1\), the instruction (MDVE \(K\) 1) is generated to leave Vu[ej] in ao[oj] = ac[K].

If \(d K\) is nelthar 4 nor 5 , COMPLIS((\((d[K+1 J, u[K+1]) \ldots(d N, U N))\), \(M, K+1\), VPR) inductively gives the deslred result, -

Theorem 9 [Definition of COMPC(EXP, N2, M, VPR)], Input assumptions:

EXP Is a cap-cdr chain (CB1R (CB2R (...(CBNR a)))) where \(\mathrm{N} \geq 11\) each Bi is elther \(A\) or \(D_{i}\) and \(\alpha\) is an atom \(\neq T\), NIL, numepiceatem,
Condltons C2-C6 and C7 for afrom COMPEXP of Theorem 1,
Result. COMPC \(=((a c[N 2]:=\) CB1R ac[N2])
\[
(\operatorname{ac}[N 2]:=C B 2 R a c[N 2])
\]
\[
(a c[N 2]:=C(3 N R \alpha))
\]

Only accumal ator \(N 2\) is used,
Proof, Induction on the number \(J\) of \(\beta^{\prime} \sin \operatorname{ExP}\) Define \(\operatorname{El}\) to be \(L\) or \(R\) according as 3 ils \(A\) or \(D\), \(\mathfrak{l}\) asls step; If \(N=1\) then EXP \(=(C \beta 1 R \alpha)\). Si nce ATJM \(\alpha\), COMPC produces
\[
((H \in I R Z O N 2 \text { M+CDR ASSOC }(\alpha, V P R) P))
\]
which is \(((\operatorname{ac}[\mathrm{N} 2 \mathrm{j}:=\mathrm{C} \beta \mathrm{R} \quad \alpha))\), the lastline of the result, Induction step: If \(N \geq 2\) then NOT \(A T O M(C \beta 2 R(\ldots . .(C \beta N R \alpha))\)). Hence COMFC produces
(HE1RZ@ N2 N2)
- COMPC((C32R(....(CANRa))), N2, M, VPR)
which, invoking COMDC Inductively, becomes
\[
\begin{aligned}
((\operatorname{ac}[N 2] & :=\operatorname{CB1Rac}[N 23) \\
(\operatorname{ac}[N 2] & :=\text { SB2R ac[N2]) } \\
(\operatorname{ac}[N 2] & :=(\beta N R a))
\end{aligned}
\]

Incioentally, the assumption that Exp is acar-cdt chain makes unnecessarytheerrorcheckat the flrst line Of COMPC.

Theorgm 19[Definltion of LOAUAC(Z, M2, N2, M, VPR)], I nout assumptions:
zis a CLASSIFY'ed list of pairs.
\(z=((d[N 2], u[N 2])(d[N 2+1] .4[N 2+1]), \ldots(d N, u N))\)
conaltions 1 - D7of COMPLIS of Theorem2.
Let e1, e2, ..., o[1-M2] denote those subscrlots, if any, in \(Z\) for whichalis equal to 4, The stack P contains the values of the 1-M2 u[e]'s as follows

P|Vu[e1] V \(V[e 2] \quad . . . \quad V u[1-M 2]\)
Letej, with j >1-M2, denote theonedi, lf \(a_{n} y\), equal to 5. Assume ac[e]] holds \(V_{u}[e J]\).
qesult. LOADAC \(=\) ((Instructions to leave \(\mathbf{V}\) u[N2]) I \(\mathbf{n}\) ac[N2]) (Instructions to leave \(V u[N 2+1]\) In ac[N2+1]) (instructions to leave \(V\) un in acN))

Each line Of instructions uses only the accumal at mentloned, The

Proof, Structural inductiono \(n Z\), Basissted: NLL \(Z\) gives VIL, lrduction steo: Six cases basedon theclassifylng integer d[v2]. if d[N2] \(=1\) then u[N2]isan other atom LOADAC produess
(MOVEN2 M+CDR ASSOC(U[N2], VPR) P)
- LOADAC(((d[N2+1], UCN2+1J) ... (dN.UN)), M2, N2+1, M, VPR)

The MOVE Instruction leaves \(V\) u[N2] in ac[N2] using only acin2]. Inductively \(t\) he LOADACpart completes the result including the unalteration of the stack. The use of the inflx dot follows the conventions that the value of LOADAC ls a list of instruotions,

If \(d[N 2]=0\) op 2 then \(u[N 2]\) is elther T,NIL, or numerie-atom; or a quoted oxpression. The proofsare each similar to the case \(d[\mathrm{~N} 2 \mathrm{~J}=1\). The generated instructions are, respectively,
(MOVEI N2 (QUOTE U[N2])
a \(n d\)
(MOVEI N2 u[N2J)
with each followed by the same LOADAC term as In theifistease, Both MOVEl instructionsleave V u[N2] inac[N2] using only ao[N2J, and agaln the LOADAC tepm inductively completes the result,

If \(d[N 23=3\) then \(u[N 2]\) is a car-cdr chaln. syntactically correct input implies the atom \({ }^{\alpha}\) at the end of the chaln is neither T,NIL, nor numerice atom thus COMPC may be invoked. sinoe a carecdp chain Is executed from plght to left, the REVERSE function is needed, LOADAC Produces
```

((ac[N2] := CßNR a)
(ac[N2]:='C32R ac[N2])
(ac[N2]:= CB1R ac[N2])
(same LOADAC term as flpstcase))

```

The first N lines are
(Instructions toleave Vu[N2] In ac[N2])
and the LOADAC term inductively comples the result,
If \(d[N 2]=5\) then ac[N2] is not altered. LOADAC(((d[N2+1],U[N2+1]) ... (dN.UN)), 1, N2+1, M, VPR) Induotivoly gives the result, (The constantias the sooondargument in thls call toloadac means \(1-M 2=1-1=0\), l,e, the stack input condition of LOADACIs vacuous,)

Flnally, if d[N2] = 4 then the last test of LOADAC produces
(MOVE N2 M2 P)
which, using onlyac[N2], leaves \(V\) u[N2] in ac[N2] because thepeare 1-M2 \(=-M 2+1\) of the \((V \quad U[\theta \mid j)\) 's in the stack. [OADAC(((d[N2+1].u[N2+1]) ... (dN,UN)), M2+1, N2+1, M, VPR)
inductively completes the result since there is now one fower 4 in the remalning d[N2+1] ... \(d N\). Even though the stack is unaltered, the stack segnent of interest 15 now from \(V u[\theta 2]\) to \(V u[1-M 2] w h l o h\) the stack input condition Induotively renumbers as \(V\) u[eij to vu[-M2]. •

Lerma B [Definition of CCOUNT(Z)], Assune \(Z\) is a CLASSIFYied list of palps \(((d 1, u 1)(d 2, u 2) \ldots(d N, u N))\), CCOUNT gives the number of di's that are 4. This number ls denoted by \#4,

Proof, Structural induction on \(z_{\text {, }}\) Basis step: NUL \(Z\) gives \(\theta\). Inductlon step: lf \(d 1=4\) then \(1+\) CCONT (\((d 2, u 2) \ldots(d N, u N))\) Inductively gives the pesult, If di \(\neq 4\) then CCOUNT (id2.42)... (\(\alpha N, u N\))) Inductively glves the result, •

Lerma 9, If \(N \geq 0\) then SUBSTACK \(N\) Is th8 same funotion as LIST LIST('SUB,'F,LIST('C, D, D,N,N)),
 (e)). If \(N>y\) then it is olear. -

Theorem 11 [Definition of \(\operatorname{comPLISA(U,~M,~VPR)],~Inout~}\) assumptions:
\(U=\) (ul u2 ... uN) is a l|st of arguments, Conditions D2-07 of COMPLIS of Theorem 2,

Result, acl holds \(V \operatorname{lif}^{\text {for }} 1 \leq i \leq N\). The stack \(P\) is safe over the outDut of COMPLISA,

Proof. COMPLIS(CLASSIFY \(U, M, 1, \quad V P R)\) places the elass 4 argurents on the stack in the order requlred for LOADAC, COMPLIS also leaves the class 5 argument, say ujeinacj, It is oermissibie to invoke
LOADAC(((d1,U1) (d2.U2) ... (dN.UN)),1-\#4, 1, M-\#4, VPR)
since (i) there are now -(M-\#4)=-M+\#4accesslble stack locations, (ii) there are 1-(1-\#4) \(=\# 4\) of the d's whlch are 4 , (lll) the stack \(P\) contains the class 4 arguments in the proper order by thepesult of COMFLIS, and (\(\mid v\)) acj holds \(V\) ul by the lastline of the result of COMPLIS, After SUBSTACK\#4, the result is established,

The order of first COMPLIS and then LOADAC avolds th8 need to stack a non-class 4 argument since after the class 5 argument is computed by COMPLIS, LOADAC may assume the safety of al|aof, \(1 \leq 1 \leq N 2\). -

Theorem 12 [Definition of COMPANDOR1(U, M,L,L2, FLG, VPR). Inout assumptions:
```

U = (u1 u2 ... uN).
Conaltlons E1-E9 of COMPANDOR of Theorem 4,
L2isalabel different from L.

```

Result, COMPANDORI ppoduces a llst, d, of Instructions glven by

If, however, \(U\) is NULL thenthe Algol equivalent produeed |s"go to L2;." The statements labeled \(L\) and L2 are not in l. p issale over the execution of 1 ,

Proof, Structural Induction on \(U\), NULL \(U\) gives "go to b2s,"
 then

COMPANDOR1 \(=\) COMBOOL(U1, M, L2, NIL, VPR)
\(=\) if NOT ul then go to L2;
as pequiped, if NOT NLL (u2... \(4 N), i, \theta, N \geq 2\), then
((COMBOOL(U1, M, L, FLG VPR))
(COMPANDOR1 ((U2 ... U'V), \(M\), L, L2, FLG, VPR))
inductivelygivest \(h\) eresult. Note that (u2 ... un) is not NULLIn the inductive call, phauniqueness of the label generation mechanism willhelpsnowthat thelabels and L2 are outside l. The case FLG = NIL is essentially identical.。

Theorem 13 [nefinition of \(\operatorname{COMBOOL}(P, M, L, F L G, V P R)\)]. Input assurditons are the same \(2 s\) COMBOOL of Theorem 5. COMBOOL produces a I ist, l, of Instructions given by (the sane as Theorem 5)

FLC | A|gol equivaient of I

with the statenent labeled \(L\) not in l, P Is safe over the execution of 1 ,

Proof. (Modifications to the proof of theorem 5.) Assume FLG = T, Add a case \(P=T\) which from case D.1 produces (JRS L L) as reauired, Add a case \(P=(E Q \alpha \beta)\) with \(\alpha\) and \(\beta\) oxpressions, Inductively invoke COMPLISA((\(\alpha \beta), M, V P R)\). COMBOOL oroduces from case 1.1
```

    ((ac1 hol ds V \alpha)
    (ac2 hol ds V \beta)
    (CAMN 1 2)
    (JRST L))
    =(if (EQ a \beta) then go to Li)
=(|fP then go to L;)

```

Modify the \(P=(A N D \alpha)\) case, \(I f \alpha \mid s\) non-NULL then after evaluating COMPANOOR1((a), M, Li, \(L, N\) ll, VPR), the pesultfollows by noting the equivalence of
```

((If NOT uN then go to LI:)
(JRST L)
LI)

```
and
\[
((i f \quad u N \text { then go to } L ;)
\]

If a is NULL, than ((JRST L) Li) results in both Instances,
Under the assumption \(F L G=T\), the \(P=(O R \alpha)\) case is unchanged,
Add the case \(P=(N U L a)\) with a an expression, COMBOOL produces from case 4.1
((COMPEXP((\(\alpha), M_{1}\) VPR)) (JUMPE 1 L))
\(=\) ((Instpuctions ta leave \(V\) a inaci) (JUMDE 1 L))
\(=\) (\(1 f \mathrm{P}\) then go to \(L ;\))
These cases with FLG = NiL apeprovedsimilarly, ine tests In COMEOOL are slightly different: \(T\) is treated separately pather than as an atomi the EQ and NULL functions aretpeatedseparatelyrather than as arbltrapy functions in the lasttest. These differences do not affect the result of COMBOOL,

Theorem 14 [Dgfinition of \(\operatorname{COMCOND}(U, M, L, V P R)\), Same as COMCOND of Theorem 6,

Proof, To the proof of Theorem 6 aodtwocasestothelnduction step corresponding to the second and thirdtests of cOMCOND. The second test asks if the palr (ul u2) Is thepair ((NULL a) NiL), If so COMCOND produces
```

                ((COMPEXP(\alpha, M VPR))
                        (JUMPE 1L)
                        (COMCOVD(((u3 u4) ... (u[2N-1] u[2N])), M, L,VPR)))
                =((instructions to leave V \alpha in aci)
            (JUMPE 1 L)
                        (ac1 := |f u3 then u4,..else if u[2N-1g then u[2Ng; L:))
                        by inductively invoking CMPEXPand COMCOND
    = (aci := if NULL a then NIL elseifu3 then u4 ... else
if u[2N-1] then u[2N]; L:)
by cnecking tuo cases on NUL at If NULLa
than acl al ready hol ds }0=VN|L

```

The thlid test asks if (u1 u?) is (T \(u 2\)). If so any suceeeding dairs may be ignored. COMCOND produces
```

((COMPEXP(U2, M, VPR))
L)

```
as requi red, -
Theorem 15 [Definition of COMPEXP(EXP, \(M\), VPR)]. Same as Theorems 1 and 7 .

Proof, (Modifications to the proofs of Theorens 1 and 7,) Adda case for EXP =(CAR \(\alpha\)), By correct syntax, aft, NILinumerieatom. If a is an atom case \(3.1 a\) produces
\[
(H L R Z \Theta 1 M+C O R \quad A S S O C(\alpha, V P R) P)
\]

As in Theorem 1,case3, M+CDR ASSOC(\(\alpha, \operatorname{VPR})\) is correct; by the definition of HLRZ®, aci nol ds \(V\) EXP, jF a is not an atom, thencase 3.16 hol ds. Invoking COMPEXP(\(\alpha, M\), VPR) inductively leaves \(V \alpha\) in aci, from which (HLRZO 1 1) produces CAR \(V a=V E X P\) Inacias reaulred. The additional case for \(E X P=(\operatorname{COR} \alpha)\) is identical to the case for CAR except for HRRZQ.

Case 4, Thefirstease f Theorem 7 also nandes the function EQ since Theorem 13 handles EQ.

Case 7. EXP = (fname \(\alpha\)) where \(\alpha\) conslsts of \(N\) arguments, COMPEXP produces
```

((COMPLISA((\alpha), M, VPR))
(CALL N (E fname)))

```

This iscorrect, i, e, aci holds \(V\) EXP In view of the definitions of COMPLISA and CALL,

Case 8, STACKUP is ldenticalwith COMPLIS of Theopem 2, Use Lemma 9 on SUBSTACK. •

Theorem 16 [Coprectness of the compllep]. Same as Theorem 3,
Proof, Sane as Theorem 3 but using Lemma 9, -
Termination of \(\mathbf{C 4}\) follous by essentially the same apgumenta s used for CD. CLASSIFY and SUBSTACK Joln COMP as exceptions since neither ispecursive. COMPLISA can be shown toterminateby peolacing its two calls(in SOMPEXP, case 7 and COMBOOL, case 1,1\()\) by thebody of COMPL.ISA; this substitution wll allow the body to reference substructures directly. Thls completes the droof p4 of the comoller C4.

The process of constructing p4 uncovered six errors in C4 as originally written, in addition to the numepleatom problem in CD. Three were found early on by attemoting to show thatcARsand CDRsin C 4 wepealways well-deflnedil, e, notadoliad toatoms, Although no further errors nere expected, the other three surfaced after carefully stating the theorems and then discovering where the proof could not be completed, Eachcasethatfalled ledvery quickly to the construction of a counter-example to the statement of correotness, and furthernore showed what changes to C4 uould be sufflelent. These changes were made (by London) and the proof wascompleted,

The changes made to C4 are shown in the listing of the comolier in ADDendix 2. Each change is now el aborated!
(i) COMPEXP, case 2, Same change to Cofor numerlomatoms.
(ii) COMCOND, line 2 and COMBOOL, case 1 , Found by ohecklng C A Rs and CDRs fop being wel (-defined, Counter-examoles ape Boolean atomle varlables.
(iil) COMPANDOR1, lines 1-2, Pound as in(il). Only counter-examples are (AND) and (OR). Incorrectness in the flrst Droposed change [lf NULL U THEN NIL ELSEj, which seens coprect, was only discovared by checklng the case \(\mathbf{N}=0\) in \(P=(A N D \alpha)\) of Theorem 13.
(iv) LOADAC,case CAAR \(Z=0\) and CLASS1, lines 3-5, Found by considering the case \(\partial f T, N L, ~ a n d\) numericeatomsasactualparameters to a function in the atom case for LOADAC in Theorem 10 ,
(v) LOADAC, case \(C A A R Z=5\), Found by noting that the result for LOADAC in Theorem 10 did not Inductively follow if d[N2] \(=5\). counter-examples are function calls with a class 5 argumenti all succeeding arguments failed to be comolled at all,
(\(\mathrm{V}_{\mathrm{i}}\)) COMBOOL, case 5, Found by reconsldering the case of a LAMBDA expression in Boolean context for example an argument toAND,OR,OP COND) at the last case of Theorem 5 which case falled in Theopem 13.

As a check on the changes and the completedproof pa, bondon usec the changed s4 to compile some of MECarthy's test functions and also a set of representative counter-examples. The test functions gave identical outojt as the original cu (another use of the file comparison utlity program). The counter-examples gave oorrect output as determined by a hand inspection,

ACKNOWLEDGMENTS
Asnoted, Jonn McCarthy made thecomollersavailabletome, Rod
M, gurstall and Whltfiels olffie opovided many stimulating
discussions and suggestions.

\section*{REFERENCES}
surstall, R. M.. 1969, proving properties of prograns by structural i nduction, Computer J., 12, 1, February, pp. 41-48.

Burstall, R, M, \(\mathcal{L}\) Landin, P. J., 19Ky, Prograns and thelp proofs: An al gebraic approach. Machine Intelligence 4, B. Meltzer \& D. Mlchie (eds.), Amepican Elsevier, po. 17-43.

Dijkstra, E. W., 197日, Notes on structured programing, T.H.mRaport 7E-wSk-D3, Technological lialvepsity Eindhoven, The Netherlands, Second Edition, Abpil.
hgarn. A C.. 1973, REDUCE 2 user's manual 8 Artificial Intel ligence Mero AlM-133, staniopd Uni versity, October,

Hoare, C. A, R., 1971, Proof of a program: FIND, Comm. ACM 14, 1, January, 00.39-45.

Kanlan. D. M., 1967. Correctness of a compller for Algol-like programs, Artificial Intelligence Memo No, 48, Stanford Uni versity, July,

Lonoon, R. L., 1770. Proving programscoprect: Sone technlaues and examples, BIT,19,2, pp. 168-182.

McCarthy, J, 8 Painter, J, \(A, 1967\). Correctness of a compller for arithmetic expressions, Proceedings of a Symposium inapolied Mathenatics, Vol. \(\dot{1}, \mathrm{~J}, \mathrm{~J}, \mathrm{Schwartz}\) (ed.i, Ansrican Mat hematical Socisty, pp,33-41,

Mcoowan, C. L., 1771, An inductive noof technique for inteppeter equivalence, Formal Semantics Of programming Languages, R. Rustin (ed.), spentico-Hall, to appear.

Milner, R., 197, Implamentatlonandapplicationsof scott's logic for computable functions, Proceedings of a Conference on Proving Assertions abodt programs, Association for Computing Machinery, to appear.
painter, J. A., 1767. semantic coprectness of a complier for an Algol-like language, Artificial lntelligence Meno No, 44 [also Ph. D. thesis], Stanford University, March,
weissman, C., 1967. - isp 1.5 Primer, Dickenson Publlshingco.
wirth, N., 197i, Programdevelopment by stepwise refinement, Comm. ACM, 14, 4, ADPi 1, DO, 22:-22.7.

APPENJIX 1 - A LISTING OF THE COMPILER CD
```

FEXFG COMPL FILE - BEGIN SCALAR Z;
EVAL('OUTPUT,:'DSK: , LI ST (CARFILE.'LAP)))\&
EVAL(IINPUT, ('OSK:. FILE))\$
INC('T,NIL)\&
OUTC(T,NIL)S
LUOF: Z + ERRSET(PEAD!))%
IFATOMZTHENGO T ODONE'S
7.CAR Z %
IF CAR Z EO'DETHFN
BEGIN SCALAR PROC;
PROG - COMP(CAOR Z,CADUR Z,CADODR z)\$
MAPC(FUNCTION(PRINT),PROG)\$
OUTC(NIL,NIL)E
PRINT LIST(CADR Z,LENGTH PROG)\$
OUTC(T,NIL)\$
E:ND
ELSE PRINT Z\$
GO TO LODPW
DONE: OUTC(NIL,T)S
INC(NIL,T)S
RETURN'ENDCOMP E N D;

```
For the ourposes of this paper, the compiler starts herei above here
may be ignored.
\(\operatorname{COMP}(F N, V A R S, E X P)\) -
 (LAMBDA N;
 APPEND
 LIST LIST('LAP,FN,'SUBR),
 MKPUSH(N,1),
 COHPEXP(EXP,-N, PRUP (VARS,1)),
 LIST LIST ('SUÉ , PP, LIST('C, D, D,N,N)),
 (((POPJ P) NIL)))
 LENGTH VARS:
PRUP(VARS,N) - IF NULL YARS THEN NIL
 ELSE (CAK VARS . N) , PRUP(CDR VARS,N+1):
MKPUSH(N,M) ~IF NくM THEN IIL ELSE LIST('PUSH, 'P,M), MKPUSH(N,M+1):
COMFEXP (EXP,M,VPR) -
[1] IF NULL EXF THEN ((MOVE.! 1 0))
[2] ELSE IF EXP EQ IT OR NUMRERF EXP THEN
 LIST LIST('MOVEI, 1, (LIST(PQUOTE, EXP)))
[3] ELSE IF ATOM EXP THEN
 L:ST LIST(•MOVE, I, M+COR ASSOC(EXP,VPR),'P)
[4] ELSE IF CAR EXP EQ GND OR CAP EXP EQ OR OR
 C A REXPEQ NOTTHEN
```

    (LAMEDA L1,L?; APPEND(COMBOOL(EXP,M,LI,NIL,VPR),
                        L!ST('(MOVE! 1 (OUOTE T)),LIST('JRST ,0,L2),
                        L1,'(MCVEI 1 0),L2)))
    (GENSYM(),GENSYM())
    [5]
[6]
[7]
ELSE IF ATOM CAR EXP THEN
(LAMBDA N; APPEND(COMPLIS(CDR EXP,M,VPR),
LOADAC(1-N,1),
LISTLIST('SUB,'P ,LIST('C, D, D,N,N)),
LIST LIST('CALL,N,
LIST('E ,CAR EXP).)))
LENGTH COR EXP
[8] ELSE IF CaAR EXP EQ llambDa then
(LAMBDAN! APPEND(COMPL!S(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M-N,
APPEND(PRUP(CAUAR EXP,1-M),VPR)),
LIST LIST('SUE,'P ,LIST('C,0,0,N,N))))
LENGTH CDR EXP;
COMPLIS(U,M,VPR) *
IF NUL U THEN NL
ELSE APPEND(COMFEXP(CAR U,M,VPR),
'((PUSH P 1)),
COMPLIS(CDR U,M-1,VPR))\
LOADAC(N,K) + IF N>Q THEN NL ELSE LIST('MOVE,K,N,'P),
LOADAC(N+1,K+1);
COMCOND(U,M,L,VPR).
IF NUL U THEN LIST L
ELSE (LAMBDA L1; APPEND(
COMBOOL(CAAR U,M,LI,NIL,VPR),
COMPEXP(CADAR U,M\&VPR),
L!ST(LIST('JRST ,L),LI),
COMCOND(CDF U,M,L,VPR)))
GENSYM();
COMBOOL(P,M,L,FLG,VPR).
[1] IF ATOM P THEN APPEND(COMPEXP(P,M,VPR),
LIST LIST(IF FLG THEN IJUMPN
ELSE 'JUNPE ,1,L))
ELSE IF CAR P EO 'AND THEN
(IF NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
ELSE (LAMBUA LI: APPENO(
COMPANDOR(CDR P,M,L1,NIL,VPR),
LIST LIST('JRST , D,L),
LIST L1))
GENSYM())
[3] ELSE IF CAR P EQ 'OR THEN
[a]
(IF FLG THEN COMPANDOR(CDR P,M,L,T,VPR)

```
```

    [0] ElSE:(lamjoali; APPENO(
                                    COMPANDOR(CDR P,M,L1,T,VPR),
                                    LIST LIST('JRST,0,L),
                                    LIST L1))
                                    GENSYM() )
    [4] ELSE IF CAR P FO-NOT THEN
COMEOOL(CAOR P,M,L,NOTFLG,VPR)
[5] ELSEAPPEND(COMPEXF(P,M,VPR),
LIST LISTCIF FLG THENOJUMPN
ELSE (JUMPE ,1,L));
COMPANDOR(U,M,L,FLG,VPR) - IFNULLUTHENNIL
ELSE APPEND(COMECOL(CAR U,M,L,FLG,VPR),
CJMPANDOR(CDR U,M,L,FLG,VPR));

```

The changes needed tocompletethappoofof correctness of C4 a reshowri nthislisting- deletionsenclosedbetweenthe symbolsc and \(\partial\) and additionserislosed between the symbols [and J with the latter tuo also beingused to number cases, The eight changes are at COMFEXP, case 2; COMCOND, I ine 2: LOADAC, cases CAAR \(z=\varnothing\) and CAARZ 5. CLASS1, lines 3-5; COMBOOL, cases 1 and5; andCOMPANDOR1, I i nes I-2:

FEXFFCGMPL FILE~ BEGINSCALARZ;
EVAL(MOUTPUT, ('ISK:, LIST(C A R F I LE, LAP))) \(\$\)
EVAL(IINPUT, (DSK:,FILE))S
INC('T ,NIL)\$
CUTC(T,NIL) 3
LDOP: \(Z\) - ERRSET(READ()) \(\$\)
I FATOMZTHENGOT ODONE
Z - CAR \(\geq\) IJ
IF CAR \(\notin\) EC? 'DE THEN
EEGINSCALARPROG:
PROG - COMP (CADR Z, LADUR Z,CADUUR \(z\)) \(\$\)
MAPC(FUNCTI JN(PRINT), PRDGS\$
DUTC(NILANIL)
PRINTLIST(CADRZ,LENGTHPROG)\$
OUTC(T,NIL)
ENO
ELSEPRIVTES
GO TOLODP\$
DOVE: OUTE(NIL,T)s
INC(NIL,T)S
FETURN 'ENDEOMP ENE:

For thepurooses of this padar, the compiler starts herejabove here may be ignored,

CDMF(FN,VARS,EXP) *
(LAMBDA VPR, N;
APPEND(
LIS TLIST('LAP,FN,'SUBR),
MKPUSH(N,I),
COMPEXP(EXP,-N,VPR),
SIJESTACK N.
(i(POPJP) NIl.)))
(PRUP(VARS,:),LEINTH VARS):
SUPSTACKN-I FN=天 THEN VI!.


```

CCCHAINEXP\&(C A REXPEO'C A R O RCAREXP EQ`CDR)A N D
(ATOHCAUREXPO RCCCHAINCADREXP);
COMPC(EXF,N2,M,VPR) *
I FATOMEXPTHFNE R R O R'COMPC
ELSEI F CaR EXPF.G'CART!HEN
(IF ATOM CAUR EXP THEN
LIS TLIST('HLRZO ,N2,M+CDR ASSOC(CADR EXP,VPR),'P)
ELSE LIST('HLRZO,N2,N2),COMPC(CADR EXP,N2,M,VPR))
ELSE IF atomCADREXPTHEN
LIST LIST('HRRZ@ ,N2,H1+CDRASSOC(CADR EXP,VPR),'P )
ELSE LIST('HRRZ@ ,N2,N2),COMPC(CADR EXP,N2,M,VPR);
COHCOND(U,M,L,VPR) -
IF NULL | THEN LIST:
ELSE IF[VOTA T O MCAARUANOJ
C A A A H U ENULLANONULLCADARU T H E N
APPEND(COMPEXP(CAUAAR U,M,VPR),
LIST LIST('JUMPE ,1,L),
COMCOND(CDR (U,M,L,VPR))
E L S E I F caapuequtthen
APPRND( COMPEXP(CADAR U,M,VPR),LIST L)
E L S E(LA:4SDAL1;APPENU(
CO:1300L(CAAR U,M,LI,NIL,VPR),
COMPEXP(CADAR U,M,VPR),
LIST(LIST('JRST:,D,L),L1),
COMCOND(CDR U,M,L,VPR)))
GENSYM():
COMFLISA(U,M,VPR) -
(LAMEDA Z; APPENO) (
COMPLIS(z,M,I,VFR),
L.JAOAC(Z,1-CCOUNT Z,1,M-CCOUNT Z,VPR),
SURSTACKCCOUNT t))
CLASSIFY U;
CCOUNT Z - IF NULL Z THEN \ ELSE If CAAR Z = 4 THEN 1+CCOUNT COR Z
e l S eccountcorz;
LOACAC(Z,M2,N2,M,VPR)*
IF NULL ZTHENN I L
ELSE IF CAAOE = 1 THEN
L:ST(OMOVE ,N2,M+CDRASSOC(CDAR Z,VPR),DD )
, LOADAC(CDR Z,M2,N2+1,M,VPR)
[ELSE IF CAAPz=y THEN
LIST('M̃OVEI, N2, (LIST('OUOTE, CDAR Z)))
.LOADAC(CDR Z,M2,N2+1,M,VPR)J
ELSE IF CAAPZ = 2 THEN
L!ST('MOVE! ,N2,CDAR F.)
-LOAOAC(CDR Z,M2,N2+1,M,VPR)
ELSE IFGANRZ=3THEN

```
```

        APPENO(REVERSE COMPC(CDAR Z,N2,M,VPR),
                        LOADAC(CDR Z,M2,N2+1,M,VPR))
    ELSE IF CAAR Z = 5 THEN GNILح [LOADAC(CDR Z,1,N2+1,M,VPR)]
    ELS ELIST('MOVE.N2,M2,'P),
                            LOADAC(CDR Z,M2+1,N2+1,M,VPR)S
    ```
```

COMPLIS(Z,M,K,VPR) *

```
COMPLIS(Z,M,K,VPR) *
 IF NULL Z THEN NIL
 IF NULL Z THEN NIL
 ELSE IF CAAR Z = 4 THEN APPEND(
 ELSE IF CAAR Z = 4 THEN APPEND(
 COMPEXP(CDAR Z,M,VPR),
 COMPEXP(CDAR Z,M,VPR),
 -((PUSH P 1)),
 -((PUSH P 1)),
 COMPLIS(CDR Z,M=1,K+1,VPR))
 COMPLIS(CDR Z,M=1,K+1,VPR))
 ELSE IF CAAP Z = 5 THEN APPEND(
 ELSE IF CAAP Z = 5 THEN APPEND(
 COMPEXP(CDAR Z,M,VPR),
 COMPEXP(CDAR Z,M,VPR),
 IF K=1 THEN NIL
 IF K=1 THEN NIL
 ELSELIST LIST('MOVE OK,1))
 ELSELIST LIST('MOVE OK,1))
 ELSE COMPLIS(CDR Z,M,K+1,VPR)S
 ELSE COMPLIS(CDR Z,M,K+1,VPR)S
CLASSIFY U - CLASS2(CLASSI(U,NIL),NIL,T):
CLASSIFY U - CLASS2(CLASSI(U,NIL),NIL,T):
CLASSI(U,V) - IF NULL U THEN V
CLASSI(U,V) - IF NULL U THEN V
 ELSE IFATOM CAR U THEN
 ELSE IFATOM CAR U THEN
 〔(IF CAR U = 'NIL OR CAR U = 'T OR NUMBERP CAR U THEN
 〔(IF CAR U = 'NIL OR CAR U = 'T OR NUMBERP CAR U THEN
 CLASSI(CDR U, (D , CAR U),V)
 CLASSI(CDR U, (D , CAR U),V)
 ELSE] CLASSI(COR U, (1 . CAR U),V)E)]
 ELSE] CLASSI(COR U, (1 . CAR U),V)E)]
 ELSE IF CAAR U = QUOTE THEN CLASSI(CDR U,(2 , CAR U).V)
 ELSE IF CAAR U = QUOTE THEN CLASSI(CDR U,(2 , CAR U).V)
 ELSE IF CCCHAIN CAR U THEN CLASSI(CDR U,(3 , CAR U).V)
 ELSE IF CCCHAIN CAR U THEN CLASSI(CDR U,(3 , CAR U).V)
 ELSE CLASSI(CDR U.(4 , CAR U),V):
 ELSE CLASSI(CDR U.(4 , CAR U),V):
CLASS2(U,V,FLG) - IF NULL U THEN V
CLASS2(U,V,FLG) - IF NULL U THEN V
 ELSE IF FLG AND (CAAR U = 4) THEN
 ELSE IF FLG AND (CAAR U = 4) THEN
 CLASS2(CDR U.(5 , CDAR U).V.NIL)
 CLASS2(CDR U.(5 , CDAR U).V.NIL)
 ELSE. CLASS2(CDR U,CAR U , V,FLG):
 ELSE. CLASS2(CDR U,CAR U , V,FLG):
MKJFST L & LIST LIST('JRST ,Q,L):
MKJFST L & LIST LIST('JRST ,Q,L):
COMEOOL(P,M,L,FLG,VPR) *
COMEOOL(P,M,L,FLG,VPR) *
[0,1] IF P EOTTHEN (IF FLG THEN MKJRST L ELSE NIL)
[0,1] IF P EOTTHEN (IF FLG THEN MKJRST L ELSE NIL)
Q3 [ELSE IF ATOM P THEN APPENDS
Q3 [ELSE IF ATOM P THEN APPENDS
 COMPEXP(P, M, VPR),
 COMPEXP(P, M, VPR),
 LIST LIST`IF FLG THEN 'JUMPN
 LIST LIST`IF FLG THEN 'JUMPN
 ELSE (JUMPE,1,W))g
 ELSE (JUMPE,1,W))g
[1.1] ELSE IFCARP EO 'EQ THEN APPENDS
[1.1] ELSE IFCARP EO 'EQ THEN APPENDS
 COMPLISA(CDR P,M,VPR),
 COMPLISA(CDR P,M,VPR),
 IF FLG THEN '((CAMN 1 2)) ELSE (((CAME 1 2)).
 IF FLG THEN '((CAMN 1 2)) ELSE (((CAME 1 2)).
 MKJRST L)
 MKJRST L)
[2] ELSE IFCARPEQ 'AND THEN
[2] ELSE IFCARPEQ 'AND THEN
 \mp@subsup{c}{0}{[3]}
 \mp@subsup{c}{0}{[3]}
 (IF NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
 (IF NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
 ELSE (LAMBDA LI; APPENDS
 ELSE (LAMBDA LI; APPENDS
 COMPANDORI(COR P,M,LI,L,NIL,VPR),
 COMPANDORI(COR P,M,LI,L,NIL,VPR),
 LIST L1))
 LIST L1))
 GENSYM())
```

                                    GENSYM())
    ```
[3] ELSE IF CAR O EO OF THEN
 [a] (IF FLG THEN: CUMPAINDOR(CDR P,M,L,T,VPR)
 [D] ELSE (LamgDali; appende
 COMPANDOR1(CUR P,M,LI,L,T,VPR),
 LIST LI))
 GENSYM())
[4] ELSEIFCARPEg•NGTTHEN
 CJMEOOL(CADR P,M,L,NOT FLG,VPR)
[4.1] ELSE IF Cafi P EQ \(\operatorname{luLL}\) THEN APPEND (
 COMPEXP(CADR P,M,VPR),
 LIST LIST(!F FLG THEN 'JUMPE
 ELSE (JUMPN,1,L))
[5] ELSE GIFATCMCARP THENOAPPEND(
 COMPEXP(P, M,VPR),
 LIST LIST(IF FLG THEN JJUMPN
 ELSE (JUMPY , 1, L));
CCMFANDOR(リ,M,L,FLG,VER) \& IF NULL U THEN NIL
 ELSE APPENC\&COMSOOL (CAR iJ,M,L,FLG,VPR),
 COMPANDCR(CDK U,M,L,FLG,VPR));
COMFANDOR1(U,M,L,L2,FLG,VPR) * [IF NULLU THEN MKJRST L2
 ELSEJ IF NULLCORU THEN COMFOOL (CARU,M,L2,NOTFLG,VPR)
 ELSE APPE:ND(COMEOJL (CAR U,M,L,FLG,VPR),
 COMPANDCRI(CDR U,M,L,L?,FLG,VPR)):
```

    APPENDIX 3 - SAMPLE CUTPLT OF CDANJ C4 FOR A REVERSE FUNCTION
    (DE PEV (X Y) (CONO ((JUL.L X) Y) (T (REV (COR X) (CONS (CAR X) Y)))))
    Coce from Co
(LAP REV SUBR)
(FUSH P 1)
(PUSH P 2)
(MOVE 1 -IP)
(PUSH P 1)
(MOVE I Q P)
(SUG P(C| 1 1))
(CALL 1 (E NULL))
(JUMPE 1 L2)
(MDVE 1 0 P)
(JRST L1)
L2
(MOVEI1(QUOTET))
(JJMPE 1 L3)
(MOVE 1-1 P)
(PUSH P 1)
(MOVE 1 A N)
(SUS P (C 0 1 1))
(CALL 1 (E CDR)) CDR
(PIJSH P 1)
(MOLE 1-2 P)
(PUSH P 1)
(MOVE 1 g P)
(S:JO P (C 0011))
(CALL1(E CAR))
(PIJSH P 1)
(MOVE 1 -2P)
(PUSH P 1)
(MOVE 1 -1 P)
MMOVE 2 EP:
(SU- P(C|O 2 2))
(CALL, }2\mathrm{ (E CONS))
(PIJFH P 1)
(MOVE 1 -1P)
(MOVE 2 \& P)
(SUE P (C| 2 2))
(CALL 2 (E REV))
(JRST L1)
L3
LI
(Sif P(C a < < 2 2))
(POFJP)
NIL

```

CDR

REV

Comments
heacer
stack fipst arg
stack second arg
compute \(x\)
stack it
recoll X
adj. stack by 1
cal I NUL.
if notNJLLjump (JUMPN 1 L2)
recal|v
jump for return
the label L?
compute \(T\)
if not \(\boldsymbol{T} \mathbf{j u m}\)
compute \(x\).
recall X

2ompute \(x\)
rocall \(X\)
CAR, PeSD. CAR X (HLREG 1 -1 P)
compute \(Y\)
pecall CAR X
recall Y
CONS stack by
recallCDR X
recallCONS, pesp. (MOVE 2 1)
transfer CONS
computecor X
junp for return
return
endo foode

Code from C4
(LAP REV SUBR)
(PUSH P 1)
(PUSH P 2)
(MDVE 1 -1 P)
(MOVE 1 ©)
(JRST L:
L2
(MOVE 2 ? P)
(CALL 2 (ECONS))
(HRRZQ 1 -1 P)
(CALL 2 (EREV))

L1
(SUB \(P(C ŋ Z 22))\)
(POPJ P)
NIL
```

