1

( S%ANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-151

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS 240

CORRECTNESS OFTWOCOMPILERS FOR A LISP SUBSET

BY
RALPH L LONDON

OCTOBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY







STANFORD ARTIFICIAL INTELLIGENCE PRQJECT OCTOBER 1971
MEMO AlIM=151

COMFUTER SCIENCE DEPARTMENT
REPORT CS=249

CORRECTNESS OF TWO COMPILERS FOR A [ ISP SUBSET
by

Ralph L. London

ABSTRACT: Using main|y structural Inrduction, proofs of correctness
of each of two runninge Iisp compilers for the POP-10
computer are olven, Includedaret he ratlomale for
presentina these proofs, a discussion of the proofs, and
the changes needed to the second compller to complete Its
Proof,

To be Presented at the Conference on Proving Assertions about
Programs, New Mexico State University, January 1972,

This research was supported im part by the Advanoed Research
Projects Agency -of the Office of the Secretary of Defense under
Contract SD-183 and in part by the National Aeronautlics and Space
Administratlon under Contract NSR £5-028-500,

The views and concluslons contained In this document are those
of the author and should not be Interpreted as necessarily
representing the officlal policlas, elther expressed or Impl| ied, of
the Advanced Research Projects Agency, theNatlona| Aeromautlics and
Space Administration, or the U, 3, Government,

Reproauced In the USA, Available from the Clearlinghouse for
Federal Scientlfic and Technizal Information (or Its successors),
Springfield, Virginia 22151, Price: Full size CoDY $3,00;
microflche copy $2,95,







CORRECTNESS CF TWO COMPILERS FOR A LISP SUBSET
by

Ralph L+ London

INTRODUCTION AND JUSTIFICATIGN

This paper contalns proofs of correctness of each of two useful,
running compilers, named CO and C4, The source language for both
compi lers Is the same subset of pure (basli¢) Lisp, which subset
excludes speclal or ¢lobal variables, function names as arguments,
and the form label: the obJect language Isessentlally assembly code
for the PDP~18 <computer: and the compilers themselves are written
recursively in RLISP (Hearn 1978), a verslon of Lisp with Algel=like
syntax, The compilers were wrltten by John McCarthy as part of a
series of progressively more ortimizing compijers for usSe In a coursSe
at Stanford entitled "Computing wlth Symboliec Expressions.," Only
later have these compilers been conslidered for proving correctness,
Alistlng of the compilers and sample output are In the Appendlces,

The proof P4 of correctness of the compiler C4 Is a modlflcation
and extension of the proof PO for C#. The organization of this paper
is TFirst to prove C@ correct excluslively, A brlef discussion of the
proof appears Just after the proof, Then wusing the same “machinary
that Is defined, and using much of the proof P@#, the compller C4 Is
proved correct, This serial organization, reflecting the essentlal
chronology of the work, seems Preferable to proving the two complilers -
in parallel, The reader should now lgnore C4 (and P4) untl| the
start of P4, except to note that the input and overal | statement of
correctness are the sameas for CO,

To prove the correctness of a comeljer is a frequently heard
cha i lenge, The present proof partly responds to the c¢hajlenge! The
compiler is sufficiently lengthy and complex not to be vfewed as
merely another cooked-up research example, As evidence of this,
Whitfield Ciffle has shown the comciler capable of c¢ompliing Itself
successfully, - Yet the compliler has certaln toy-problem aspects, for
example accepting a subset of full LIsp, the Inefficliency of the
resulting object coce, anti the simpleparser, It is certainly not a
proguction compiler, Nevertheless, exhibiting yet another proof
seers Justifled since (i) a compiler |s somewhat different from Other
alacrithms that have oeen proved (there are at |east two programs
seirg executsad, the compiler and the object program, and, to a lesser
extent, the source program); (!l) there has oeen |Ittle progress In

oroving compllers correct beyond the work of McCarthy 8
painter(1967), painter(1967), Kaplan(1967), Burstal|(1969), and
Byrstall & Landin (1969), although tne work of McGowan(|971) should
be mantioned; (11i) there remalns the wcrthwhl||e goal of belng ab -

to prove compilers correct; (iv) this proof has been made to serve as
the nucleus of a proof of correctness of a more optimizing com>’|er
in the existing serjes: (v) the Informal proof serves as the basis of
more formallzed procfs, the latter being necessary |f a proof »f




correctness is to be checked byaproof checker (Milner1972)} and
(vi) the ccrrectnass of the complier is not immediately obvious,

THE PROBLEM STATEMENT, NOTATION, AND PLAN OF ATTACK

The reader s assumed to have a basic knowledge of Lispssay
from Wejissman’s (1967) primer, The Input to the compiler Is (DE NAME
(args) body), JDE is for Define Expression and NAME |s thename of
the function being compiled, The quantity (args) 1Is the |lst of
argurents (formal| parameters) Tfor the function NAME and body I8 the
body O the Tfunction, The <calling c¢onvention Isthat a defined
function £ of N 2 2 arguments, say argli,arg2,,,.sargN,willflind

run-time values of those arguments In successive accumulators
starting In acl, which holds argl, and the vresult flargl,arg2sy.¢
argN) will be returned in acl, This convention applies also to any
function call comp! led by the compller in response to a call in the

source code, €.9. the callto CAR in WE SIMPLE (X) (CAR X)), In
particular the call may be a recursive call, ,8,

(DE COMPLEX (X Y) (COND ((NULL X) (CONS Y X))
(TC(COMPLEX (COR X) Y)) 1),

We now give a more detailed and more precise description Of the
allowable syntax and its intended meaning, The |Ilst (args) Isallst
of atoms excluding NIL, T, and numeric-atoms; body is an expression
where expression is defined recursively below (N 2 @ in aii relevant
cases)., The value of an expression EXP, denoted V EXPy» is
recurslively defined at the same time (as an "Informallizatlon" of the
Lisp EVAL function),

(i atom, in particular NILsTs or a numeric-atom, V atom:
V NIL = (QUOTE NIL) (@ In this compiierld,
v T = (QUOTE T)» where a non-NIL value is considered equal
to Vv T

V numeric-atom = (QUOTE numeric-atom), and
V other atom = its blnding, l.8, run-time value whieh may
not be a functlon name,

(i (AND EXP1 EXP2 ,,, EXPN), V AND-expression = TIf all v EXPj
are non-NIL otherwise NIL, V. (AND) =T. AND evaluates
Its arquments from Jefttorigntuntl| either NIL |Is found
in which case the remaining arguments are not evaluated, Or
until the last argument !s evaluated,

(11> (OR EXP1 ExP2 ,.., EXPN), U OR-expression =T if any V EXPIl is
non=NIL otherwise NIL., V (OR) = NIk, OR evaluates Its

arouments from ieft to right until althernon=NILls found
In which case the remaining arguments afe not evaluated, or

until the last argument is evaluated,

Civ) (NOT EXP), V NOT-expression = T if V EXPIsNIL otherwise NIL,




(v) (COND (EXP1 EXP2) (EXP3 EXP4) ,,, (EXPL2N-1] EXPL[2NI1)),
V COND=gxpression I's detarmined as follows, The
expressions EXP1, EXP3, ,,,» EXP[2N=1] are evajuated
starting with EXPL1 untl| the first EXP(21=1) is found whose
value is non=NIL, V COND=expression is then V ExPC21], If
no EXPL2i~1] exists with  non=NIL value, then
V COND=gxpresslon |s undefined,

(vi) (QUOTE EXP), V QUQTe=-expression = EXP, i,e, EXP unevaluated,

(vii) (fname EXP1 EXP2 ,,, EXPN) where fname # AND, OR, NOT, COND,
QUOTE, V functlioneexpression = fname(V EXP1l, V EXP2, +.43
V EXPN), i,e. tho value of the function fname applled to
Its evaluated arguments V EXP1i, V EXP2, ,,4» V EXPN, The
arguments are evaluated once before the function is called,

(viii) ((LAMBDA (atoml atom2 ,,, atomN) EXP) EXP1 EXP2 .., EXPN)
where atomi! # NI[L,» Tsnumerjc-atom, VvV LAMBDA~=expression is
determined as follows. A LAMBDA-expresslon defines a
function which has no explicit Catomiec) name, V LAMBDA=-
expression is the value of this function applied to |[ts
evaluated arguments V EXP1l, v EXP2, ,,4» V EXPN, In other
words, V LAMBDA=expresslion = V EXP where V EXP |s computed
after the substitutlions atomi « v EXPL1, atom2 + V EXP2,
voes atomN ¢« V EXPN have been made in EXP, If there 1Iis a
clash of bound varlables, the conventlion (s that the
Innermost binding governs,

Slnee function names are forbidden as arguments, the expression
((LAMBDA (X) (X)) Y) means a call to the functlon X of no arguments
rather than a call to the functlon argument Y, The above syntax
forbids ((X)), (((X))), etc, a5 expressions,

The compiler is proved correct under the assumption that Its
input is syntactically correct, Since no error checking {s done by
the compiler, nothing Is claimed for the results, if any,» of
incorrect Input, Correct input also means, for example, that a ||st
of formal parameters consists of distinct atoms and that the number
of forral Parameters s always eqgual to the number of actual
parareters, There are ©presumably many ©other such condltions,
violatlons of some of which may have reasonable Interpretations,

The statement of correctness of the compliler 1s that the
compller~produced opJject code, when executed, leaves a result In acl
equal to the value of the source language function applied to the
same arguments, The object code takes its N arguments from the
accurulators acl, vl acN, If A = al a2 ,,, aN represents the
argurents, then the correctness statement may be restated &s
requirline that the equation

V ((DE NAME (args) body) A) = contents Of acl



holds after executing the |18t of compiler-produced Instructlons
COMP(NAME, (args),» body)

starting with aci holding al for 155N,

The followlingfacts about the PDP=12 computer are from '
py McCarthy: The P0P=~19 has a 36 bit word and an 18 bit ad&rgsrsl,telm

instructions and in accumulators used as index reglisters this |s the
right part of the word where the least significant bits In arithmetic
reside,

There are 16 general registers which serve simu|taneousiya s
accumulators (recejving the results of arlthmeticoperat|ons),index
reglsters (mod!fying the nomina| addresses of Instructtons to form
effective addresses), and as the first 16 reglistars of memory (If the
effective address of an Instruction is |ess than 14, then the
Instructlion uses the corresponding general register as {%ts operand),

Al Instructions have the Same format and are wrltten for the
LAP assembl, program {n the form

(<op name> <accumulator> <address> <index register)),

Thus (MOVE 1 3 P) causes accumulator 1 to recelvethe contents of a
memory .register whose address Is 3I+¢c(P), | .e, +{the contents of
geraral register P>, In the following description of Instructions,
<ef> derotes the effectlve address of an Iinstryction,

MOVE clac) ¢« c(<efd)

MOVET clac) + <ef> _

HLRZ (uged In C4 ,nly) c(lefg half ac) « pight hal® of o(<ef>)
HRRz (used In C4 onjy) clright half ac) «c(right hal? of c(<ef>)
SuB clac) + clac) = c(<efd)

JRSI 99 to <ef>

JUMPE ¥ ac) 3 @ then g4 t, <ef>

JUMPN Ifctac)Z 0 then go to <ef>
CA4E (used In C4 onjyv) If clac) 3 c(<ef>) then skipnext]instruction
CAMN (used In C4 onjy) If clac) # c(<efd>) then skip next Instruction

PUSH ctc(richt half of ac¢)) « c(<ef>);the contents
of each half of ac Is Increased by one
POPJ (POPJ P)Is used to return from & subroutine

These Instructions are adequate for complling basiclLisp code
with the addltion of the subroutine calllng pseudo=instruction, (CALL
n (E <subr>) is used for callling the Lisp subroutlne <suber> wlith n

argurants, The convention is that the arguments wl}l| be stored in
successive accumulators beginning wlth accumulator 1,and the resuylt
will be returnea in accumulator 1, Inparticular the fungtloms ATOwM

and CONS are called with (CALL 1 (E ATOM)) and (CALL 2 (E CONS))
respectively, Note that the Imstruction (SsuB P (C 0O 3 3)) Just
deletes the <Top three elements of the stack P, (PUSH P ac) Is used

4



to putctac) o n thestackP, Thls ends the facts about the PDP=1p
computar,

To show the resu|t and effect of executing a section of assembly
cods, notatlenofhand-simulation, deskechecking, or tracing of cede
is used. It is best explained by example, starting with N
accurulators each holdlng a value and an emptystackP, namsly

aci|al
ac2|e2
LN 2 |
acgNjaN
Pl

the 1ist of Instructions

((instructions to leave @1 "in acl)
(PUSH P1)

(Instructions to leave 9aN In acl)
(PUSH P 1)
(MOVE 1 1N P)
(MOVE 2 2-h) P)
[ 2 K B
(MOVE N2 P)
(SUB P (C 0 0 NN))
(CALL N {E ngme)))

gives the trace

acllols al* o2% ,,, aN#® als® name(al a2 ,,, aN)
ac2|e2# a2« undsf

[ B )
acN|jeN« aN« undef

Plajgs aps ,,, aN& |

Thus thevaluename(al a2,,, aN) is in acl, undef (anundefined
auantity) is 1 n acifor2sisnsince these accumulators are unsafe
over name, and the stack P Is unaltered fromthestart, The traoe
shows the Ffinal resulto ¥ traclngs the (intermediate results are
recordedbut marked byan asterisk (*) as being no |onger pressnt,

The plan of attack Is as followsi

(i) Prove correct 3 auxlitliary Procedures [MKPUSH(N,M), PRUP(VARS,N),
and LOADAC(N,K) Jwhichare not part of the mafn recurslveness
of the compi ler ({emmas 1=3),

(it) under the assumatienofino conditional expressioms or Boolean
expressions (i,e,no CGND, AND, OR, NOT), prove the compiler
correct(theoremsi=~3and termination), and

(iii) Prove the <compller correct wltnout the restrictiveassumption

5



of (il) (theorems 4=7),

The proof techniques to be used are mainly those 8hown in
Longon(197@), The Tactorization into (ii) and(iil), convenient for
construct I ng, for presenting, and for readling the proof, shows how
one can Grove an algorlthm in suitable segments rather than havingto
do it all at once, Ifthereader omits theorems 4«7 of (jli), the
broof of correctness of an interesting subcompiler results, In this
part recurslon is sti i i al lowed in the sense that the c¢omp{jer wilj||
correctly complle a recursive Tfunction, But the obJect code may not
terminate if such a recursive function |scalled since there is no
branching to "stop the recursion?

The number fng@ of the lemmas and theorems reflacts the order of
their digcovery and ppoof, The epdercoyid be altered py meprgling
theorems 1 and 7 and by placing theorem 3 as the last theorem |f the
sole interest wera to prove the entlre compller,

PROOF OF AUXILIARY FUNCTIONS FOR Ca

The Lisp operation CONS is denoted In RLISP by an Infix dot(,):
A,3 = (CONS A B) , By idnspaction of the whole comolle"ol It fol lows
that all numerically=valued quantities are integers, e s used as an
end-of-proof marker,

Lemma 1, If N >2 and M > 0, then MKPUSH(N,M) =

((PUSH P M)
(PUSH P M+1)

(PUSH P N)) ,
IFT M >2, then MKPUSH(Z,M) = NIL ,
Proof, Backwards {nduction On M, If M > N, MKPUSH(N,M) s NIL_ ,
IFTM = N, we have (PUSH P M) NIL =((PUSHPN)), Assume the |emma
for M € N and consider M-1 > 2.

MKPUSH(N,M=1)

1]

(PUSH P M=1) MKPUSH(N,M) since N > M=}

(PUSH P M=1),
((PUSH P M)
(PUSH P M+1)

(PUSH P N)) by induction hypothesis for M

((PUSH P M=-1)
(PUSH P M)
(PUSH P M+1)

(PUSH P N)) by definition of CONS, e




Alternative notatton may be used to avoid the three dots (s.4)

in the lemma and in the proof, Analogously to the slgma notatlon for
indicating s-urns (e,g. sigma(1=1,N,AT1]), define a |Ist functlonal L:

L{]=M,N,(PUSH P 1)) = NIL IfN<E M

LCT=M,N, (PUSH P 1)) = (PUSH P M), L(i=M+1,N,(PUSH P i)
If N2 M

Wwhereas slama denotegs iterated addlitlom, L denotes lterated CONSing,

The lemma is restated as MKPUSH(N,M) = L(1=M,N,(PUSH P [)), The
proof of the induction step becomes

MKPUSH(N,M=1) (PUSH P M=1) ,MKPUSH(N, ™)

(PUSH P M=1),LC}I=M,Ns,(PUSH P |))
= L(i=Me1,N,(PUSH P [)),
Similar notation may be used for lemmas 2 and 3 bejow,
Lerma 2, Let VARS = (Xi X2 ++¢ xM), Then PRUP(VARS,N) = ((x1,N)
(x2,N*1) .., (xM,N+M=1)), Thils list of pairs is called tha PRUP

lists short for "pajr=up."

Proof, Inductton on My, If M = @, then PRUP(VARS,N) = NIL since
NULL VARS, Assume for M 2 @ and consider M+1,

PRUF(VARS,N)

(CAR VARS,N),PRUP(CDR VARS,N+1) since M+1>7 Impiles
not NULL VARS

(XloN),((inN"'l) eor (XCM+1],N+M)) by the Induction
hypothesis for CDR VARS

((XI.N) (XalN‘l) N (X[M"']-JIN“'M’) by use of .+, ®

Lerma 3, LOADAZ(N,K) = ((MOVE K N P)
(MOVE K+1 N+1 P)

(MOVE K=N 0 P)) ,
Proof, Backwards induction on N, IfT N> 2, the resu|t is NIL ,
IFN = 2,w8 have (MOVE K & P) ,NIL = ((MOVE K-0 O P)), Assume the
jemra for N £ € and consider N=1.

LOADAC(N~1,K) = (MOVE «k N=1 P),LOACAC(N,K+1) since N=1 < O

= (MOVE K N=1 P),((MOVE K+1 N P),,, (MOVE K+1=N O P))
by Induction hypothesis for N




= ((MOVE K N=1 P) (MOVE K+1 N P),,, (MOVE Ke(N=1) O P))
by use of . and arlthmetlic., e

THE RUN-TIME STACK

The obJect code uses a run=-time stack in a rather standard way
for bholding the actual Parameters ©of both functlon ca||s and LAMBDA
expresslion evajuations, A s each actual parameter <(bindinmg) 1s
evaluated, It s pushed onto the stack, This suffices for a LAMBDA
expression but not for a funetlion, After all of the |atter’s actual
parareters are evaluated and pushed onto the stack, al | ape moved to
the accumulators ang popped from the stack In order to satlsfy the
conventions for call!lng a functlon, The Ffirst task of the compi|ed
function definitionis to push the actual parameters bpack to the
stack from the accumulators, Thus for both a funotlon and a LAMBDA
expression, the respective code body accesses of obtains the actua 1
parareter from the stack,

We forgo stating the varlous possible stack conflgurations In
full generallty to avold (nresumably) less than transparent notation,
What is In principle required can be seen by an examples

(DE F (A BY(G A ((LAMBDA (A) (CAR A)) B) A B))
This must be compiled tdentically to
(OE F (A B) (G A ((LAMBDA (A1) (CARAL1))B)AB))

where the bound A of the LAMBDA expression has been renamed A1, The
accessible varlables of F are A and B} those of the LAMBDA express]on
are Al and B, Atthepolint of compl|ing the argument A of CAR A, the
stack P (at run-time) wil| be

P A B A B ,
actual the flrst actual parameter
parareters actual parameter corresponding
to thecal I to the call of G to Al
of F

The complie~time PRUP 1ist wi|l be ((A,4) (A.,1) (B,2)) or, using Al,
((A1,4) (A,1) (B,2)) , .MNote the absence of a 3 slnce that spot holds
a termporary vaiue and not the value ¢fan actual parameter wusable In
the body of the LAMBDA expresslion (In thls example eltherAior B but
not A),

Thus the compi jatlon of the argument A of CARA(atgase 3 of
COMPEXP with M z =4asft would be) produces a MOVE Invelyvlng the top
of the stack, namely (MOVE 1 M+4 P) : (MOVE 1 O P), and not (MOVE 1
M+1 P) - (MAVE 1 -3 P), A compllation OF B at this point would
produce (MOVE 1 M+2 P) = (MOVE 1 =2 P),



After compiling the fourth, and last, actual Parameter of G, the
stack will be

P| A B A CAR S A B .
actual parameters actual parameters
to the callOof F  to the call of G

We  shall need to show that the proper run=time stack
confliguration Is set up and malntalned, and that the quantlty M and
the Integers |InthegPRUPIIst together produce the c¢corfrectaccessing
from the stack P, The auantity =) gives the number of stack
locations currently accessible by the functlon being compiled, |Let
us deflne the predicate STACKOK(M,PRUP) to mean (l) =M {g§ the sorrect
number of stack |ocations, and (11) M and the Integers In the PRUP
list af complle=timg together pProduce the correct accessling of the
stack at run-time, The definition of STACKOK {ncludes the
representation of "what the compiler knows So far" concerning the
location In the stack of varfiables and temporary values, As Dart of
no error checkling the complier assumes an infinlte run-t ime stack
with no tests for stack overflow, The proofaccording|y makes the
Same assumptlon,

PROOF OF THE MAIN THEOREMS FOR C2

The maln proof technlque used for theorems 1y 2, and 4-7 Is
structural Induction on expressjaons, Each theorem states what a
procedure of the compiler does: theorems 1 and 7 for COMPEXP, 2 for
COMPLIS, 4 for COMPANDOR, 5 for COMBOOL, and 6 for COMCONO, tagh of

these procedures is recursive and also can call many of the other
procedures, To prove these theorems for an arblitrary expression EXP,
the followlng induction hypothesis Is used for each theorem:

Theorems 1, 2, and 4-7 have a| | been proved for all subexpresslions of
EXP, To invoke one of these theorems Inductively on a sSubexpression,
it is necessary to verify that all hypotheses of that theorem are
satisfled,

The length of the |Ist X wl || be denoted by L X, Al | procedures
of the compiler except for PRUP produce as values a |ist of compl|ed
instructions, as: may be verlifled by inspection (In particular noting
each one=|lIne code generation is a one-element {Ist and etherwlse the
APPEND function {s used), The cuantities VPR and M, Which appear as
actual parameters to the procedures In theorems 1, 2, and 4=7, are
unchanged by these procedures In view of the definitlion of functional

evaluation,

Theorem 1 [Definjtion of COMPEXP(EXP,M,VPR)], Assume the
following condftions hold at the call of COMPEXP(EXP,M,VPR):

Cl: EXP Is an expression,
c2t MS@ and <M is the number of 8tack |ocations currently accessible
by the Tfunction being compijlad,

9



c 3 : varijables current|y accessible to &XP are X1, X2y .,.» XK wlth

K € =M,

c4: yPR is a PRyP|lsto f K palrs (xl.J)» 18)JS=M, of the currently
accessiblevariables where the Innermost occurrence (OFf a formal
parameter) of a duplicated variable nemeappearsfirst on VPR,
@,9, ({77 (B.g) (D.g) (A1) (B.2) (Cy3)),

C5: At run-time the stack P contains the values of the varlables ang
temporary values as

PIX1 X2 .., X[=M]

where X[=M] is at the top of the stack,

Cé6: STACKOK({(M,VPR),

c7: EXP Is an atom (#NIL, #T, #numarlg=atom) > EXP Is a vgrlaple XI,
1€1¢K, on the VPR |}st,

Result, After execution of the list, 1, of Instructions produced by
COMPEXP, the accumulator acl contalns V EXP, P Is safe over the
executlon o f I, Note that the accumulators are Unsafe over the
executlon of I,

Proof of definition of COMPEXP (under t he assumptlomof no
condlitlonal or Boolean expressionsi theorem 7 proves COMPEXP wlth
such expressions), Structural {Indugtion on EXP, Bas|s step! EXP |s
an atom, elther NIL, T, a numeric~atom, or other atom, If EXP Is
NIL, then ocase 1L of COMPEXP produces ((MOVEl 1 3)) so aol holds 0O =
V NIL, |If EXPisT, then case 2 produces ((MOVEl 1 (QUOTE T))) so aci
holds(QUOTET)=VT, If EXP Is a numeric-atom, than c¢&s%e 2
oroduces ((MOVEI 1 (QUOTE numeric-atom))) so ael holds8 (QUOTE
numericeatom), the correct value,. |1f EXP Is an other atom, than caS8e
3 produces ((MOVE 1 M+COR ASSOC(EXP,VPR) P)), By C7 jet EXP = xlI
appear first on VPR in the palr (X1,J)y By C4 CDR ASSQC(EXP,VPR) =
CDR (X!,J) = J. By C5 and C6 the Instruction (MOVE i M+J P) loads
acl with Vv XI, Noteil1zJS~M =2 M+1SM+J<B, |,e,avalld stack acecess,

Induction Step: CAR EXP and CDR EXP are always deflnedatcases
4-7 (a total of 10 occurrences) since NOT ATOM EXP because case 3
failed, If* Exr = (QUOTE @), then case 6 Is the flrst to hold
producling ((MOVEI 1 (quOtTE @))) as required,

IT EXP = (fpname @) with fname not one of AND, OR, NOT, COND,
QUOTE, then case? istheflirst to hold, EXP thus Is atnen=speclal)
functior to be evaluated using arguments of the |Ist a = (al a2 ,,,

aN) where N = L « 2 0, Tha list of Instructions produced Is

( (COMPLIS((a),M,VPR))
(LOADAC(1=N,1))
(SUB P CC O O NN))
(CALL N (E fname))) ,

Conditlons D1-07 (see theorem 2) for Inductively invoklng COMPLIS
hold as fol|ows!

10



D1: Definition of (a),

p2: Ce2,

3% C3 on U, a subpart of EXP,

04,051063 C4,C5,C6, respectlvely.

37: Assumptlon of syntactlicaliycorrect input,

Using the definitions of COMPLIS and LOADAC, we obtain

--- (C(Instructions to |eaveVal In acl)
(PUSH P 1)
COMPLIS Vo
(Instructions to leave V 9N in acl)
--- (PUSH P 1)
(MOVE 1 1-N P)
LOADAC. (MOVE 2 2<N P)
--- (MOVE N 0 P)

(SUB P (C 0 0 N N))
(CALL N (E fname))) ,

Tracing these instructions, namely

661|a1* ai#* a2« ,,, eN®» ale fname(V al,V “2;|:|1V°N)
ag2|a2# a2» yndef

U]
acN|aN# aN# undef

Plag« Ao® y 4 aN#

gives the desired result (including the caseN=@)since V EXP =
fname(V a1,V a2,,,,,V aN), Note that the Instruection (CALL N (E
fname)) may be a recurslve call since the standard conventlons of
arguments and returned value are ©Obeyed, and the arguments are
stacked (saved) by the called function, Recall that function names
are forbidden as arguments SO a formal| parameter name maybe called
by a CALL Instruction,

Finally If ExP = ((LAMBDA («) B) €),» then only ¢ase8 holds,
Sincecase 7falls, NOT ATOM CAR EXP, Let N = | € = | ® py correct
inout, The |1st of imstructions produced is

((COMPLIS((€),M,VPR))
(COMPEXP (%, MeN, APPEND(PRUP((a),1=M),VPR)))
(SUB P (C O EZ N N)) .

Conditions D1=D7?for inductively invoking COMPLIS hold as follows:

D1: Defirition of (¢), D2: C2,03:C3 on (€)» a subpart of EXP,
D4,D05,D€6: C4,Cc5,C6, respactively., D7! Syntactical|ly correct 'nput,

ConditlonsC1=C7 Tor i{nductively invoking COMPEXP hold @as fol|owsi

i1



Ci: B Is an expressjon by the syntax definitioninvolvinglLAMBDA,

£2: M=N <€ 3 since M € 0 and N 2 2, There are now ={M=N) s«M#N stack
locations current|y accesslible,

C3: variables currently accesslibleton areXl X2,,,+9 XCK*NI) i,0,
there are now K+N variables allowed In p, K*N S «M+N Since
K £ =M

C4: Cefinltion of PRUP and C4,C5,ardCéapp|ied to yPR, The new
palrs are put first, The new indices are 1-M = =M+l through =M+N,

C5: C5 for X1, se.s X[=M3 together wlth COMPLIS((€),M,VPR)) for
XC=M+11, ,.4s X[=M+N],

C6:C6,C4 jJjust above, and C5 Justabove,

C7: Syntactlicelly correct Input and the augmented PRUP |lst,

Hence traclng these tinstructlions,namely

acl|X[~M+13s ,,, X[=MeNJ® V EXP
Pix1 x2 oﬂl X[=M) X[=M+1lle ,,, xt‘M¢NJ’

gives the desired result (!ncluding the case N = #), since COMPLIS
essentially makes the substlitutiorns at « v €] and then COMPEXP
computes g which is now V EXP,

In all cases the stack P |s safe over the execution of !, Note
that VPR remalns unaltered even In thelLAMBDA case because here the
augmented PRUP I1st In the call to COMPEXP i{sacopy only for that

recursive c¢alli when that ocall finlishes +the outer VPR jIst Is
Intact;e
Theorem 3 [Definftion of COMPLIS(U,M,VPR)], Assume the

¢ollcwirg conditijons hold at the call of COMPLIS(U,M,VPR)1

D1t U = (ul w2 ,,, uNd)isallst of arguments,
Day COMPEXP's Co,
Dsg variables currently accessible to the members of U areXl,X2,

vr o0 XK with KSeM,
D4,09,Dg3 COMPEXP’s C4, C5, Cgs respectively.
D7: COMPEXP's (7 with EXPreplaced by uJ.

Result, COMPLIS = ((instructions t o |eaveVullinacl)
(PUSH P 1)

(inéi;uctionst oleave V uNin acl)
(PUSH P 1)) ,

Proof of definjtion of COMPLIS, Structural Iinduetion on U,
Basis step: U is NULL whence CCMPLIS = NIL, Induction step! Since
u, # NIL, COMPLIS(U,M,VPR)

= ((CCMPEXP(ul,M,VPR))

(PUSH P 1)
(COMPLIS((U2 ) UN)'M'lnva))) '

12




Conditlons C1-C7 for Inductively Invoking COMPEXP hold by D1=D7,
respectively, Hence invoking COMPEXP shows

(COMPEXP(y1,M,VPR)) = (Instructions to leave V ul in acl)

with the stack P safe, (PUSH P 1) stacks V ul on the too of P,
Conditions Di=D7 for invoking the Induction hypothesis for COMPLIS
hold as follows!

D1: By D1 for U,

p2: By p2 and (PUSH P 1) which means there are now =(M=1) 5 =M+l
stack locatlons, the top one being a temporary value,

D3: By D3I (K S =M>K< =M+1),

04: By D4,

DS: By D5 and (PUSH ° 1), P s PIX1 X2 4,4 XC{=M] Vv vl ,

D6: By Dé and D5 just above,

07: By 07,

Hence the induction hypothesls shows COMPLIS((u2 ,., UN),M=1,YPR) =

((Instructions to leave V u2 In acl)
(PUSH P 1)

1 a
(tnstructions to leave V uN in ac2)
(PUSH P 1)) ,

Hence COMPLIS(U,M,VFR) =

((instructions to leave V ul In acl)
(PUSH P 1)

[ A}
(Instructtions to leave V uN in acl)
(PUSH P 1)) , ®

Theorem 3 [Correctness of the compllerl, Let A % al a2 .., aN
be an arbitrary !ist of ectual parameters, Starting with aclholding
ai, 15iSN, and after exscution of the |!st:;l, of Instructions
nroduced by COMP(NAME, (args),body) we have

V ((DE NAME (args) body) A} = contents of act
and the stack P is Safe over the execution of 1,
Proot, Let N = L (args), COMP(NAME,(args),body)
= ((LAP NAME SURR)
(MKPUSH(N,1))
(COMPEXP(podys=N,PRUP((args),1)))
(SUB P (C 22 N N))

(POPU P)
NIL )

13



((LAP NAME SUBR)

- (PUSH P 1)
MKPUSH (PUSH P 2)
- (PUSH P N)
COMPEXP (instructlions to leave V body in acl)
o= (SUB P (C O @ NN
(POPJU P)
NIL )

by using the definitions of MKPUSH and COMPEXP although |t remains to
sho, that MKPUSH and COMPEXP may be Inyoked, Since N 2 @ ye may
invoke MKPUSH, The condglitlions C1=C7for COMPEXP hold as fol|lows?

Cl: body is an expression by the assumptlion of syntactically ecorrect
Input, ,

€2: =N = -LENGTH (args) £ 2, <==N = N |s the correct number of stack
locations since oreciselyl (args)locationsare accessible,

C3: the accesslible variables are al, a2 .+ aN,

C4: By definltion of PRUP((args),1),

C5: By the number N of (PUSH P ) Instrugtlons,

C6: STACKOK(=N,PRUP) ho|ds by the deflnition of PRUP gnd the Order of

the PUSH instructions,
C7: By syntacticallygorrectinput and the definltion of PRUP(VARS,1),

Thus starting with acf holding al for 1£1SN, we have the trace

acllal# V body
ac2lad* undef
[ A ]
acN|aN#* undef
Plal. aa' 00 aN# '

Since V body = ((DE NAME (args) body) A)andslncothpstaek?ls
safe, the result s proved, (1 T conditionalandBoolean expressions
are allowed, then theorem 7 |s needed,) ®

Theorem 4 [(Nefijnition of COMPANDOR(U,M,L,FLG,VPR)], Assume the
fo|lowlng conditions hold at the cal|l of COMPANDOR(U,M,L,FLG,VPR)

El: U = (ui u2.,., uN) 1s a |ist of Booleanexpressions,
E2: COMPEXP’s C2,

£E3: COMPLIS’s D3I,

£E4,E5,E6: COMPEXP's (4,C5,C6,respectively,

E7: COMPLIS’s D7,

E8: L Is a label.

£E9: FLG I1s T or NIL,

14




Result, COMPANDOR produces a Ilsty 1, of Instructlions dgiven by

FLG | Algol equivalent of |

----I- ------ e YO DR TS As e S W

NIL I if NOT yl then go to Li
| if NOT u2 then go to L}

| LI}

| ¢ NOT uN then go to L}

a.t_a_|---w-—-n-------n.--w-—---
T ! if yl then go to L3
| if u2 then go to Li

I if uN then go to Li

with the statement labeled L not In 1, P is safe over the execution
of |,

Proof of definition of COMPANDOR, Structure| Inductlon on U,
Basls step! U 1Is NULL whence COMPANDOR = NIL, Induction 98tep!
Assure FLG = T, COMPANDOR(U,M,L,*LG,VPR)

((COMBOOL(ul,M,L,FLG,VPR)) .
(COMPANDOR((u2 440 UuN),M,L,FLG,VPR))) by definitionof
COMPANDOR slince U # NULL

(¢tf ul then go to L)
(COMPANDOR((u2 44y uN),M,L,FLG,yPR))) by Inductively
Invoking COMBOOL on the Boolean expressionul

(Ctf ul then go to Li?

(1f u2 then go to Li)
100

(1f uN then go to L;») by inductively Invoking COMPANDOR
on the |1st (u2 .,y UNIIE2=E7 hold prior to
tnvoking COMPANDOR since P Is safe over "i{f ul

then go to L;" and both M and VPR are unaltered
by COMBOOL,

L is in neither-the first Instructlion nor Ininstructions2throughN
whence L Is outside !, Slimilarly the stack P Is safe, The case FLG
= NIL Is proved simijar|y, ®

Theerem 5 (Definition of COMBOOL(P,M,L,FLG,VPR)], Assume the
following conditions hold at the ca|l of COMBOOL(P,M,L,FLG,VPR)!

F1i1Plsa Boolean eaxpression,

F2=F73% COMPEXP’s C2«C7, respactively, with EXP replaced byp .
F8: L Isalabe],

F9: FLG Is T or NIL,

15



Result, COMBOOL produces a Ilst, | | of instructions given by

FLG | Algo! equlivalent of 1|
_*a—|---—-n----n----o--——----
NIL | if NOT P then go to Li
T | 1¢ P then go to L}

4th the statement labeled L not iInl, P is safe over the execution
of |,

Prodf of definition of COMBOOL, Structural Inductlom on P.
Assume FLG & T, Basis step! P Is an atom, COMBOOL(P,M,L,FLG,VPR)

=z ((COMPEXP(P,M,VPR))
(JUMPN 1 L)) by case 1 of COMBOOL

$((instructlions to leave V P i-n acl)

(JUMPN 1 L)) by WInductively" Invoking COMPEXP (more
precisely, b y repeatingontheatompP the basis
step - of the proof of COMPEXP; Inductionis
Invalid since the P in COMPEXP I8 not a sub-
structure of P in COMBOOL)

=(i{f P then go to L3}) by checking 2cases,

Inductlion step: CAR P and CDRParealways defined at cages 2=5
since NOT ATOM P because case 1 Tfailed, Also CADR P |s defined at
case4since the NOT operator must have an argument,

If P = (AND a), then from case 2b (wlth FLG = T)COMBOOL
= ((COMPANDOR((a),M,L1,NIL,)VPR))

(JRST 0 L) (the @ Is redundagnt]

L1) by jetting GENSYM() be the jabe| L1 # L
slhte ecach call to GENSYM glves a uplgue
value

= ((if NOT al then go to Lii)

(1f NOT a2 then go to Li))

(1f NOTaN then go to L1j)

(JRST 2 L)

L1) by Inductlively invokling COMPANDOR on (&),
a Boolean Ilist

= ({fPthen go to LI L1:) by checklng cases that deflne
AND (Including evaluationoniy untll the
firpstNILal and the case (AND) with NULL
a),
If P = (OR a), then Tfrom case 3a (with FLG = T) COMBOOL

16




(COMPANDOR((a) M)L2T)VPR))

(C{f al then go to Li#)
(if a2 then go to Li}

(11 aN then go to L})) by Induotively Inveking COMPANDOR
O n(a), a Boojean|jist

2 (if Pthen go to L3) by cheoklng cases that define OR
(Including evaluation only until the first
non-NIL ol and the c¢ase(OR) with NULL &),

It P

(NOT al), then from case 4 COMBOOL

(COMBOOL ((a1) )M, L,NOT FLG,VPR))

(if NOT «1then go to L3) by Inductively InvokIng COMBOOL
on (91), a one-element Boolean |lst

(if Pthengo to L3) by definition of P,
[fPilsanyother Boolean expression,thencase5yle|ds

((COMPEXP (P,M,VPR))
(JUMPN 1 L)),

Immediate Inductive invoking of COMPEXP Isinvalld beceuse the P In
COMPEXP Is not a substructure of P [N CoOMBOOL, But contro|'’s
reaching case 5 of CoMBOOL means P Is not an atom (caseil) and means
CAR P Is nelther AND, OR, NOT (cases2=4), Thus COMPEXP(P,M,VPR) wl||
be computed by one of its cases 5-8 all of whose progcedures are
called wlth substructures of P, ¢It |Is cruclal to avold case 4 of
COMPEXP t o avoid the cycle COMBOOL(P,,,) = COMPEXP(P,.s) =~
COMBOOL(P,.,),) COMPEXP(P,M,VPR) may be calculated by repeating the
proof of cases 5«8 on P (see theorems 7 and 1)} thils yle|lds the same
calculatlion as the basis step for COMBOOL, Singe the deflnltlon of
GENSYMO guarantees untgue labels belng generated, the labe| L {8 not
in the "Instructions to leave V P in acl,"

The Case FLG = NIL 18 proved sim}|lar|y, o

Theorem 6 (Definttion of COMCOND(U,M,L,VPR)], Assume the
followlngconditions hold at thecall of COMCOND(U,M,L:VPR)!

G1: U-® ((ul u2) (u3 u4) ., (UL2N=1] ul2N])) Is a Iist of palrs of
expresslions, thefirstof eachpoalrbelng a Booleanexpression,

G2-G7% COMPEXP’s C2-C7, respectively, with ExP replaced with uJ,

G8: L Is a label,

Result. COMCONDG gives a list, Irof Instructions eaulvalentto the
Algol

17




acl 1= {f wt then u2 ese 1fud then U4 ,., else
ifuleN=11 then ul2N]: L

P Is safe over the exscution OfF !, If no ul2]~1)Is non=NIL, the
value !n acl is undefined, In other words acl 3=V COND=expression,

Proof of dafinition of COMCOND, Structural Inductlion on U,
Basls step: U |s NYLL whence COMCOND produces, as required, Just the
label L:, [Induction step: NGT NYLL U and correct syntax imply CAAR
U, CADAR Us and CDRUarealways defined, COMCOND(U,M,L,VPR)

((COMBOOL(UllMuLlnNILnVPR))
(CCMPEXP(u2,M,VPR))
(JRST )

L
ot éDMCOND(((u3 U4) oo C(UC2N=13 Ul2NI)) M, L,VPR)Y))
by letting GENSYM() be the |abe| L1 # {

(Cif NOT ul than go to L1j)
(Instructlions to leave V u2 in acl)
(JRST L)
L1
(acli={f ul then ud ,+ . else |f ur2N=1] then ur2Nl} L1))
by inductively Invoking COMBOOL, COMPEyP, and
COMCOND

[}

(acli=if ul then u2 .., e|se if U[2N=1]then ul2N23 L})
by checkingcases Involving V ul,

P issafeas required, The caseof no u(l2l=1)belng non=NIL glves an
undefinred result as required (in particular for N =z @), ®

Theorem 7. COMPEXP(EXP,M,VPR)as dafined In theorem 1 also hol|ds
for conditlonal and Boolean expresslons,

Proof, (An addition to the proof OF theorem 1,) Basls step:
vacuous, Induction step:! If EXP = (Boolean ®)wlth Boolean one of
AND, OR, NOT, then case 4 is the flrst to hold, COMPEXP(EXP,M,VPR)

((COMBOCL(EXP,M,LL,NIL,VPR))
(MOVET 1 (QUOTE T))

(JRST g L2)

L1

(MOyEL 1 2)

L2) where L1 # L2are the two GENSyM() |abe|s

((tfF NOTEXP then go to L1})
(MOVEL 1 (QUJTE T))

(JRST 2 L2)

Ll

(MOyEID 1+ 2)

Le) by repeating the proof of casesZ=4, al|l

18



involving substructures, of COMBOOL(EXP,.)
since case 4 of COMPEXP means CAR EXP is
either AND, OR, NOT,

If v EXP = T,thenaclholds (QUOTET) asreaulred since the (MOVE] 1
(QUOTE T))and the (JRST 2 L2) Instructions are exeouted, IFf V EXP =
NIL, then acl holds 0 as resulted since contra| goes to L1 and the
(MOVEI 1 @) Is executed,

IfT EXP = (COND @), thencase 5 |3 the Ffirst to hold, COMPEXP =
COMCOND((a),M,L,VPR) wusing the label L for GENSYM(), Invoklng
COMCOND inductively shows the reauired Value, according to the
definition of COND, is inacl,e

TERMINATION OF THE COMPILERCO

Except to COMP ijn theorem _3, add the statement "and the
procedure terminates" toteresult of each procedure deflnitlon of
the compijer, The jndugtion hypothesis wil| show termimation OFf each
procedure call on a substructure, The 1induction step 1is now reduced
to essentially "straight-line code" whichterminates, COMP terminates
since MKPUSH and COMPEXP do,

To show that COMBOOL and COMPEXP terminate when one s called
from the other on the original structure, We can repeat a proef part
as was done in the proofs of theorems 3 and 7,

DISCUSSION Of THE PROOF P2

The process of constructing this proof may be vlewed as
discovering enough of theassumptions about the input and the

srogramring conventions used In writing the compiler, a8 stating
them, and as proving them to be preserved or consistentiy followed

over al | the crocedures o f the compiler, The successful
factorization Iinvolving conditional and Boolean expressions was
useful in doing this, The recursion of tha compiler has beem handled
by the statements ofthetheorems, Ineluding three dots (,,.)as

needed, and by the use of structural induction, In addltlom, some
lessons of tep=down programming (DIJkstra 1972), stepwise rsflnsment
(Wirth 1971), and Hoare’s (1971) approach were applied in the preof
process although informally,

It s noteworthy that the proofprocess uncovered no errors In
the c¢ompliler, A previous version of this paper omitted complietely
numeric-atoms although condition C7 (then written without the c¢lause
"¢ numerijcwatom"”) unintentlonally excluded them, Diffie noticed
their orisslonwhenthe comp“erabof‘tedwhlIecomnlIlnaa factorlal
function, Since numeric-atoms are needed for 8elf=gcompljatlion, case
2 of COMPEXP was ¢hanged to include numerlc-atoms, No Other c¢hanges
ware made to the szompl fer, The previous version of this paper dld
not exclude the use of NIL, T, and numeric-atoms as Tformal parameters
nor the wuse of fyngtion names as arguments, They must be excluded

19




since the complliser fails on these Inputs,

Despite thnacompiler’s belng written purely functionally, thils
oroof may ve usefully viewed as employing Inductlive assertions, When
appliedtorecursive procedures Of the kind tn the cempiler, the
method verlfies the conditions necassary for calling a procedure
(incjuding a recursive cajy). The resu|t of the procedure is thep
us8d to ghow whay ig te.y® after the call (even !f the p,ocedy, o5 are
called rerzl, as argJments to tne APPEND function), This [s t!:.e same
way A standard iterative program s proved,

Unexplored so far are the Implicatlions for autemat!c bproof
checking, of the length OFf tnis informal, but hopefully rigorous
rroof, Next is the Proof P4,

THE COMPILER C+ ANDPROQF of CORRECTNESS P4

The Input to the <complijer C4 and the overal | statement of
corractness are the same as for C2, T h e compilerC4ls simi Jar in
structure to CD, has twice2 as many |1Ines of code asC@, and produces
about half as many instructions for a glven Tfunction as C@. In
response the bproof P4 contains ejleven new theorems and lemmas
(Theorers8=12a n d Lemmas 4=9) corresponding to the elavennew
functions Im C4, Also P4 contains modlifications to the proofs
(mainly addlitional cases) of theorems 1, 3, and 5«7 reflecting the
changes In C4 tothefunctions of Cd. The similar structure allows
much of the proof Pg, witnout change, to become a part of P4, In
particular, the statements of |emmas 1 and 2 and theorems 1=7 are
unchanged (LOADAC, the subJect of lemma $» s a completely new
function) becauss the 3Jenerally more efficient complled code of C4

accorplishes the same overall effect as does the ~code of (0, The
proofs of the new theorems and the Proofs of modiflcations In P4 are
the "sare k 1 nd" of proofs as in PJ, (Diffie has self=compi |led C4

successfully also,)

McCarthy described the three maln differences between CZ and C4
in a riteup, The second difference is the maln source of
improverent In the compiied code as wel I as the main reason for the
lengthofP4,

(i) When the argument of CAR or COR is a variable, C4 complles a
(HLRZ2® 1 | P) or (HRRZe 1 1 P) which gets the result through the
stack without first compiling the argument into an ac¢cumuylator,

(ii) When C4 has to set up the arguments cf a function In the
accurulators, On general, C4 must compute %the arguments one at a time
and save them c¢n the stack, and then joad¢ the accumulators from the
stack, however, if one of the arguments Is a varlable,!s a quoted
expression, Or c¢an be ottalned from a variable by e chain of CARS and
CDRs, then It nesc not be computed until the time of |oading
accurulators singce it canm be computed using only the accumulater in
which_1t is Wanted,

20




(ii1MC2computes Boolean expressions badly and generates many
unnecessary labels and JRSTS, C4 Is more sophlstlcatedabout this,

c4 uses four addltional PDP=12 |[nstructions! HLRZ®, HRRZe,
AME» and CAMN, The flrst two are used, with the @=sign denoting
Indirect reference, to obtaln CAR amd CDR, respectively, A n
assurption of P4 s that the instruction HLRZ® means o¢(ac) «
CAR(cf(<ef>)) and that HRRze means c¢(ac) « CDR(¢gt(<ef>)), Because CAR
and CDR are c¢ompiled 9pen rather than c¢l0Sed, as would be the caSe
for an arbltrary functlon calls It must be expligitiyemphasizedthat
CAR and COR of T, NIL, or numeric-atom are consldered Incorrect
input, Since NULL and EQ are comp!|ed open, the values Of poth must
be explicitly defined for P4:

V (NULL ExP) = T Iff vV EXP = NIL
V (EQ ExXP1 EXP2) = T I{ff V EXP1 = V EXP2

with these definlitions and motlvatlion, the proof P4, organized In
bottom-w Style, follows.,

The |istings of the two compllers were checked by hand to
discover the differences, Thesame set of differences was obtained
when the |Istings were computer-compared by a file comparison utl|Jty
program, These differences showed where new theorems were needed and

where old proofs needed modification,

Lemma 4 [Dafimition o f CCCHAIN(EXP)], Assume EXP is @
mon-atomic expression, CCCHAINCEXP) o T If and only (fEXPIsof the
form

with at least one B, Each B Is elther A or D (thus producing CAR Or
CDR) and aisan atom, In other words, CCCHAIN(EXP) = T [¢#f EXP Is a
car-cdr chain.

Proof, Inductton on the number N of jeading B’s In ExP, Basls
steps: If N= @ them CCCHAIN glves NIL because CAR EXP |s nelther CAR
nor CDR, If N =1 then EXP = (CBR a), The result |s T because CPAR

s CAR or CDR and « Is an atom, CCCHAIN a isnot c¢alled,

Induction step: If EXP = (CB1iR (CB2R (.,,,(CANR a@)))) with N 2
2, then CRLR ts CAR or CDR so the left part of the AND Is true,
Slnce N 2 2, (CB2R (,,+(CBNR @))) Is not an atom, CCCHAIN may be
invoked inductively, ylelding T and hence CCCHAIN EXP glves T, o

Lemma 5 [Definition of CLASS1(U, V)], Input assumptions:

isalisto T expressions (ul u2 ,,. uN),
is an S~expression,

21




Result, Let ¢! be the classifying integer of ul, namely

ul 1 ¢
[ .----------‘————
T, NIL8 nyumerjc=atom | @
other atom 1 1
aunted expression | 2
car-cdr chain ] 3
other expression 1 4

CLASSl(U. V) = (CN.UN)Q(l-.((02|U2)|<(C1oU1)ov)’) ’

Proof, Structural induction on U. Basis step: NJLL u glves v,
Induction step: CLASS1(CDR U, (el,ul).V) =
(N UNY v (o e (e u23) (¢l ul) V) ), Note that ul in CCCHAIN ul s
non=atoric since the first test for ATOM ul falled. For the special
case V = NIL the result reduces to the |ist of palrs ((eN.uN) ...
(c2.ud) (ci.ul)) |, e

Lemma 6 [Definjition of CLASS2(U, V, FLG)], Input assumptlons:

Uis a list of pairs ((egN,uN) ., (c2,u2) (cl,ul)) with ¢| as defined
in CLASSlo
V is an S=eypression,

i
FLG =T or NIL,
Result, Let j be the greatest integer, If any, such that ¢J = 4 in U,

FLG i Result

- - e e @ W gy G T ey W W W P m WO e En B T O T TGy W eI e W e W W

T T Cel,ul) ((e2,u2)ueus +CLlcNyuUN),V)) wlth ¢J now 5

voaw | ------- " en W G D N s R G Y N O S TR A Y W W D TN R TN D e TR RN AP G W WD T U ARG A D TS W WSS

NIL 1 (el.ul).({c2,u2)aes (N, UN),V)) with c] stli]| 4

In words, the list of pairs Is reversed and the flrst 4 is changed to
5,

Proof. Structural induction on U, Basis step: NULL u glves v,
Inductlion step: If-FLG = T and ¢cN =-4then CLASS2(CDR U, (5.uN),Vv),
NILY = (el ud) el (c2,u2),0s « (5, uN) VY)Y with c¢cls 22, vees» cIN=11 as
in U, If FLG # T or eN# 4 then TLASS2(CDR U, (cN,uN),V, FLG) =
(cl,ul),((c2,u2),,, ,(CcN,UN),V)) with the c¢ci’s as In the table of
the result, Again, when V = NIL, the result reduces to the |ist OF
nairs ((el,ul) (c2,u2) ..y (eNJuN)), @

Lerma 7 [Definjtion of CLASSIFY(U)]), Assume U= (ul u2 +y¢ UN),
Let dl be the classifying integer Of ul as in CLASS1 exg¢ept the |ast
other expression has d! Of 5 ({nstead o f 4, Then CLASSIFY(U) =
((41,ul) (d2.u2) ,,, C(dN,uN)) ,

Proof, Composition of CLASS1 with Vv as NIL and CLASS2 with V as
NIL and FLG as T, e

22



Theorem 8 (Definjtion of COMPLIS(Z, M, K, VPR)], Input
assurptions:

2z {s a CLASSIFY’'ad |ist ofpajrs ((dK,uK) (dCK+1J,uCK+1]),,,(dN,uN)),
Condlitlons D1«D7 of COMPLIS of Theorsm 2,

Result, Let €1, ..., eLJ=1] denote those subscripts, |f any, in 2
for whlgch dl is equal to 4, and let ej denote the one di, i? any,
equal to 5,

COMPLIS = ((instructlions to leave V ulfel] In acl)
(PUSH P 1)

(Iinstructions to leave V ule(J=1])]In acl)
(PUSH P 1)

(Instructions to leave V ule]J]!n acleJ)))

Note that thls COMPLIS is a new functlon from that of Tneorem 2, The
function STACKUP(yU, M, VPR) Is jdentical to the old COMPLIS,

Proof, Structural Inductfon on Z, Basis step! NULL 2 glves
NIL, Ingqugtion stgpt It gK =4 then g1 = K, COMPEXP(uK, M, VPR)
inquctlively proguces

(tnstructions to lfeave V ulel] In acl)

In view of the (PUSH P 1), then COMPLIS(((dlK+1J,ulK+1]),,,(dN,uN)),
M=1, K+1, VPR) Inductively completes the deslired result,

If dK = 5 then eJ = K and there are no (more) 4’s, COMPEXP(ukK,
M, VPR) Inductively Produces

(Instructions to leave V ufeJ] In acl)

IFK = 1 (i,e, @J = 1), no Ffurther Instruction Is needed nor
generated because V ufejl Is already {n acl, Otherwise [t K # 1, the
instruetion (MOVE K 1) is generated to |eave V uleJ]l in aclfeJ] =
acEKJ.

If dK Is nelther 4 nor 5, COMPLIS(((dCK+1),ulK*L]) +,, CdN.UN)),
M, K+1, VPR) inductively glves the daslrad resujt, ®

Theorem 9 ([Definition of COMPC(EXP, N2, M, VPR)J, Input
assurptionst

EXP Is a car=cdr chain (CB1R (CR2R (,.,(CANR a)))) where N 2 1} each
gl is elther A or B3 and « I8 an atom # T, NIL, numeric~atom,
Condltlons C2=C6 and C7 for afrom COMPEXP of Theorem 1,

Result. COMPC = ((acCN2) ts CRIR aglN2])
(acCN2) ;= CR2R acCN2])
ae

23



(ac[N2] := CBNR «a))

Onmly accumulator N2 is used,

Proof, Induction on the number J of B’s In EXP, Define €i to
be L or R according as 3ilsA or D, dasls step; IfT N= 1 then EXP
= (CB1R a), Since ATOM a, COMPC produces

((HelRZ® N2 M+COR ASSOC(a«, VPR) P))

1= C31R «)), the jast |{Ilne of the result,
N 2 2 then NOT ATOM (CPB2R (,,,(CRNR a))), Hence

which s ((ac[N2)
Inductlon step: I¢
COMFC produces

(HelRz@ N2 N2)
o COMPC((C32R(,,.(CANRa))), N2, M, VPR)

which, invoking COMPC Inductively, becomss

((acCN2]) := CpiR ac[N2 3)
(ac[N2] = Cr2R ac[N21])
(acCN2 ] := CANR a))

Incidentally, the assumption that EXP is a _car-cdt chain makes
unnecessarytheerrorCheckatthe flrst |lne O f COMPC, o

Theoremi13[Definttiocn o f LOADAC(Z, M2, N2, M, VPR)], I nput
assurptions;

2 is a CLASSIFY’ed list of pairs,

2 =2 ((ACN2J,ulN21) (dIN2+1],ulN2+1]) ,,, (dN.uN))

ConglitlonsD1=D70 fCOMPLIS o F Theorem?2,

Let €1, 82, +u2s 2[1=M2] denote those subscripts, if any, in Z for
whighdlis equal to 4, The stack P contains the values of the
1-M2 ulel’s as Tollows

Pl V ulell V ule?] Ve VvV ulil-M2]

Let ejs with J >1-M2, denote thegn2dis If any,) equal to 5. Assyme

acleJ] holds V uteJ].

Result, LOADAC = ((Instructions to leaveV ULN2]) 1 n aclN2])
(Instructions to leave V ulN2+1] In ag[N2+1))

(Instructlions to leave V uN In aghN))

Each line OF instructions uses aniy the accumulator mentloned, The
stack P is unaltered, (The ej=th line In,ol,ing aclejl Is mlssing,)

Proof, Structural inductiomo n2Z2+ Basisstep! NULL Z gives
NIL., Irductlion steo: S!x cases basedon theclassifylng Integer
ACNZ2]. 1f dIN2] = 1 then uCN2] is an other atom, LOADAC produzes

24



(MOVEN2 M+CDR ASSOC(ulN2], VPR) P)
o LOADACC((dCN2+1],ulN2+1]) ,,. (dN,uN)), M2, N2#+1, M, VPR)

The MOVE Instruction leaves V UuIN2) In ac{N2] using on|y ac(N2],
Inductively t h e LOADACpart completes the resuit including the
unalteration of tne stack. The use OF the Infix dot foliows the
conventions that the vajue OFf LOADAC Is g I1st of Instrugtlions,

It dCN23 = 2 or 2 then ulN2) is either T,NIL, or numeric=atom;
or a Quoted expression, The proofsare eachsimiiar to the case
d{N2) = 1, The generated instructions are, respectively,

(MOVE] N2 (QUOTE ulN21)

(MOVEI N2 ,[N21)

with each followed by the same LOADAC term as In the first case,
Both MOVE] Instructions leave V ulN2] inacCN2] wusing only aclN2],
and again the LOADAC term Inductive|y completes the result,

| f dfN23 =3  then uCN2] |Is a <car=cdr chaln, Syntactically
correct input 1Impilies the atom @ at the end of the chaln Is neither
T,NIL, nor nmumeric- atom, Thus COMPC may be Invoked, Slnee a
car=cdr chain Is executed from rlght to left, the REVERSE functlon is
needed, LOADAC Produces

(Cac{N2] := CANR a)

(acCN2] ;= C32R acCN21}

(acCN23 ;= < CR1R aclN2)}

(same LOADAC term as flrstcase))
The first N |ines are

(Instructions toleave V ulN2] 1In acCN2))

and the LOADAC term inductlvely completes the result,

it dIN2] z 5 then ac(N2] s not altered,
LOADACC((dCN2+1],ulN2+13) ,4, C(dNJuN))» 1, N2+1, M, VPR) [nduetively
gives the result, (The oconstantlas the secondargument In this

call toLOADAC means 1=M2 = i~1 = 2, {,e. the stack |Input condition
of LOADACis wvacuous,)

Finally, If dCN21 = 4 then the last test of LOADAC produces
(MOVE N2 M2 P)

which, using onlyacCN2), leaves V ulN2] In ac(N2] because thereare
1-M2 z ~M2+1 of the (V ulelld)’s in the stack,
LOADAC(((dIN2+1],ylN2+1]) v (dN,uUN?)), M2+1, N2+1, M, VPR)

25



Inductively completes the result since there 1S now one fewer 4 In
the remalning d{N2+1]) ,,. dN, Even though the stack |s una|tered,
the staek segment OF interest |8 now from V ule2] to V uf1~M2]) whlgh
the stack Input condltion Inductively renumbers as V ulell to
VU[.MZJQ )

Lerma 8 [Definition of CCOUNT(2)], Assume 2 |s A CLASSIFY’ed

list of palrs ({(dil,ul) (d2,u2) ¢ss (N,uN)), CCOUNT gives the number
of di’s that are 4, This number Is denoted by #4,

Proof, Structural inductlon on 2. Basls step: NULL 2 glves 8,
Inductlon step ¢ If d1 = 4 then 1 + CCOUNT ((d2,u2) ,,, (dNJuN))
tnduetively gives the result, If d1 #Z 4 then CCOUNT ((d2.,u2) .4,
(gN,uUN)) Inductively gl!ves the result, e

Lerma 9, If N 2 0O then SUBSTACK N Is th8 same funotlon as
LIST LIST(’SUB,'P,LIST(’C,8,8,N,N)),

Proof, IFN=2 then NIL Is LIST LIST(’SuB,'P, LIST('C,D,0,
o B)Y)y IF N > 0 then 1t Is clear, e

Theorem 11 [(Definitlon o F COMPLISA(U, M, VPR)3J, Input
assumptions;

U= (ul u2 .., uUN) is a list of arguments,
Condltlons D2=D7 of COMPLIS of Theorem 2,

Result, ac! holds V u! for 1Si¢€N, The stack P |s safe over the out-
put of COMPLISA,

Proof. COMPLIS(CLASSIFY U, M, 1, VPR) places %the ¢class 4
argurents on the stack {n the order requlred for LOADAC, COMPLIS
also leaves the class 5 argument, say ul, inacJ, It i{8s permlssible
to invoke

LOADAC(((dl.ul) (d2,u2) ,+, (dAN,uN)),L-#4, 1, M=#4, VPR)

since (i) there are now =(M=#4) = =M+#4 accessible stack Jocatlons,
(ii{) there are 1=(1-#4) z#4 of the di’s which are 4, (}]]) the stack
P contains the class 4 arguments In the proper order by the result of
COMFLIS, and (lv) ac] holds V uJ by the last |Ine of the result of
COMPLIS, After SUBSTACK#4, the result is established,

The order of flrst COMPLIS and then LOADAC avolds th8 need to
stack a non-class 4 argument slnce after the class 5 argument Is
computed by COMPLIS, LOADAC may assume the safety of al | acl, 1s1sN2,
-]

Theorem 12 [Definition of COMPANDOR1I(U, M,L,L2, FLG, VPR),
Input assumptions:

26



U = (ul u2 'R uN),
Condgltlons E1=E9 of CCMPANDOR of Theorem 4,
L2tsalabel dlfferant from L.

Result, COMPANDORI produces a JIst, ]+ of Instructlons glven by

FLG | Algo| equivalent of |
NIL | If NOT ul then go to L}
| 1f NOT u2 than go to L!

| [ I )
[T NOT UlN=1] then go to L3
] 1f uN then 3o to L2

LE X X 4 | B W MWW NN D@ BN WD D W G R ® W WS W

TIlif ul then go to Li
| 1f u2 then go to L;

| LI B |

I if 4uCN~1] then go to L;
| Tf NOT uNthen go 'Co LZ;

1f, however, U isSNULL then the Algol squivalent produced Is"go to
L2 ." The statements |abeled L and L2 are not In I, P jssafe over
the executlion of 1,

Proof, Structural Inductlon on U, NULL U glves "go to L21,"
ihductlon step! Assume FLG = Te If NULL (u2 4,44 uN), I,8, N = 1,
then

COMPANDOR1 = COMBOOL(yl, M, L2, NIL, VPR)
= if NOT Wl then go to L23
as required, §f NOT NULL (u2 ,,. uN),i.e,N22, then

((COMBOOL(ul, My L, FLG, VPR))
(COMPANDORL( (U2 4., uN)y My Ly L2, FLG, VPR))

inductlvely givest h eresult., Note that (u2 ,,. uN) Is not NULLIn
the Inductive call, Thauniqueness of the labe| generatlion mechanism

wilihelpsnowthat thelabelsl and Lé are outside I, The case FLG
= NIL Is essentially identlcal.®

Theorem 1 3 [Definition of COMBOOL(P, M, L, FLG, YPR)J, Input
assurptions are the same as COMBOOLofTheorem 5, COMBOOL produces a
listy I, of Instructions glven by (the same a8 Theorem 3)

FLC | Algo! equlivaient of I

-.--I ------- R R R R R N N K owmaeew

NIL f1$§NOT P then 90 to Li

p---l. --------- IE Y PR EE L LR R ]

TLif P then g9 to bLi

27



with the statement labeled L not inl, P Is safe over the execution
of I,

Proof. (Modjfications to the proof of theorem 5,) Assume FLG =
T, Add a case P = T which from case 2.1 produces (JRST @ L) as
required, Add a case P = (EQ @ B) wlth e« and PR expressions,
Inductive|y invoke COMPLISA((a ), M, VPR). COMBOOL produces from
case 1,1

((acl holds VvV «)
(ac?2 holds V B)
(CAMN 1 20
(JRST 3 L)

(if (EQ @ B) then go to L)

({f P then go to L3)

Modify the P = (AND a) case, I[f @ |s non=NULL then after
evalyating COMPANDOR1((a), M, L1, L, NIL, VPR), the resul|tfol|lows by
noting the equlivalence of

((1f NOT uN then go to L13)
(JRST L)
L)

and

((if uN then go to Lj)
Ly)

If e is NULL, than ((JIRST L) L1) results In both Instances,
Under the assumptlion FLG = T, the P = (OR a) case |3 unchanged,

Add the c¢ase P = (NULL 9) with « an expression, COMBOOL
produces fromcase 4,1

((COMPEXxP((a), M, VPR)) _
(JUMPE 1 L))

((Instryctions ta leave V @ inacl)
(JUMPE 1 L))

(1t P then go to Li)

These cases with FLG = NIL areprovedsimilarly, The tests In
COMBEOOL are siightly differentt T |s treated separately rather than
as an atoms the EQ and NULL functions aretreatedseparatelyrather
than as arbltrary functions in the |asttest, These differences do
not affect the result of COMBOOL, e

28




Theorem 14 [(Definition of COMCOND(U, M, Ly, VPR)), Same as
COMCOND of Theorem 6,

Proof, To the proof of Theorem 6 aodtwocasestothelnduction
step corresponding to the second and third tests of COMCOND, The
seconrd test asks if the palr (ul u2) 1Is thepalr ((NULL a) NIL), It
so COMCOND produces

( (COMPEXP(a, M, VPR))
(JUMPE 1 L)
(COMCOND( (U3 ud) ,.y (uL2N=11 ul2N1))s Ms L,VPRI))

((instryctions to leave V @ in acl)

(JUMPE 1 L)

(agl 2= 1f u3 then ud4..velse 1f uL2N=1, then ul2Nei L))
by indugtively invoking CM PEXPang OMCOND

(acl = {f NULL o then NIL elseifu3 then ud4 ,,, else
if uC2N-1] then ul2N)} L3) |
by checklng two cases on NULL at [f NULL «
than acl already holds @ = V NI,

~ The third test asks if (ul u2) Is (T u2), |If so any succeeding
pairs may be ignored, COMCOND produces

((COMPEXP(u2, M, VPR))
L)

as required, ©

Theorem 15 [Definjition o F COMPEXP(EXP, M, VPR)], Same as
Theorems 1landy,

Proof, (Modifications to the proofs of Theorems 1 and 7,) Add a
case Tor EXP =(CAR «), By correct syntax, @#T, NlL,numeriec=~atom,
If ¢« is an atom, c¢ase 3,la produces

(HLRZ® 1 M+CDR ASSOC(a, VPR)P)

As in Theorem 1,case3, M+COR ASSOC(a, VPR) 1|8 correct; by the
definmition of HLRZ®, acl nolds V EXP, [IF « is not an atom, thencase
3.1b holds. Invoking COMPEXP(e®, M, VPR) inductively Ileaves V & in
acl, from which (HLRZ® 1 1) produces CAR V a =5 V EXP Inaclas
reauired, The additional c¢ass for EXP = (COR «) |s Identlcal to the
case for CAR except for HRRZ®,

Case 4, Thafirstcaseo fTheorem 7al|so nandles the function
EQ since Theorem 13 handles EQ,

Case 7, ExP = (fname a) where « conslsts of N arguments,
COMPEXP produces

29




((COMPLISA((a)y» My VPR))
(CALL N (E fname)))

This IScorrect, is8s acl holds V EXP In view of the definitions of
COMPLISA and CALL,

Case 8, STACKUP Is Identical with COMPLIS of Theorem 2, USe
Lemma 9 on SUBSTACK, e

Theorem 16 [Correctness of the compl |erl, Same as Theorem 3,
Proof, Same as Theorem 3 but using Lemma 9, e

Termination of C4 Tfollows by essentially the same argumenta s
used Ffor CO@, CLASSIFY and SUBSTACK Joln COMP as exceptions $ince
neither lsrecursive, COMPLISA can be shown toterminatsby replacing
its twocalls(in COMPEXP, case 7 and COMBOOL, case 1,1) by thebody
of COMPLISA; thils substltution wlIl allow the body to reference
substructures directiy., This completes the proof P4 of the complijer

c4,

The process of constructing P4 uncovered six errors |n Cé4 as
originally written, In additlon to the numerlc~atom probiem In €O,
Three were Tfound early on by attempting to show thatCARsand CDRsin
C 4 werealways wel|~deflned,!,e, notappiiad toatoms, A|though no
further errors were expected, the other three surfaged after
careful |y stating thetheorems and then discovering where the nroof
could not be completed, Eachcasethatfall|ed jedvery quickly to the
construction of a counter-example to the sStatement OFf corregtness,
and furthermore showed what changes to C4 would be suffiecient, These
changes were made (by London) and the proof wascomp|eted,

The changes made to C4 are shown in the |isting of the compi |er
in Appendix 2, Each change Is now elaborated!

(i) COMPEXP, case 2, Same change to C@ for numerlo~atoms,

¢ii) COMCOND, |ine 2and COMBOOL, case 1, Found by checklng C A Rs
and CDRs for bsling wel| (-defined, Counter-examp|es are Boojean atomlec
variables,

(ii1) COMPANDOR1, Iimes 1=2, Pound as intjl), Only counter=examp|es
are (AND) and (GR), Incorrectness in the flrst proposed change tiF
NULL U THEN NIL ELSE), which seems correct, was only discovared by
checking the case N = 0 In P = (AND @) of Theorem 13,

(iv) LOADAC,case CAAR 2 = 0 and CLASS1, lines 3-5, Found by con-

sidering the case 2f T, NIL, and numeric-atomsasactuaiparameters
to a function in the atom case for LOADAC in Theorem 189,

30




(v) LOADAC, case CAAR £ = 5, Found by noting that the result for
LOADAC in Theorem 10 did not Inductively follow If d{N2] = 5,
counter=examples are function calls with a c¢class 5 argument) gl
succeeding arguments fail®d to be compi led at all,

(vi) COMBOOL, case 5, Foundby reconsidering the case of a LAMBDA
expression In Boojean context (for example anargument t0OAND,OR,0Or
conD)atthe last case of Theorem 5 which case falled In Theorem 13,

As a check on the changes and the completed proof P4, London
usec the changed C4 to compile some of McCarthy"s test functlonms and
als? a set of representative counter-examples, The test functions
gave identical output as the origlnal C4 (another use of the flije
comparison wutliity program), The counter-examples gave e¢orrect
output as determined by a hand Inspection,

ACKNOWLEDGMENTS

Asnoted, John McCarthy made thecompl|ersavailabjetome, Ryq

M, Burstall and Anttfield DIffie provided many stimulating
discussions and suggestions,

31







REFERENCES

surstall, R, M,, 19469, Proving properties of programs by structural
induction, Computer J,» 12, 1, February, pp. 41-48,

Burstall, Re My § Landin, P, Jo» 1969, Programs and thelr proofs: An
algebraic anprsach, Machine Inte|lligence 4, B, Meltzer & D,
Michie (eds.)s American Elsevier, pp. 17=43,

Dijkstra, E, W., 1979, Notes on structured programming, T.H.=Raport
72~-WSK=23, Tachnological Ynlversity Eindhoven, The Netherlands,
Second Edition, Anril,

Hgarmy A, C,,» 1973, REDUCE 2 user’s manual8 Artificial| Intel |igence
Mero AIM=133, 3stanford University, October,

Hoares Co A, R,y 1971, Proof of a program: FIND, Comm, ACM, 14, 1,
January, pPp.39=45,

Kkanian, D. M,» 1957, Correctness of a compller for Algol=|lke
programs, Artificial Intelligence Memo No, 48, Stanford
University, July,

Longon, R, L.» 1372, Proving programscorrect: Some technlgues and
examples, glIT., 13, 2, pp. 168-182,

McCarthy, J, 8 Painter, J, A,, 1967, Correctness of a ¢ompllar for
arithmetic exnressions, Proceedings of a Symposium inApplied
Mathematics, Vol, 49, J T, Schwartz (ed,), Amsr | can
Mathematical Sociztys pp,33-41,

McGowan, C, L.» 1971, An inductive woof techniaue for |nterpreter
equivalence, Farmal Semantics Of Programming |anguages, R,
Rustin (ed,), srentice~Hall:, to arpear,

Milners, PR, 1977%, Implamentationan dapplicationso fScott’s logic
for cgomputable fungtions, Proceedings of a Conference on Proving
Assertlons._ about Programs, Asseciation for Computing Machinery,
to appear,

Pajnter, J. A,, 1367, Semantic correctness of a ocompl!jer for an
Algol=|ike language, artificial Intelligence Memo No, 44 [also
Ph, D. thesis], Stanford University, March,

Welssman, C., 1967, Lisp 1,5 Primer, Dickenson PyblishingCo,

wirths N,y 1974, Proaramdevelopmentb y stepwise refinement, Comm,
ACM. 14, 4‘ Apr5 e« DD 221'227.

32







APPENDIX 1 = A LISTING OF THE COMPILER C@®

FEXFS COMPL FILE « 3EGIN SCALAR #;
EVAL(/OUTPUT , (*DSK: , L1ST (CARFILE,’LAP)))g
EVALCYINPUT , (fDSK: , FILENS
INC(!'T JNIL)S®
QUTC(T,NIL)S

LJOF: 2 « ERRSET(RCADIN)Y
IFATOMZTHENG O T ODONED
7 « CAR Z%

IF CAR # ETQ'JETHEN

8EGIN SCALAR PROG;

PROG « CUMP(CADR 2,CADDR Z,CADDDR 218

MAPC(FUNCTION(PRINT),PROG)S
QUTCINIL,NIL)S

PRINT LIST(CADR 2,LENGTH PROG)S

QUTC(T,NIL)S

END
ELSE PRINT 2%

50 TO LOOP3R

DONE OUTC(NIL,T)S
INC(NIL,T)S
RETURN'ENDZOMP E N D ;

*%*#Q"****#*#**#&#*&*&**i#%#i*ﬂﬁ*i&ﬁ**#ﬁ****.&***&“l'**&*&&"**ﬁ*li*
For the nurposes of thls paper» the compiler starts here; above here

may be ignored,
ﬁ#*biii*&l*%&**&&&**&*i**6#i#*#i&#i&*##**6*6&6***‘*‘*}&&&&b##l&**i.i*

COMP(FN,VARS,EXP) «
(LAMBDA N;
APPEND(

LIST LIST(!LAP,FN,’SUBR ).
MKPUSH(N, 1),
COMPEXP(EXP,=N,PRUP(VARS,1)),
LIST LIST (*SyUB ,*P,LIST(’C,2,2,N,N)),
*((POPJ P) NILI))

LENGTH yARS;

PRUP(VARS,N) « IF NULL VARS THEN NIL
ELSC (CAR VAKS , N) . PRUP(CDR VARS,N+1);

MKPUSHI(N,M) « IF N<M THEN MIL ELSE LIST(’PUSH 2 'P oMY MKPUSH(N,M+1)}

COMFEXP(EZXP,M,VPR) «

(11 IF NULL ExXP THEN * ¢ (HMOVET 1 2))
(213 ELSE IF EXP EQ *T OR NUMBERF EXP THEN

LIST LIST('MOVE]L, 1, (LIST('GQUOTE, EXP)))
T3] ELSE IF ATOM EXP THEN

LIST LIST(’MOVE ,1,M+COR ASSOC(EXP,VPR),’P )
[ ELSE IF CAR CXP EQ *AND OR CAP EXP EQ ‘OR OR

C A REXPEQ!NQT THEN

33




(51

€613
£71

t8l

(LAMBEDA L1,L2; APPEND(COMBOOL(EXP,M,L1,NIL,VPR),
LISTC(*(MOVE] 1 (QUOTE T)),LIST(’JRST ,@,L2),
L1, (MCVE] L @),L2)))
(GENSYM(),GENSYM())
ELSE IF CAR EXP EQ *COND THEN
COMCOND(CDOR EXP,M,GENSYM(),VPR)
ELSE |IF CAR EXP EQ "QUOTE THEN LIST LIST(’MOVE!,1,EXP)
ELSE IF ATOM CAR EXP THEN
(LAMBDA N; APPEND(COMPLIS(CDR EXP,M,VPR),
LOADAC(1=-N, 1),
LISTLIST('SUB, "P HLLISTC('C,8,0,N,N)),
LIST LIST('CALL ,N,
LIST('E ,CAR EXP))))
LENGTH CDR EXP
ELSE IF CAAR EXP EQ 'LAMBDA TH&N
(LAMBDANj APPEND(COMPLIS(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M=N,
APPEND(PRUP(CAUAR EXP,1=M),VPR)),
LIST LIST(’SUB, "P ,LIST(’'C ,@,@8,N,N))))
LENGTH CDOR EXP3

COMPLIS(U,M,VPR) «

IF NULL U THEN NIL
ELSE APPEND(COMPEXP(CAR U,M,VPR),
' ((PUSH P 1)),
COMPLIS(CDR U,M=1,VPR))}

LOADAC(N,K) « IF N>7 THEN NIL ELSE LIST(’MOVE ,K,N,’'P ),

LOADAC(N=+1,K+1);

COMCOND(U,M,L,VPR)

IFNULL U THEN LIST L

ELSE (LAVMBDA L1; APPEND(
COMBOOL(CAAR yU,M,L1,N]L,VPR),
COMPEXP(CADAR U,M,VPR),
LIST(LISTC(/JRST ,L),L1),
COMCOND(CDK U,M,L,VPR})))

GENSYM():

COMBOOL(P,M,L,FLG,VPR)

€11

c2
2a3
bl

£31]
fal

IF ATOM P THEN APPEND(COMPEXP(P,M,VPR),
LIST LISTC(IF FLG THEN *JUMPN
ELSE "JUMPE »1,L))
ELSE IF CAR P EG “AND THEN
(IF NOT FLG THEN COMPANDOR(COR P,M,L,NIL,VPR)
ELSE (LAMBDA L13 APPENO(
COMPANDQR(CDR P,M,L1,NIL,VPR),
LIST LIST("JRST +@,L),
LIST L1))
GENSYM())
ELSE IF CAR P EQ “OR THEN
(IF FLG THEN COMPANDOR(CDR P,M,L,T,VPR)

34



(bl

(4]

(59

ELSE (LAMBDA L1;  APPENO(
COMPANDOR(CDR P,M,L1,T,VPR),
LIST LIST(’JRST ,8,L),
LIST L1))
GENSYM( ) )
ELSE IF CAR P Fg *NOT THEN
COMBOOL(CADR P,M,L,NOT FLG,VPR)
ELSE APPEND(COMPEXP(P,M,VPR),
LIST LISTC(IF FLG THEN’JUMPN
ELSE ‘JUMPE ,1,L));

COMFANDOR(U,M,L,FLG,VPR) o IF NULL U THEN NIL

ELSE APPEND(COMECOL(CAR U,M,L,FLG,VPR),
CIMPANDOR(COR U,M,L,FLG,VPR));

35






AFPENDIX 2 - ALISTINGO FTHEMIREOPTIMIZINGCOMPILERCTCAY

The changes ngedadtocompletethenroofof correctness ofC4

a r eshowri nthis|isting- - delationsenclosedbetween the symbolsc

and > and additionserzlosed between *%the symbols [ and J with the

latter two also beingused to number cases, The eight changes are at

COMPEXP, case 2; COMCOND, line 2: LOADAC, cases CAAR £ = @ and CAAR?Z

5. CLASSY, Ilines 3=5; COMBOOL,cases 1 and5;andCOMPANDOR1, lines
1-2:

FEXFRCGMPL FILEe« BEGINSCALARZ;
EVAL(fOUTPUT , (*DSK: , LIST(C AR FILE ,*LAPY))S
EVALCPINPUT , (*DSK:, FILE))S

INC('T WNILYS
CUTC(T,NIL)S

LOOP: 7 « ERRSET(READ())®
| FATOM ZTHENGOT ODONES
Zz « CAR 23
IF CAR # EC? 'DE THEN

BEGINSCALARPROG;

PROG « COMP(CADR z,CADDR z,CADODR z2)%
MAPC(FUNCT 1 SN(PRINT),PRIG)S$
CUTCI(NIL,NIL)S
PRINTLIST(CADRZ,LENGTHPROG)®
OUTC(T,NIL)E

END
ELSEPRINT:S
GO TOLCOPS

DGWE:  OUTC(NIL,T)S

INC(NIL,T)¢
RETURN fENDCOMP ENDS

FFYYEITIFYEERER R RFR-Fe S XY AR E S X AR R R XX R R R R R A R 'R R R R X R R R X R R R R R X R X ¥
For thepurposes of this papaers the compijer starts herejabove here

may be ignored,
[EEEEXXZZIEEEE R R EPEFErEFE SRR R X R R 2R AR RARRRR AR SRR SR YRR R YR R R XX LY ¥

COMP(FN,VARS,EXP) «
(LAMBDA VPR,N;
APPEND(

L1STLISTC(/LAP,FN,’SUBR),
MKPUSH(N, 1),
COMPEXP(EXP,=N,VPR),
SI)RSTACK N,
*{(POPJP) NI

(PRUP(VARS,2),LENGTH VARS);

SUFPSTACK N « | FN=2 THEY NIL
ELSELIST LIST(/SUB ,*F ,LIST('C ,2,8,N,N));

3o



PRUP(VARS,N) « |[F NULL VARS THEN NIL
ELSE (CAR VARS , N) , PRUP(COR VARS,N+1)}

MKPUSH(N,M) « |F N<M THEN NIL ELSE LIST(’PUSH,’P,M) ,MKPUSH(N,M*1)}

COMPEXP(EXP,M,VPR) «
[11] IF NULL EXP THEN ’((MOVEIl 1 3))
(21 ELSE IF EXP EQ “T eTHEN *((MOVEI 1 (QUOTE T)))=
[OR NUMBERP EXP THEN
LIST LIST('MOVE], 1, (LIST(’/QUOTE, EXP)))]
£31 ELSE IF ATOM EXP THEN
LIST LIST(’MOVE ,1,M+*COR ASSOC(EXP,VPR),'P)
(3,11 ELSE IF CAR EXP EQ “CAR THEN
Cal (IF ATOM CADR EXP THEN
LIST LIST(’HLRZ@,1,
M+CDR ASSQC(CADR EXP,VPR),'P)
(pl ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
' ((HLRZe 1 1)) ))
(3,21 ELSE IF CAR EXP EQ <COR THEN
fa) (IF ATOM CADR EXP THEN
LIST LIST(!HRRZ® ,1,
M+CDR ASSQC(CADR EXP,VPR),'P )
{pJ ELSE APPEND(COMPEXP(CADR EXP.M,VPR),
*((HRRZ@ 1 1)))))
(41 ELSE ]F CAR EXP EQ “AND OR CAR EXP EQ@ *"OR OR
CAR EXP EQ "NOT OR CAR EXP EQ 'EQ THEN
(LAMBDA L1,L2; APPEND(
COMBOOL(EyP,M,L1,NIL,VPR),
LISTC (MOVE] 1 (06 OTE T)),LIST(’JRST,Z.L2),
L1, (MOVEL 1 2),L2)))
(GENSYM(),GENSYM())

(51 ELSE IF CAR EXP EQ <“COND THEN

COMCOND(CDR EXP,M,GENSYM(),VPR)
(6] ELSE IF CAR EXP EQ <"QUOTE THEN LIST LIST(’MOVEI,1,EXP)
{71 ELSE |IF ATOw CAR EXP THEN

APPEND(COMPLISA(CDR EXP,M,VPR),

LIST LIST(/CALL ,LENGTH CDR EXP,
LIST('E ,CAR EXP)))
81 ELSE IF CAAR CXP EQ /LAMBDA THEN

(LAMBDA N; APPEND(STACXUP(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M=N,
APPEND(PRUP(CADAR EXP,1=M),VYPR)),
SUBSTACK N))

LENGTH CDR EXP3

STACKUP(U,M,VPR) « [F NULL U THEN NIL
ELSE APPEND(COMPEXP (CAR U,M,VPR),
“((PUSH P 1)),
STACKUP(COR U,M=1,VPR));

37



CCCHAINEXP«(C A REXPEQR'CAR O RCAREXP EQ‘CDR)A N D

COMPC(EXP,N2,M,VPR) «

| FATOMEXPTHENE R R O R/COMPC

ELSEIl FCaAR EXPFQ’CARTHEN
(1F ATOM CAUR EXP THEN
LISTLIST(*HLRZ® ,N2,M+CDR ASSOC(CADR EXP,VYPR),'P )
ELSE LIST(’HLLRZ® ,N2,N2),COMPC(CADR EXP,N2,M,VPR))

ELSE IF ATOMCADREXP THEN
LIST LIST(’HRRZg yN2,M+CORASSOC(CADR EXP,VPR),’P )
ELST LIST(’ARRZ® ,MN2,N2),COMPC(CADR EXP,N2,M,VPR);

COHCOND(U,M,L,VPR) «
IF NULL U THEN LIST L
ELSE IFINCTA T O MCAARUAND]
CAAAH UZNULLANDNULLCABARU THEN
APPEND(COMPEXP(CADAAR U,M,VPR),
LIST LISTCJUMPE ,1,L),
COMCONO(CUR U,M,L,VPR))
ELSE | F CAARUEQ!TTHEN ‘
APPEND( COMPEXP(CADAR U, M,VPR)Y,LIST L)
E LS ECLAMBDALL; APPENDY
COMJ00L(CAAR UsM,LL,NIL,VPR),
CCMPEXP(CADAR U,M,VPR),
LISTILIST( Y JRST ,3,L),L1),
COMCOND(CDOR U,M,L,VPR)))
GENSYM()

COMFLISA(U,M,VPR) ~
(LAMBDA #; APPEND (
COWPL{S(Z,Mnl:VPR),
LOACAC(Z2,1=-CCOUNT Z2,1,M=CCOUNT 2,VPR),
SUBSTACKCCOUNT t))
CLASSIFY u;

CCOUNT 2 « |F NULL 2 THEN # ELSE IF CAAR 2 = 4 THEN 1+CCOyUNT CDR 2
E LS ECCOUNTCORZS

LOACAC(Z,M2,N2,M,VPR) =
IF NULL ZTHENN | L
FLSE IF CAA™ 2 = 1 THEN
LIST(¢(*MQOVE ,N2,M+CDRASSQC(CDAR Z,VPR),’P )
,LOADAC(CDR 2Z,M2,N2+1,M,VPR)
[ELSE IF CAAR 22D THEN
LIST(’MOVEL, N2, (LIST(’QUOTE, CDAR 2£)))
JLOADAC(CDR 2,M2,N2+1,M,VPR)]
ELSE IF CAARZ = 2 THEN
LIST(’MOVETL WN2,CDAR A) )
+LOADAC(CDR #,Mc,N2+1,M,VPR)
ELSE IFCAARZ=3THEN

38



APPEND (REVERSE COMPC(CDAR 2,N2,M,VPR),
LOADAC(CDOR Z,M2,N2+1,M,VPR))
ELSE IF CAAR 2 = 5 THEN <NIL> [LOADAC(CDR 2,1,N2+1,M,VPR)]
EL SELIST(/MOVE.N2,M2,'P),
LOADAC(COR Z)M2+1,N2+1,M,VPR)}

COMPL‘S(E,M’K,VPR) L]

1F NULL # THEN NIL
ELSE IF CAAR 2 = 4 THEN APPEND(
COMPEXP(CDAR 2,M,VPR),
N *((PUSH P 1)),
COMPLIS(CDR 2,M=1,K+1,VPR))
ELSE IF CAAR Z = 5 THEN APPEND(
COMPEXP(CDAR Z,M,VPR),
IF Ks1 THEN NIL
ELSELIST LIST(’MOVE ,K,1i))
ELSE COMPLIS(CDR Z,M,K+1,VPR)}

CLASSIFY U « CLASS2(CLASSL(U,NIL),NIL,T):

CLASS1(U,V) « IF NULL U THEN V

ELSE IFATOM CAR U THEN
C(IF CAR U = *NIL OR CAR U =2 *T OR NUMBERP CAR U THEN
CLASS1(CDR U, (@ , CAR U),V)
ELSE] CLASS1(COR U, (1 , CAR UW),V)[)1
ELSE IF CAAR U = 'QUOTE THEN CLASS1(CDR U,(2 , CAR U).V)
ELSE IF CCCHAIN CAR U THEN CLASS1(CDR U,(3 , CAR U).,V)
ELSE CLASS1(CDR U,(4 , CAR U), V)i

CLASS2(U,V,FLG) « IF NULL U THEN V

ELSE IF FLG AND (CAAR U = 4) THEN
CLASS2(CDR U, (S5 , COAR U),V,NIL)
ELSE CLASS2(CDR U,CAR U , V,FLG)}

MKJRST L « LIST LIST(!JRST »2,L)}

COMEOOL(P,M,L,FLG,VPR)

(e.11
CI3

E1|1]

IF P EQTTHEN (IF FLG THEN MKJRST L ELSE NIL)
[ELSE IF ATOM P THEMN APPEND(
COMPEXP(P, M, VPR),
LISTLIST(IF FLG THEN ‘JUMPN
ELSE ‘JUMPE ,1,L)),
ELSE IFCARP EQ 'EQ THEN APPEND(
COMPLISA(CDR P,M,VPR),
IF FILG THEN *((CAMN 1 2)) ELSE *((CAME 1 2)),
MKJRST L)
ELSE IFCAR P EQ 'AND THEWN
(1F NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
ELSE (LAMBDA L1; APPEND(
COMPANDORL(CDR P,M,L1,L,NIL,VPR),
LIST L1
GENSYM())

39




£31 ELSE IF Cak P 25 *0OR THEN
[al ( IF FLG THEN COMPANWDOR(COR P,M,L,T,VPR)
bl L5 (LAMYDAL1: APPEND(
COMPANDORLI(CUR P,M,L1,L,T,VPR),
LIST LI))
GENSYM())
[é1] ELSE IF CARPER’NGTTHEN

CIMSOOL(CADR P,M,L,NOT FLG,VPR)
(4.13 ELSE IF CAK P EQ “ NULL THEN APPEND (
COMPEXP(CADR P,M,VPR),
LIST LIST(IF FLG THEN ‘JUMPE
ELSE ‘JUMPN ,1,L))
L5 ELSE <cIFATOMCAR P THENSAPPEND(
COMPEXP(P,M,VPR),
LIST LISTCIF FLG THEN ’JUMPN
ELSE “JUMPY ,1,L));

CCMPANDOR(Y,M,L,FLCG,VPR) « IF NULL U THEN NIL
ELSE APPEND(COMSO00QL(CAR U,M,L,FLG,VPR),
COMPANDCR(CDR U,M,L,FLG,YPR));

COMFANDCRL(U,M,L,L2,FLG,VPR) « [IF NULL U THEN MKJRST L2
ELSE] I F NULLCODRU THEN COMEOOL (CARU,M,L2,NOTFLG,VPR)
FLSE APPEND(CAIMROJL(CAR U,M,L,FLG,VPR),
COMPANDCRL(CDR U,M,L,L2,FLG,VPR));

4







APPENDIX 3 = SaMPLEZ CUTPLT OF CP AND C4 FOR A REVERSE FUNCTION

(DE REV (X Y) (COND ((HULL XY Y) (T (REZV (COR X) (CONS (CAR X) YY) ))

Coce from CO

(LAP REV SUBR)
(PUSH P 1)

(PUSKE P 2)

(MOVE 1 =1 P)

(PUSH P 1)

(MOVE i @ P)

(SUb P(C 82 1 1))
(CALL 1 (E NULLD)
(JUMPL 1 L2)

(MOVE 1 @ P)

(JRST L1)

L2

(MOVEIL1 (QUOTET))
(JUMPE 1 L3)

(MOVE 1 -1 P)

(PUSH P 1)

(MOVE 1 2 P)

(Sus P (C 8 8 1 1))
(CalL 1 (E CDR))
(PUSH P 1)
(MOLE 1 =2 P)
(PUSK P 1)
(MOVE 1 2 P)
(SJyo P (C Bai11i)
(CALL1(E CAR))
(PUSH P 1)

(MOVE 1 =2 P)

(PUSK P 1)

(MOVE 1 =1 P)

(MOVE 2 © Py

(Sitlm P(C O 2 2 2))
(CALL, 2 (E CONS))
(PUSH P 1)

{(MOVE 1 <1 P)

(MCVYE 2 @ P

(SUe P (C B 2 2))
(CALL 2 (E REV))
(JRST L)Y

L3

L1

(Sy= P (C a & 2 2))
(PQFJ P)

NTL

Comments

hesadger

stack flrst arg
stack second arg
compute x

stack 1%

recel| X

ad)J. stack by 1
zal | NULL,

i T nothNULL jump
recal | v

Jump for return
the tavel L2
computae T

fnot T  jumn
compute X

recal I X

COR

30mpute X

ragall X

CAR, rasn, CAR X
compute ¥

racall CAR X
Fecy !l Y

dde stack py 2
Rang.~ 2c ®

recal | COR X
recall CONS, resp,
transfer CONS

compute COR X
REVY
Junp for return

return

endo fegoue

Code from C4
(LAP REV SUBR)

(PUSH P 1)
(PUSH P 2)

(MOVE 1 =1 P)

(JUMPN 1 L2)
(MOVE 1 ¢ P)
(JRST L)

L2

(HLRZ@ 1 =1 P)

(MOVE 2 2 p)y

(CALL 2 (E CONS))

(MOVE 2 1)

(HRRZ® 1 =1 P)
(CALL 2 (E REV))

L1

(SUB  P(Caz 2 2))

(POPJ P)
NIL






