STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-158

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-250

. PROGRAM SCHEMAS WITH EQUALITY
' BY

ASHOK K. CHANDRA

ZOHAR MANNA

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457
DECEMBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

PROGRAM SCHEMAS WITH EQUALITY

by

Ashok K. Chandra and Zohar Manna
Computer Science Department
Stanford University

Abst ract

VW discuss the class of program schemas
augmented with equality tests, that is, tests of
equal ity between terns.

In the first part of the paper we discuss and
illustrate the "power" of equality tests. It
turns out that the class of program schemas with
equality is nmore powerful than the "maximal"
classes of schemas suggested by other investi-
gators.

In the second part of the paper we discuss
the decision problems of program schemas with
equality. It is shown for exanple that while the
decision problems normally considered for schemas
(such as halting, divergence, equivalence,
isomorphism and freedon) are solvable for Ianov
schemas, they all become unsolvable if general
equal ity tests are added. W suggest, however,
limted equality tests which Can be added to
certain subclasses of-program schemas while
preserving their solvable properties.

1. Introduction

In recent years the study of schunas has been
widely pursued in an attenpt to understand the
power of programm ng |anguages. In the study of
program schenas, the functions and predicates
al | oned are usual Iy considered to be uninterpreted
symbols. The reason for this is that verﬁ/ sinple
interpreted prograns yield all the partial recur-
sive functions, and therefore interpreted prograns
do not provide insight into the difficulty in
programmng; e.g. the difference between the
essentially iterative nature of Fortran and the
recursive structure of Algol or pL/1.

Earlier works in this area, e.g. lanov
{1900], Rutledge [1964], Paterson [1967, 1968]
and Luckham, Park and Paterson [1970] essentially
considered flowchart schemas, and enphasized the
decision problens for schemas, viz. halting,
divergence, equivalence, etc. Mst of the recent
papers, on the other hand, e.g. Paterson and
Hewitt [1971], Strong [1971a], Constable and
Gies [1971] and Garl and and Luckham [1971]
considered more powerful schemas, i.e., flowchart
schemas with additional progranming features like
counters, recursion, push-down stacks and arrays;
and Were concerened mainly with the problem of
translating program schemas from one class to
anot her.

Several formalisns have been considered in
the literature for the description of schenas.

VW define a flowchart schema as being a program
with the following features: it has a finite
nunmber of program variables denoted by Vpr¥pr o e

a finite nunber of uninterpreted function synbols

f58,... (which may be ccxnbined with the variables

to formterns) and a finite nunber of predicate
symbol s denot ed by PpsPpseen - Some of the func-

tion symbols may be zero-ary. These stand for
individual constants, and are denoted by
ags8y.ne A statement in the program may be:

(a) an assignnent statement of the form
yy =t

where t is any term (b) a predicate statenent
of the form

if pi(‘tl,tz, ...,tn) then goto L el se got0 L,
wher e t 1

or (c) a terminal statement, i.e., a START
statement, a HALT statement or a LOOP statement.

A schema has a unique START statement as its first
statement. Free use of goto statements is allowed;
and all statements except the START statement may
be labelled. In addition, for convenience and
readability we describe schemas using ALGOL-like
features, e.g. while-statements and block struc-
tures. These clearly do not add any "power" and
every such ALGOL-like program can be translated to
an equivalent program that uses goto-statements
instead.

Certain features can be added to flowchart
schemas, e.g. counters or arrays. A counter is a
special variable that takes nonnegative integer
values. The operations allowed on a counter are
adding one, subtracting one, and testing for zero.
An arrey is a one-dimensional semi-infinite sequence
of variables that can be referenced by using a
counter to subscript the array.

In addition, we also consider recursive schemas.
A recursive schema is a set of recursive definitions
of functionals Fl’FQ"" of the form

wt, are terms and: L L, are labels,

Fi(yl,...,yj) - if p(tl,...,tn) then t else t?
where p 1is an n-ary predicate symbol and
tl,...,tn » t and t' are terms that may consist

of function symbols, functionals and the variables
Y12 '”’yj .

The research was supported Dy the Advanced Research Proj ects Agency of the Office of the Secretary of
Defense under Contract SD-183. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed

or inplied, of the Advanced Research Pro(jects Agency or the U S. Covernnent. p '
eral Scientific and Technical Information, Springfield, Virginia

Available from the Cearinghouse for Fe

Reproduced in the USA

22151. price: Full size copy $3.00; mcrofiche copy $.95.

It is quite surprising, though, that people
have so far neglected to nention one of the nost
useful features: cquality tests between terns,
i.e., statements of the form

if t) = t, then got0 L, else got 0 L,

wher e tpt, are terms and L,L, are | abel s.

The extension of program schemas to allow
equality is quite natural, nuch as is the exten-
sion of first order predi cate calculus to first
order predicate calculus with equality. The
anal ogy Can be extended further in that in both
cases equality tests can be treated as just any
other binary predicate but with a partial inter-
pretation which in turn involves all other predi-
cates and functions used in the system This
tends to be an unnatural approach to the treatment
of equality. Accordi n%Iy, we prefer the direct
approach of allowing the equality test to be a
basic operation in the system as is the operation
of assignment to a variable.

The reason for the anission of equality tests
in earlier papers can perhaps be traced to the
following fact. Al schemas discussed in the
papers nentioned above have one very inportant
common property: the behavior of a schema for all
interpretations can be characterized by the
behavior for a subset of all interpretations
Viz. the Herbrand interpretations. W therefore
call all these schemas Herbrs.nd schemas. To be
somewhat nore precise, TN a Herbrand schems, for
every interpretation there "corresponds” a Herbrand
interpretation that follows exactly the same path
of computation. Flowchart schemas with equality
tests are in general non-Herbrand schemas, that 'is,
they may behave quite differently for Herbrand
and non-Herbrand interpretations. Consider, for
exanple, the sinple schema:

START

if a="bthen HALT else LOCOP .
Thi s schema halts for some interpretations and
loops for others. For all Herbrand interpretations,
however, it always loops. It is therefore a non-
Herbrand schema, and further, there can be no
Herbrand schema that is equivalent to it. A non-
Herbrand schema that has no equival ent Herbrand

schema is said to be an inherently non-Herbrand schena

The use of equality tests does not necessarily
make a schema non-Herbrand. Exanple 0 in Appendix
Ais an interesting instance of a Herbrand program
schema with equality tests that has an equival ent
Herbrand program schema without any equality test
and also an equivalent non-Herbrand program schema
(which does have equality tests).

There are several other features which in
general give rise to non-Herbrand schemas: the
use of quantified tests is one such. Unfortunately,
it is not partially decidable if a given schema is
a Herbrand Schema. This result follows from the
fact that it is not partially solvable whether or
not any given flowchart schema (without equality
tests) diverges for every interpretation. Gven
any flowchart schema T, replace every HALT
statement by the statenent

if y=a then narr el se roop ,

where a is a new individual constant. Now the
new schema is a Herbrand schema if and only if T
diverges for every interpretation.

In the rest of this paper, we illustrate the
power of equality tests (Section 2) and the decision
probl ems concerning program schemas that use them
(Section 3). For the sake of clarity we merely
give the "flavor" of the exanples inthe main part
of the paper, and we state the theorems without
proof. Details of the exanples are given in
Appendix A (Section %) and the proofs are sketched
in Appendix B (Section 5). Detailed proofs can be
found in Chandra [1972b].

2. The "Power" of Program Schemas With Equality

The use of equality tests in program schemas
raises an old question that has been asked several
times and never been answered to our conplete
satisfaction -- just what is a schema? W do not,
in this paper, propose to answer this question, but
we can indicate that nuch remains to be studied.

It has been suggested (Constable and Gies [1971],
Strong [1971bv]), for exanple, that the class of
program schemas with arrays might be a "meximal®
class of schemas, i.e., for every schema there
exists an equivalent schema in this class. Now,

it my be that the class of array-schemas is indeed
maxi mal with respect to the Herbrand schemas, but
neverthel ess alischemas in this class are Herbrand
schemas. It has been shown, however, that there
exist certain schemas using equality tests that are
inherently non-Herbrand. This neans that the class
of program schemas with arrays and equality tests
is a strlctly larger class.

A problemis said to be a Herbrand problemif
it can be solved by a Herbran A nion-
Herbrand problem is one that can only be soTved by
inherently non-Herbrand schemas. The class of
program schemas with arrays and equality tests can
solve certain non-Herbrand problems (which by the
definition of a non-Herbrand problem cannot be
solved if only arrays are allowed).

W first “illustrate this point with two exam
ples of non-Herbrand problens.

Exanple 1. Inverse of a unary function

Consi der the following problem "Gven a
unary function symbol f , a finite nunber of other
n-ary function symbols, n >0, and an input
variable x , wite a program Schema that under any

interpretation will yield a value of f‘l(x)

output. That is, it finds an elenment y that can
be expressed in terms of the given function synbols
and the input variable x, such that f(y) = x ;

if no such element exists, the schema |oops forever".
This problem which is essem|a||y one of inverting
a given unary function, is non-Herbrand, the reason
being that If the input x is equal to the zero-ary
function a then it has no inverse in any Herbrand
interpretation, whereas for other interpretations
it my have an inverse. It follows that the task
cannot be performed by any Herbrand Schema. The
task cannot be performed by any Herbrand Schema.

The task is, however, well within the capability of
flouchart schemas with arrays and equality tests.

A schema in this class that solves this problemis
described in Appendix A

Exanple 2. Herbrand-like interpretations

Gven a set of function and predicate synbols
of which there is at least one zero-ary function,

we say that an intcrpretation | for this set is
llerbrand-like if there €Xi StS SOME Herbrand inter-
pretation |f such that there is a |-1 hononor-
phism from || into | In other words, an
Interpretation | is herbrand-like if and only if
for every pair of distinct terns ty and by

(made up of the given functions) the elements in

| corresponding to ty and t, are di stinct.

Now, consider the follow ng problem "given
an interpretation for a set of function and
predicate symiols, of which at |east oneis a
zero=-ary function, determine if the interpretation
is not Ilcrbrand-l1ike. 1If the interpretation i s
not illerbrand-like then halt with no output, else
diverge." This problem is inherently non-lerbrand
in nature since a schema that solves this problem
must diverge for every Herbrand interpretation.

But for certain other interpretationé the schema
should halt. A schema with equality tests that
solve6 the stated problemis presented in
Appendi x A -

The problem presented above is an abstract
nmodel closely related to certain problems in real
life programming. As anillustration, consider a
directed graph (with an identified root node) in
whi ch each node has two identified pointer6 |eading
fromit. Pointers may lead to a termnal node
“NI'L" . The problemis to determine whether or not
the given graph is a tree. This problem may be
modelled by the above problemwith two monadic
functions representing the two pointers, and wth
the difference that the search for the equality of
two "terms" is conducted not for the entire set of
all terms, but for these terms not representing
NIL. The correspondence is that the interpretation
is Herbrand-like for this set of tem4 if and only
if the corresponding graph is a tree.

Another related problem is that of determining
if agiven list is circular. In this problem too,
the explicit use of equality in a schema nodel of
the computation represent6 a nore natural approach
than the treatment of equality as an interpreted
predi cate.

Wile the main interest in equality tests
stens from the fact that programmers frequently do
use tests of equality between variable6 whose
value6 are data element6 and these test6 are often
of a non-Herbrand nature, equality tests find some
interesting applications in problems that are
Lelally Herbrand in nature. W& give two exanples
el ow.

Translation Of flowchart schemas with
Counters

The recursive schema
F(x) ~ if p(x) then F(F(f(x))) else f(x)

Exanpl e 3:

can be translated to an "inpure" flowchart schema
by introducing a counter. It can also be trans-
“lated to a rather horrendous flowchart schenma
“without any explicit counter (Plaisted [1972]).
However, the use of equality gives a relatively
sinple flowchart schema equivalent to the above
while retaining the advantage of having a "pure"
schema (all functions and predicate6 being |eft
uninterpreted). Details are presented in
Appendi x A

Exanple 4: Efficient translation of |inear

recursive schemab
Consi der the recursive schema T :
F(a) where ¢
F(y) ~ if p(v) then g(F(£(y)),y) else v.

Let | be an interpretation of T for which
there exists aann, n >0, such that f‘“(a)=

FALSE and for all k <n, f’k(a) = TRUE . The
out put of the computation (T,I) is the term

g(£(a), 7)) ..., 15(a)),2(a));a) .

For usual inplenmentations of recursion the
conputation of the interpreted schema (T,|) takes

s(e(s(.

time (the nunber of operations on data structures
performed) and space (the number of values stored)

both proportionalto n The recursive schema

T can be translated to an equival ent flowchart

schema using a fixed menory size (nunber of

variables) and tinme proportional to n*n . Using

equality tests, however, the tine can be brought

down to some constant times n(i*e) , Where eis
any arbitrarily small posmve nunber. Details of

the construction are given in Appendix A For

further discussion of this topic, see Chandra
[1972a].

3. Decision Problens

W consider the followi ng decision problens
for classes of schemas:

(a) The halting problem -- to decide whether a
given schema in the class halts on every
Interpretation.

(v) The divergence problem -- to decide whether a
given schema in the class diverges on every
Interpretation.

(e) The equival ence problem -- to decide whether
two given schemas in the class are equivalent.

(a) The inclusion problem-- given two schemas A
and B to decide whether A includes B, i.e.,
for every interpretation either both schema6 hal't
with the same output or schema B diverges.

(e) The isomorphism problem -- to decide whether
two schenma6 are isonorphic to each other. (Two
schemas are said to be isonorphic, or opera-
tionally equivalent, if the sequences of
statenent6 execut ed by both schemas are exactly
alike for every interpretation.)

(£} The freedom problem -- to decide whether a given
schema in the class is free.

(g) The translation problem-- to translate any
schema in the class to an equivalent free
flowchart schema (using any nunmber of
variabl es).

It should be noted that the translation problem
is not strictly a decision problem Ve include it
in this list, however, because it is an interesting
problem closely related to the others.

All thcee questions can be answered in the
aftimative for the class of 1anov schemas which
consists of one-variable flowchart schema6 using
only monadic function and predicate constants
(lanov [1900], Rutledge [1964]). In view of this
it is somewhat unexpected that the addition of
general equality tests to lanov schems renders all
these deci sion ﬁrobl ems unsol vable. On the other
hand, we show that these problems for Ianov
schemas cxtended even to nonnonadic functions and
resets but with linted equality tests are
sol vabl e.

It should be stated that for all "conventional"
schemas, i.e., all schemas mentioned in this paper
and in earlier works, the followi ng problems are
at least partially solvable:

(ar) The halting problem -- to decide whether a
given schem in the class halts on every
Interpretation.

(b*') Tne non-divergence problem-- to decide
whether a given schema ever halts,

(e*) The non-isomorphism problem -- to decide if
two schema6 are not isomorphic to each
ot her.

(£*) The non-freedom problem --
given schema is not free.

to decide if a

The notable exception6 are the equival ence
and inclusion problens. In general, the equiva-
l'ence and inclusion problent as wel| as their
negation6 are all not partially solvable.

3.1 Notation
W use the symbols
(1) 88185 .. to represent individual constants
(or zero-ary functions, if you will),
(2) Ys¥yo¥ps eee to represent program variables,
(3) £,£5%,,. to represent functions, and we

use

(%) Pspyspye.. 1O represent predicates.

The set of ternms is defined by the smallest
set containing &6 , y's and closed under the
following operation: if t,,t, 't are terns,

ll a} .
and £ is an n-ary function symbol, then

fi(ty - o met)) s alsoaterm
W use the notation t(yl,ye,...,yn) to
represent that Yp¥pr . oo, are the only variables

that may be present in t. Thus a termt(y)
may or may not contain the variable y , but
contain6 no other variable. A termt() indicates
therefore a constant term that is, a term that
has no occurrences of y*s at all.

Gven a nonconstant termt(y) , i.e., one
containing the variable y , a_commn subterm
t of t is one such that™1f every
occurrence of t,(y) in t(y) is repl aced by an
indivi dual constant then t(y) is reduced to a
constant term Cearly the terns y itself and
t(y) are common subterms of t(y) . Also, if
t'(y) and t"(y) are common subterms of t(y)
then t*(y) is a common Sub-termof t"(y) or
vice versa.

The assignnment depth |t(y)|l of a term
t(y) is defined to be the nunber Of common sub-
terms in t(y) excluding y itself. By conven-
tion, for a constant term t() ,]\t(){%: 0.

The depth |t(y)] of a termt(y)+ is the
maxi mum depth of nesting in the term and is
defined by:

t0 I:O:

|
l’tZ’. I’I® ' H l|’ @D " |tnl)’l

Note that for rmnadlc terms &) = |t|, and in
general |t|| < A few exanples illustrate
this point. In- the following table

(a) stands for t(y) ;

(b) stand6 for common subterms of t(y)
(excluding yy. itself);

(c) stand6 for |t(N| ;
(d) stands for [t(y)] .

(a) (b) () ()
Y 0 O
£(a) - 0 0
£(y) £(y) 1 1
£(g(n(y))) h(y) san(y) sfen(y) 3 3
r(gla,v),e(ay)) slay) ;f(s(ayy), &la,y)) 2 2
£(y, &(a,y) £(y,e(a,¥)) 1 2

3.2 Solvable O asses
Consider the rather general class 8y of

flowchart schemas with one variable. Schemas in
§, cont ain the following statement types (LI and

L, are arbitrary labels in the definitions below):

START statenent: START
y-ay
Final statenents: HALT or
Loop
Assignnent statenent: y «~ t(y)
predicate-test st.: if P(t(¥)s.-est ()
then goto Ll
el se got0 L,

Equality-test st.: if 50 =t
then goto Ll

else goto L2

The equality tests allowed nust, however, satisfy
the condition that either t,(y) or t,(y) is a

constant term or else both it (v)|| and ||t (v}
are less than or equal to 1 .

THEOREM 1 (Sol vability of sl) . For the class s

1

I (a) the halting problemis solvable
| (b) the divergence problemis solvable

1(¢) the equivalence problem is sol vable
1(d) the inclusion problemis solvable
1(e) the iconorphism problem is solvable
1(f) the freedom problem is solvable

1(g) any schema can be effectively translated to
an equivalent free schema (with the addition
of cxtra program vari abl es).

This theorem includes as special cases the
results of lanov [1960], Rutl|edge [1964], and al so
recent extensions by Pnueli [private communication]
and Garland and Luckham [1971].

As a special case, the problent (a)-(g) are
solvable for the class of |-variable monadic
schema6 allowing resets and equality tests of the
formns:
£,0=t,00 5 y=t() ,

vy=£(y), and £,(y) =fj(y)

Consi der, next, the class 8, of schernas,
simlar to the class Sl , but with a change in

the formof equality tests allowed, viz. the
equality test statements allowed are of the form

if t3(y) = t,(y) then goto L, else goto L, ,

but this time the restriction is that Ht W =
i C2) I

THEOREM 2 (Sol vability of sz) :
Probl ent (a)- (aok smable for the class

As a special case, the problent (a)-(g) are
solvable for the class of |-variable nonadic
?chemas allowing resets and equality tests of the
orm

tl(y) = tg(y) where ltl(y) l = |t2(Y) l .

3.3 Unsol vabl e Classes

It should well be asked why we have the
"strange" restrictions on the form of equality
tests above. The answer is that even slight
general i zations of the restrictions above vyield,
astoni shingly, classes whose problent are unsol-
vable. W denpnstrate this on two classes.

Consi der the class S5 consisting of one

variable y , one constant a , no predicates and
only nonadic function constants. Statement6 in
schemas of S, are of the forns:

3
START statenent: START
3-a
Final statements: HALT or
LOooP
Assignnent statement: y fi(y)

Equal ity-test st.; if fi(y) = fj(fl,(y,))
then goto Ll

el se _goto L,

S, differs fran 8, in that noncongtant

terms of depth 2 are used’in &quality tests; and
it differs from S2 inthat terms tested for

equality do not have the same assignment depth.

For the class

THEOREM 3 (Unsolvability of §,):
Sj B
3(a) the halting problemis unsol vable

3(b) the divergence problemis not parti aIIy
sol vabl e

3(e) the equivalence problem is not partially
sol vabl e

3(a) the inclusion problemis not partially
sol vabl e

3(e) the isomorphism problemis not partially
sol vabl e

3(f) the freedom problem is not partially
sol vabl e

3(g) there exists no effective translation to
equival ent free schenas.

For the sake of conpleteness we should mention
that tne nonequi'vafence and the noninclusion
problems for this class too are not partially
solvable. O course, the halting, nondivergence
and noni sonor phi sm probl en6 are partially solvable,
which follows from the general result mentioned in
the earlier parts of Section 3,

W introduce next the class 5), of |-variable
monadi ¢ schemas simlar to s but with the

difference that equality tests al | oned have the
following form

if y =t(y)Lthen goto L, else goto , ,

where 1< |t(y)] <3, i.e, tests may have any of

the forns:
v = £,
Y = fi(fj(y)) s OT
Y = fl(fg(fk(:’,)))]

THEOREM 4 (Unsolvability of §):

Problems (a)-(g) for the class 5, are
unsol vabl e.

A class of schemas is said to be solvable if
its decision problens (a)-ie) are solvable;
simlarly, a class is unsolvable if its deci si on

problenms (a)-(e) are unsolvable. Casses 8 and

52 are solvable whereas s5 and Su are unsol -

vable. On conparing these classes it is clear that
there is a very sharp demarcation between classes
of one-variable schemas that are solvable and those
that are unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked
how many function synbols suffice to render a class
unsolvable. It can be shown, for exanple, that for
the class 83 , merely 4 functions are sufficient.

It is nmore interesting to note, however, that
these function symbols can be "coded" using only 2
function symbols so that cchemas with one variable,
iwo functions and gencral cguality tests, i.c.,
tests of the fomm f(y) = t,,(¥)_,_are unsolvable.

So far we have restricted our consideration
to schemas that have only one variable. The reason
is obvious: one-variable schemas provide the nost
interesting solvable classes. \hen more variables
are allowed, even a very few features tend to make
the schcmas unsol vabl e. For exanple, schemas with
two variables, t WO functions and tests Only of 1he
formy, = £(y,) are unsol vable.

It is even nore interesting, though probably
not surprising, that schemas with a single function
too are unsolvable; for exanple, the class of one-
function schemas having ts=sts only of The form
y; =¥, s unsol vabl'e (5 variables suffice In

this case) .

The proofs of these secondary results are
al so presented in Appendix B.

k. Appendi x A -- Detailed Exanples

Fxample 0: A Herbrand Schemm with equality

Not all schemas that use equality tests are
non-Herbrand. Consider, for exanple, the schema
START
Yy -y, - el
L' if (y,) then
if »(y,) then
begin
vy = 2(yy)s
yz - f(Y2)§
goto Lj

end
else if y, = a then HALT el se 1oop
else it y, = y, then HALT else LOOP .
This is a Herbrand schema because the equality
test y; = y, nust al ways be true, and the
equality test ¥, = a can never be entered. The

wiven schera iS hence equivalent to tue following
schema, which has no equality test.

START

Y- a

L: if p(y) then
begin
y - £(y)s
soto L

: end

el se HAIT.

The following schema is also equivalent to the
above schemas, but it is a non-Herbrand SChema
because the LOOP statenent in it can never bhe
entered for any Herbrand interpretation. The
schema is, however, not inherently non-Eerbrand.

START
L7 ik o)
. if p(y) then
ify-= ny) then LOCOP
else begin
v - £(¥);

goto 1
en

else HALT

Exanple 1. Inverse of a unery function

For sinplicity we assune that the only func-
tions are a single zero-ary function a , the given
unary function £ and a binary function g . The
possible terms are therefore:

x,a, f(x), gxx), f(a),
gla,x) . £(£(x)) . . .
The schema for any other set of functions is similar

to the one for this particular case.
Synbol s e Cp G stand for counters.

Strictly, the only operations allowed on counters
are adding and subtracting one, and testin? for
zero. For convenience, however, we will also allow
other statements such as e, « 0, ¢ - Cp, and

tests like ¢ = c.J, as it is clear that these

operations can be performed using only the |egal
operations and additional counters.

g(a; a) , g(x,a) ,

(1) -- START

Af0] ~ X;

cl L H
(2) -- e, - 1; A[c2] - a,
(3) -- REPEAT: vy ~ A[cl];

(8) o= if £(y) = x then HALT(y);
- c,t1s Aley) - £(3);
ot1s Aleyl = e(vsy)s

C5 - cl;

while ¢
begin

c, +~ Cx=1;

c
2
c, =C

£ 0 do

3 z
ey = c15 Aley] - glalez,v);
ey = cytl; Ale,] - g()’;A[C5])§

end;
¢y - Cl+l;
(5) -- goto REPEAT .
After the initialization phase (lines (1) to
(2))
Ale]l = x , Af1]l = a , cl:O, c2:1.

After conpleting one pass through the outer |oop of
the program (lines (3) to (5))

Ale] = 2(x) , A[3] = g(x,x) , c; =1, ¢ = 3,
and after a second pass

Alk] = f(a) , Als] = g(asa) ,

ALY = g(x,a) , Al7] = g(ax) , ¢ = 2, Gy = 7

The aigorithi works as fol | ows:
and ¢

two pointers °y
2 A[c] represents

the "current" value. |f the current vaI ue is not
the inversc, as deternined by line (W), it is
conmposed with val ues preceding it in the cnumera-
Lion by tunction applications, and the new val ues
obtained arc added to the array.

It can bc shown by induction that the process
of cnumeration gencrates and tests cach possible
termexactly once. 'This nmeans that the inverse
will be found if it exists. The point at which
the test of the inverse is made coul d be changed
to effect time efficiency but without altering the
main features of the program

reference the array.

Exanple 2. Herbrand-like interpretations

W assunme that the only functions are a sin-
gle zero-ary function a , a wary function ¢
and a binary function g . Therefore the set of
terms includes

a, f(a) , g(a,a) , £(f(a)) , &(f(a),f(a)) ,
g(a, £(2))
The required schema is:
(1) START
-- Aflo] - g
(2) - cl - Ce - 0;
(3) -- REPEAT: v~ Alc,]; ’
-——— ===
b L |
while c, £ 0 do ‘
¥ - begin ‘
! cd ~ e,-1; |

if Aley] =y then HALT; ,

! end;

Lo - -
o + &otl; Aley] - £(y)

e, -c +1'A[c2] - &(ys¥);3
3"

(e}

whi | e #0 do

begl n
(o -c5-l;
—cgrlAley] = e(Ales],y);
= eytliAle,] = gy, Ales])s
end;
+1;

Y
€2
2

cl - Cl
“(5) -- @ REPEAT

This programis quite simlar to the previous
one in the manner of enuneration of terms. The
fact that each termis generated exactly once is
used in meking the test (4) to check if a value
is repeated.

Transl ation of flowchart schemas With
Counters

The recursive schema
F(a) where

F(y) = if p(y) then F(¥(f(y))) else £(y) ,

can be translated to a flowchart schema with one
programvariable y and one counter c .

Example 3:

START
Y - a3
(1) -- ¢ +0
while true do
I p(Y) -
then begin
Yy - f(Y)s
(2) -- ¢~ ctl;
end
else beg:.n
¥y - £(y);
(3) if ¢ = O then goto DONE;
(¥) - Tl
end;

DONE: HALT(y) -

Note that the test "c = 0 " above is not a test of
equal ity between two data structures but rather
between an interpreted variable, i.e., ¢, and an
interpreted constant, i.e., 0.

The correspondi ng equi val ent flouchart schem
with equality tests instead of counters uses three
variabl es:

y plays the sane role as the variable y above,
z effectively similates a counter, and
w s a tenporary variable.

The idea behind the method is that the variable z

simulates a counter, where fi(a) stands for the
integer | Therefore, the statenent z - a
stands for the statement c -0, 1z~ f(z) stands

for ¢ + e+1 , and the statenents
#W—a; while f(wW # 2z dow+f(w,; z+w stand
or ¢ =c-1 . have to be careful, however.

The term f““(a) stands for the integer n, n>o0,
only if for no two distinct nunbers i,j <n are

the tems f'(a) and £'(a) equal. Interpreta-
tions for which the counter is required to count up
to an integer n where there exist i,j <n,

£, such that f"(a) =f(a) are called |ooping
interpretations. It can be shown that for |ooping
interpretations the given recursive schema never
halts. The required program schema is therefore
easy to construct:

HTART
Yy~ aj
(1) == =z ~a;
vitite Lrue do
It p(y)
then begin
N l.(.V) 3
r W~ a3 —1chec}§
whi]cw,ézd_o Ifor a
I it w = £(x) looping
Lhcn wop inter-
| clse W ~ f(W; Ipreta-
L if w=1(x) then LOOP_th on
(I) z - £(z);
end
clsc begin
Y = (33
(3) -- ife=a ‘_the.n gota DONE;.
r W~ aj 1
) --] while f£(w) £z do w« f(w; |
L - 272 _ .- __
end,

DONE: HALT(y) .

Efficient translation of linear
recursi ve schemas
Consi der the recursive schema T :

Exanpl e 4:

F(a) where .
E(y) —if p(y) then g(r(£(y)),y) else y .

Let | be an interpretation of T for which
there exists an n , n > 0, such that

Ma) = FALSE , and f (a) = TRUE for all k<n.
The out put of the conputation of (r,1)is

slelel . . . e(£(a), P Ha)) | £(a)), 2(a)),2) .

The conputation of (T,|) takes time and
space proportional to n -- for usual inplenenta-
tions of recursion. The recursive schesa can be
translated to an equivalent flowchart schema 1*
using a fixed menory size (nunber of variables)
such that the conputation of (T',1) takes tire

proportional to n2, aas fol | ows:
START

- a,
V\h”g p(y) doy - f(y); oy
while p(x) do
beein -
X - i‘(x),

P(a)

tha) i>1

Z = fn-] Ca)

Using equality tests, however, the time can

be brought down to n™¢ where ¢ is an arbi-
trarily small number. W first describe an cquivas:
lent flowchart schema with equality tests with a *

time bound of nj/g .

Intuitively, the idea is the follow ng. The
carlier flowchart schema spends nost of its time
trying to find the inverse of the function ¢

(i.c., given £(a) , to find £ }(a) L -~ though
this operation is somewhat hidden in the program

% can speed up this By planting a value at a

"di stance" of about fromthe end

and conpute inverses from this planted val ue.

Time taken to find the square root is of the order

of n5/2 , average time to find the inverse is
Y2 (done n tines) and tine to reset the

planted value is of the order of n ﬁdone nl/2
times). In general, by planting (k-1) values
(instead of just one) at distances

YAS , 2/x , 75 , o (k1) /k
fromthe end we get a time bound of nt* (/%)
ST/-\RT
- aj

-- V\h | d f(y);
3 o WIE 8

X ~ f(a);
() -- CEX v -y - &
whil e v £ X do
begin
Yy - &
while y, # X do
begin
Yo = £(y,) 3
Y3 - £(y5);
if y5 =Y then goto FOUND,
end;
v = 1)
end;
= f(x);
(k) -- -oto CHECK

x = £(a)

FOUND .z - 3
Xg = X;
(5) =- REPEAT: Y
whil e X5 £z do
begin
X - f(xl) ;
X, - f(xg) ;
(6) -- end;

(7) == while z / % do
besin
Ky = Xp3
while 1‘(x5) £z do x = f(x.j);
v o= ol xg)s

T e X
(8) - e ;
TEST: if z = a then HALT(y);
(9) - x, = & wnile (x,(f,2) £ x)
do x, « £(x,);
goto REPEAT .

Line (1) detects if there exists an n >0

such that £*(a) = Fatse and £(a) = TRUE for
all k<n . If such an n does not exist the
program loops forever which is the desired opera-
tion. If n exists it follows that for all

f,3<n, if i £ then t*a) £ £2(a) . A
this point y = f(a) .

If n=0the programhalts with output a
(line 2). If n> 1 the CHECK | oop segnent of
the program from lines (3) to (4) finds the
smal | est positive integer m such that mm > n .
This is done by successwely trying larger and
| arger values i = 1,2,3,,7. for muntil one'is
found such that i*i >n . This is the required
value for m. W use the variable x to store

the val ue of f‘l(a) and the variable ¥3 to
“count” up to i*i by successively taking val ues
8,f(a),...,£7 (a) . The final value of x is

"(a) and it remmins unchanged for the rest of
the program

Execution of lines (5) to (f) now causes the
variable x; to be "planted" at P ™x) . The
while statenent between lines (7) and (8) consti-
tutes the main part of the program The variable
y takes on values in the sequence

(a) ,
e(£(a), 7 Ya)) |
s(e(£(a), 71 (a)), £272(a))

gle(. vee(™a@), P Ha)), .), M)

On exit fromthis while-loop the value of zis
£17Ma)
Lines (9) and (5) to (6) are then used to

reset the planted value to £~ -2m a) and the
process is repeated. After it, the planted value

is reset to - 3m() , and so on. A special case
is encountered when the integer corresponding to

z becones less than m. In this case, the next
pl anted val ue should be sinply a , and hence the
use of line (9) instead of sinply setting x2 ~=x .

5. Appendix B -- Proof of Theorems ¢~

W use the terminology T, =T, to nean the
schemes T, and T, are equivalent, and T, 5T

to mean Ty i ncl udes T, -

Proof of Theorem 1 (Solvahility of 8)

2

I(a),(b),(c): The solvability of the halting,
|vergence and equival ence problens follows from
the solvability of inclusion:

(a) Gven a schema T of 8, T halts if and

only if T* oH where H represents the schema

[Start; HALT(a)] that always halts with output a,
and T* is the schema T with all HALT statenents
changed to HALT(a)

(b) Gven a schema T of) » T diverges if

and only if L o T, where L represents the
schema [START ; LOOP] that always |oops,

(c) Gven two schemas T, and 7, of Sy

2
T, =T, if and only if T.oT,and T, o T

1 2 2 1°

1(d): W give below only the intuitive idea
behind the proof of solvability of the inclusion

problem @G ven two schemas Ty and T, of G

to decide if 7,50, an automaton is constructed

that simulates the conputations of T and T, in

parallel. The input tape of the autunaton repre-
sents an interpretation for T, and T, . The
input tape is rejected if T and T2 both halt

but with different outputs, or if 1, halts andy

diverges, under the interpretation corresponding
to the input tape; otherwise, the tape is
accepted.

To describe the operation of the automaton we
first introduce the notion of the "specification
state" of a variable y . The specification state
represents the outcones of all possible tests that
coul d be performed by a schema without changing the
value of the variable y (and using ternms no
"larger" than the "largest" termused in the schemas
T, and 72). The automaton sinulates the conpu-
tations of T, and T2 not just for the main-line
conputation, but for a large number of "instances"
of the variable y . There is one instance for
each assignment Statenent and each constant term
(no larger than the largest tern). The conputation
of an instance (for an assignment statement and a
term) represents what the schema would really do if
its main-line variable happened to equal that
constant term after that assigmnment Statenent.

The conputation on each instance is kept in
step, and the automaton keeps track of which
i nstances have equal values at each step. This
enables the automaton to detect whether the input
tape really represents a feasible interpretation.

The rzason that this specification state
approach works with limted equality tests is that
the finite specification state carries sufficient
information to allowit to be updated. This is not
true for general equality tests, e.g. in the

classes 5, and 5 , if a specification state

were to carry all information necessary to update
it, the amount of information would grow without
bound as the conmputation proceeded.

1(e): The proof of isomorphism is similar to the
proof of inclusion, except that the automaton not
only keeps track of which instances are equal in
val ue at each step, but also which equal instances
have an isonorphic history. The automaton can
then detect if for any input tape the conputations
of the two schemas are not isonorphic.

1(£f): Freedom or nonfreedom is detected by the
algorithm I (g) that translates a given schema in
§, to an equi val ent free schema; “if ever a test

statenent is detected for which sone exit is not
feasible the schema is not free, else it is free.

1(g): W& give below a short outline for the
translation of a given schema T in 8, to an

equivalent free schema T
variabl es). 1
A "partial specification state" is like a
specification state but with the possibility that
the values of certain predicate and equality tests

my be unknown. The schema Y has a (large)

nunber of variables, one variable for each assign-
ment statement and each constant term (no largér
than the largest termused in T).

The schema T, begins by assigning all vari-

1
ables their corresponding initial values. The

schema T, has a (large) nunber of "chunks" of

1

statenents. Each chunk updates the variables.
This corresponds to one step of the automaton in
the proof of inclusion. This updating can be
performed without introducing any nonfreedom

Each chunk is associated with the follow ng infor-
mation (line (iii) is unnecessary for this problem
but it Is required to solve the freedam problenj.

(1) The statenment in T corresponding to each
variable in T,

(ii) Wich variables have equal val ues.

(iii)

Wi ch F}airs of variables have the property
that they both woul d have tested the same
value if we hadn't explicitly avoided that
(i.e., if both variables are "entered" by
the main-line conmputation, nonfreedom woul d
result).

(using several

When updating is performed, no predicate or
equality test is introduced whose outcome is known
from the information corresponding to the chunk.
Loops are detected as before; and some variabl es
may become "inactive" either by looping or halting.

Proof of Theorem 2 (Solvability of s2)

The proof of Theorem 2 is simlar to the proof
of Theorem 1 except that the formal definition of
the specification state reflects the different
kind of equality tests allowed.

10

Proof of Theorem 3 (Unsolvability of ~§)

3(a), (h): W\ define a cl ass 85 of schemas having
two variabl es Y and Y and whose statenments
consist of the follow ng:

Start statenent: START
T
Final statenents: HALT or
LOOP
Test statement: Y - f(yi);
if p(yi) then goto Lj

else goto Lk;
It was shown by Luckham, Park and Paterson
[1970] that the halting problem for the class 35

is unsolvable, and that the divergence problemis
not partially solvable.
To show the halting problem for 85 to be

unsol vable we reduce the halting problem for S
to that for 53 ; that is, we describe an algorithm
that takes any schema T_ inthe class S_ as
input and yields a schema Tf in the class S
such that T’3 halts if and only if T5 . halts.

Simlarly, to show that the divergence problem for
Sj is not partially solvable we describe an algo-

rithm that takes T_ as input and yields as output
a schema T'é inthe class 83 such that Tg'
diverges if and only if T. diverges. W will

unify the construction for the two cases by con-
structing for both cases a schema 7. in the

3 but augmented with a special final
statement called the REJECT statenent:

class S

REJECT statenent: REJECT .

The REJECT statement signifies that the inter-
pretation is unacceptable and is rejected. Loosely
the idea is the following. There exists a map from
interpretations of Ty that are not rejected onto

the interpretations of T5 such that the conputa-
tion for T3 under an interpretation halts if and
only if the conputation for T5 under the corres-

ponding interpretation halts.
Now it is clear that if we replace all REJECT
statements in T5 by HALT statenents to get T’5 ,

then T halts on every interpretation if and
only if T5 halts on every interpretation.
Simlarly, if we replace all REJECT statements by

LOOP statenents to get T% then r diverges
on every interpretation if and only if T

5
diverges on every interpretation.
Gven a schema T5 in S, we construct the

corresponding schem T in S5 (with the addi-
tion of REJECT statenents) as follows. W use the

. P . Ko
variable y o ¢ T. LO represent the |atest W arc now in a position to describe the cén-
) L7 struction of T, . Wthout loss of generality, we
;ariable tested TN ¥y or v, . The 3

: . Wi ll assume that in T_ the first test statement
tunction ¢ plays the sune role in T, as in 1. assu

. . test i . i i
W usc a new function ; called a "test function"; ests the variable 1 T5WI|| effectively

1.€.,

and tests of the form contain 2 copies of T5 except there is only
if p(y) then. . . else. . . one start statement. W will call these copies A
) - and 3. Ve will label statements of T_ by
in T, wll take the form nunbers 1,2,3,... . The corresponding statenents
if o(y) = e(a(y) then . . . else . in T3 will be labelled 1-A, 1-B, 2-A, 2-B,
- 3-A, 3-B,....
in T In addition we use two "control" func-]] .
tions f, and £, , Their roles are the fol | owing: (1) The start statement in T5 'S
if y stands for y, (of S) then £,(y) will START
cqual the value of f(y)) at that instant in the "V m
computation unless, of course, a REJECT statenent gote 15 _
is reached earlier. The role of f,is anal ogous, The corresponding statenments in TJ, are:
1.e., if y stands for v then £,(y) will START
Yy - a3
equal the value of f(y,) . [£(Y) £,y then REJECT else goto i-A

The schema Ty similates a conputation of _
Tg as follows. In the diagram bel ow the elenents Note that the test f(y) £f2(3’) I's not

strictly an allowed statement. W use this
a ., f(a) , £(f(a)) f(f(f(a)R) are represented formfo¥ clarity: it can really be

by contiguous squares from left to right. W "simulated" by the statements:

superinpose on this diagram the conputations of '

bot h T, and T5 . Suppose, at some instant in if f(y) #£,(£,(y)) then REJECT;
the conputation of Tg, 'y, is at point 4, if £,(v) # £,(£,(y)) then REJ'EC.T
and y, is at C, and suppose v1 is being el se goto i-A
"read". T, makes certain that the £, pointers (ii) For any test statement i in To ,if iis
fromthe squares scanned, point to the right of
- \ ; of the form
vy - Suppose that we continue to "read" from vy - £3.)
unti | v reaches point B where the schena To ooy Hds

if (v then goto | el se gotq k;

starts "reading" from ¥, - T.j checks that the
£, pointers fromthe squares scanned, point to the corresponding statements i-A and i-B are:
the right of B . i-Aif 1,(y) # £,(£()) then REJECT,
£ vy~ £(y)
e - if o(y) = slc(v)) then gota j-A
T—TTTT L J?/) (L(l)) -elseﬁoto Jk A
gotQ At
A B C D
Yy y2 i-B if f(y) #fz(fl(y)) then REJECT;
push y; —» Y - £,(9);
(T3 reads ;) if a(y) = ele(y)) then goto j-A
else goto k-Aj;
2 (i) For any test statement i in S of the form
1
| }’2 - f(yz);
|AI B] I ICI l I IDIJ if plyy) then wto j else goto k;
i TI11I1] _ _ .
£ i-Aand i-B are sinmilar to the above,
1 except, one has to interchange f; with f,
v Yo and Awith B .
push v, —» (iv) HALT and LOOP statements remain unchanged.

(T, reads y,) his conpl etes the construction.

11

‘Ine main reason thal the schema T can

is that cach

s irmlute the computation of ‘l.) 1

£, "puinter" | S checked at most once from cach
2

square. [pointers were Lo ve checked twice and
it turned out that they were required to point to

dit'ferent values there might exi st no interpreta-
Lion satisfying this condition -- the result would

bc that all interpretations of ¢, would be
rejected. 3
S{c): The non-partial solvability of the cquiva-

lence problem follows directly fran the non-partial
solvability of the divergence problem (Part (b)),
since a program schema in S, diverges if and

only if it is equivalent to the schema:

START
y*= &;
LOOP .

2(d): The non-partial solvability of the inclu-
sion problem follows inediately from the non-

partial solvability of the equivalence problem
since T, =T, if and only if ,0T, and

T2 o) Tl .

-S(e): The non-partial solvability of the isomor-

phism problem also follows directly from the non-
partial solvability of the divergence problem
Gven a schema T in the class 85, construct a

new schema T also in S3 obtained by replacing
each HALT statement in S3 by the statenents:
Y - £(y) ;
HALT .
Then T and T* are isonorphic if and only if
T diverges.
3(f): The non-partial solvability of the freedom

em is shown by reduction of Post's Correspon-
dence Problem for nonempty strings (EP) to the
nonfreedom probl em for schemas in 53. The proof

follows along lines simlar to a related proof in
Paterson [1967] with the mechanism for effectively
simulating two variables while using only one (as
described in the proof of Z(a),(h)).

3(g): There can exist no effective translation
to a free schema since if there did exist such an
algorithm we could decide whether or not a given
schema of S5 halts since the halting problem for

free schemas is trivially solvable.

pro

Proof of Theorem 4 (Unsolvability of Sh)

. The proof goes along lines quite simlar to
the proof for Theorem 3. W Yirst define a subset
S, of the class of schemas S5 S¢ l'i ke s5 ,
has two variabl es N and v, , one function sym-
bol f , and one predicate symbol p . However,
8. has the constraint that in any path through

a schema of S¢ after each statement that tests
the variable ¥ there nust be either one or two

12

slatements that Lest y, (followed by a final
statement Or another Lcst of g) -- note the form
ol the test statement Of ' 55 definod in the progof

of 3(a),(b). The halting and divergence problens
of S, can be shown to be unsolvable, and the

halting and divergence problens of 8¢ can be re-
duccd to those of 8, This inplies the unsolva-
bility of problens (a)-(e) and (g) for 8, - The

freedom problem (f) can be shown to be unsol vabl e
on lines simlar to the proof for 3(f), i.e., by
reducing EP to the non-freedom problem and effec-
tively simulating two variables while actually

using only one.
Proofs of Secondary Results

In the following results the number of func-
tions does not include the individual constants.

(i) Schemas with One Variable, Two Functions and
(Ceneral Equality Tests

The class of flowchart schemas with one vari-
able, two functions (no predicates) and general
equality tests s unsolvable.

If conpletely general equality tests are
allowed it is easy to see that two function con-
&nts suffice to render the class of schemas
unsol vabl e because nmore function letters can be

"coded” in terms of two functions. For exanple,
in 3 we could use only two functions £ and g
by making in the construction of T, from T5 the
following substitutions: for all terns t
simul taneously substitute:

£(£(t)) for £(%)

flg(t)) for g(t)

g(f(t)) for £(¢)

ala(t)) for £,(¢)

Al the unsolvability results go through on
making this substitution. Simlar substitutions
can be made to show the unsolvability of freedom.
(ii) Schemas with Two Variables, Two Functions and
Restricied Equality Tests

The class of flowchart schemas with two vari-
ables and two functions [no predicates) Wih tests
only of the formy, = #(y,) are unsolvable.

Consider the class S, which is the sane as

s5 but with the difference that there are two

function constants £ and f, and no predicate
const ant.

The conputation of any schema T5 in S5 can
be sinulated by a corresponding schema T, in S7.

obtained by replacing every test statement of the form
vy - Tyy) s
if P(yi) then goto L.J el se goto L
by a test statenent of the form
Y, - £(y,)3
if ¥, = e(y;) then goto L, else goto L,

1t iz casy tosec that ror any path, finite or
intinite, through T. , il' there exists an inter-

pretation for which T, executes statements al ong

tuic path, then there is an interpretation for
which T, cxecutes statements along the corres-

ponding path. This establishes the unsolvability
of (a)-(e) and (g) for the class S7 “{note that

the unsolvability of (c)-(e) and (g) follows from
the unsol vability of (b)),

Further, the freedom probl em too can be shown
to be unsolvable by reducing FCP to it. The
reduction 1S related to the corresponding reduction
in Paterson [1967], but to do it with 2 function
synbol s we need the additional "cleverness' of
padding each synmbol of the rcp with enough "bits"
inorder to allowfor testing, to effect a non-
deterministic search. .

(iii) Schemas with One Function, Restricted
Equality Tests

Schemas with one function using tests only
of the Torm 'y, =yJ

are unsolvable.

The halting and divergence problens for two-
counter automata are known to be unsol vable
(Hopcroft and Ul man [1969]), and can be reduced
to the halting and divergence problens for one-
function schemas in a rather direct manner. In
the reduction process the only care that has to be
taken is for the operation of incrementing one to
a counter, in which case the schema checks for,a
| ooping interpretation as in Example 3 of Appendix
A The unsolvability of the equival ence,
and i sonorphi sm probl ens follows from the unsolva-
bility of the halting and divergence problens.

6. References

Ashcroft, Manna and Pnueli [1971] -- E. Ashcroft,
z. Manna and A Pnueli, "Decidable properties
of nonadic functional schemas", in Theory of

Machines and Conmputations (Kohavi and Paz,

Eds.), Acadenic Press, pp. 3-18.

Chandra {1972a]1 -- A K Chandra, "Efficient com-
pilation of linear recursive programs",
Report, Computer Science Dept., Stanford
Univ. (to appear).

Chandra {1972b] -- A K. Chandra, "Properties and

applications of program schemas", Ph.D.
Thesis, Conputer Science Dept., Stanford
Univ. (to appear).

Constable and Gies [19711 -- R L. Constable and
D. Cries, "On classes of program schemata",
Report, Conputer Sciermce Dept., Cornell Univ.
(August 1771).

Garland and Luckham [1971] -- S. J.

Garland and
D. C. Luckham, "Program schenes,

recursion

schenes, and formal |anguages", uCLA report
(June 1971).
Hewitt [1970] -- C. Hewitt, "Mre conparative

schematology™, A l. Meno 207, Project MAC
MI1.T. (August 1970).

Hoperoft and U | man {1949] -- J. E. Hoperoft and
J.d. Ulmn, "Formal |anguages and their
relation to automata", Addison-\Vésley, 1969.

i ncl usi on,

13

lanov {1960} -- Y. |. Ianov, "The logical schenes
of algorithms". tnglish translation in
Probl ems of Cybernetics, Vol. 1, pergamon
Press, New York, 1900, pp. 82-1k0.

Luckham, Park and Paterson [1970] -- D. C. Luckham,
D. M. R. Park and M. S. Paterson, "On fornma-
l'ized conmputer programs”, J. of Conputer and
System Science, Vol. 4, No. 3 (June 1970),
pp. 220-2k9.

Paterson [1967] -- M s. Paterson, "Equival ence

problems in a nodel of conputation", Ph.D.
Thesis, University of Canbridge, England
(August 1967). Aso Al. Mno No. 1, MI.T.
(1970) .

Paterson [1968] -- M S. Paterson, "Program
schemata’, in Machine Intelligence 3 (Mchie,

Ed.), Edinburgh Univ. Press, pp. 19-31.

Paterson and Hewitt [1970] -- M S. Paterson and
C. E Hewitt, "Conparative schematol ogy", in
Record of Project MAC Conference on concurrent
systens and parallel conputation, ACM New York
(Decenber 1970), pp. 119-128.

Pl aisted {1972] -- D. Plaisted, "Program schemas
with counters", Proceedings of the Fourth
Annual ACM Synposi um on the Theory of Conputing,
Denver, Colorado (M 1972).

Rut | edge [1964] -- J. D. Rutledge, "On Ianov's

program schemata", J.ACM Vol. 11, No. 1
(January 1964), pp. I-7.
Strong [1971a] -- H. R Strong, "Translating

recursion equations into flowcharts", J. of
Conputer and System Science, Vol. 5 (June 1971),
pp. 254-285.

StronP [1971p] -- H. R Strong,
anguages of maxi mum power",
Report.

"H gh |evel
|’ BM Resear ch

