
r- f

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-158

COMPUTER SCIENCE DEPARTMENT
REPORT'NO. CS-250

, PROGRAMSCHEMASWITHEQUALITY1;

j
1 * BY

ASHOKK. CHANDRA

ZOHARMANNA

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY.

ARPA ORDER NO. 457

DECEMBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

.

Abstract

PROGRAM SCHEMAS WITH EQUALITY

by
Ashok K. Chandra and Zohar Manna

Computer Science Department

Stanford University
. .

We discuss the class of program schemas
augmented with equality tests, that is, tests of
equality between terms.

.

*

In the first part of the paper we discuss and
illustrate the "power" cf equality tests. It
turns out that the class of program schemas with
equality is more powerful than the "maximal"
classes of schemas suggested by other investi-
gators.

In the second part of the paper we discuss
the decision problems of program schemas with
equality. It is shown for example that while the
decision problems normally considered for schemas
(such as halting, divergence, equivalence,
isomorphism and freedom) are solvable for Ianov
schemas, they all become unsolvable if general
equality tests are added. We suggest, however,
limited equality tests which Can be added to

- certain subclasses of-,program schemas while
preserving their solvable properties.

1. Introduction

In recent years the study of schunas has been
widely pursued in an attempt to understand the
power of programming languages. In the study of
program schemas, the functions and predicates
allowed are usually considered to be uninterpreted
symbols. The reason for this is that very simple
interpreted programs yield all the partial recur-
sive functions, and therefore interpreted programs
do not provide insight into the difficulty in
programming; e.g. the difference between the
essentially iterative nature of Fortran and the
recursive structure of Algol or PL/l.

Earlier works in this area, e.g. Ianov
[1$X&l, Rutledge [1964 1, Paterson [1767, 1968]
and Luckham, Park and Paterson [1370] essentially
considered flowchart schemas, and emphasized the
decision problems for schemas, viz. halting,
divergence, equivalence, etc. Most of the recent
papers, on the other hand, e.g. Paterson and
Hewitt [1971], Strong [1971a], Constable and
Gries [lg71] and Garland and Luckhem [19711
considered more powerful schemas, i.e., flowchart
schemas with additional programming features like
counters, recursion, push-down stacks and arrays;
and were concerened mainly with the problem of
translating program schemas from one class to
another.

Several formalisms have been considered in
the literature for the description of schemas.

We define a flowchart schema as being a program
with the following features: it has a finite
number of program variables denoted by y1,y2, . ..)

a finite number of uninterpreted function symbols
fl, fp - l l (which may be ccxnbined with the variables

to form terms) and a finite number of predicate
symbols denoted by plJp2,... . Some of the func-

tion symbols may be zero-ary. These stand for
individual constants, and are denoted by

a19a2'"' l

A statement in the program may be:

(4 an assignment statement of the form

Yi ct

where t is any term, (b) a predicate statement
of the form

if Pi(tl't2'- @ L1 else got0 L2

where tl, . . ., 5-l are terms and: L1,L2 are labels,

The research was supported by the Advanced Research Projects Agency of the Office of the Secretary of
Defense under Contract SD-183. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of the Advanced Research Projects Agency or the U.S. Government. Reproduced in the USA.
Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia
22151. Price: Full size copy $3.00; microfiche copy $.95.

, 1
I

d

It is quite surprising, though, that people
have so far neglected to mention one of the most
usefbl features: equality tests between terms,
i.e., statements of the form

if t1 = t2 e got0 L1 * got0 L2 ,

where tl,t2 are terms and L1,L2 are labels.

The extension of program schemas to allow
equality is quite natural, much as is the exten-
sion of first order predicate calculus to first
order predicate calculus with equality. The . .

analogy Can be extended further in that in both
cases equality tests can be treated as just any
other binary predicate but with a partial inter-
pretation which in turn involves all other predi-
cates and functions used in the system. This
tends to be an unnatural approach to the treatment
of equality. Accordingly, we prefer the direct
approach of allowing the equality test to be a
basic operation in the system as is the operation
of assignment to a variable.

The reason for the anission of equality tests
in earlier papers can perhaps be traced to the
following fact. All schemas discussed in the
papers mentioned above have one very important
common property: the behavior of a schema for all
interpretations can be characterized by the
behavior for a subset of all interpretations
viz. the Herbrand interpretations. We therefore
call all these schemes Herbrand schemas. To be
somewhat more precise, in a Herbrand schema, for
every interpretation there "corresponds" a Herbrand
interpretation that follows exactly the same path
of ccmputation. Flowchart schemas with equality
tests are in general non-Herbrand schemas, that is,
they may behave quite differently for Herbrand
and non-Herbrand interpretations. Consider, for
example, the simple schema:

START
if a = b then HALT else LOOP .

This schema haxfor s&??nterpretations and
loops for others. For all Herbrand interpretations,
however, it always loops. It is therefore a non-
Herbrand schema, and further, there can be no
Herbrand schema that is equivalent to it. A non-
Herbrand schema that has no equivalent Herbrand
schema is said to be an inherently non-Herbrand schema

The use of equality tests does not necessarily
make a schema non-Herbrand. Example 0 in Appendix
A is an interesting instance of a Herbrand program
schema with equality tests that has an equivalent
Herbrand program schema without any equality test
and also an equivalent non-Herbrand program schema
(which does have equality tests).

There are several other features which in
general give rise to non-Herbrand schemas: the
use of quantified tests is one such. Unfortunately,
it is not partially decidable if a given schema is
a Herbrand schema. This result follows from the
fact that it is not partially solvable whether or
not any given flowchart schema (without equality
tests) diverges for every interpretation. Given
any flowchart schema T , replace every IIALT
statement by the statement

if y=a then h&T else Loop ,-

where a is a new individual constant. Now the
new schema is a Herbrand schema if and only if T
diverges for every interpretation.

In the rest of this paper, we illustrate the
power of equality tests (Section 2) and the dtiision
problems concerning program schemas that use them
(Section 3). For the sake of clarity we merely
give the "flavor" of the examples in the main part
of the paper, and we state the theorems without
proof. Details of the examples are given in
Appendix A (Section 4) and the proofs are sketched
in Appendix B (Section 5). Detailed proofs can be
found in Chsndra [1372b].

2. The "Power" of Program Schemas with Equality

The use of equality tests in program schemas
raises an old question that has been asked several
times and never been answered to our complete
satisfaction -- just what is a schema? We do not,
in this paper, propose to answer this question, but
we can indicate that much remains to be studied.
It has been suggested (Constable and Gries [lgl],
Strong [1971b]), for example, that the class of
program schemas with arrays might be a "maximaln
class of schemas, i.e., for every schema there
exists an equivalent schema in this class. Now,
it may be that the class of array-schemas is indeed
maximal with respect to the Herbrand schemas, but
nevertheless alischemas in this class are H&brand
schemas. It has been shown, however, that there
exist certain schemas using equality tests that are
inherently non-Herbrand. This means that the class
of program schemas with arrays and equality tests
is a strictly larger class.

A problem is said to be a Herbrand problem if
it can be solved by a Herbrand schema. A non-
Herbrand problem is one that can only be solved by
inherently non-Herbrand schemas. The class of
program schemas with arrays and equality tests can
solve certain non-Herbrand problems (which by the
definition of a non-Herbrand problem cannot be
solved if only arrays are allowed).

We first illustrate this point with two exam-
ples of non-Herbrand problems.

Example 1: Inverse of a unary function

Consider the following problem: "Given a
unary function symbol f , a finite number of other
n-ary function symbols, n>O, and an input
variable x , write a progr& schema that under any

interpretation will yield a value of f-l(x) as
output. That is, it finds an element y that can
be eaxpressed in terms of the given function symbols
and the input variable s , such that f(y) = x ;
if no such element exists, the schema loops forever".
This problem, which is essentially one of inverting
a given unary function, is non-Herbrand, the reason
being that if the input x is equal to the zero-ary
function a then it has no inverse in any Herbrand
interpretation, whereas for other interpretations
it may have an inverse. It follows that the task
cannot be performed by any Herbrand schema. The
task cannot be performed by any Herbrand schema.
The task is, however, well within the capability of
flowchart schemas with arrays and equality tests.
A schema in this class that solves this problem is
described in Appendix A.

Example 2: Herbrand-like interpretations

Given a set of function and predicate symbols
of which there is at least one zero-ary function,

We say that an interpretation I for this set is
Ilcrbrand-like if there exists some Herbrand,intcr-
pretation If such that there is a l-l homomor-
phism from II into I . In other words, an
interpretation I is herbrand-like if and only if
for every pair of distinct terms tl and t2

(made up of the given functions) the elements in
I corresponding to tl and t2 are distinct.

Now, consider the following problem: "given
an interpretation for a set of function and
predicate cyml~ols, of which at least one is a
zero-ury I'lnlction, dcLcrmino if the interpretation
is not Ilcrbrand-like. If tlic interpretation is
not ilcrbrand-like then halt with no output, else
diverge." This problem is inherently non-Herbrand
in nature since a schema that solves this problem
must diverge for every Herbrand interpretation.
But for certain other interpretation6 the schema
should halt. A schema with equality tests that
solve6 the stated problem is presented in
Appendix A. M

The problem presented above is an abstract
model closely related to certain problems in real
life programming. As an illustration, consider a
directed graph (with an identified root node) in
which each node has two identified pointer6 leading
from it. Pointers may lead to a terminal node
"NIL" . The problem is to determine whether or not
the given graph is a tree. This problem may be
modelled by the above problem with two monadic
functions representing the two pointers, and with
the difference that the search for the equality of

. two "terms" is conducted not for the entire set of
all terms, but for the6e terms not representing
NIL. The correspondence is that the interpretation
is Herbrand-like for this set of term8 if and only
if the corresponding graph is a tree.

Another related problem is that of determining
if a given list is circular. In this problem, too,
the explicit use of equality in a schema model of
the computation represent6 a more natural approach
than the treatment of equality as an interpreted
predicate.

While the main interest in equality tests
stems from the fact that programmers frequently do
use tests of equality between variable6 whose
value6 are data element6 and these test6 are often
of a non-Herbrand nature, equality tests find scme
interesting applications in problem6 that are
really Herbrand in nature. We give two examples
below.

Example 3: Trs.nSlatiOn of flowchart schemas with

C o u n t e r se
The recursive schema

F(F(f(x))) else f(x)

can be translated to an "impure" flowchart schema
by introducing a counter. It can also be trans-

'lated to a rather horrendous flowchart schema
Ywithout any explicit counter (Plaisted [1972]).
However, the use of equality gives a relatively
simple flowchart schema equivalent to the above
while retaining the advantage of having a "pure"
schema (all functions and predicate6 being left
uninterpreted). Details are presented in
Appendix A.

Example 4: Efficient translation of linear

recursive schema6

Consider the recursive'schema, T :

F(a) where ‘

F(Y) * if P(Y) g g(F(f(y)),y) else Y l-

Let I be an interpretation of T for which

there exists an n , n ,> 0 , such that fn(a) =

FALSE and for all k < n , f?a) = TRUE . The
output of the computaxion (T,I) is the term

d&d l ** df�WPW . l l) f2WM4L4 .

For usual implementations of recursion the
computation of the interpreted Schema (T,I) takes
time (the number of operations on data structures
performed) and space (the number of values stored)
both proportionalto n . The recursive schema
T can be translated to an equivalent flowcharb
schema using a fixed memory size (number of
variables) and time proportional to n*n . using
equality tests, however, the time c6n be brought

down to some constant times n (1+4 , where E is
any arbitrarily small positive number. Details of
the construction are given in Appendix A. For
further discussion of this topic, see Chandra
[1972a I.

3. Decision Problems

for

(4

(b)

(4

Cd>

(4

(0

(e)

We consider the following decision problems
classes of schemas:

The halting problem -- to decide whether a
given schema in the class halts on every
interpretation.

The divergence problem -- to decide whether a
given schema in the class diverges on every
interpretation.

The equivalence problem -- to decide whether
two given schemas in the class are equivalent.

The inclusion problem -- given two schemas A
and B to decide whether A includes B , i.e.,
for every interpretation either both schema6 halt
with the same output or schema B diverges.

The isomorphism problem -- to decide whether
two schema6 are isomorphic to each other. (Two
schemas are said to be isomorphic, or opera-
tionally equivalent, if the sequences of
statement6 executed by both schemas are exactly
alike for every interpretation.)

The freedom problem -- to decide whether a given
schema in the class is free.

The translation problem -- to translate any
schema in the class to an equivalent free
flowchart schema (using any number of
variables).

It should be noted that the translation problem
is not strictly a decision problem. We include it
in this list, however, because it is an interesting
problem closely related to the others.

3

AU thccc questions can be answered in the
al'i'irmativc for the class of lanov schemas which
consists of one-variable flowchart schema6 using
only monadic function and predicate constants
(Ianov Ll$O], Rutledge [l$k]). In view of this
it is somewhat unexpected that the addition of
gcncral equality tests to Ianov schema6 renders all
these decision problems unsolvable. On the other
hand, we show that these problems for Ianov
Schema6 cxtcnded even to nonmonadic functions and
resets but with limited equality tests are -.
solvable.

It should be stated that for all "conventional"
schemas, i.e., all Schema6 mentioned in this paper
and in earlier works, the following problems are
at least partially Solvable:

(a’)

(b’)

(4

(f’)

The halting problem -- to decide whether a
given schema in the class halts on every
interpretation.

The non-divergence problem -- to decide
whether a given schema ever halts,

The non-isomorphimn problem -- to decide if
two schema6 are not isomorphic to each
other.

The non-freedom problem -- to decide if a
given schema is not free.

The notable exception6 are the equivalence
and inclusion problems. In general, the equiva-
lence and inclusion problem6 as well as their
negation6 are all not partially solvable.

3.1 Notation

We use the Symbol6

(1) aa aY 1, p*** to represent individual constants

(or zero-ary functions, if you will),

(2) Y>YpYrp.- to represent program variables,

(3) f,f,,f,, l **
to represent functions, and we

use

(4) PYPl'P2'"' to represent predicates.

The set of terms is defined by the smallest
set containing 8'6 , Y’S and closed under the
following operation: if tl,t2, . .., tn are terms,

and fi is an n-ary function symbol, then

fi(tlY � l *Y tn) is also a term.

We use the notation t(yl,y2,...,yn) to

represent that yl,y2, � l =,Y are the only variables

that may be present in t .n Thus a term t(y)
may or may not contain the variable y , but
contain6 no other variable. A term t() indicates
therefore a constant term, that is, a term that
has no occurrences of y's at all.

Given a nonconstant term t(y) , i.e., one
containing the variable y , a common subterm
t'(y) of t(y) is one such that if every
occurrence of t,(y) in t(y) is replaced by an
individual constant then t(Yj is reduced to a
constant term. Clearly the terms y itself and
t(y) are camnon subterms of t(y) . Also, if
t'(y) and t"(y) are common subterms of t(y)
then t,(y) is a canmon sub-term of t"(y) or
vice versa.

The assignment depth \It(y)I\ of a term
a!. is defined to be the number of c-on sub-
terms in t(y) excluding y itself. By conven-
tion, for a constant term t() , \\t()\\ = 0 .

The depth It(y)1 of a term t(y)+ is the
maximum depth of nesting in the term, and is
defined by:

It0 1 = 0 Y

)Yl = 0 I

If(t19t29 l l l ytn) 1 = ma.4 It,l,. . ., It,\>+1
Note that for monadic terms \\tll = It\ , and in
general IH < ItI l

A few examples illustrate
this point. In-the following table

(a) stands for t(y) ;

(b) stand6 for comm;Ee;terms of t(y)
(excluding y . ;

(c) stand6 for \\t(Y>\l ;
(d) stands for It(y)1 .

(4 w (c> @>

Y 0 0
f(a) 0 0
f(Y) f(Y)
fk(h(y) >) h(y) ;d-dy) ;f&(d : :
f(dayy),dayy)) g;(w) ~fkGby)y da,y)) 2 2
f(y, ehy> > f(w(w)) 1 2

3.2 Solvable Classes

Consider the rather general class Sl of

flowchart schemas with one variable. Schemas in
Sl contain the following statement types (Ll and

L2 are arbitrary labels in the definitions below):

START statement:

Final statements:

START
y + a.1

HALT or
LOOP

Assignment statement: y + t(y)

predicate-test st.: if p(t,(y),...,t,(y))-

else got0 L2- -

Equality-test st.: if tl(Y) = t,(Y)

The equality tests allowed must, however, satisfy
the condition that either t,(y) or t,(y) is a

constant term, or else both \lt,(y)/ and /t,(y)II

are less than or equal to 1 .

THEOREM 1 (Solvability of S1) . For the class Sl

l(a) the halting problem is solvable

l(b) the divergence problem is solvable

4

the equivalence problem is solvable

the inclusion problem is solvable

the icomorphism problem is solvable

the freedom problem is solvable

l(g) any schema can be effcctivcly translated to
an equivalent free schema (with the addition
of extra program variables).

This theorem include6 as special cases the
results of Ianov [1@3], Rutledge [1964], and also
recent extensions by Pnueli [private ccamnwlication]
and Garland and Luckham [1971].

As a special case, the problem6 (a)-(g) are
solvable for the class of l-variable monadic
schema6 allowing resets and equality tests of the
forms: .,

tl() =t20 Y Y=t(> , Y = Q(y) , and fi(y) =fj(y)

Consider, next, the class S2 of schernas,

similar to the class S 1 , but with a change in

the form of equality tests allowed, viz. the
equality test statements allowed are of the form:

if t,(Y) = t2(y) then e Ll else goto L2 ,
*

but this time the resix:iction is that @l(y)/ =

llt2(Y) II l

c

THEOREM 2 (Solvability of S2) :

Problem6 (a)-(g) -are solvable for the Cla66

s2 l

As a special case, the problem6 (a)-(g) are
solvable for the class of l-variable monadic
schemas allowing resets and equality tests of the
form:

t,(y) = t,(y) where Itl(Y) 1 = It2(Y) 1 l

3.3 Unsolvable Classes

It should well be asked why we have the
"strange" restrictions on the form of equality
tests above. The answer is that even slight

a generalizations of the restrictions above yield,
astonishingly, classes whose problem6 are unsol-
vable. We demonstrate this on two classes.

Consider the class S
3 consisting of one

variable y , one constant a , no predicates and
only monadic function constants. Statement6 in
schemas of S3 are of the forms:

START statement: START
3 - a

Final statements: HALT or
LOOP

Assignment statement: y c fi(y)

Equality-test st.: if fi(Y) = fj(fk(~>)

else got0 L2

s3 differs fran Sl in that noncon~tpnt

terms of depth 2 are used-in &quality tests; and
it differs fram S

2 in that terms tested for

equality do not have the same assignment depth.

THEOREM 3 (Unsolvability of S3) : For the class

s3 :

X4
3(b)

3(c)

3(d)

3w

3(f)

3(s)

/

the halting problem i6 unsolvable

the divergence
solvable

problem is not partially
c-

the equivalence problem is not partially
solvable

the inclusion problem is not partially
solvable

the isomorphism problem is not partially
solvable

the freedom problem is not partially
solvable

there exists no effective translation to
equivalent free schemas.

For the sake of completeness we should mention1 . . -that tne nonequivalence and the noninclusion
problems for this class too are not partially
solvable. Of course, the halting, nondivergence
and nonisomorphism problem6 are partially solvable,
which follows from the general result mentioned in
the earlier parts of Section 3.

We introduce next the class S4 of l-variable

monadic schemas similar to S, but with the

difference that equality test: allowed have the
following form:

if y = t(y) then goto Ll else @- I ,2

where 11 \t(y>(5 3 , i.e., tests may have any of

the forms:

y = fi(Y) Y

Y = fi(fj(Y)) Y or

Y = fi(fj(f,(Y))) '

'IYEOREM 4 (Unsolvability of q) :

Problems
unsolvable.

(a)-(g) for the class
%

are

A class of schemas is said to be solvable if
its decision problems (a)-(e) are solvable;
similarly, a class is unsolvable if its decision
problems (a)-(e) are unsolvable. Classes Sl and

s2 are solvable whereas s3 and S4 are unsol-

vable. On comparing these classes it is clear that
there is a very sharp demarcation between classes
of one-variable schemas that are solvable and those
that are unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked
how many function symbols suffice to render a class
unsolvable. It can be shown, for example, that for
the class $, merely 4 functions are sufficient.

5

It is more intoresting to note, however, that
thcsc fUct.ion cynho:L:: can be "coded" using only 2

START
Y - a;

function symbols so that cchemas with one variable, L:

So far we have restricted our consideration
to schcmas that have only one variable. The reason
is obvious: one-variable schemas provide the most
interesting solvable classes. When more variables
are allowed, even a very few features tend to make
the schcmas unsolvable. For example, schemas with
two variables, two functions and tests only of the ~
form y, = f(yi) are unsolvable.

It is even more interesting, though probably
not surprising, that schemas with a single function
too are unsolvable; for example, the class of one-
function schemas having t-sts only of the form

'i = y-i is unsolvable ('j variables suffice in

thiscase) .

The proofs of these secondary results are
also presented in Appendix B.

4. Appendix A -- Detailed Examples

Fxizunplc 0: A Herbrand schema with equality

Not all schemas that use equality tests are
non-Berbrand. Consider, for example, the schema

START --

yl - y2 + a;

L: if P(Y,) then

if P(Y,) then-

tbc4n

Yl +- f(Y1);

y2 a- f(Y$G
&o& L;

end

else ;f v-L-=-l = a then HALT else LOOP

else i_f y--1 = y2 then HALT else LOOP ..-

This is a Herbrand scha:la because the equality
-test Yl = Y2 must always be true, and the

equality test yl = a can never be entered. The

(5ven sc!lema is hence equivalent to tiie following
schema, which has no equality test.

START
jr + a;
L: if-

&L
. end
else HEiC

The following schema is also equivalent to the
above schemas, but it is a non-Xerbrand schema
because the LOOP statement in it cnn never be
entered for any Herbrand interpretation. The
schema is, however, not inherently non-Eerbrand.

gotoL
end

elseHALT .-

Example 1: Inverse of a unary function

For simplicity we assume that the only f'unc-
tions are a single zero-ary function a , the given
unary function f and a binary function g . The
possible terms are therefore:

x, a, f(x) , dv4 , f(a) , g(a, a> , gh4 y

g(a,⌧> , f(W) , l *a

The schema for any other set of functions is similar
to the one for this particular case.

Symbols Cl' =p cj stand for counters.

Strictly, the only operations allowed on counters
are adding and subtracting one, and testing for
zero. For convenience, however, we will also allow
other statements such as ci + 0 , ci + c. , and

J
tests like ci = c. , as it is clear that these

J
operations can be performed using only the legal
operations and additional counters.

(1) -- 2.y
* x;

Cl '0;

(2) -- c2 t 1; A[c2] - a;

(j) -- REPEAT: Y - Abll;

(4) -- if f(y) = x then HALT(y);-

c2 - c2+1; A[c2] + f(y);

cc, + c2+1; Ab21 + dY,d;

'3 + '1'
while c3, # 0 do-

begin

c3
- cz-1;

c3 s- c;+l; Ah21 + dAkl,y);

c2 - c2+l; Ah,1 e- dy,Aic31);

g;

- cc1 1+1;

(5) -- Go+,0 REPEAT .

After the initialization phase (lines (1) to
(2))

A[O] = x , A[11 = a , cl = 0 , c2 = 1 .

After completing one pass through the outer loop of
the program (lines (3) to (5))

a[21 = f(x) , AC31 = g(s,x) , cl = 1 , c2 = 3 ,

and after a second pass

A[k] = f(a) , A[51 = &(%a) y

A[C] = g(x,a) , A[71 = g(a,x) , cl = 2 , c2 = 7 -

.

The ai&orithb works QS follows: two pointers cl

and c2 rcfercncc the array. A[cl] represents

the "currfxt" value. If the current value is not
the inverse>'Y as determined by line (Ii), it is
composed with values preccdin;: it in the cnumcra-
Lion by Iunction applications, and the new values
obtnincd arc added to the array.

It can bc shown by induction that the process
of cnumcralion cencratcs and tests each possible
term exactly once. 'This means that the inverse
will be found if it exists. The point at which
the test of the inverse is made could be changed
to effect time efficiency but without altering the
main features of the program.

Example 2: Herbrand-like interpretations

We assume that the only fu&tions are a sin-
gle zero-ary function a , a unary function f
and a binary function g . Therefore the set of
terms includes

a , f(a) y day4 , f(fb)> , dWyfW) ,

dwW) , ..- .

The required schema is:

@) -- E-7+ a;

(2)-- Cl + c2 + 0;
--.

(5) -- REPEAT: Y + A[+
rc;+;----- - 1

'
1’

(4) --I

while c4 f: 0 &
I
I

begin
I1

I
c4 + c4-1;

I
if A[c4] = y then HALT; ,

L -?c _ - - - - J

c2 + c2+1; AbeI + f(y) ;

c2 + c2+1; Ahe1 + i&w);
c3 + cl;
while c3 # 0 &

begin

c; +c
/ 3-G

c2 + c2+1; Ahe1 + c(A[c31,y);

c2 + c2+l; Ah21 + g(~,A[c~l);
C&;

+ cc1 1+1;

- (5) -- @ REPEAT .
.

.

c

Rxamplc 3: Translation of flowchart schemas with

Counters

The recursive schema
1. -

F(a) where

F(Y)

can be translated to a flowchart schema with one
program variable y and one counter c .

START
Y + a;

(1) -- c + 0;
while true do

if P(Y)--

.
end

13 ---- c + c-l;
end;

DONE: R.A.LT(yF

Note that the test)) c = 0 ' above is not a test of
equality between two data structures but rather
between an interpreted variable, i.e., c , and an
interpreted constant, i.e., 0 .

The corresponding equivalent flowchart schema
with equality tests instead of counters uses three
variables:

y plays the same role as the variable y above,

Z effectively simulates a counter, and

W is a temporary variable.

The idea behind the method is that the variable z.
s5zulates a counter, where f'(a) stands for the
integer i . Therefore, the statement z + a
stands for the statement c -0, z + f(z) stands
for c + c+l , and the statements
[w + a; while f(w) # z do w + f(w); z + w] stand
for ccc-l. WC haveto be careful, however.

The term f"(a) stands for the integer n , n>O,
. only if for no two distinct numbers i,j rn are

the telT;s f'(a) and fJ(a) equal. Interpreta-
tions for which the counter is required to count up
to an integer n where there exist i,j -<n,

i f j , such that f"(a) = fj(a) are called looping
interpretations. It can be shown that for looping
interpretations the given recursive schema never
halts. The required program schema is therefore
easy to construct:

This program is quite similar to the previous
one in the manner of enumeration of terms. The
fact that each term is generated exactly once is
used in making the test (4) to check if a value
is repeated.

7

- - lclleck

(:.!) --

whil c w b z (10 lfor a
.i.E w =: f(X) --

t11cn ICOP
IloopinC
inter-

c~lsc w - f(w); lprcta-
if w=f(x) then LOOP- tion
2s -r--a A

x +- f(4 ;
end

(lj) -- if i =-a-then goto DONE;- -
r-,,-----T

(4) -- 1 while'f(w) f z do w +- f(w); 1

L - z-w; - - - - ---I

end;
DONE: HALT(yr

Example 4: Efficient translation of linear

recursive schemas

Consider the recursive schema T :
-v.

F(a) where .

E'(y) +- if p(y) then g(F(f(y)),y) else y .-

Let I be an interpretation of T for which
there exists an n , n > 0 , such that

?(a) = FALSE , and fk(a) = TRUE for all k < n .
The output of the computation of (T,I) is

g(c(g(. . . e(f%)YW> . . . f'(a)),f(a)),a) .

The computation of (T,I) takes time and
space proportional to n -- for usual implementa-
tions of recursion. The recursive sc!le1.a can be
translated to an equivalent flowchart schema TV
usin!: a fixed memory size (number of variables)
such that the computation of (T',I) takes tir-.c

proportional to n2, aas follows:

START
Y - a;

e while p(y) do y + f(y);-
x c a;
wllilc p(x) do-

bcrrin
d(x);
.x1 - x;

2 - a;
. while p(x1) do

bczin

x1 - fbq;
2 + f(z);
end;

Y + da;

-- y = P(a)

-- x = fi(a)

- - z = P-i (a)

IJcinC equality tests, however, the time can

be brou&t down to nl+F where E is an arbi-
trarily small number. We first describe an cquiva**
lent flowchart schema with equality tests with a "'1

time bound of n7/2 .
Intuitively, the idea is the following. The

carlicr fJowchart schema spends most of its time
trying to find the inverse of the function f

(i.C., @ven fi(a) , to find fi-'(a)) -- though
this operation is somewhat hidden in the program.
We can speed up this by planting a value at a
"distance" of about /n from the end
and compute inverses from this planted value.
Time taken to find the square root is of the order

of n3/2 , average time to find the inverse is

nq2 (done n times) and time to reset the

planted value is of the order of n (done nlj*
times). In general, by planting (k-l) values
(instead of just one) at distances

nl/k , n21k , n3jk @-1)/k> . . . , n

from the end we get a time bound of 1+ (l/k)n .

iii ----

(3) --

(4) --

(5) --

i >l

(6) --

START
Y +- a;
while p(y) do y c f(y);
if y = a thz HALT(a);-
x + f(a);
CHECK: yl + y7 c a;

J
while yl # x do

begin
y2 - a;

while y2 f x &

begin

3'2 - f(Y*) ;

Y3 * f(Y+;
if y- = y then goto FOUND;
-3 -

C&;

Yl - f(Yl) ;

&;

:'. - f(x);

-oto CHECK;I

E’OUND : 2 a- Y;
Y2 + x;

REPE%T: x1 t a;

while s2 f z &

be,:in

x1 + f(x$;

x2 + fb2) ;
C&;

-- x = P(a)

end
lmT(y) .

(7) -- while 2 # x1 do
Lw *in_)
:c - x
3 1;

while f(x$ f :: & x, - f(s$;
J

Y - LdY,s,);
B a- x.;

1
(3) -- e ;

TEST: if z = a then HALT(y);

-(9) -- s2 - a; s (x2 # x)while (x2 # 2)

ao X2 a- f(x2);
& REPEAT .

r
Line (1) detects if there exists an n 2 0

such that f"(a) = FAISE and fk(a) = TRUE for
all k<n. If such an n does not exist the
program loops forever which is the desired opera-
tion. If n exists it follows that for all

.
i,j ,< n , if i # j then fl(a) # $(a) . At
this point y = f"(a) .

If n = 0 the program halts with output a
(line 2). If n > 1 the CHECK loop segment of
the protram from iines (3) to (4) finds the
smallest positive integer m such that m*m > n .
This is done by successively trying larger an3
larger values i = 1,2,3,.2; for m until one'is
found such that i*i > n . This is the required
value for m . We use the variable x to store.
the value of f'(a) and the variable y3 to

"count" up to i*i by successively taking values

.a,f(a),...,fisi(a) . The final value of x is

f"(a) and it remains unchanged for the rest of
the program.

Execution of lines (5) to (6) now causes the

variable x1 to be "planted" at fn-m(x) . The

while statement between lines (7) and (8) consti-
tutes the main part of the program. The variable
y takes on values in the sequence

f"(a) 9

b%)9 f"%)) ,

,:(e(f"(a),r"-1(a)j,fn-2(a)) 9
..e .

dd . ..g(P(a).Pml(a)), . ..).fnwm(a)) .

On exit from this while-loop the value of z is

f"'"(a) .
Lines (9) and (5) to (6) are then used to.

reset the planted value to f"-&(a) and the
process is repeated. After it, the planted value

is reset to fnw3"(a) , and so on. A special case
is encountered when the integer corresponding to
z becomes less than m . In this case, the next
planted value should be simply a , and hence the
use of line (C,) instead of simply setting x2 -x .

9

5. Appendix B -- Proof of Theorems (z
L- *-

We use the terminology Tl s T2 to mean the

schemas Tl and T2 are equivalent, and Tl 3 T2

to mean Tl includes T2 .

Proof of Theorem 1 (Solvability of Sl)

l(a),(b),(c): The solvability of the halting,
divergence and equivalence problems follows from
the solvability of inclusion:

(a) Given a schema T

only if T' r,H where
[START; HALT(a)] that
and Tf is the schema
changed to HALT(a) .

(b) Given a schema T

of s1 J T halts if and

H represents the schema
always halts with output a,
T with all HALT statements

of s1 9 T diverges if

and only if L =, T , where L represents the
schema [START ; LOOP] that always loops,

(c) Given two schemas Tl and T2 of s1'
Tl z T2 if and only if Tll T2 and T2 I> Tl .

+J: We give below only the intuitive idea
behind the proof of solvability of the inclusion
problem. Given two schemas Tl and T2 of Sl ,

to decide if Tl 3 T2 , an automaton is constructed

that simulates the computations of Tl and T2 in

parallel. The input tape of the autunaton repre-
sents an interpretation for Tl and T2 . The

input tape is rejected if Tl and T2 both halt

but with different outputs, or if T2 halts and T 1
diverges, under the interpretation corresponding
to the input tape; otherwise, the tape is
accepted.

To describe the operation of the automaton we
first introduce the notion of the "specification
state" of a variable y . The specification state
represents the outcomes of all possible tests that
could be performed by a schema without changing the
value of the variable y (and using terms no
"larcer " than the "lar~;est" term used in the schemas

Tl and T2). The automaton simulates the compu-

tations of Tl and T2 not just for the main-line

computation, but for a large number of "instances"
of the variable y . There is one instance for
each assir;nment statement and each constant term
(no larger than the largest term). The computation
of an instance (for an assignment statement and a
term) represents what the schema would really do if
its main-line variable happened to equal that
constant term after that as~i~prnent statement.

The computation on each instance is kept in
step, and the automaton keeps track of which
instances have equal values at each step. This
enables the automaton to detect whether the input
tape really represents a feasible interpretation.

The reason that this specification state
approach works with limited equality tests is that
the finite specification state carries sufficient
information to allow it to be updated. This is not
true for general equality tests, e.g. in the

classes s
3 and s4, if a specification state

were to carry all information necessary to update
it, the amount of information would grow without
bound as the computation proceeded.

u: The proof of isomolphism is similar to the
proof of inclusion, except that the automaton not
only keeps track of which instances are equal in
value at each step, but also which equal instances
have an isomorphic history. The automaton can
then detect if for any input tape the computations
of the two schemas are not isomorphic.

l&J: Freedom or nonfreedom is detected by the
algorithm l(g) that translates a given schema in
Sl to an equivalent free schema; *if ever a test

statement is detected for which some exit is not
feasible the schema is not free, else it is free.

l&-) We give below a short outline for the
translation of a given schema T in Sl to an

equivalent free schema T
variables).

1 (using several

A "partial specification state" is like a
specification state but with the possibility that
the values of certain predicate and equality tests
may be unknown. The schema Tl has a (large)

number of variables, one variable for each assign-
ment statement and each constant term (no larg&
than the largest term used in T).

The schema Tl begins by assigning all vari-

ables their corresponding initial values. The
schema Tl has a (large) number of "chunks" of

statements. Each chunk updates the variables.
This corresponds to one step of the automaton in
the proof of inclusion. This updating can be
performed without introducing any nonfreedom.
Each chunk is associated with the following infor-
mation (line (iii) is unnecessary for this problem,
but it is required to solve the freedan problem).

(i)

(ii)

(iii)

The statement in T corresponding to each
variable in Tl .

Which variables have equal values.

Which pairs of variables have the property
that they both would have tested the same
value if we hadn't explicitly avoided that
(i.e., if both variables are "entered" by
the main-line computation, nonfreedom would
result).

When updating is performed, no predicate or
equality test is introduced whose outcome is known
from the information corresponding to the chunk.
Loops are detected as before; and some variables
m'ay become "inactive" either by looping or halting.

Proof of Theorem 2 (Solvability of S2)

The proof of Theorem 2 is similar to the proof
of Theorem 1 except that the formal definition of
the specification state reflects the different
kind of equality tests allowed.

I 10

Proof of Theorem 3 (Unsolvability of S)
3

3(a),(b): We define a class S
5

of schemas having
two variables yl and y2 , and whose statements

consist of the following:

Start statement: START
Yl + y2 - a;

Final statements: HALT or
LOOP

Test statement: Y c f(Yi);

It was shown by Luckhsm, Park and Paterson
[1970] that the halting problem for the class S5

is unsolvable, and that the divergence problem is
not partially solvable.

To show the halting problem for S3 to be

unsolvable we reduce the halting problem for S
5

to that for S * that is, we describe an algorithm3 '
that takes any schema T

5
in the class S

5
as

input and yields a schema T*
3

in the class S
3

such that T'
3

halts if and only if T
5

. halts.

Similarly, to show that the divergence problem for
S
3 is not partially solvable we describe an algo-

rithm that takes T
5

as input and yields as output

a schema T"
3

in the class S
3

such that T;

diverges if and only if T5 diverges. We will

unify the construction for the two cases by con-
structing for both cases a schema T, in the

2
ciass S-

3
but augmented with a special final

statement called the REJECT statement:

REJECT statement: REJECT .

The REJECT statement signifies that the inter-
pretation is unacceptable and is rejected. Loosely
the idea is the following. There exists a map from
interpretations of

T3
that are not rejected onto

the interpretations of T
5

such that the computa-

tion for T
3

under an interpretation halts if and

only if the computation for T
5

under the corres-

ponding interpretation halts.
Now it is clear that if we replace all REJECT

statements in T3 by HALT statements to get T; ,

then T; halts on every interpretation if and

only if T
5

halts on every interpretation.

Similarly, if we replace all REJECT statements by
LOOP statements to Zet T"

3
then Ttt

3
diverges

on every interpretation if and only if T
5

diverges on every interpretation.
Given a schema T

5
in S

5
we construct the

corresponding schema T3 in S3 (with the addi-

tion of REJECT statements) as follows. We use the

t'- I c-

t

Vtiriilble y O f 'T..
2

Lo rk:prcsenL the latest

;ariablc ttfl;tckl in 'I
5
, l.C., yl or y2 . The

t‘unL*tion f' plays the same role in T
3

as in T- .
5

WC USC a new function 1; called a "test function";
and tests of the form

if p(y) then . . . else . . .-

in T.,
5

will take the form

g ;:(y) = g(g(y)) then . . . * . . .

in T3 . In addition we use two "control" func-

tions fl and f, . Their roles are the following:

if y stands for& y2 (of S3) then fl(y) will

equal the value of f(yl) at that instant in the

computation unless, of course, a REJECT statement
is reached earlier. The role of f2 is analogous,

I.e., if y stands for yl then f*(y) will

equal the value of f(y2) .

The schema T-.
3

simulates a computation of

T5
as follows. In the diagram below the elements

a , f(a) , f(f(a)) , f(f(f(a))) are represented
by contiLvous squares from left to right. We
superimpose on this diagram the computations of
both T3 and T

5
. Suppose, at scme instant in

the computation of T5’ Yl is at point A,

and y2 is at C , and suppose y1 is being

"read".
T3

makes certain that the f2 pointers

from the squares scanned, point to the right of
y2 * Suppose that we continue to "read" frop! yl

until yl reaches point B where the schema T5

starts "reading" from y2 . T3 checks that the

I'1 pointers from the squares scanned, point to

the right of B .

A,2
TTTTT 1
A B C D

T r
y1 y2w

push yi ----)

(T 3
reads y,)

'2
. t 1

A B
b

fl

y1 Y2

push y2 -

(T; reads y,)

We arc now in a position to describe the c&-
E-..

struction of T-
5

. Without loss of generality, we

will assume that in 'I!
5

the first test statement

tests the variable yl . T3 will effectively

contain 2 copies of T
5

except there is only

one start statement. We will call these copies A
and I3 . We will label statements of T

5
by

numbers 1,2,3,... . The corresponding statements
in T

3
will be labelled 1-A , 1-B , 2-A , 2-B ,

3-A , 3-B ,... .

(i) The start statement in T
5

is

START
yl c y2 + a;
got0 i;

The corresponding statements in T, are:J
START
Y + a;
if f(y) # f2(y) then REJECT else goto i-A;- -

Note that the test f(y) # f2(y) is not

strictly an allowed statement. We use this
form for clarity: it can really be
"simulated" by the statements:

if f(y) # fl(fl(y)) then REJECT;-
if f2(y) # fl(fi(y) > then REJECT

else goto i-A;

(ii) For any test statement i in T
5 ’ if i is

of the form:

i: y1 * f(Yl)i
if p(y,) then e j else goto k;- - -

the corresponding statements i-A and i-B are:

i-A: if f%(y) # f2(f(y)) then REJECT;

Y * f(Y) ;
if c(y) = g(g(y)) then goto j-A- -

else goto k-A;- -
and

i-B: if f(y) f f2(fl(y)) then REJECT;-

Y - fl(Y);
if g(y) = g(g(y)) then goto j-A- - -

ii i> For any test statement i in S of the form:

i: Y2 + f(y2);

if p(y,) then goto j else goto k;- - - - -

i-A and i-B are similar to the above,
except, one has to interchange fl with f2

and A with B .

(iv) HALT and LOOP statements remain unchanged.

T!lis completes the construction.

11

'i‘f~c: main rcasm t!~at till' schema 'r
2

Call ::Latcments that lest yz (l'ollowcd by a final II

s ;f:,ul;~tc tile ca;:yutati.~m of ‘I
5,

is that each 1.1 > sLaLunclit or anolhcr test of y,) -- note the form

1'.) "pointe,." is ci~ec:.cd at most once! fern cacli ol' the test statement of‘ S d&nod in the proof

c;lurrre.
5

tl' pointers were Lo ire checked twice and of j(a),(b). The halting and divergence problems '
it turned out that they were required to point to
dil’t’crcnt va.lues thcrc m-i&t exist no int&prcta-

Of SC% can be shown to be unsolvable, and the\I

Lion s:~tisfyinL: this condition -- the result would
halting and divergence problems of SG can be re-

bc tltat a11 interpretations of T
rcjccted. 3

would be duccd to those of S4 . This implies the unsolva-

bility of problems (a)-(e) and (g) for S4 . The

2&J: The non-partial solvability of the cquiva-
lencc problem follows directly fran the non-partial:
solvability of the divergence problem (Part (b)),
since a program schema in S.j diverges if and

only if it is equivalent to the schema:

START
Y - a;
LOOP l

.

freedam problem (f) can be shown to be unsolvable
on lines similar to the proof for 3(f), i.e., by
reducing PCP to the non-freedom problem and effec-
tively simulating two variables while actually
using only one.

Proofs of Secondary Results
In the following results the number of func-

tions does not include the individual constants.

5f&dJ: The non-partial solvability of the inclu-
sion problem follows immediately from the non-
partial solvability of the equivalence problem
since Tl 3 T2 if and only if T13 T2 and

T2 2 Tl .

(i) Schemas with One Variable, Two Functions and
General Equality Tests

The class of flowchart schemas with one vari-
able, two function
equality tests is unsolvable.

If completely general equality tests are

-S(e): The non-partial solvability of the isomor- allowed it is easy to see that two function con-

phism problem also follows directly from the non- &ants suffice to render the class of schemas

partial solvability of the divergence problem. unsolvable because more function letters can be

Given a schema T $ the class S3 , construct a "coded" in terms of two functions. For example,
in 3b we could use only two functions f and g

new schema T' also in S3 obtained by replacing by making in the construction of T
3

from T
5

the

each HALT statement in S
3

by the statements: following substitutions: for all terms t
simultaneously substitute:

Y - f(Y) i
HALT . few) for f(t)

Then T and T' are isomorphic if and only if %dtH for g(t)
T diverges. df(tH for f#)

5&: The non-partial solvability of the freedom
problem is shown by reduction of Post's Correspon-
dence Problem for nonempty strings (PCP) to the
nonfreedom problem for schemas in S

3'
The proof

follows along lines similar to a related proof in
Paterson [17671 with the mechanism for effectively
simulating two variables while using only one (as
described in the proof of Z(a),(b)).

m: There can exist no effective translation
to a free schema since if there did exist such an
algorithm we could decide whether or not a given

a schema of S3 halts since the halting problem for

free schemas is trivially solvable.

Proof of Theorem 4 (Unsolvability of S4)

dg(t) 1 for f*(t)

All the unsolvability results go through on
making this substitution. Similar substitutions
can be made to show the unsolvability of freedcm.

(ii) Schemas with Two Variables, Two Functions and
Restricted Equality Tests

T!le class of flowchart schemas with two vari-
ables and two functions (no predicates) with tests
only of the form y. = f(yi) are unsolvable.7

Consider the class S
7

which is the same as

s5
but with the difference that there are two

function constants fl and f2 , and no predicate

constant.
The computation of any schema T

5
in S

5
can

. The proof goes along lines quite similar to be simulated by a corresponding schema
the proof for Theorem 3. We Yirst define a subset T7

in S
7'

% of the class of schemas S5 . SC; , like S5 , obtained by replacing every test statement of the form

has two variables yl and y2 , one function sYm- Yi + f(Yi) ;

bol f , and one predicate symbol p . However,
if p(yi) then goto L. else gotO Lk- - - J-

SC has the constraint that in any path through by a test statement of the form
a schema of S6 , after each statement that tests Y: + f(Y:h
the variable yl there must be either one or two

I I
if yi =- &L. elseeLk .

J-

12

lt iz easy to CCC that L'or any path, finite or
inl’initc, timx~,:h T

5 '
il' there exists an intcr-

prctaticn for which Tlj e.secutes statements along

t.!;is path, then there IS an intcrprctation for
Wf:ich T

7
executes statcmcnts along the corres-

pondin;: path. This establishes the unsolvability
of (a)-(e) and (g) for the class S7 " {note that

the unsolvability of (c)-(e) and (g) follows from
the unsolvability of (b)),

Further, the freedom problem too can be shown
to be unsolvable by reducing FCP to it. The . .
reduction is related to the corresponding reduction
in Paterson [1367], but to do it with 2 function
symbols we need the additional "cleverness' of
padding each symbol of the FCP with enough "bits"
in order to allow for testing, to effect a non-
deterministic search. e

(iii) Schemas with One Function, Restricted
Equality Tests

Schemas with one function using tests only
of the form y

i
= y

i
are unsolvable.

u

The halting and divergence problems for two-
counter automata are known to be unsolvable
(Hopcroft and Ullman [1969]), and can be reduced
to the halting and divergence problems for one-
function schemas in a rather direct manner. In
the reduction process the only care that has to be
taken is for the operation of incrementing one to
a counter, in which case the schema checks for,a
looping interpretation as in Fxample 3 of Appendix
A. The unsolvability of the equivalence, inclusion,
and isomorphism problems follows from the unsolva-
bility of the halting and divergence problems.

6. References

Ashcroft, Manna and Pnueli [1771] -- E. Ashcroft,
2. Manna and A. Pnueli, "Decidable properties
of monadic functional schemas", in Theory of
Machines and Computations (Kohavi and Paz,
Eds.), Academic Press, pp. 3-18.

Chandra [1972a] -- A. K. Chandra, "Efficient ccxn-
pilation of linear recursive progrsms",
Report, Computer Science Dept., Stanford
Univ. (to appear).

Chandra [1972b] -- A. K. Chandra, "Properties and
applications of program schemas", Ph.D.
Thesis, Computer Science Dept., Stanford
Univ. (to appear).

Constable and Gries [17713 -- R. L. Constable and
D. Cries, "On classes of program schemata",
Report, Computer Scierxze De$., Cornell Univ.
(August 1771).

.Garland and Luckhsm [197'1] -- S. J. Garland and

. D. C. Luckham, "Program schemes, recursion
schemes, and formal languages", TJCLA report
(June 1971).

Hewitt [1970] -- C. Hewitt, "More comparative
schematolow", A.I. Memo 207, Project MAC,
M.I.T. (August 1970).

Hopcroft and Ullman [17&j] -- J. E. Hopcroft and
J. D. Ullman, "Formal languages and their
relation to automata", Addison-Wesley, 1763.

Ianov [lr)&3] -- Y. I. Ianov, "The logical schemes
of algorithms". English translation in
Problems of Cybernetics, Vol. 1, Pergsmon
Press, New York, 1963, pp. 82-140.

Luckham, Park and Paterson [17701 -- D. C. Luckham,
D. M. R. Park and M. S. Paterson, "On forma-
lized computer programs", J. of Computer and

System Science, Vol. 4, No. 3 (June 1970),
pp. 220-249.

Pat@rson [1767] -- M. S. Paterson, "Equivalence
problems in a model of computation", Ph.D.
Thesis, University of Cambridge, England
[;g;t 1967). Also A.I. Memo No. 1, M.I.T.

.

Paterson [17&3] -- M. S. Paterson, "Program
schemata", in Machine Intelligence 3 (Michie,
Ed.), Edinburgh Univ. Press, pp. 19-31.

Paterson and Hewitt [17701 -- M. S. Paterson and
C. E. Hewitt, "Comparative schematology", in
Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York
(December 197O), pp. ~9-1.28.

Plaisted [1972] -- D. Plaisted, "Program schemas
with counters", Proceedings of the Fourth
Annual ACM Symposium on the Theory of Computing,
Denver, Colorado (May 1972).

Rutledge [196)+] -- J. D. Rutledge, "On Ianov's
program schemata", J.ACM, Vol. 11, No. 1
(January 1764), pp. l-7.

Strong [1971a] -- II. R. Strong, "Translating
recursion equations into flowcharts", J. of
Computer and System Science, Vol. 5 (June 1771),
pp. 254-285.

.

Strong [1971b] -- II. R. Strong, "High level
languages of maximum power", IBM Research
Report.

13

