
. SU326 P30-14

'LARGE-SCALELINEAR  PROGRAMMING  USING THE
CHOLESKY FACTORIZAT ION

. BY

M. A. SAUNDERS

I I STAN-CS-72-252
I
I

JANUARY1972

!

i

.

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
' I STANFORD UNIVERSITY



i

L

t

k

Large-Scale Linear Programming
using the

Cholesky Factorization

bY

M. A. Saunders
Stanford University

This work was supported by the U. S. Atomic Energy Commission, the
New Zealand University Grants Committee, and the New Zealand Depart-
ment of Scientific and Industrial Research.



1
c
“i
‘L

i-

t

L-

I
1

L

i
“L

f
L.

L

Abstract

A variation of the revised simplex method is proposed for sol-ving

the standard linear programming problem. The method is derived from

an algorithm recently proposed by Gill 2nd Murray, and is based upon

the orthogonal factorization
7

B =LQ

or7 equivalently, upon the Cholesky factorization

BBT = LLT

where B is the usual square basis, L is lower triangular and Q is

orthogonal.

We wish to retain the favorable numerical properties of the

orthogonal factorization, while extending the work of Gill and Murray

to the case of linear programs which are both large and sparse. The

principal property exploited is that the Cholesky factor L depends

only on which variables are in the basis, and not upon the order in

which they happen to enter. A preliminary ordering of the rows of

the full data matrix therefore promises to ensure that L will remain

sparse throughout the iterations of the simplex method.

An initial (in-core) version of the algorithm has been implemented

in Algol W on the IBM 360/91 and tested on several medium-scale

problems from industry (up to 930 constraints). While performance has

not been especially good on problems of high density, the method does

appear to be efficient on problems which are very sparse, and on

structured problems which have either generalized upper bounding, block-

angular, or staircase form.
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Large-scale Linear Programming using the Cholesky Factorization.

1. Introduction

The standard linear program ing problem is

minimize Tc x

( - \-/
subject to Ax=b, x:>O

where A is mx n and is usually very sparse. Virtually all

methods currently in use for solving (1) are variations of the

Revised Simplex Method (Dantzig [4]). If B is the usual mx m

.basis, the principal source of variation lies in the method chosen for

solving two systems of equations
*
of the form

BTs,- = ; , By = a (2)

at each iteration of the algorithm. This effectively means there are

two areas in which methods can differ:

(a) the representation used for B
-1

or its equivalent, for any

particular initial B ;

(b) the technique used for updating B-l when columns of B are

changed one by one.

In both areas there are two problems to be faced:

0) maintaining sparsity

(2) maintaining numerical stability,

and the aim here is to present a method which reaches a compromise

between these requirements. 'The method is derived from an algorithm

*
Or three systems, if the current basic solution ft is obtained by

solving Bfi=b directly (see Section 5).
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recently proposed by Gill and Murray [8], and is based up the orthogonal

factorization

B=IQ (3)

or, equivalently, upon the Cholesky factorization

BBT = LLT ( J '‘ I

where L is lower triangular and Q ' is orthogonal (QQ
T
= I) . While

the favorable numerical properties of the factorization (3) are widely

recognized, the unknown quantity has been how to keep L sparse. We

hope to make some progress in this direction.

In standard methods the conflict between sparsity and stability

arises in the choice of pivot sequence, as is well known. stage (4

above is called the reinversion phase, and most reinversion routines

use either the product form of inverse mm or the more recent

elimination form of inverse
mm l For example in EFI we have

PlBP2 = LU (5)

where pl, p2 are permutation matrices defining the pivot sequence,

and L, U are respectively lower and upper triangular. Now for some

choices of
pl, p2 the LU factorization does not even exist, while

for other choices it can be poorly determined. Therefore the search

for permutations which lead to sparse factors must always be tempered

by the fact that the reklting numerical error could sometimes be

unacceptably high. Without judging the merit of different methods, we

note that both extremes have been proposed in the literature: on one

hand the method of Bartels and Golub [l], [2] gives top priority to

numerical stability in choice of pivot elements, while in contrast the

new *'preassigned pivot procedure" of Hellerman and Rarick [13], [14]

i- 1.2



endeavors to choose an optimal pivot sequence by consideration solely

of the zero/nonzero structure of I3 .

Again in the updating phase, once a change of basis has been

determined by the rules of the simplex al_gorithm, the standard methods

of updating PFI or EFI allow no freedom whatever in choice of pirot

ele3nent. The method of Bartels and Golub (for updating the Hessenberg

form encountered) is the only method which retains the possibility of

pivoting for numerical stability.

Turning now to the orthogonal factorization, corresponding to (5)

we have

PlBP2 = LQ (6)

and in contrast to the above, this factorization exists for all permuta-

tions p1' p2 l This means that we are free to choose permutations from

sparsity considerations alone, without fear that in so doing we might

be compromising numerical stability. Furthermore, following Gill and

Murray we do not store Q , and therefore we are concerned only with

maintaining sparsity within L .

Unfortunately it happens that the degrees of freedom in (6) are

much fewer than in (5) , because P2 (being orthogonal) should really

be incorporated into Q :

Thus for a given Pl, a change of P2 will affect only Q , and the

sparsity of L is therefore affected only by the choice of Pl .

Nevertheless, we are able to turn this fact to advantage, as described

in the remainder of this paper. We choose pl
not by examining any

particular B but rather by taking a broader view and considering the

1.3
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full matrix A itself. Any a priori knowledge of special. structure

within A can often be put to good USC at this stage.

An in-core version of the algorithm has been implemented, and

the presentation here remains primarily within that context. Neverthe-

less, the algorithm is intended to be a practical method for solvi.::,

a wide range of large, sparse linear" programs, and methods for implement-

ing it out-of-core will be the subject of future research.

‘L-

L
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2. The Cholesky Factorization

If

exists a

Cholesky

M is a symmetric, positive definite matrix, there always

lower-triangular L such that M = LLT . L is called the

factor of M , and its elements are uniquely determined,

apart from the sign of each column. In our particular application,
-4

M = BBT , which is clearly symmetric and is also positive definite

if B is non-singular. Hence the LLT factorization exists for all

bases B which arise in the simplex method.

It is emphasized now that the product BBT is never actually

computed, but rather L is obtained-from a factorization of B

itself. As is well known there always exists an orthogonal matrix Q

CQ~Q = QQT = I) such that

QBT=R (7)

where R is upper-triangular and has the same rank as B . It follows

that

RTR = (BQ~)(QB~) = BBT

and hence the lower-triangular matrix we require is simply

L = RT (8)

Note that (7) may now be written as in equation (3), B = IQ . In

discussing the modification of L during change of basis, we will find

it convenient to make use of equation (7), but at the same time equations

(4) and (8) (BBT = LLT , L = RT) will serve as reminders that Q

is neither stored nor updated at any stage of the algorithm.

In the context of both linear and nonlinear programming, the use

of the Cholesw factorization has recently been advocated by Gill and

Murray @I, [9], [19]. As it happens, the good numerical properties of

2.1



the factorization constitute only one of several. attractive features.

Thus in the linear programrnin~: application [8 1, Gi1.1 and Murr:l,y rhoosc

to consider the non-standard problem

minimize T
c x

subject to ATx 2 b

where AT is now mxn,m>n. They are then able to take advantage

of the fact that the BBT = LLT factorization exists even when B

is not square. Thus B is allowed to have dimensions px q where

pLqln<m, so that L will be px p and the work and storage

per iteration will usually be much reduced. Here p is the number of

active inequality constraints, and since it will usually be true that

p<<n, the reduction in size can be quite significant:

m

7

-me :

AT

P '9
u

?I

P L
c1
P

n

Note in particular that the reduction in column-dimension to q < n

is obtained by giving special attention to constraints of the simple

form + xj > b * '- 3
which is one very special form of sparsity within A .

Since linear programming problems arise in many different areas

and can be widely varying in dimension and sparsity, it is unreasonable

to expect that any particular algorithm would be ideal for aU. problems.

2.2
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Thus, in cases where A is very dense except for simple upper and

lower bounds, the algorithm of Gill and Murray will be considerably

more efficient than standard methods, with regard to storage and computational

requirements. On the other hand, in the area of large-scale linear

programming the constraint matrix can be extremely large and in gen-ral

will exhibit rather arbitrary sparseness. In such cases, even the

p x p L above would be much too large for efficiency, if regarded as

a dense matrix.

Our aim, then, is to extend the application of LL
T

to large-

scale problems by attempting to maintain sparsity within L . To this

end we are forced to restrict ourselves to bases B which are square

(thus treating the standard problem (1) and allowing exchange of columns

as usual, but not allowing exchange of rows). We are then able to

exploit yet another property of the Cholesky factorization, as stated

in the following (trivial) theorem:

Theorem 1

The Choles& factor of BBT is independent of the ordering of

the columns of B .

Proof

Suppose BBT = LLT , and let 'li be the same as B except that

its columns may be‘in a different order. Thus % = BP for some

permutation matrix P . Since PPT = I it follows that

and hence 3 is associated with the same factor as B .

During both "reinversion"  and subsequent updating, the storage of

L will remain explicit (as opposed to product form), with linked lists

2.3
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being used to represent the non-zero elements of each column. Further,

a prc-processing of' the full matrix A wCL sclcct a particular row

permutation, to be applied to A at the beginning and not changed

thereafter. Theorem 1 then shows that the density 02 L for any

particular basis depends only on which columns are in the basis, not

on the order by which these columns happened to enter the basis during

the iterations of the simplex method.

c

i
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3. Motivation for pre-processing sparse A

c

L

We suppose that A can be stored (compactly) in core and can

therefore be subjected to an initial inspection of its rows and

columns, as follows. We wish to find s/=&me row permutation Pl and

some column permutation P
2

such that the matrix PlAP2 is "as

close to lower-triangular form as possible." Pictorially, this is

intended to mean that the constraint matrix should look something like

this:

PlAP2
= (9)

where the lower-triangular part will still be very sparse. In general,

any basis B will be made up of a fairly random selection of columns

from A , but if P3 is the permutation which sorts the columns of

B according to their order of appearance in (9), we can expect the

permuted basis to look something like this:

plBp3
=I

\bx\\ \ (10)

Thus if Pl is chosen carefully-, there will always exist a permutation

of the columns of PIB (namely, P3) such that PlBP3 has relatively

few of its non-zero elements occurring above the diagonal.

Now it is well known that once a column has been selected to enter
L.

the basis, the simplex method allows no choice whatever about which

column must leave (neglecting degeneracy), so that PIB will generally

3.1
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show no sign of being anything better than an arbitrarily sparse matrix.

'IIl?us it is here that we make use of Theorem 1, which tells us that the

Cholesky factor L associated with PIB is independent of the order-

ing of columns within P B1
. The mere existence of P3 in (10) is

all that we need.

In summary, the important points about pre-processing A are as

follows:

1.

2.

3.

4.

Given a sparse matrix A there must exist permutations Pl ,

p2 which arrange A in the form shown in (9). For if not, A

would necessarily be quite dense.

With Pl chosen and fixed, the existence of P
2 in (9) guarantees

the existence of P3 in (10).

The near-triangularity of PlBP3 gives reasonable justification

for expecting that the associated L might have a density

not much greater than that of B .

In deriving an initial row-ordering from the full matrix A ,

we clearly do not have an optimal ordering for any particular B .

Instead we hope to obtain an ordering which is reasonably close

to optimal for all B's encountered during the iterations, and we

thereby justify storing the non-zero elements of

The density of the L's will fluctuate from one

next, but it is hoped that the average number of

remain within a range of say 2 to 5 times as

each L explicitly.

iteration to the

elements will

many elements as

in any B . "Reinversion" will never be necessary except for

numerical reasons, because we do not wish to alter the row-ordering

of B , and L is otherwise unique.

i 3.2
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5. The above is in marked contrast to most existing LP systems,

where the reinversion routine produces an extremely compact

representation 01' fi
-1

for any particular 13 , but the updates

during subsequent iterations arc kept in product form so that the

number of elements involved between reinversions is strictly

increasing. It is this very property which enables conventional

systems to operate out-of-core, but it is argued that in many

cases (particularly with problems whose special structure is reflect-

ed in L ) the average amount of data to be manipulated using

LLT might be significantly less than that involved in standard

methods.

i

i
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4. Finding the initial row permutation of A

We assume that the elements of A are already available via

column lists. The row permutation Pl is then easily found with the

help of a (temporary) row-list and a se-t of row-counts giving the

number of non-zero elements in each row of A . The procedure to I-2
s

used follows one of the steps that is performed by existing reinversion

routines for locating the so-called "forward triangle" of a basis (see

Orchard-Hays [ZO]). The procedure is readily extended to the full

matrix A . We will call the process triangularization.

Initially all rows and columns are considered to be eligible.

Rows become ineligible as they are moved one by one to the top, and

a column j becomes ineligible as soon as a row is chosen which contains

an element in column j . The steps are:

1.

2.

3.

4.

5.

Find the smallest row-count among any remaining eligible rows.

Ties can be broken by keeping an unmodified copy of the counts

for

Let

row

the full matrix.

the above row be number i in the original A . Take this

to be next-nearest-the-top, and make it ineligible.

Using the row-list, search row i and suppose there is an element

in column j . Then use the column-list to reduce by 1 the count

for any row which contains -an element in column j .

Make column j ineligible and repeat step 3 for any further

elements in row i .

Repeat from step 1 if there are still. any eligible rows.

To illustrate the process, it can be verified that the following

example is already ordered according to the algorithm.

4.1



b Rows will be marked off from the top down, and columns become in-

eligible from left to right.

i

full matrix A . It will often happen through redundancies in formula-

tion of the linear program that the first t columns, say, will be

There is one obvious advantage in performing this operation on the

strictly lower-triangular after the permutations (t=3 in the above

example). This means that the first t variables are effectively

fixed and can be immediately eliminated from the problem by a partial

forward-substitution. Thus, the above 6 x 9 problem can be deflated

from the beginning to dimensions 3 x 6 .

It is not at all clear that the triangularization method produces

the best ordering of rows of A , and it has been suggested by

J. A. George that a simple sorting of rows according to row-count

L.

L

*
might do just as well. This is certainly easy to do, although it

would not allow detection of any strict forward triangle. Also when

the "cold start" technique described in section 11 is used, triangulariza-

tion is likely to lead to an initial basis containing fewer artificial

variables. As a compromise, the procedure currently being used is to

*
See also the discussion of structured problems in section 12 .
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move any markedly-dense rows to the bottom (maybe 5 or lO$) and then

to proceed with triangularization of the remainder.

Once the permutation Pl has been found, it is convenient for

later purposes to permute the elements in each column accordingly.

This is easily done within the column-list, one column at a time.

The column permutation P2 can be discarded (it is never necessary

to re-order the columns physically) or else the following refinement

in "pricing" strategy could be used. As will be seen, the simplex

multipliers are given by LT~ = d , so they are computed one by one from

the bottom up. Clearly the back-substitution process can be stopped

short at any time. Suppose now that columns are priced-out in groups

of k , where k<<n , and that the grouping is the one defined by P
2

:

k k k k

(The best column to enter the basis will be found in one group, an

i iteration performed, and then the next group examined.) Then for all

but the first group the computation of the fii can be stopped short,

and for the last groups only a fraction of the multipliers need be

computed. This strategy  should lead to a significant saving on large

problems. It is one which is available to any implementation whose

representation of B-1 is explicit (as L is here) rather than in

i

product form.

4.3
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5. Solution of the linear eauations

Let $ 2 0 be the current basic feasible solution, satisfying

BC = b . Then each iteration o the revised simplex method involves

the following steps:

1. Solve the system i

BT,, = 6 0-u

for the current simplex multipliers II .

2.

3.

Select a column as from A satisfying cs - nTas < 0 .

Solve the system

By = as

4. Find r such that

k k
8 r min i
=y, = yix) yi

5.

6.

TJpdate $ according to

ii tC:
i i - 'Yi (i # r>

kr t- 0

Exchange columns a , as in the basis, and update the factoriza-
r

tion of the new B .

(12)

Apart from step 6, the main work is in the solution of the linear

systems (XL), (12).

Observe that the updating of ?C in step 5 could involve numerical

cancellation, and ideally should be replaced by a direct computation of

i from B?c = b , after step 6. However this would imply a great'deal

more work, and in practice no significant problems have been encountered

5.1
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with updating, given that k is reset by direct solution of B$ = b

following reinversions.

Consider first the solution of (l.?>. Following Gill and Murray

[81 we see that y is given by

LLTu = as , y = BTu (13)

The first of these equations is equivalent to BBTu = a , so that
S

BTu is one solution of By = as , and the non-singularity of B

guarantees it is the only solution.

Similarly, when the system 13; F b is solved after recomputation

Of L Y the solution is given by l,L"v = b , k = BTv . Note that I-3

itself is required here, which is why it is convenient to have A

(or at least, B) in-core.

The simplex multipliers are given by (ll), BTfi = 8 , and the

non-singularity of B ensures that this is equivalent to BBTr( = B; .

Thus fi could be found from

LLT~ = B:

which is the method originally proposed by Gill and Murray in [83.

(14)

Howcvcr it is considerably more efficient to transform 6 as though

L

.iI, wcrc the last row of' I: . :;upposc tl\at the orthogonal

tion (7) gives

factoriza-

Q [BT 1 21 = [R 1 d] = [LT 1 d]

c

L-

Then (11) is equivalent to

LTfi= d

(15 >

( a1
so that just one back-substitution is required to find n if d is

i updated along with L from one iteration to the next.
*

.

-. *Since publication of [8], Gill and Murray have independently adopted
this method also.



c

Another important advantage in using (16) arises from error

I - considerations. Here we need a quantity called the condition number,

K(B) , defined as

K(B) = K(BT)  = \lBll \lB-lll

where I I - I I  denotes the euclidean norm. Suppose the system BT~ = c

is perturbed slightly, by small changes to either B or the right-

hand side (such as will be incurred by storing the data in a computer's

finite-length word). The exact solution n will be perturbed by some

amount proportional to the perturbations in the data, and it can be

shown that the constant of proportionality is
K(B)  l Thus  K(B)

provides an estimate of the intrinsic uncertainty in ti . Hence it is

reasonable to discuss in terms of K(B) also, the error that can

result from round-off when a particular numerical method is used to

compute TI .

Returning to (16), it has been shown (e.g. Colub and Wilkinson

[lZ]) that if L", = d is used to solve (11) the relative error in

TI can be bounded by a term involving K(B) J whereas if (14) is used

the bound involves K(B"B) = K~(B) . This is the above mentioned

advantage in using (x6), from a standpoint of ?ound-off error.

Unfortunately the situation-is not so favorable when we use

equations (13) to solve By = as . The relative error bound for y

again involves K2(B) , and this could be a problem with severely ill-

Conditioned data. (In some cases the algorithm of this paper could be

applied to the dual linear program, since errors in n are often less

important than errors in x .) We point out that if B = LQ the solution

y is given by

5.3
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L

Lw s?=a QY =w

and the error in y would be bounded by K(B) . Thus the above

problem arises only because we are c;L-.,;;ing to represent Q-l by

Q
-1 = QT = ( flB)T = BTfT

rather than storing and updating Q itself. Since B , and therefore

A, would no longer be required in-core, an alternative implementation

which maintained Q in product form might in some cases be preferable.

A full error analysis of the Q$I factorization has been given by

Wilkinson [2&j. The use of plane rotations to solve linear systems as

in equations (X5), (16) has also been analyzed by Van der Sluis [22].

5.4
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6. Updating L upon change of basis

1.

. 2.

A change of basis will be cc?complished in two stages:

Column ar is deleted, givJ ng an intermediate L which is

singular.

Column qs is added and the intermediate L is modified to

produce a new L corresponding to the basis of the next iteration.

The reason for deleting before adding, rather than vice versa, is given

by the following results. Suppose

LLT = BBT and LL' = BBT + aaT

so that c is the Cholesky factor obtained by adding column a to

B.

Theorem 2

The density of c can not be less than the density of L

(neglecting numerical cancellation).

Corollary

L
When a column is removed from B , the density of the new factor

can not (significantly) increase.

. The theorem is obtained by considering the effect of the elementary

orthogonal transformations used to update the Q,R factorization

of a matrix when a row is added to the matrix (see section 8 and

recall L = RT). Briefly it is due to the fact that if

i

a
[1F = Z

a

[3B

where Z is a 2 x 2 orthogonal matrix, then usually

E#OY B#o
unless a=0 and f3=0.

-.

6.1



The corollary follows because the uniqueness of L with respect

c

I ‘L

c

’ I.

to column permutations on B implies that removal of a column i&he

exact reverse of the process of adding it back again.

The main point is that we wish to ensure that the intermediate

L above will in general be less dense than its predecessor. We note
;1

here that the factorization

BBT = LDLT

has also been (successfully) used, where D is diagonal andRii = 1 ,

to take advantage of the fact that no square roots are required during

updates, and less divisions are required during back-substitutions.

However for numerical stability it is essential with this factoriza-

tion to avoid singularity by adding before deleting, and consequently

the intermediate L will generally be more dense than its predecessor,

sometimes markedly so. It is now felt that the possible severity of

this

have

fluctuation outweighs the other advantages that LDLT might

over LLT .

The corollary has a useful practical implication. If the density

of L does increase significantly when a column is deleted, then most

of the new non-zeros must be due to propagation of noise, in the form

of very small numbers which should be treated as zero. This can happen

after a large number of modifications and provides one of the several

indicators needed in practice to trigger reinversion.

6.2



7. Removal of a row from the QR factorization

In preparation for modifying L when column ar is deleted from

B Y let us adopt the QR notation corrL,lonly used in numerical linear

algebra. As noted in equation (7), the QR factorization is

QP = R
a,

where Q is orthogonal, R = LT , and we are temporarily defining

A = BT . We wish to delete row arT from A , and we now give a new

method for accomplishing this using elementary orthogonal matrices

in a manner which is becoming increasingly well known (cf. Golub [ll),

I_ Gill and Murray [8], [9]). Suppose for notational purposes that A

is mXn,m>n, although we are mainly interested here in the

special case when A is square. Application of the method to

rectangular A will be discussed more fully in [lo].

Let RTp = ar , and consider the sequence of elementary orthogonal

matrices

'i

such that

0[I6
i-l

i=n, n-l, . . . , 1

Here, the Zi could be plane rotations of the form

or else

cos 8 i

sin 0 i

-sin 0 i

cos 8 i
1

2 x 2 Householder transformations, and the equation serves

4

L
to define KY ?ji 1 in terms of pi, &i . The starting value 6n

remains to be chosen.

. The Zi are now inflated with the appropriate parts of the identity

matrix and applied in turn to the matrix

7.1



As the elements of p are reduced to zero from the bottom up,

the row below R gets filled up frog right to left. R is modified

row by row, but retains its triangular structure. Thus we have

z1z2 . . . zn

F

Ipl R4---
*nl O

I l- =
and the orthogonality of the Zi gives

so that

! ’
PT I6-- -+-z;

I
RT 1"

.

PTP + 6:

RTp

RTR

piR

I--
t - -

'nl O

L

=

= b20

= bg E!

= 25 + SST

i7
--
ST 1-r

0 ;s’
---

t-
s

ET '
I s

1 -

- I0 1 i?

I- -
6 t-$-T’
01

L. I -

Now the natural choice fbr 6n is clearly the value which gives

60=l since this implies RTp = s and therefore

S = ar

ETF = RTR - ararT

as required.

7.2
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L-

4

b..

In general this means setting For the special

case m = n , comparing the equations

L.

c

L

RTQ = B, RTp = ar

shows that p is just the r-th column of Q . Hence pTp =l

and we set 6x1 = 0 . 'Z

The discussion above brings to light two properties of the up-

dating method which might be used as a measure of numerical error.

; L

4

First, the vector being eliminated from A is re-generated as the

vector s , and thus a non-trivial discrepancy between s and a
r

could imply significant numerical error in R .

The second check is available only in the special case m = n ,
L- where 6 2 T 2= 0

n
, 6

0
= p p . Since 6

0 is actually computed from p

as a by-product of the updating, it is available at no extra cost,

.

L.

and any significant deviation of h2o from 1 implies numerical error

in p and therefore either similar error in R or ill-conditioning

of the current B (or both). In practice, the size of 16: - 11

. can be monitored and it provides us with some sort of numerical check

every iteration. A continuous numerical check of this kind is some-

thing which is not common in standard linear programming systems.

\ (Forrest and Tomlin report a similar check in their new LU implementa-

tion [63).



8. Adding a column to the basis

We will continue to use QR notation here, as in the previous

section. The modification of II when column as is added to B

is the process of modifying R when a row a: is added to BT.

It is well known how to do this using plane rotations, when R is

dense (e.g. Golub [ll]). In general, with R mx m , we would have

'rn 'm-1 l ** '1 [j =

where each Z
i

is an elementary orthogonal transformation defined at

each stage by two elements, namely r..
11 and thei-th element of v

after modification by the previous transformations
�13 l *� 3 �i-1 l

When R and v are sparse, the algebra is the same but many of

the Zi will simply be I . To minimize computation time we need a

data structure which indicates directly which transformations are non-

trivial. To illustrate, let us consider an example with m = 5 .

Suppose R has two off-diagonal elements as shown below, and suppose

that the new row has only two non-zero elements. The steps by which

V is reduced to zero are as follows:
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Circled elements define the transformation each stage. Non-zero elements

are marked by x , and new non-zeros (which were zero in the previous

stage) are marked by + . We see that

1. Rows 1 and 3 of R are unchanged.

2. A new element has appeared in each of rows 2 and 4 .

3. A non-zero element was produced'in v at the second stage, and this

element had to be reduced to zero by a non-trivial transformation.

Some of the computed elements could prove to be below some pre-

specified tolerance, and should be eliminated from the data structure.

This will happen occasionally during the addition process, and will

occur quite frequently during the reverse process of removing a column

from the basis.

Because of this need to insert and delete elements, we have chosen

for in-core implementation to use a linked-list to represent the non-

zero elements in each row of R , as described in the next section. A

simpler kind of list can be used to keep track of the elements in v

at a slight cost in storage. Suppose the non-zero elements of the

initial v are placed in the appropriate positions of an array V(*

dimension m . Then an integer array VNEXT(*) is used to point to

elements in an obvious way: _

of

these

V

12 3 4 5 6 10 11 12
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Clearly there is space available for any new non-zero elements that

arise during the addition process. It would be possible to set

V(j 1 = 0 wherever v.
3
= 0 initially an.d eliminate VNEXT(*) altogether,

but note that each non-trivial transformation Zi involves a sigi~~I3.can-t

amount of computation. If the essential part of Zi is the 2x 2

orthogonal matrix QG satisfying

'i

r
ii

I

I
=>( i

V.
1

then we must compute

r
ij

- I

(i+l)
3

= Qi

r
ii

.:I
0

.
for j = i+l, . . . , m . (Here, ( >i

2
is the j-th element of v before

the i-th transformation.) The list structures for R and v enable

us to economize on arithmetic when either r.. or ( >i
v.

iJ J
is zero, and

more importantly allow us to skip directly past any computation for

which r.. ( >and v.
i

are both zero
iJ J

(which is the most frequent case).

The "ADD" routine for performing the above process is employed

in two situations:

1. To add a column to the basis each iteration, following the removal

of a column.

2. To recompute L = RT from scratch whenever a "reinversion" is

required see section 10).
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L.

In both cases it happens that R is singular upon entry tG Che

routine. We wish to emphasize that the process is nevertheless well-

defined and numerically stable.

i

f
i

8.4
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9. Storage of sparse L

As indicated in the previory section, we use a linked-list to

store the elements of each CO&YJ of L . In a high-level language,

this can be done with three parallel arrays as follows. An integer

array LNEXT(*) serves as a set of pointers into another integer

array LRow(*) which contains the row index of the next non-zero

element in a particular column. The element itself is stored in a

floating-point array L(*) . For example, to store the matrix

L =

the arrays might be set up as follows:

Position LNEXT

7
8

9
10

i

9=I10

63

TOP4zl8

LROW

2

3

3

>

L

4.0

3.0

2.0I
1.0r I
6.0

8.0

1.0

.

I
1

diagonals

i

free
storage
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L

The 0) sign marks the end of each column, and TOP points to

the beginning of the linked-list of free storage, also contained in

I.UXT(") .

If an element 5.0 is inserted into column 2 to give

L =
6

the arrays would be modified to look like this:

Position

1

2

3

4

5

6

7
8

9
10

LNEXT

al
r

6
/

I O3 I03
EFri. 7

10P03

LROW

L

I 8.0 -1
1.0a5.0

TOP-b9

and similarly if the element 6.0 were deleted from column 1, we would

L

have

II=
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c

and the arrays would change to the following:
t

L

L

c

c

L..

L

c

L

i

c

Position

1

2

3

4

5
6

7
8

9

10

LNEXT

6

8

Et

co

a3

TOP

a

ixow

3

3

Li

2

The purpose of lists is, of course, to enable elements to be

inserted and deleted without having to push existing elements around

to make room. We see that "holes" can appear, which are linked into

the free-storage list, and that the elements of any particular column

will diffuse through the list as modifications proceed. Since L is

accessed column by column during each simplex iteration, if the algorithm

is implemented in a virtual-memory environment it would probably be

profitable to group together occasionally the elements in each column,

to alleviate the problem of memory fragmentation.

9.3



10. Tieinversion

Following convention, we use the term reinversion to mean

i
computation of L from a particular basis B , despite the fact that

no matrix inversion is involved. Orthogonal triangularization would

i be a more accurate description. There are two main parts to the

process, as follows.

First, as many columns as possible are taken from the current B
/, and placed directly in L . Usually the majority of columns in B

i
can be so placed, because the pre-processing of A should ensure that

L all bases are nearly triangular. No arithmetic is required at this

stage and the order of placement is irrelevant. Thus in a single

pass through A each basic column is copied into the position defined

r

L
by its first non-zero element, as long as there is no column already

in that position.

Next, unfilled columns of L are set to zero (via lists of zero

length) and unplaced columns of H are added one by one, by repeated
L

calls to the ADI, routine of' section 8 . Again any order will do, so

a second pass through A is all that is required.

Reinversion time depends heavily on the growth of non-zero elements

i within L , and also on the number of columns of L that are modified

,

L-
by each call to the ADD routine in the second stage. As might be

expected, triangularization of a relatively dense B can involve a

t
L

r
!
c-

great deal of computation, while for very sparse problems the process

can be quite rapid, since there is no permutation-finding logic involved,

and only a small percentage of the columns are affected during the

I

i.

second stage.
-
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t
L

L

The principal reasons for invoking reinversion are listed below.

An indication is given of tolerances that have been used on the IBM

360/91 when computation is performed in lpn_g precision (approximately

15D), aiming for about 7D precision in the solution (or better).

We assume that the data has been scaled as described in section 13.

1. The

are

row and column residuals

p=b-BC:, Y =; - BTfi

computed at regular intervals (e.g. every 25 or 50 iterations).

Reinversion is called if

L

f
L

I I > 10 O7 or
-6

P Iv\ > 10

where pI 1 is the average of Ipi\ .

2. The pivot element y, in equation (12) should not be too small.

Reinversion is performed if yr < 10
-3

. (This may be too large

for some problems.)

3. During deletion of a column from L , reinversion is called

if the quantity 16: - 11 (section 7) exceeds 10 -7 .

4. Nso during deletion, if the number of new non-zero elements in

1, (which should be negative) exceeds about 5% of the total

non-zeros, reinversion is called to eliminate what must be noise

c

(see section 6).
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11. Finding an initial basis

The following simple "cold start" procedure can be Ised to find

an initial non-singular basis. Itc: implc&lentation  is made easy by

the preliminary triangularization of A . A full identity matrix of

eitherslack  or artificial variables could be used, but the aim is to;

do better and instead we look for a basis which is strictly lower-

triangular (so that B = L ) . This guarantees non-singularity equally

we,ll, and on a typical sparse problem can usually be done with the help

of only a few artificial columns. -

In a single pass through the column-list for A we look at the

position and sign of the first element in each column, and record for

each i (i = 1,2, . . . , m) the "best positive column" and the "best

negative column." By this we mean the following. Suppose the first

non-zero element in column j is a.. and suppose a.. > 0 . Then
iJ iJ

column j is a possible candidate for "best positive column for row

i", depending say on the size of c.
3

relative to the previous best.

Similarly if a.. < 0 , column j
13

might become the best negative

column for row i .

An initial B = L is now selected from the above candidates, and

a forward substitution & = b is-performed in

ensure that the resulting $ is feasible (f;: >

stage, the sign of

i-l
bi -

c
lA
ij xj

j=l

parallel in order to

o> l
At the i-th

determines whether a positive or negative column should be used as the
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i-th column of L . If there is no acceptable  candidate, we must

introduce an artificial column of appropriate sign ( .I- ei ) ._
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12. Structured problems

The techniques discussed so far are intended for use on general

sparse linear programs. Now it often haigens that the matrix A in

(1) has special structure, and if we have knowledge of this it is

natural to want to exploit such information wherever possible. As

we shall see, the LL
T

factorization does allow us to utilize structural

information, and it is only during the preliminary triangularization

of A (see sections 3, 4) that special care need be taken. No modifica-

tion is required to the simplex algorithm itself.

The discussion here bears certain similarities to the compact

basis triangularization proposed by Dantzig [3J for staircase problems,
i

in that we are talking about preserving structure from one iteration

to the next.

L In this case, the constraint matrix has the form

(a) Block-angular problems

L

A =

L
(a 3-block example) where each block Bi is usually sparse, and B

3

may have zero row-dimension. Recall that the preliminary triangulariza-

L tion of A is effectively just a row permutation. We wish to restrict

fi
L

the permutation now to be one which triangularizes each Bi individually,

and at the same time moves the coupling constraints C to the bottom,

12.1
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i

as shown. For some suitable column-ordering P each basis B will

then possess the same block-angular form, and since the corresponding

Cholesky factor is independent of column order, it follows that L

c
has the form shown below:

L

c

i

i
c

i

L

I
I
i

i

L

i

i

BP = L =

Even if no row permutation were applied to A , L would maintain

the block-triangular structure, but the triangularization of each Bi

should ensure that each triangle L.
1

will remain sparse. Similarly,

triangularization of sparse C should lead to reasonably sparse M .

This example emphasizes the point already made, that the Choleslqy

factorization automatically takes advantage of useful structure during

the simplex iterations, even though it is "unaware" that such structure

is present. Once an appropriate row permutation has been fixed it is

unnecessary to retain information on row or column partitions within A .

(b) Generalized Upper Bounding (GUB)

This is a special case of the block-angular structure, in which

each block has only one row, usually with all elements _+ 1 (see

Dantzig and Van Slyke [5]):

t1 1 . . 1

A =
ll..l .

.
.
ll..l

.
CA
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'kc number of CUT!, sets is usually very large compared to the

number of coupling constraints in C , so each basis is almost completely

triangular. The Cholese factors are of the form

L =

+ t

D 0

M LO .

with D diagonal and Lo triangular. If the i-th GUB set has

n.1 members in a particular basis, the corresponding L will have

di=p. . Since it is true that most1 ni=l , efficiency could be

improved by taking this and certain other simplifications into account.

Nevertheless a general implementation of the LLT method can derive

high efficiency from the GUB structure automatically, and in contrast

. to standard GUB codes does not require any specialized "housekeeping"

for monitoring the status of the variables in each set.

(c) Staircase structure

Multi-stage systems give rise to problems in which each basis

has the following staircase form:

B =

In this case also, the Cholesky factors preserve the profile of each B

below the diagonal:
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L =

L

i

i

i

L

L

L--

i

L

i

i

--~
.J

The full matrix A has a form similar to the B shown, and an individual

triangularization of the rows within each horizontal stair should minimize

the density of each L within the profile.

(d) Unstructured problems

Since it is often true that structure within a problem reflects

important characteristics of the physical system which the problem is

modeling, it would not be unrealistic to recommend that grouping of

constraints into one of the above forms be done during formulation

of the model (i.e. by human hand). The grouping can then be input to

a preliminary computer routine for further (more localized) triangulariza-

tion.

If a given problem has no apparent structure at all, it may be

profitable to adopt as the pre-prscessing phase, the method of Weil

and Kettler [23] for rearranging A into block-angular form. Since

the Cholesky  factorization takes best advantage of this particular

structure, it is conceivable that even the diagonal blocks thus

obtained should in turn be processed by the Weil and Kettler algorithm,

to produce structures of the following form:
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I
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. . . . .
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*..-  *,, l .*,

.=
l , . :. -.*:  0, :***. .�f

4

.

The sub-structure within each block will be preserved in L just as it

is for the broader partitions. If there are many blocks of this form,

each L will have the following interesting profile:

This is strongly reminiscent of the profile arising in the work of

J. A. George [7,Ch.4], wherein the Cholesky factorization A = LLT

is considered, where A is a given symmetric , positive definite sparse

matrix. Symmetric row/column permutations applied to A lead to L's

of varying density, and since the profile of A is preserved in L

the least dense factors are obtained by minimizing the number of elements

within the profile (rather than minimizing bandwidth, say). Thus an
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L.

L

ordering was found which had a "spike" structure similar to the L

above. Possibly this observation will throw some light on the problem

of finding an optimal permutation when A is of the form BBT .

A further possibility for unstructured problems arises from the

work of H. Konno [16], [17]. AII algorithm is given in [16] for solving

the so-called bilinear programming problem (BLP) using a sequence of

linear programs. One of the applications of BLP given in [17]

relates to the triangularization philosophy. The measure of lower-

triangularity used for a square sparse-matrix A is the number of non-

zero elements occurring above the diagonal of A . It is shown that

the problem of finding row and column permutations which maximize
i

triangularity can be cast as a BLP , and hence in principle can be

solved. An extension to rectangular A should be possible. [Unfortunate-

ly this approach would not be practical for large problems unless the

same structure were to be used many times.]

L

L.
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13. Computational results

Most of the ideas described here have been implemented in an

Algol W program* on the IBM 360/91 at the Stanford Linear Accelerator

Center. Data is input in MPS/~~O format (see [II-~]), including simple

upper and lower bounds on any number of variables. Algol W was chosen

as a flexible and convenient programming language for development

purposes, without which evolution of the algorithm would have been

very much slower. However no direct-access I/O facilities are

available and the implementation is therefore strictly in-core.

Comparison with other systems is difficult in view of the different

machines, programming techniques and use of core, but we give

performance figures where they are available. The run times recorded

below would be reduced by a factor of 3 or 4 if assembly language

were used in place of Algol W . Alternatively the times should be

multiplied by a factor somewhere between 1.2 and 1.5 to give

equivalent run times of an assembly language implementation on an

i
L

i
L

c

IBM 360/67 (very approximately).

Four medium-scale problems have been used as test cases. They

are listed in Table 1, in order of increasing difficulty. Some

relevant run-time statistics are given in Table 2, where time is

measured in seconds of 360/91 CPU utilization, and the number of

elements in I, refers to non-zeros below the diagonal. optimal

*Algol W was developed for the IBM 360 by faculty and students of
the Computer Science Department at Stanford University, as a refine-
ment and extension of Algo 60. No facilities were used here that
are not available in Algol 60,
reading the MPS/~~O  data.

except for character strings used for

i.. -.
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solutions were found for problems A, B and C , but problem D

could not be run to completion because there was insufficient storage

available for L.

The main features of the solution strategy are as follows:

1. The input data was stored in short precision (6 hexadecimal

digits in the mantissa) but all computation and working storage

used long precision (14 hexadecimal digits).

2. A row scaling was applied to A to make the largest element

each row approximately equal to & (to the closest power of

in

2 >* Then a column scaling was applied to reduce the euclidean

length of each column to approximately 1 . This is an attempt

to improve the condition number of each basis.

3. Except on problem C, the procedure of section 4 was used to

permute the rows of A into approximately lower-triangular form.

4. The cold start procedure of section llwas used to find an initial

triangular basis, with the help of a number of artificial variables.

I L 5. For ease of implementation, the usual two phases of the simplex

method were replaced by a single minimization (the "big M" method)

in which artificial variables are given a value c. = M in the
J

cost vector c , where M is-sufficiently large that their

value in an optimal solution is zero. Usually M = 1000 x maxIcj!

is large enough.

a-

6.- The pricing strategy used was also non-ideal but easy to imple-

ment. The first k columns are considered for entry into the

basis, where k is pre-set to something like 300 or 400 ,

depending on the number of variables and the expense of computing
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L

c

i

i

c-

reduced costs relative to the expense of changing basis. An

iteration is performed using the column with most-negative

reduced cost, and then the next k -olumns are c"nsidered.

7. Reinversions were performed only when the error conditions of

section 10 were encountered.

8. The maximum amount of memory available to the Algol W program

for work space is approximately 500K bytes (62,500 long words).

This was more than enough for all cases except problem D .

As Table 2 shows, problems A and B were solved quite easily,

but the high density of problems C and D caused considerably more

difficulty. We will discuss each problem briefly.

Problem A Being a network problem, this example is numerically

well-conditioned (all elements +l ) and highly triangularizeable.-

With only 3 elements per column its density is also very low and

it is not surprising that L remained very sparse throughout the

iterations. Figure 1 shows the growth of off-diagonal elements in

L (NL) along with the number of artificial variables (N >A as

functions of iteration number. It is to be expected that L should

become more dense as unit vectors are replaced by somewhat denser

columns. If iterations had continued, a levelling off would have

occurred, as exhibited by problem C .

This problem was obtained via R. R. Meyer from the Shell Develop-

ment Company, California who also obtained the following comparative

performances:

13.3



i

Code Machine Iterations Time (seconds)

FMPS Univac 1108 477 81

IIDNA Univac 1108 ? 50
1

The iteration time of 21.3 seconds and total solution time of

30.2 seconds shown in Table 2 (Algol W, 360/9l) compare reasonably

well with these figures.

L

L

L

b..

c

Problem B This problem is of generalized upper bounding type, with

890 GUB sets and 39 coupling constraints. The triangularization

procedure of section 4 was successful in moving most of the coupling

constraints to the bottom of A (no special effort was made to do this

exactly). As explained in section 12, the Cholesky factors are

almost triangular, and the number of off-diagonal elements in L

was virtually constant at around 1500 throughout the 958 iterations.

Starting at 1428 elements, this number never exceeded 1534. Again

the problem was well-conditioned and only 1 reinversion was called,

at iteration 555 using 16: -11 as control (see section 7), which

served to avert a slight onset of noise within L .

'Ihis problem was obtained from the Crown Zellerbach Corporation,

via M. G. Kazatkin, and provides a good example of how the Cholesky

factorization, together with explicit storage and updating of L ,

can take advantage of structure. R. B. Johnston of Crown Zellerbach

obtained the following benchmark results on several commercial systems

e-- (last quarter, 1970):
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Code Machine Iterations Time (minutes)

FMPS Univac 1108 1700 13.5

UMPIRE Univac 1108 1852 13.5
ILONA Univac 1108 1491 9.5
MPS/~~O IBM 360/65 1885 36.3
OPTIMA CDC 6600 420 2.4

The first two systems also solved the problem with special

GUB codes, and returned times of 13.0 and 4.5 minutes respective-

ly. It can be seen that the results in Table 2 (95.5 seconds iteration

time, less than 2 minutes total time) compare quite favorably.

Problem C This is a dynamic multi-sector model with staircase

structure, obtained from Professor A. S. Manne and K. W. Kohlhagen

at Stanford University. There are six main "stairs" or blocks, each

approximately 50 x 100 . Ideally each block should be triangularized

individually, but this was done only crudely by hand, and further

triangularization by program was suppressed. (Triangularization of

A as a whole, destroyed the staircase structure and led to very

dense L's .) Although small in absolute dimensions, this problem

was rather difficult to solve for two reasons:

1. The density of 2.3s is moderately high, but since all elements

are concentrated within the staircase structure, the density of

each block is more like lO$ , which is very high.

2. Numerically speaking the problem is ill-conditioned, with the

size of matrix elements ranging from order 10
1

down to order

lo-5 . (This range was not altered significantly by the row

and column scaling.)
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All reinversions were called following selection of a column for

which the pivot element was unusually  small. (Such a column is then

temporarily rejected and a difi'crent one chosen for entry into the

basis.) The relatively high reinversion time of 6 seconds reflects

the strong linkage between variables and indicates that many columns

of L are affected by each basis change. This in turn emphasizes

that with dense problems it can be expensive to update L explicitly.

(Correspondingly, standard methods of updating in product form would

lead, in PFI for example, to a rapid growth of eta elements and

consequently to relatively frequent reinversion.)

As figure 2 shows, the number of elements in L increased steadily

while artificial variables were being removed from the basis, and then

levelled off at a little over 12000 . This steady state is due to

the fact that the staircase structure is being preserved by the

sequence of Cholesky  factors. Though the figure of 12000 is large

considering the size of the problem, it simply reflects the high

density of the data and would have been much larger if structure were

not preserved.

Similar difficulties are reflected in the performance of MPS/~~O*

on a smaller (316 x 463) unstructured formulation of the same problem.

An initial reinversion, starting from an advanced basis, failed with a

row error of 105 . All subsequent reinversions were successful, but

illustrate well the possible disadvantages of the product form of

*cThis is MPS/~~O vz-~9 , running on an IBM 360/67 at the Stanford
University Computation Center, Campus Facility.
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inverse in certain cases. The number of eta elements ranged from

around 24,000 after reinversion, up to nearly 40,000 about 50

iterations later. Reinversion time was between 0.6 and 0.8

minutes, and total run time from cold start was approximately 21

minutes.

Problem C (modified)

A more direct comparison with MPS/360 was obtained using the

staircase model with many of the variables fixed in value. Resultant

problem size was 357 x 385 , plus 148 slack variables. only 6

of the slacks appeared in the optimal basis.

The performance of each method is summarized in Table 3, and it

appears that on this test case the Cholesky method has performed

significantly better than the standard method using product form of

inverse. The growth of elements in L and PFI are plotted in

figure 3. We must point out that L is used four times each iteration,- -

whereas PFI is used only twice. Nevertheless the results are

interesting from a storage point of view. The jump in density of PFI

about 250 iterations before optimum was

followed by a repeated reinversion with

Problem D

due to a row check failure,

a tighter pivot tolerance.

This is the first of three problems used experimentally by

Forrest and Tomlin, called problem A in [6], [Zl] . It was treated

as a general sparse linear program. During the run shown in Table 2,

the number of elements in L increased steadily to 21000 , which

represents the maximum storage that could be allocated for this
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particular problem in the Algol W implementation. The run was

terminated before an optimum solution was found.

Forrest and Tomlin give comparative figures for two methods,

both starting from a full basis and an LU factorization stored in

product form (EFI). With the standard product form of update, the

number of eta elements increased from 4861 to 35885 after

70 iterations, whereas with their own method for updating the LU

factors the number grew from 4861 to only 8958 , which is a

significant improvement.

The poor performance of the Choles& factorization on this example

was partly explained by an inspection of the constraint matrix,

which proved to be approximately dual-angular in structure (containing

coupling variables rather than coupling constraints), with 6 main

diagonal blocks of relatively high density, and about 400 coupling

variables. This structure is not one which is preserved by the LLT

factors. It is possible that the Cholesky method would perform better

on the dual problem, since this would have standard block-angular form

(but would be considerably larger in overall dimension).

i
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Problem A B C D
/

Structure Network GUB Staircase General

Rows 537 930 357 822

Structural
columns 1775 3562 467 1571

Elements 3556 15103 3856 11127
Density o-37$ o-36$ 2.31% 0.86s
Bounds Yes Yes Yes No

Table 1. Test problem characteristics.

L

‘L-

L-

,
L

L

No. of
artificial vars.

Initial no. of
elements in L;
density

Final no. of
elements in L;

II

~ Typical
rcinversion time

No. of iterations

Time for iterations

Row and column
residuals, before
final reinversion

Row and column
residuals, after
final reinversion

A B C D

5.5 il.0 3.5 10.5

3.4
I

10.4
I

Rows not
permuted I 8.7

82
I

6
I 137 I 168

I

407 1428 2248 2262
0.28% 0.33% 3.5s 0.67%

1046
0.73s

1510
0.35%

12228
19.4%

21000
6.2%

0 1 8 14

3.18 0.23 6.0 5.0

343 958 488 284*
21.3 I 95.5 I 311 I 199+ I

Table 2. Solution statistics using the Cholesky factorization.

All times in seconds of 36O/91 CPU utilization.

('AOptimum not reached for problem D.)
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LLT, Algol W, 360191 WI, ~=/360, 360/67

Cold start 0 iterations Crash 204 iterations

0.02 minutes 0.98 minutes

151 artificial 66 infeasibilities
variables

Phase 1 212 iterations Phase 1 3 3 4 iterations

1.65 minutes 7.42 minutes

Reinversion 0.09 minutes Reinversion 0.22 minutes

11923 elements in L 19186 eta elements
before invert

11710 eta elements
after invert

3264 elements in B

Phase 2 1 8 1 iterations Phase 2 227 iterations

2.45 minutes 7.33 minutes

Reinversion 0.12 minutes Reinversion 0.56 minutes
at optimum 12401 elements in L at itn 731 39765 eta elements

before invert

23013 eta elements
after invert

3533 elements in B

Total 3 9 3 iterations Total 7 6 5 iterations

4.12 minutes 15.73 minutes

Table 3. Staircase model (problem C) with reduced no. of variables.

Comparison of Cholesky factors with Product Form of Inverse.
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Figure 1. Problem A: growth of non-zeros in L with

elimination of unit vectors from basis.

NA
= No. of artificial variables

NL
= No. of off-diagonal elements in L
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Figure 2. Problem C: steady-state density of L.
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Figure 3. Staircase model (problem C, modified).

Growth of non-zeros in Product Form of Inverse

and in Cholesky factor.
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14. Summary and suggestions for out-of-core implementation

Given a basis B with corresponding Cholesky factor L and

basic solution ft , the main steps to be performed each iteration of

the algorithm are as follows (using notation defined in previous sections).

1.

2.

3.

4.

5.

Compute the Lagrange multipliers from

LTYl = d

Use TI to select a column as for entry into the basis, and

compute the rate of change of i from

LLTu = as , y = BTu-

Use y to select an out-going column ar and update k .

Solve

Lp = ar

in preparation for modifying L .

Modify L in two stages, such that

(a) fZT t LLT - ararT (using P )

(b) EL"r t ?,kT + aaT .
s s

It can be seen that in steps 1 through 4 above, access to L

is sequential (column by column) and is alternately backwards and

forwards. Thus for these calculations a disk file (for column-wise

storage of L) would be as convenient as in standard product-form

systems.

Modification of L (step 5) again requires a backward pass and

a forward pass, but the main difficulty is that elements must be

inserted into L . A possible solution to this problem is as follows.

Storage on disk will be in the form of a sequence of fixed length

records, each large enough to hold about 20 elements of L . Now
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t

4 consider the modification of a particular column which has been allocated

c r records on disk (containing d = 20r "disk-elements," say). In

tt
L

general this column will have a further c "core-elements", which are

held in main memory in linked-list form, as described earlier in this

1 paper. During modification, the d disk-elements will be read into

t
i

core and linked into the appropriate part of the list, giving d+c

elements in-core for the column in question. The modification can be

c
i

performed conveniently within the list structure, and the first d

(modified) elements will then be written out to disk in place of their

i predecessors and deleted from the list, leaving some small number of

core-elements behind.

In this way the total core required by the lists for all m

1
L

columns of L should change relatively little at each iteration.

During early iterations while L is filling in, periodical re-writes
t

i- can be performed (e.g. during reinversion) in order to allocate additional

f disk records to the densest columns. Storage requirements should

L. stabilize after 100 or 200 iterations.

i

i
Note that for small problems we would initially set r = 0 for

all columns and operation would be completely in-core. Transition to

i disk would be smoothly accomplished, if necessary, by increasing r

i for the densest columns.

L Note also that unless a problem is very dense, only a small

I

i.
percentage of the columns of L are affected by a basis change.

This is why fixed length records are specified, so that "seek" operations

can be requested in order to skip past columns‘ on disk which are not to

be modified. Drums or fixed-head disks would alleviate this problem to
-.

some extent.
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Storage of the constraint matrix A remains to be discussed.

The recent work of J. E. Kalan on the concept of super-sparseness

(see [15]) indicates that even for extremely large problems, in-core

storage of A is within the realms of practicality. However we cannot

L imbed any part of L within A , in the way that Kalan advocates

imbedding the product form of B -1 , and as Tomlin points out in [Zl],

relying on the extended-core storage of current large machines "can

c only be a postponement at best."

Fortunately the primal simplex algorithm does not require a scan of

all columns of A

i
L

rows the simplest

At each stage the

each iteration, so if A has many more columns than

solution is to perform a sequence of suboptimizations.

current basis B and as many non-basic columns as

possible are retained in core. (B is required in step 2 above, and

.a random column from B is needed in step 4.) After a nwnber of

iterations, a pass through A can select the current basis and a new

set of columns for a further suboptimization.

Although standard systems do not retain B in-core, there are

some advantages in doing so, in particular for checking of row and

column residuals and for reinversion whenever necessary. We assume that

Kalan's super-sparseness techniques for compacting B should make this

practical.
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15. Conclusion

In presenting a new linear programming algorithm we do not claim

to be able to solve all problems efficiently. Instead we hope to have

‘L

L

L

i

L

L

L

L

demonstrated that for certain well-defined classes

does have some useful advantages, in terms of both

and preservation of sparseness.

of problem the method

numerical stability

The problems to which the method is immediately applicable are

those for which a preliminary ordering of the rows of A can be

guaranteed to give a sparse factorization for every basis B arising

in the simplex method. The uniqueness of the Cholesw factor L

with respect to column permutations on B then makes it profitable

to store and update the non-zero elements of L explicitly rather than

in product form.

In the case of GUB , block-angular and staircase problems it is

clear what the row-ordering of A should be, and the method then takes

advantage of the structure without further overhead (e.g. problems B,C).

For unstructured problems, triangularization of A appears to be

sufficient if the density is low enough (e.g. problem A). However,

unless there is structure to be preserved there seems to be a threshold

density (at about 0.g) above which the CholesQ factors fill in

significantly, even when triangularization of A is carried out

(e.g. problem D). In such cases, a structure-finding algorithm such

as-that of Weil and Kettler appears to be necessary.

An interesting unsolved problem has arisen:

For which permutation P does the factorization

PBBTPT = LLT

give an L which is most sparse?
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i

i

If this question can be answered for square B (and possibly then

for rectangular B) the algorithm in this paper may find broader

application. In the meantime, the method is already applicable to many

problems and it is felt that the unusual properties of the Cholesky

factorization deserve further investigation.
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