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Abstract

A variation of the revised sinplex nethod is proposed for solving
the standard linear programming problem The nmethod is derived from
an algorithm recently proposed by GIl -nda Mirray, and is based upon
the orthogonal factorization

B =1IQ
or, equivalently, upon the Cholesky factorization

gpl = 117
where B is the usual square basis, L is lower triangular and Qis
ort hogonal .

W wish to retain the favorable nunerical properties of the
orthogonal factorization, while extending the work of G Il and Mirray
to the case of linear prograns which are both large and sparse. The
principal property exploited is that the Cholesky factor L depends
only on which variables are in the basis, and not upon the order in
which they happen to enter. A prelininary ordering of the rows of
the full data matrix therefore promses to ensure that L will remain
sparse throughout the iterations of the sinplex nethod.

An initial (in-core) version of the algorithm has been inplenented
in Algol Won the IBM 360/91 and tested on several nediumscale
problens fromindustry (up to 930 constraints). Wile performance has
not been especially good on problems of high density, the nethod does
appear to be efficient on problens which are very sparse, and on
structured problens which have either generalized upper bounding, block-

angul ar, or staircase form
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Large-scale Linear Programmng using the Chol esky Factorization.

1. Introduction

The standard |inear program ing problemis

mnimze ch
. (%
subject to Ax=b, x>0

where A is nx n and is usually very sparse. Virtually all
met hods currently in use for solving (1) are variations of the

Revised Sinplex Method (Dantzig [4]). If Bis the usual nx m

.basis, the principal source of variation lies in the method chosen for

solving two systens of equations* of the form
Bli=¢, By=a (2)
at each iteration of the algorithm This effectively neans there are
two areas in which methods can differ:
(a) the representation used for B'1 or its equivalent, for any
particular initial B ;
(b) the technique used for updating 5™ when col umms of B are
changed one by one.
In both areas there are two problens to be faced:
(1) nmaintaining sparsity
(2) maintaining nunerical stability,
and the aimhere is to present a nethod which reaches a conprom se

between these requirenents. 'The nethod is derived froman algorithm

.x.
O three systems, if the current basic solution ¥ is obtained by

sol vi ng Bx=b di rectly (see Section 5).
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recently proposed by GIIl and Mirray [8], and is based up the orthogonal
factorization

B = I (3)
or, equivalently, upon the Cholesky factorization

g’ = 11T &
where L is |lower triangular and Q' i s orthogonal (QQT =1) . Wile
the favorable nunerical properties of the factorization (3) are widely
recogni zed, the unknown quantity has been how to keep L sparse. W
hope to make some progress in this direction.

In standard nethods the conflict between sparsity and stability
arises in the choice of pivot sequence, as is well known. gStage (a)
above is called the reinversion phase, and nost reinversion routines
use either the product formof inverse (PFI) orthe nore recent
elimnation form of inverse (EFI) . For exanple in EFI we have

P,BP, = LU (5)

2

where P,, P, are pernmutation matrices defining the pivot sequence

and L, U are respectively |lower and upper triangular. Now for sone

1> Py the LU factorization does not even exist, while

for other choices it can be poorly determined. Therefore the search

choices of P

for pernutations which |ead to sparse factors nust always be tenpered
by the fact that the resulting nunerical error could sonetines be
unacceptably high. Wthout judging the nmerit of different methods, we
note that both extremes have been proposed in the literature: on one
hand the method of Bartels and Golub [1], [2] gives top priority to
nurerical stability in choice of pivot elenents, while in contrast the

new *' preassigned pivot procedure” of Hellerman and Rarick [13], [14]
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endeavors to choose an optinal pivot sequence by consideration solely
of the zero/nonzero structure of B .

Again in the updating phase, once a change of basis has been
determned by the rules of the sinplex algorithm, the standard methods
of updating PFI or EFl allow no freedom whatever in choice of pivot
element. The method of Bartels and Golub (for updating the Hessenberg
formencountered) is the only nethod which retains the possibility of
pivoting for numerical stability.

Turning now to the orthogonal factorization, corresponding to (5)
we have

P,BP, = IR (6)

and in contrast to the above, this factorization exists for all pernuta-

tions P,, P This neans that we are free to choose pernutations from

1’2
sparsity considerations alone, wthout fear that in so doing we m ght

be conprom sing numerical stability. Furthernore, following GII and
Mirray we do not store Q, and therefore we are concerned only wth
mai ntaining sparsity within o .

Unfortunately it happens that the degrees of freedomin (6)are

much fewer than in (5) , because P, (being orthogonal) should really

2
be incorporated into Q :

T .
PlB = LQP2 = Iq

Thus for a given P a change of P_ will affect only Q, and the

2
sparsity of L is therefore affected only by the choice of P, .
Neverthel ess, we are able to turn this fact to advantage, as described
in the remainder of this paper. W choose P, not by exam ning any
particular B but rather by taking a broader view and considering the

1.3
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full matrix Aitself. Any a priori know edge of special. structure

within A can often be put to good usc at this stage.

An in-core version of the algorithmhas been inplenented, and
the presentation here remains primarily within that context. Neverthe-

less, the algorithmis intended to be a practical nethod for solvizg

a wide range of large, sparse linear" prograns, and methods for inplenent-

ing it out-of-core will be the subject of future research.
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2. The Chol esky Factorization

If Mis a synmetric, positive definite matrix, there always
exists a lower-triangular L such that M= 1t Lis called the
Cholesky factor of M, and its elements are uniquely deternined,
apart from the sign of each colum. In our particular application,

M = BB , Which is clearly symetric and is also positive definite
if Bis non-singular. Hence the 11" factorization exists for all
bases B which arise in the sinplex nethod.

It is enphasized now that the product BB is never actual ly
conputed, but rather L is obtained-froma factorization of B
itself. As is well known there always exists an orthogonal matrix Q
(@% = ea® = 1) such that

' =R (7
where R is upper-triangular and has the same rank as B . It follows
t hat

R'R = (8a7)(q8") = BT
and hence the lower-triangular matrix we require is sinply

L =R (8)
Note that (7) may now be witten as in equation (3), B=1q . In
discussing the nodification of L during change of basis, we will find
it convenient to nake use of equation (7), but at the sane tinme equations

(4) and (8) (8" = ', 1 =&Y)

wll serve as renminders that Q
is neither stored nor updated at any stage of the algorithm

In the context of both Iinear and nonlinear progranmng, the use
of the Chalesky factorization has recently been advocated by G| and

Murray [8], [9], [19]. As it happens, the good nunerical properties of
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the factorization constitute only one of several. attractive features.
Thus in the |inear programming application [8 ], ¢ill and Murray choosc
to consider the non-standard problem

mnimze ch

subject to ATx >Db
wher e /ﬂ- isnow mx n, m>n . They are then able to take advantage

of the fact that the mf =

! factorization exists even when B

s not square. Thus B is allowed to have dinmensions px q where
r<qg<n<m, sothat L will be px p and the work and storage
per iteration will usually be much reduced. Here p is the nunber of
active inequality constraints, and since it will usually be true that

p<<n, the reduction in size can be quite significant:

— .
! P PB
PO |
m AT a P
n

Note in particular that the reduction in colum-dinension to g <n

I's obtained by giving special attention to constraints of the sinple

form + X %_bJ-’ which is one very special formof sparsity within A .
Since linear programming problens arise in nany different areas

and can be widely varying in dimension and sparsity, it is unreasonable

to expect that any particular algorithmwould be ideal for all problens.
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Thus, in cases where A is very dense except for sinple upper and

| ower bounds, the algorithmof G| and Mirray will be considerably

more efficient than standard nethods, with regard to storage and conputati onal
requirements. On the other hand, in the area of large-scale linear

programm ng the constraint matrix can be extremely large and in gen~ral

will exhibit rather arbitrary sparseness. In such cases, even the

p x p L above would be nuch too large for efficiency, if regarded as

a dense matrix.

Qur aim then, is to extend the application of LLT to large-
scale problens by attenpting to maintain sparsity within L. To this
end we are forced to restrict ourselves to bases B which are square
(thus treating the standard problem (1) and allow ng exchange of colums
as usual, but not allow ng exchange of rows). W are then able to
exploit yet another property of the Cholesky factorization, as stated
in the following (trivial) theorem
Theorem 1

The Cholesky factor of BBL Qs i ndependent of the ordering of

the colums of B .

Pr oof

Suppose el = 1ot , and let B be the sane as B except that

its colums may be‘in a different order. Thus B = BP for sone
permutation matrix P . Since PPl = | it follows that

w’ - sep's’ - BB’ = 1t
and hence B is associated with the same factor as B .

During both "reinversion" and subsequent updating, the storage of

Lwll remain explicit (as opposed to product form, with linked lists

2.3
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being used to represent the non-zero elenents of each colum. Further
a prc-processing of' the full matrix A will sclect a particular row
permutation, to be applied to A at the beginning and not changed
thereafter. Theorem 1 then shows that the density of L for any

particul ar basis depends only on which colums are in the basis, not

on the order by which these colums happened to enter the basis during

the iterations of the sinplex method

2.4



3. Mtivation for pre-processing sparse A

W suppose that A can be stored (compactly) in core and can
therefore be subjected to an initial inspection of its rows and
colums, as follows. W wish to find scme row pernutation P and
sone colum pernutation P2 such that the matrix P/AP, is "as
close to lower-triangular form as possible." Pictorially, this is

intended to mean that the constraint matrix should | ook sonething Iike

this:
P AP, = (9)
where the lower-triangular part wll still be very sparse. In general,

any basis B will be nmade up of a fairly random sel ection of col ums
fromA, but if P, is the pernutation which sorts the colums of
B according to their order of appearance in (9), we can expect the

pernmuted basis to look something |ike this:

(10)

Thus if P is chosen carefully-, there will always exist a permutation

of the colums of P,B (narel y, Ps) such that P BP, has relatively
few of its non-zero elenments occurring above the diagonal

Now it is well known that once a columm has been selected to enter
the basis, the sinplex nethod allows no choi ce whatever about which

colum nust |eave (neglecting degeneracy), so that P B will generally

3.1
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show no sign of being anything better than an arbitrarily sparse matrix.
Thus it is here that we make use of Theorem 1, which tells us that the
Cholesky factor L associated with PlB I s independent of the order-
ing of colums within PlB . The mere existence of P, in (10) is
all that we need.
In summary, the inportant points about pre-processing A are as
fol | ows:
1. Gven a sparse matrix A there nust exist pernutations P, ,
P, which arrange A in the formshown in (9). For if not, A
woul d necessarily be quite dense.
2. Wth P, chosen and fixed, the existence of Py in (9) guarantees
t he exi stence of P, in (10).
3. The near-triangularity of P, BP, gives reasonable justification
for expecting that the associated L m ght have a density
not much greater than that of B .
4, In deriving an initial rowordering fromthe full matrix A,
we clearly do not have an optimal ordering for any particular B .
Instead we hope to obtain an ordering which is reasonably close
to optimal for all B's encountered during the iterations, and we
thereby justify storing the non-zero elenments of each L explicitly.
The density of the L's will fluctuate fromone iteration to the
next, but it is hoped that the average nunber of elenents wll
remain within arange of say 2 to 5 tinmes as many elenents as
inany B . "Reinversion" wll never be necessary except for

nunmerical reasons, because we do not wish to alter the rowordering

of B, and L is otherw se unique.

3.2
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The above is in marked contrast to nost existing LP systens,
where the reinversion routine produces an extremely conpact
representation of n'l for any particular 13, but the updates
during subsequent iterations arc kept in product formso that the
number of el enents involved between reinversions is strictly
increasing. It is this very property which enables conventiona
systens to operate out-of-core, but it is argued that in many
cases (particularly with problens whose special structure is reflect-
ed in L ) the average amount of data to be manipul ated using

T

LL- mght be significantly less than that involved in standard

met hods.

3.3
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4, Finding the initial row pernutation of A

W assunme that the elenents of A are already available via
colum lists. The row pernutation Py is then easily found with the
help of a (temporary) rowlist and a se-t of rowcounts giving the
nunber of non-zero elements in each row of A. The procedure to L:
used follows one of the steps that i; perfornmed by existing reinversion
routines for locating the so-called "forward triangle" of a basis (see

O chard-Hays [20]). The procedure is readily extended to the ful

matrix A. W will call the process triangularization.

Initially all rows and colums are considered to be eligible.

Rows become ineligible as they are noved one by one to the top, and

a colum | becomes ineligible as soon as a row is chosen which contains
an element in colum j . The steps are:
1. Find the snallest row count anmong any remaining eligible rows.

Ties can be broken by keeping an unmodified copy of the counts
for the full matrix.

2. Let the above row be nunber i in the original A . Take this
row to be next-nearest-the-top, and make it ineligible.

3. Using the rowlist, search row i and suppose there is an element
in colum j . Then use the colum-list to reduce by 1 the count
for any row which contains -an elenent in colum |

4, Make colum | ineligible and repeat step 3 for any further
el enents in row

5. Repeat fromstep 1 if there are still. any eligible rows.

To illustrate the process, it can be verified that the follow ng

exanple is already ordered according to the algorithm

4.1
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Rows will be nmarked off fromthe top down, and col urms becone in-
eligible fromleft to right.

There is one obvious advantage in performng this operation on the
full matrix A. It will often happen through redundancies in formyla-
tion of the linear program that the first t colums, say, will be
strictly lower-triangular after the pernutations (t=3 in the above
exanple). This neans that the first t variables are effectively
fixed and can be imediately elimnated fromthe problemby a parti al
forward-substitution.  Thus, the above 6 x 9 problem can be deflated
from the beginning to dinensions 3 x 6 .

It is not at all clear that the triangularization nethod produces
the best ordering of rows of A, and it has been suggested by
J. AL George that a sinple sorting of rows according to row count
mght do just as well.  This is certainly easy to do, although it

woul d not allow detection of any strict forward triangle. Al so when

the "cold start" technique described in section 11 is used, triangulariza-

tionis likely to lead to an initial basis containing fewer artificial

variables. As a conpronise, the procedure currently being used is to

*
See also the discussion of structured problems in section 12 .
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nove any markedl y-dense rows to the bottom (maybe 5 or 10%) and then
to proceed with triangularization of the remainder

Once the permutation Py has been found, it is convenient for
| ater purposes to pernute the elements in each colum accordingly.
This is easily done within the colum-list, one colum at a tine.

The columm permutation P, can be discarded (it is never necessary

2
to re-order the colums physically) or else the follow ng refinenent

in "pricing" strategy could be used. As will be seen, the sinplex
multipliers are given by 1= d , SO they are conputed one by one from
the bottomup. Cearly the back-substitution process can be stopped

short at any time. Suppose now that colums are priced-out in groups

of k , where k<un , and that the grouping is the one defined by P2

k Kk Kk k

(The best colum to enter the basis will be found in one group, an
iteration performed, and then the next group exam ned.) Then for al
but the first group the conputation of the n, can be stopped short,
and for the last groups only a fraction of the multipliers need be
conputed. This strategy should lead to a significant saving on |arge
problens. It is one which is available to any inplenentation whose
representation of B'1 is explicit (as L is here) rather than in

product form

4.3
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5. Solution of the l|inear eauations

Let x > 0 be the current basic feasible solution, satisfying
Bx =b. Then each iteration » the revised sinplex nethod involves
the fol | owing steps:
1. Sol ve the system
Bl = & (11)
for the current sinplex multipliers = .
2. Sel ect a colum 8 from A satisfying cs-nTaS <0.
3. Sol ve the system
By = a (12)

S
4. Find r such that

x %
o _f omn A
5. Update x according to
’A‘i "’A‘i - oy, (i #r)
?{(—9
r
6. Exchange col ums &, ag in the basis, and update the factoriza-

tion of the newB .
Apart fromstep 6, the main work is in the solution of the |inear
systens (11), (12).

Cbserve that the updating of % in step 5 could involve nunerica
cancel l ation, and ideally should be replaced by a direct conputation of
Xfromsk = b, after step 6. However this would inply a great'dea

nmore work, and in practice no significant problems have been encountered

5.1
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with updating, given that % is reset by direct solution of BX = b
fol lowi ng reinversions.
Consider first the solution of (12). Following GII and Mirray
[8] we see that y is given by
11’y = as , Yy = BTy (13)
T

The first of these equations is equivalent to BBu = a , SO that
S

T . . . .
Bu is one solution of By =a_, and the non-singularity of B
guarantees it is the only solution.

Sinmlarly, when the system Bk = b is solved after reconputation

=3 . Note that I-3

<>

of L, the solution is given by v = b :
itself is required here, which is why it is convenient to have A
(or at least, B) in-core.

The sinplex multipliers are given by (11), By = & , and the
non-singularity of B ensures that this is equivalent to BB = Be .
Thus = could be found from

11 = B4 (14)
which is the method originally proposed by GII and Mirray in [8].
However it is considerably more efficient to transform ¢ as though
il were the last row of' & .  Supposc that the orthogonal factoriza-
tion (7) gives

Qi 18 =m|a =1l q (15)
Then (11) is equivalent to

L= d (16)
so that just one back-substitution is required to find xif dis

updated along with L fromone iteration to the next. ¥

¥Since publication of [8], GTT and Mirray have independently 'adopt ed
this nmethod also.



Anot her inportant advantage in using (16) arises fromerror
considerations. Here we need a quantity called the condition nunber,
k(B) , defined as

k) = kT = 1Bl E
where ||-]| denotes the euclidean norm  Suppose the systen1BTn = ¢
is perturbed slightly, by small changes to either B or the right-
hand side (such as will be incurred by storing the data in a conputer's
finite-length word). The exact solution = wll be perturbed by sone
amount proportional to the perturbations in the data, and it can be
shown that the constant of proportionality is «(B) . Thus «(B)
provides an estimate of the intrinsic uncertainty in x . Hence it is
reasonable to discuss in terns of «(B) also, the error that can
result fromround-off when a particular numerical nethod is used to
conpute r .

Returning to (16), it has been shown (e.g. Golub and W ki nson
[12]) that if LTn = dis used to solve (11) the relative error in
n can be bounded by a terminvolving «(B) , whereas if (14) is used
t he bound invol ves K(BTB)=:K2(B). This is the above mentioned
advantage in using (16), froma standpoi nt of round-off error.

Unfortunately the situation-is not so favorable when we use
equations (13) to solve By = a The relative error bound for y
again involves KZ(B) , and this could be a problemwth severely ill-
Conditioned data. (In sone cases the algorithmof this paper could be
applied to the dual linear program since errors in » are often less

inportant than errors in x .) W point out that if B = LQ the solution

y is given by

\Jl
W



Iw =a , Qr =w

and the error in y woula be bounded by «(B) . Thus the above
problem arises only because we are ci-using tO represent Q'l by
-1 - -
0" =al = ( T o 57T

rather than storing and updating Qitself. sSince B, and therefore

A , would no longer be required in-core, an alternative inplementation

which maintained g in product form mght in sone cases be preferable.
A full error analysis of the Qr factorization has been given by
Wl kinson [2k]. The use of plane rotations to solve linear systens as

in equations (15),(16) has al so been anal yzed by Van der Sluis [22].
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6. Updating L upon change of basis

A change of basis will be zccomplished in two stages:

1. Col um a, is deleted, giving an intermediate L which is
singul ar.
2. Col um A is added and the intermediate L is nodified to

produce a new L corresponding to the basis of the next iteration.
The reason for deleting before adding, rather than vice versa, is given
by the following results. Suppose
1 = gt and TIT = BB" + aa’

so that L is the Cholesky factor obtained by adding colum a to

B.

Theorem 2
The density of 1L can not be less than the density of L
(neglecting nunerical cancellation).

Corol lary

Wien a colum is renoved fromB , the density of the new factor
can not (significantly) increase.
The theoremis obtained by considering the effect of the elenentary
orthogonal transformations used to update the Qr factorization
of a matrix when a rowis added to the matrix (see section 8and
recall L = RT). Briefly it is due to the fact that if
a o
B B
where Zis a 2 x 2 orthogonal matrix, then usually
a#o, B £0

unl ess o=0 and B=0.

6.1
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The corollary follows because the uniqueness of L with respect
to colum pernmutations on B inplies that renoval of a colum is the
exact reverse of the process of adding it back again.

The main point is that we wish to ensure that the internediate
L above will in general be less dense than its predecessor. W& note

4

here that the factorization

g’ = oot
has al so been (successfully) used, where D is diagonal ami}ii =1,
to take advantage of the fact that no square roots are required during
updates, and |ess divisions are required during back-substitutions.
However for nunerical stability it is essential with this factoriza-
tion to avoid singularity by adding before deleting, and consequently
the internediate L will generally be nore dense than its predecessor
sonetimes markedly so. It is nowfelt that the possible severity of

this fluctuation outweighs the other advantages that 15"

m ght
T
have over LL
The corollary has a useful practical inplication. If the density
of L does increase significantly when a colum is deleted, then nost
of the new non-zeros nust be due to propagation of noise, in the form
of very small nunbers which should be treated as zero. This can happen

after a large nunber of nodifications and provides one of the severa

indicators needed in practice to trigger reinversion.
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7. Removal of a row fromthe QR factorization

In preparation for nodifying L when col um a, is deleted from
B, let us adopt the QR notation com.only used in numerical |inear

algebra. As noted in equation (7), the QR factorization is

A = R
where Q is orthogonal, R:LT, and we are tenporarily defining
A=B . W wishto deleterOWaLrT fromA , and we now give a new

method for acconplishing this using elementary orthogonal matrices
in a manner which is becomng increasingly well known (cf. Golub [11],
GIll and Murray [81,[9]). Suppose for notational purposes that A
IS mXn,m>n, although we are mainly interested here in the
special case when A is square. Application of the method to
rectangular A will be discussed nore fully in [10].
Let RTp =a, and consi der the sequence of elementary orthogonal

matrices Zi such that

i=n, n-1, . . ., 1

N
]

i i-i

Here, the z, could be plane rotations of the form
cos 6, -sin o,

sin e Cos 6,

1
or else 2 x 2 Householder transformations, and the equation serves

to define 655 'éi 1

remains to be chosen.

in terns of Ps> 61 . The starting val ue 6

The Z; are now inflated with the appropriate parts of the identity

matrix and applied in turn to the matrix

7.1
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|
...6._._|_... -—
n |
I

As the elenments of p are reduced to zero from the bottom up,

the row below R gets filled up from right to left. Ris nodified

row by row, but retains its triangular structure. Thus we have
! I =

P i R : Ot R
212o «« 2 2y o = _-;___
6n; 0 60' s'I‘ il)
. | :
and the orthogonality of the Z, gives
T 1] ‘ ‘ -
| ' 7
-P__:_n PR ..O__.'(S_C Oy R
! o = r \
! t ~° - T = —
T -r | =
| T
R IOJ 6n: 0 R™ s 8y s
: - - I I
so that
2 B 2
PP + 6n = 60
T
R'p = 50 s
RTR = ﬁqﬁ + ss

Now the natural choice fbr 5 s clearly the value which gives

6O=l since this inplies RTp =S and therefore

as required.



In general this means setting 6n_::J1 - pIp . For the special

case m=n , conparing the equations
RQ = B, Rp = a
r
shows that p is just the r-th colum of Q. Hence pr = 1

and we set & =0 . .

The di scussion above brings to light two properties of the up-
dating nethod which mght be used as a measure of nunerical error.
First, the vector being elimnated fromA is re-generated as the
vector s, and thus a non-trivial discrepancy between s and a,
could inply significant nunerical error in R.

The second check is available only in the special case m=n ,
where én =0 66 = pr : Since 65 is actually conputed from p
as a by-product of the updating, it is available at no extra cost,
and any significant deviation of ég from1 inplies nunerical error
in p and therefore either simlar error in Ror ill-conditioning
of the current B (or both). In practice, the size of [63 - 1|

can be nonitored and it provides us with sone sort of numerical check

every iteration. A continuous numerical check of this kind is some-

thing which is not common in standard |inear programming systens.
(Forrest and Tomin report a simlar check in their new LU implementa-

tion [6]).
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8. Adding a colum to the basis

We will continue to use Qr notation here, as in the previous
section. The nodification of I when colum a is added to B
is the process of nodifying R when a row ag is added to BT.
It is well known how to do this using plane rotations, when Ris

dense (e.g. CGolub [11]). In general, with Rmx m, we would have

R R

Zm Zm-l.** Zl T =

v 0

where each Zi Is an elenentary orthogonal transformation defined at
each stage by two elenents, namely M and the i-th el ement of v

after nodification by the previous transfornations Bis o s By

i-1 -
Wien R and v are sparse, the algebra is the same but many of
t he Zs will sinply be | . To mnimze conputation time we need a
data structure which indicates directly which transformations are non-
trivial. To illustrate, let us consider an exanple with m = 5 .
Suppose R has two of f-diagonal elenments as shown bel ow, and suppose

that the new row has only two non-zero elements. The steps by which

V is reduced to zero are as foll ows:

IR A

(® x [ @& [ ® |
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Crcled elements define the transformation each stage. Non-zero elenents

are marked by x , and new non-zeros (which were zero in the previous

stage) are marked by + . \¢ see that

1. Rows 1 and 3 of R are unchanged.

2. A new el enment has appeared in each of rows 2 and & .

3. A non-zero elenment was produced' in v at the second stage, and this
el enment had to be reduced to zero by a non-trivial transformation.

Sone of the computed el ements could prove to be bel ow some pre-
specified tolerance, and should be elinnated from the data structure.
This will happen occasionally during the addition process, and wll
occur quite frequently during the reverse process of renoving a col um
from the basis.

Because of this need to insert and delete el enents, we have chosen
for in-core inplementation to use a linked-list to represent the non-
zero elements in each row of R, as described in the next section. A
sinpler kind of list can be used to keep track of the elenents in v |
at a slight cost in storage. Suppose the non-zero elenents of the
initial v are placed in the appropriate positions of an array V(*  of
dimension m. Then an integer array VNEXT(*) is used to point to these

el ements in an obvious way:

12 3 4 5 6 7 8 o9 10 11 12

VNEXT 7 11 ©

START [EE:}_______f
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Cearly there is space available for any new non-zero el enents that

arise during the addition process. It would be possible to set

V(j) = 0 wherever v.J =0 initially and elimnate VNEXT(*) al t oget her,
but note that each non-trivial transformation Z; i nvol ves a siguificant
amount of conputation. If the essential part of Zs Is the 2x 2

orthogonal matrix Q; satisfying

i ii
ol T
V) 0
then we must conpute
r. r.,.
i iJ
= Q.
<i+l) * v(l
J
J — -
for | =i+1,. . . , m. (Here, vgi) is the j-th element of v before
the i-th transformation.) The list structures for R and v enable
us to econonize on arithnetic when either rl.J. or v.J(') is zero, and

more inportantly allow us to skip directly past any conputation for

whi ch r.l.J and v.J(i) are both zero  (which is the nost frequent case).
The "ADD' routine for performng the above process is enployed

in two situations:

1. To add a colum to the basis each iteration, follow ng the renoval
of a col um.

T n H H n H
2. To reconpute L = R™ from scratch whenever a "reinversion” is

required see section 10).
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In both cases it happens that R is singular upon entry tc+he
routine. We wish to enphasize that the process is neverthel ess well-

defined and nunerically stable.
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9. Storage of sparse L

As indicated in the previov~ section,

store the elenents of each colrn of L .

this can be done with three parallel

array INEXT(*)

In a high-level

we use a linked-list to
| anguage,
arrays as follows. An integer

serves as a set of pointers into another integer

array LROW(*) which contains the row index of the next non-zero

element in a particular colum.

floating-point array L(*) .

the arrays mght be set up as follows:

Posi ti on
1

© o N O VN1 = N

RN
o

The elenment itself is stored in a

4.0

3.0

2.0

1.0

INEXT
>
7
LROW
6 2
E o 3
9 3

6.0

8.0

1.0

9.1

For exanple, to store the matrix

[
l

di agonal s

free
storage



The o« sign marks the end of each colum, and TOP points to
the beginning of the linked-list of free storage, also contained in
INEXT(*) .

If an elenment 5.0 is inserted into colum 2 to give

F‘h -
3
L=
6 5 2
L 8 1 1]

the arrays would be nodified to look Iike this:

Position LNEXT L
1 5 4.0
2 8 3.0
3 ® 2.0
4 o LROWV 1.0
5 6 2 6.0
6 = 3 8.0
7 w f] 3 1.0
8 7 2 5.0
9 10
10 o :]

TOP-
9

and simlarly if the element 6,0 were deleted fromcolum 1, we would

have
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and the arrays would change to the follow ng:

Position INEXT L
1 6 4.0
2 8 3.0
3 ® 2.0
4 =) LROW 1.0
5 2 9
6 ® ‘J 3 8.0
7 ® 3 1.0
8 7 2 5.0
9 ~ 10 -

10 ® I;]
TOP
LT 5

The purpose of lists is, of course, to enable elenments to be
inserted and del eted wi thout having to push existing elenents around
to make room W see that "holes" can appear, which are linked into
the free-storage list, and that the elenents of any particular colum
will diffuse through the list as nodifications proceed. Since L is
accessed colum by colum during each sinplex iteration, if the algorithm
is inplenented in a virtual-menmory environment it woul d probably be
profitable to group together occasionally the elenents in each col um,

to alleviate the problem of nemory fragnentation.
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10.  Tieinversion

Fol l owi ng convention, we use the termreinversion to mean
conputation of L froma particular bas.s B, despite the fact that
no matrix inversion is involved. Othogonal triangularization would
be a nore accurate description. There are two main parts to the

process, as follows.

First, as many colums as possible are taken fromthe current B
and placed directly in L . Usually the majority of colums in B
can be so placed, because the pre-processing of A should ensure that
all bases are nearly triangular. No arithnetic is required at this
stage and the order of placement is irrelevant. Thus in a single
pass through A each basic colum is copied into the position defined
by its first non-zero element, as long as there is no colum already
in that position.

Next, unfilled colums of L are set to zero (via lists of zero
| ength) and unplaced colums of B are added one by one, by repeated
calls to the AbD routine of' section 8 . Again any order will do, so
a second pass through Ais all that is required.

Rei nversion time depends heavily on the growth of non-zero el ements
within L, and also on the nunber of colums of L that are nodified
by each call to the ADD routine in the second stage. As m ght be
expected, triangularization of a relatively dense B can involve a
great deal of conputation, while for very sparse problens the process
can be quite rapid, since there is no pernutation-finding logic involved
and only a small percentage of the colums are affected during the

second st age.
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The principal reasons for invoking reinversion are listed bel ow

An indication is given of tolerances that have been used on the | BM

360/91 when conputation is perfornmed in leng precision (approxinately

15D), ainming for about 7D precision in the solution (or better).

W assune that the data has been scal ed as described in section 13.

1.

The row and colum residuals

p=b-B§c, Y =6-BT1{

are conputed at regular intervals (e.g. every 25 or 50 iterations).
Reinversion is called if

] >1077 or |vy| > 1070
where p| is the average of |p.|.
The pivot el ement Yy in equation (12) should not be too small.
Rei nversion is perforned if v, < 1073, (This may be too large
for some problens.)
During deletion of a colum fromL , reinversion is called
if the quantity |a§ - 1| (section 7)exceeds 1077
Also during deletion, if the nunber of new non-zero elements in
1, (which should be negative) exceeds about 54 of the tota

non-zeros, reinversion is called to elimnate what nust be noise

(see section 6).
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11. Finding an initial basis

The following sinple "cold start" procedure can be vsed to find
an initial non-singular basis. It< implc.entation i S made easy by
the prelimnary triangularization of A. A full identity matrix of
ettherslack or artificial variables could:be used, but the aimis to
do better and instead we look for a basis which is strictly lower-
triangular (so that B =L ). This guarantees non-singularity equally
well, and on a typical sparse problem can usually be done with the help
of only a few artificial colums.

In a single pass through the colum-list for A we |ook at the
position and sign of the first elenent in each colum, and record for
each i (i =1,2,. . . , m the "best positive colum" and the "best
negative colum." By this we mean the follow ng. Suppose the first
non-zero elenent in colum j is a.l.J and suppose a.iJ >0 . Then
colum j is a possible candidate for "best positive colum for row
i", dependi ng say on the size of C. relative to the previous best
Simlarly if aiy <0, colum j mght becone the best negative
colum for row i

An initial B=L is now selected fromthe above candidates, and
a forward substitution Lx = b is-performed in parallel in order to
ensure that the resulting % is feasible (% >0) . At thei-th

stage, the sign of
i -
A
bi - z li_j. xj
J=1

determ nes whether a positive or negative colum shoul d be used as the
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i-th colum of L . If there is no acccptable candi date, we mnust

introduce an artificial colum of appropriate sign (Lreg )
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12.  Structured problens

The techniques discussed so far are intended for use on general
sparse linear programs. Now it often ha.pens that the matrix A in
(1) has special structure, and if we have know edge of this it is
natural to want to exploit such infornmation wherever possible. As
we shall see, the LLT factorization does allow us to utilize structural
information, and it is only during the prelimnary triangularization
of A (see sections 3, 4) that special care need be taken. No nodifica-
tion is required to the sinplex algorithmitself.

The discussion here bears certain sinilarities to the conpact
basis triangul arization proposed by Dantzig [3] for staircase problens,
in that we are tal king about preserving structure fromone iteration

to the next.

(a) Block-angul ar probl ens

In this case, the constraint matrix has the form

(a 3-block exanple) where each block B, s usually sparse, and By

may have zero rowdinension. Recall that the prelimnary triangulariza-
tion of Ais effectively just a rowpermutation. W wish to restrict
the pernutation now to be one which triangularizes each B, i ndi vi dual 'y,

and at the sane tinme noves the coupling constraints C to the bottom
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as shown. For sone suitable columm-ordering P each basis B will
then possess the sanme block-angular form and since the corresponding
Chol esky factor is independent of colum order, it follows that L

has the form shown bel ow

@
o
1
—
I
5y

Ny

Even if no row permutation were applied to A, L would maintain

the block-triangular structure, but the triangularization of each B,
shoul d ensure that each triangle L., Wl remain sparse. Simlarly,
triangul arization of sparse C should lead to reasonably sparse M.
This exanpl e enphasi zes the point already made, that the Cholesky
factorization autonatically takes advantage of useful structure during
the sinplex iterations, even though it is "unaware" that such structure

is present. Once an appropriate row pernutation has been fixed it is
unnecessary to retain information on row or colum partitions within A .

(b) Generalized Upper Bounding (GUB)

This is a special case of the bl ock-angular structure, in which
each block has only one row, usually with all elenents * 1 (see

Dantzig and Van Slyke [5]):

11. .1
11

A= o 1
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"kc nunber of cun sets is usually very large conpared to the
number of coupling constraints in C, so each basis is alnost conpletely

triangular. The Cholesky factors are of the form

di
d
2
L - D 0 _ .
d
P
M LO |
with D diagonal and Ly triangular. |f the i-th GUB set has
ny menmbers in a particular basis, the corresponding L will have
di = /My - Since it is true that nost nizl, efficiency could be

i nproved by taking this and certain other sinplifications into account.

T met hod can derive

| . Neverthel ess a general inplementation of the LL
high efficiency fromthe GUB structure automatically, and in contrast
to standard GguB codes does not require any specialized "housekeeping"

for monitoring the status of the variables in each set.

(c) Staircase structure

Mil ti-stage systens give rise to problens in which each basis

has the follow ng staircase form

1

In this case also, the Cholesky factors preserve the profile of each B

bel ow the diagonal:
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375,200
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The full matrix A has a formsimlar to the B shown, and an indi vi dual

triangul arization of the rows within each horizontal stair should mnimze

the density of each L within the profile.

(d) Unstructured problens

Since it is often true that structure within a problemreflects
i nportant characteristics of the physical systemwhich the problemis
modeling, it would not be unrealistic to reconmend that grouping of
constraints into one of the above forns be done during formilation
of the model (i.e. by human hand). The grouping can then be input to
a prelimnary conputer routine for further (nmore |ocalized) triangulariza-
tion.

If a given problemhas no apparent structure at all, it may be
profitable to adopt as the pre-processing phase, the nmethod of Wil
and Kettler [23] for rearranging A into block-angular form  Since
the Cholesky factorization takes best advantage of this particular
structure, it is conceivable that even the diagonal blocks thus
obtai ned should in turn be processed by the Wil and Kettleralgorithm,

to produce structures of the following form
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The sub-structure within each block will be preserved in L just as it
is for the broader partitions. |If there are many blocks of this form

each L will have the following interesting profile:

/

D
AN

This is strongly remniscent of the profile arising in the work of

J. A Ceorge [7,Ch.4], wherein the Chol esky factorization A = LI

i's considered, where A is a given symetric, positive definite sparse
matrix. Symmetric row columm pernutations applied to A lead to L's

of varying density, and since the profile of A is preserved in L

the |l east dense factors are obtained by mnimzing the nunber of elenents

within the profile (rather than mnimzing bandwidth, say). Thus an
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ordering was found which had a "spike" structure simlar to the L
above. Possibly this observation will throw some |ight on the problem
of finding an optimal permutation when A is of the form BB. |

A further possibility for unstructured problens arises fromthe
work of H. Konno [16], [17]. An algorithmis given in [16] for solving
the so-called bilinear programmng problem (BLP) using a sequence of
linear programs. One of the applications of BLP given in [17]
relates to the triangularization philosophy. The neasure of lower-
triangularity used for a square sparse-matrix A is the nunber of non-
zero el ements occurring above the diagonal of A. It is shown that
the problemof finding row and col um permnutations which maxim ze
triangularity can be cast as a BLP , and hence in principle can be
solved. An extension to rectangular A should be possible. [Unfortunate-

'y this approach woul d not be practical for |arge problens unless the

same structure were to be used many tinmnes.]
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13.  Conputational results

Most of the ideas described here have been inplemented in an
Al gol Wprogrant on the |BM 360/91 at the Stanford Linear Accelerator
Center. Data is input in MPS/360 format (see [181), i ncluding sinple
upper and |ower bounds on any nunmber of variables. Algol Wwas chosen
as a flexible and convenient progranmng |anguage for devel opnent
purposes, Wi thout which evolution of the algorithmwould have been
very much slower. However no direct-access I/Ofacilities are
available and the inplenentation is therefore strictly in-core.
Conparison with other systems is difficult in view of the different
machi nes, programming techniques and use of core, but we give
performance figures where they are available. The run tines recorded
bel ow woul d be reduced by a factor of 3 or 4 if assenbly |anguage
were used in place of Algol W. Alternatively the tines should be
nultiplied by a factor sonewhere between 1.2 and 1.5 to give
equi valent run times of an assenbly |anguage inplenentation on an

| BM 360/67 (very approxi mately).

Four mediumscale problens have been used as test cases. They
are listed in Table 1, in order of increasing difficulty. Sone
rel evant run-tine statistics are given in Table 2, where tine is
measured in seconds of 360/91 CPU utilization, and the nunber of

elenents in L refers to non-zeros below the diagonal. optinmal

*Algol W was devel oped for the IBM 360 by faculty and students of
the Conmputer Science Department at Stanford University, as a refine-
ment and extension of Algol 60. No facilities were used here that
are not available in Algol 60, except for character strings used for
reading the MPS/360 data.
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solutions were found for problens A, B and C, but problem D

could not be run to conpletion because there was insufficient storage

available for L.
The main features of the solution strategy are as follows:

L The input data was stored in short precision (6hexadecinal
digits in the mantissa) but all conputation and working storage
used long precision (14 hexadecimal digits).

2. A row scaling was applied to A to make the largest elenent in
each row approximately equal to 1 (to the closest power of
2 ). Then a colum scaling was applied to reduce the euclidean
length of each colum to approximately 1 . This is an attenpt
to inprove the condition nunber of each basis.

3. Except on problem C, the procedure of section 4 was used to
pernute the rows of A into approximately |ower-triangular form

4, The cold start procedure of section 11 was used to find an initia
triangular basis, with the help of a number of artificial variables.

5. For ease of inplementation, the usual two phases of the sinplex
met hod were replaced by a single mnimzation (the "big M" nethod)
in which artificial variables are given a value G = Min the
cost vector ¢ , where Mis-sufficiently large that their
value in an optimal solution is zero. Usually M= 1000 X max\cj!
I's large enough.

6.- The pricing strategy used was al so non-ideal but easy to imple-
nment. The first k colums are considered for entry into the
basis, where Kk is pre-set to sonething |ike 300 or 400 ,

dependi ng on the nunmber of variables and the expense of conputing
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reduced costs relative to the expense of changing basis. An

iteration is performed using the colum wth nost-negative

reduced cost, and then the next ¥ -~slumns are cunsidered.

7. Rei nversions were perforned only when the error conditions of
section 10 were encountered

8.  The nmaxi num amount of menory available to the Algol W program
for work space is approxi mately 500K bytes (62,500 | ong words).

This was nore than enough for all cases except problemD .

As Table 2 shows, problens A and B were solved quite easily,
but the high density of problems C and D caused consi derably nore
difficulty. We wll discuss each problem briefly.

Problem A Being a network problem this exanple is numerically

wel | -conditioned (all elements +1 ) and highly triangul arizeable.
Wth only 3 elenents per colum its density is also very |ow and
it is not surprising that L renmained very sparse throughout the
iterations. Figure 1 shows the growth of off-diagonal elenents in

L (v.) along with the number of artificial variables (N,) as
functions of iteration nunber. It is to be expected that L should
becone nore dense as unit vectors are replaced by somewhat denser
colums. If iterations had continued, a levelling off would have
occurred, as exhibited by problem C .

This problem was obtained via R R Myer fromthe Shell Devel op-
nent Conpany, California who also obtained the follow ng conparative

per f or mances:
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Code Machi ne Iterations Time (seconds)
FMVPS Uni vac 1108 477 81
IIONA Uni vac 1108 ? 50

The iteration time of 21.3 seconds and total solution time of
30.2 seconds shown in Table 2 (Algol W 360/91) conpare reasonably

well with these figures.

Probl em B This problemis of generalized upper bounding type, wth
890 GUB sets and 39 coupling constraints. The triangul arization
procedure of section 4 was successful in noving nost of the coupling
constraints to the bottomof A (no special effort was made to do this
exactly). As explained in section 12, the Cholesky factors are

al most triangular, and the nunber of off-diagonal elements in L

was virtually constant at around 1500 throughout the 958 iterations.
Starting at 1428 elenents, this number never exceeded 1534. Again
the problem was well-conditioned and only 1 reinversion was call ed,
at iteration 555 using |6§ -1| as control (see section 7), which
served to avert a slight onset of noise within L .

This probl em was obtained fromthe Crown Zellerbach Corporation,
via M G Kazatkin, and provides a good exanple of how the Cholesky
factorization, together with explicit storage and updating of L ,
can take advantage of structure. R B. Johnston of Crown Zellerbach
obtai ned the follow ng benchmark results on several comercial systens

(last quarter, 1970):
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Code Machi ne Iterations Tinme (mnutes)
FMPS Uni vac 1108 1700 13.5
UMPIRE Univac 1108 1852 13.5
| LONA Uni vac 1108 1491 9.5
MPS/ 360 | BM 360/65 1885 36. 3
OPTI MA coc 6600 420 2.k

The first two systens also solved the problem with specia
GUB codes, and returned tines of 13.0 and 4.5 nminutes respective-
ly. It can be seen that the results in Table 2 (95.5 seconds iteration

time, less than 2 mnutes total time) conpare quite favorably.

Problem C This is a dynamic multi-sector nodel wth staircase
structure, obtained from Professor A 5. Manne and K. W Kohl hagen
at Stanford University. There are six main "stairs" or blocks, each
approximately 50 x 100 . Ideally each block should be triangularized
individually, but this was done only crudely by hand, and further
triangul arization by program was suppressed. (Triangul arization of
A as a whole, destroyed the staircase structure and led to very
dense 1L's.) Although small in absolute dinensions, this problem
was rather difficult to solve for two reasons
1. The density of 2.3% is noderately high, but since all elenents
are concentrated within the staircase structure, the density of

each block is nore like 104 , which is very high

2, Nurrerical |y speaking the problemis ill-conditioned, with the
size of matrix elenents ranging from order 101 down to order
5

10° (This range was not altered significantly by the row

and colum scaling.)
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Al'l reinversions were called follow ng selection of a colum for
whi ch the pivot elenment was unusu=1ly small. (Such a colum is then
tenporarily rejected and a diffcrent one chosen for entry into the
basis.) The relatively high reinversion time of 6 seconds reflects
the strong |inkage between variables and indicates that many col ums
of L are affected by each basis change. This in turn enphasizes
that with dense problens it can be expensive to update L explicitly.
(Correspondingly, standard nethods of updating in product form would
lead, in PrI for exanple, to a rapid growh of eta elenents and
consequently to relatively frequent reinversion.)

As figure 2 shows, the number of elenments in L increased steadily
while artificial variables were being renoved fromthe basis, and then
levelled of f at a little over 12000 , This steady state is due to
the fact that the staircase structure is being preserved by the
sequence of Cholesky factors. Though the figure of 12000 is large
considering the size of the problem it sinply reflects the high
density of the data and woul d have been much larger if structure were
not preserved.

Simlar difficulties are reflected in the performance of MPS/360*
on a smaller (316 x 463) unstructured fornulation of the same problem
An initial reinversion, starting from an advanced basis, failed with a
row error of 105 . Al subsequent reinversions were successful, but

illustrate well the possible disadvantages of the product form of

*This | S MPS/360 v2-M9 , running on an [BM 360/67 at the Stanford
University Conputation Center, Canpus Facility.
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inverse in certain cases. The nunber of eta elenents ranged from
around 24,000 after reinversion, up to nearly 40,000 about 50
iterations later. Reinversion time was between 0.6 and 0.8
mnutes, and total run tinme fromcold start was approximtely 21

m nut es.

Problem C (nodified)

A nore direct conparison with MPs/360 was obtai ned using the
staircase model with many of the variables fixed in value. Resultant
probl em size was 357 x 385 , plus 148 slack variables. only 6
of the slacks appeared in the optinal basis.

The performance of each method is summarized in Table 3, and it
appears that on this test case the Cholesky nethod has performnmed
significantly better than the standard nethod using product form of
inverse. The growth of elenents in L and PFl are plotted in
figure 3. W nust point out that 1 is used four times. each iteration,
whereas PFl is used only twice. Nevertheless the results are
interesting froma storage point of view The junp in density of PFI
about 250 iterations before optimumwas due to a row check failure,

followed by a repeated reinversion with a tighter pivot tolerance.

Probl em D

This is the first of three problens used experimentally by
Forrest and Tomin, called problemA in [6],[2l]. It was treated
as a general sparse linear program During the run shown in Table 2,
the nunber of elements in L increased steadily to 21000 , which

represents the maxinmum storage that could be allocated for this
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particular problemin the Algol Winplementation. The run was
termnated before an optinum solution was found

Forrest and Tomin give conparative figures for two nethods
both starting froma full basis and an LU factorization stored in
product form (EFI). Wth the standard product form of update, the
nunmber of eta elements increased from 4861 to 35885 after
70 iterations, whereas with their own nmethod for updating the LU
factors the nunber grew from 4861 to only 8958 , which is a
significant inprovenent.

The poor performance of the Cholesky factorization on this exanple
was partly explained by an inspection of the constraint matrix,

whi ch proved to be approximately dual -angular in structure (containing

coupling variables rather than coupling constraints), with 6 min
di agonal bl ocks of relatively high density, and about 400 coupling
variables. This structure is not one which is preserved by the i
factors. It is possible that the Chol esky method woul d perform better
on the dual problem since this would have standard bl ock-angul ar form

(but would be considerably larger in overall dinension).
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Probl em A B C D

Structure Net wor k GUB Staircase Gener al

Rows 537 930 357 822

Structural

col ums 1775 3562 467 1571

El ement s 3556 15103 3856 11127

Density 0.374% 0.364 2.319 0.864

Bounds Yes Yes Yes No

Table 1. Test problem characteristics.
A B C D
Time to
input data 5.5 i1.0 3.5 10.5
Time to Rows not
triangularize A 3.4 | 10.4 | permuted 8.7
No. of
artificial vars. 2 6 BT 168
Initial . of
ol ermats i n L Loy 1428 2248 2062
densi ty ' 0.28% 0.35% 3.5% 0.67%
Final no. of 1046 1510 12208 21000
density 0.73% 0.35% 19. 4% 6.2%
No. of reinversions 0 1 8 14
Typi cal
reinversion time 3.18 0.23 6.0 5.0
No. of iterations 343 958 488 8L %
Time for iterations 21.3 | 95.5 | 311 | 199%
Row and col um .
residual's, before 10717 1073 107 107 [10710 10733 | 10712 1079
final reinversion
Row and col um
residual's, after 10716,10710) 10717 107181012 o141 p-12 - 11
final reinversion
Table 2. Solution statistics using the Chol esky factorization.

Al times in seconds of 360/91 CPU utilization.
(¥optimum not reached for problem D.)
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LLT, Algol W  360/91 PFI, MPS/360, 360/67

Col d staft O iterations Crash 204 iterations
0.02 ninutes 0.98 m nutes

151 artificial 66 infeasibilities
vari abl es

Phase 1 212 iterations Phase 1 334 iterations
1.65 minutes 7.42 mnutes
Rei nversi o 0. 09 ninutes Rei nversiop 0.22 mninutes

11923 elenents in L

19186

11710

eta el enents
before invert

eta el enents
after invert

3264 elenents in B
Phase 2 | 181 iterations Phase 2 227 iterations
2.45 minutes 7.33 mnutes
Rei nversiof 0.12 ninutes Reilnversi ol 0.56 ninutes
at optimum 1 19401 elenents in L at itn 731 39765 eta el enents
before invert
23013 eta el ements
after invert
3533 elenents in B
Tot al 3 9 3 iterations Tot al 7 6 5 iterations
4.12 minutes 15. 73 m nutes
Table 3. Staircase nmodel (problem C) with reduced no. of variables.

Conparison of Cholesky factors with Product

13.10
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I o
¢4 1000
20F 800
1 600
25 I / \
/ 1 400
Iteration no. ‘
0 50 100 150 200 250 300 350
Figure 1. Problem A: growth of non-zeros in L with
elimnation of unit vectors from basis.
NA = No. of artificial variables
NL = No. of off-diagonal elements in L
} 1
1000
12
10
8
6
4
2
Tteration no.
400 500

Figure 2. Problem C. steady-state density of L.
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Figure 3. Staircase nodel (problem C, nodified).
G owth of non-zeros in Product Formof Inverse
and in Chol esky factor
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14, Summary and suggestions for out-of-core inplenmentation

Gven a basis B with corresponding Chol esky factor L and
basic solution X, the main steps to be performed each iteration of
the algorithm are as follows (using notation defined in previous sections).
1. Conpute the Lagrange nultipliers from
LTn =d
2. Use » to select a colum a for entry into the basis, and
conpute the rate of change of X from

LLTu = as ) y = BTu»

3. Use y to select an out-going colum a and update % .

4, Sol ve
Lp = a,

in preparation for modifying L .
5. Mdify L in two stages, such that

(a) ﬁﬁT « LLT - ararT (using p )

(b) ITT < T+ aSaST

It can be seen that in steps 1 through 4 above, access to L
is sequential (colum by colum) and is alternately backwards and
forwards. Thus for these calculations a disk file (for colum-w se
storage of L) would be as convenient as in standard product-form
syst ens.

Mdification of L (step 5) again requires a backward pass and
a forward pass, but the main difficulty is that elenents nust be
inserted into L . A possible solution to this problemis as follows.

Storage on disk will be in the formof a sequence of fixed length

records, each large enough to hold about 20 elenents of L . Now

14.1
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consi der the nodification of a particular colum which has been allocated
r records on disk (containing d = 2or "disk-elenents,” say). In
general this colum wll have a further ¢ "core-elenents", which are
held in main nenory in linked-l1ist form as described earlier in this
paper. During nodification, the d disk-elements will be read into
core and linked into the appropriate part of the list, giving d+c
elenents in-core for the colum in question. The nodification can be
performed conveniently within the list structure, and the first d
(modified) elements will then be witten out to disk in place of their
predecessors and deleted from the list, |eaving sone small number of
core-el ements behind.

In this way the total core required by the lists for all m
colums of L should change relatively little at each iteration
During early iterations while L is filling in, periodical re-wites
can be performed (e.g. during reinversion) in order to allocate additiona
disk records to the densest colums. Storage requirenments should
stabilize after 100 or 200 iterations.

Note that for small problens we would initially set r =0 for
all colums and operation would be conpletely in-core. Transition to
di sk woul d be smoothly acconplished, if necessary, by increasing r
for the densest colums.

Note al so that unless a problemis very dense, only a snal
percentage of the colums of L are affected by a basis change.
This is why fixed length records are specified, so that "seek" operations
can be requested in order to skip past colums' on disk which are not to
be nodified. Drums or fixed-head disks would alleviate this problemto

some extent.
14.2



r— r-

e

-

r— r rr r—

——

Storage of the constraint matrix A remains to be discussed.
The recent work of J. E. Kalan on the concept of super-sparseness
(see [15]) indicates that even for extrenely large problenms, in-core
storage of A is within the realms of practicality. However we cannot
imbed any part of L within A, in the way that Kalan advocates

I mbeddi ng the product form of B'1 and as Tonmlin points out in [21],

relying on the extended-core storage of current |arge nachines "can
only be a postponenent at best."

Fortunately the primal sinplex algorithmdoes not require a scan of
all colums of A each iteration, so if A has many nore columms than
rows the sinplest solution is to perform a sequence of suboptim zations
At each stage the current basis B and as many non-basic colums as
possible are retained in core. (B is required in step 2 above, and
a random colum fromB is needed in step 4.) After a number of

iterations, a pass through A can select the current basis and a new

set of colums for a further suboptim zation.

Al though standard systens do not retain B in-core, there are
sone advantages in doing so, in particular for checking of row and
colum residuals and for reinversion whenever necessary. W& assune that
Kal an' s super-sparseness techniques for conpacting B should make this

practical

14k.3
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15, Concl usi on

In presenting a new |inear progranmng algorithm we do not claim
to be able to solve all problems efficiently. Instead we hope to have
demonstrated that for certain well-defined classes of problem the nethod
does have some useful advantages, in terms of both nunerical stability
and preservation of sparseness

The problems to which the method is inmediately applicable are
those for which a prelimnary ordering of the rows of A can be
guaranteed to give a sparse factorization for every basis B arising
in the sinplex nethod. The uni queness of the Cholesky factor L
with respect to colum pernutations on B then nmakes it profitable
to store and update the non-zero elements of L explicitly rather than
in product form

In the case of GUB , block-angular and staircase problems it is
clear what the rowordering of A should be, and the nethod then takes
advantage of the structure without further overhead (e.g. problens B,C).
For unstructured problems, triangularization of A appears to be
sufficient if the density is |ow enough (e.g. problem A). However
unl ess there is structure to be preserved there seems to be a threshold
density (at about 0.5%) above which the Cholesky factors fill in
significantly, even when triangularization of Ais carried out
(e.g. problem D). In such cases, a structure-finding algorithm such
as-that of Wil and Kettler appears to be necessary.

An interesting unsolved problem has arisen

For which permutation P does the factorization
PEBPT = 11l

give an L which is nost sparse?

15.1
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If this question can be answered for square B (and possibly then
for rectangular B) the algorithmin this paper may find broader
application. In the nmeantine, the method is already applicable to many
problens and it is felt that the unusual properties of the Chol esky

factorization deserve further investigation.
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