STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-159

STAN-CS-253-72

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

BY

J. A. FELDMAN
P. C. SHIELDS

SUPPORTED BY
NATIONAL SCIENCE FOUNDATION

AND
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO, 459
APRIL 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERSITY

-~




.

A O

STANFORD ARTI FI CI AL | NTELLI GENCE PROJECT APRI L 1972
MEMO Al M 159

" COWPUTER SCI ENCE DEPARTMENT
REPCRT CS-253

TOTAL COVPLEXITY AND THE | NFERENCE OF BEST PROGRAMD

by

J. A Feldman and P. C. Shields

ABSTRACT: Axions for a total conplexity measure for abstract programs
are presented. Essentially, they require that total conplexity
be an unbounded increasing function of the Blum tine and size
measures. Al gorithns for finding the best programon a finite
domain are presented, and their limting behaviour for
infinite domains described. For total conplexity, there are
i nportant senses in which a machine can find the best program
for a large class of functions.

This research was supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

The vi ews and concl usions contained in this document are those of the
author and should not be interpreted as necessarily representing the officia

policies, either expressed orinplied, of the Advanced Research Projects
Agency or the National Science Foundation.

Reproduced in the USA. Available from the National %echnical Informa-

tion Service, Springfield, Virginia 22151. Price: Full size copy
$3.00; microfiche copy $0.95.



-7

We are primarily concerned, in this paper, with the question of
when a nmachine can learn a programfrom sanmples of its input-output
pairs. This problem of program inference is closely related to the
probl em of grammatical inference, which has received a fair anount of
consideration [ 2]. There are, in the grammatical inference literature,
many results and di scussions which can be carried over to program
inference. This paper arose out of an attenpt to carry out what we
believed to be a trivial reworking of sone of the results of [ 7]
for programs. In fact, the results on programs turn out to be significant-
ly -different; we wll discuss this issue further bel ow

W are interested in nmodelling the follow ng situation. A
machine M receives at each time t , an input-output pair (x,y)
from an unknown program P in a known class ¢ of programs. At
each tine, the machine is to guess sonme Pje:b as the best program
for the finite nunber of input-output pairs seen so far. W show that
there are reasonable conditions under which M can guess the best
program at each finite tine and al so have good behaviour in the limt.
To do this, we need a formal notion of "best" program

The key to our developnent is the conbined conplexity measure
including both program size and running tinme. Many of the difficulties
arising in other axiomatic treatnents of conplexity are elided in the
conbi ned conpl exity approach.

Mre formally, our results will be fornulated for programs. A
program can be taken to be any formal conputational schene for
evaluating a recursive function , such as a Turing machine descrip-
tion. To sinplify the discussion it is assumed that the input and

output of a program are both positive integers. The graph &(P)




of a program P is the set of all pairs (x,y) such that Pis

defined for x and the output of P given the input x is vy .

A sanple S of a program P is a finite nonempty subset of %(P) .
The class ¢ denotes a class of programs which can be effectively

enunerated by an adnissible [17] enuneration, such as the class of all

Turing machines, the class of FORTRAN prograns, or the class of |oop

prograns [19]. An inference nachine M= %3 is any formal effective
procedure for inferring programs fromfinite sanples, that is, M

Is defined on the set of sanples (S} of progranms in ¢ and MYS)

is a programin ¢ . W wll always require that Sis a sanple of

M(s) , that is
(1) 2(M(8)) o s

Various conplexity neasures have been discussed, in particular
program running time and program size (see [12] for a discussion of
recent results). W wish to discuss measures of program conplexity
which take into account both the size and running time of prograns.
The sinplest such neasure is the product of size and running tine.
Qher neasures are also useful. In order to obtain general results
we shall describe a conplexity neasure as any function satisfying a
sinple set of axioms. The axions for size and running tine'are the
same as those discussed in [12], while the axions for a conbined
conplexity measure are equivalent to those in [7].

First we assunme that the programsize or length L = LC

satisfies the conditions

(2) There is an effective adm ssible enuneration {Pn} such

such that



(a) r(n) = L(Pn) is a recursive positive integer val ued
total function
(b) For each n , the set K, = fmlr(m) = n} is finite
(c) The function r(n) = cardinality of Kn IS a recursive
function.
The running tine T(x,y,P) is a positive effectively conmputable
rational function and is defined if and only if (x,y)is in the

graph of P . There is a related recursive function

a(x,y,P,m) = }O if T(x,y,P) <m

1 otherwise
W also assune that the conmbined running tine T(S,P) is of the form

(3) T(SyP) =9 () {T(x,y,P)])
(X,Y)es

where ¢ s a recursive function. The related function

DS, P,mM = VO if T(SP) <m

1 ot herwi se

i's then recursive.
Let ¢ be a positive recursive rational valued function of two non-
negative rational variabl es which is increasing and unbounded in each

variable. The conplexity neasure C = Ca IS then given by

c(8,P) = c(L(P),T(s,P)) , Sc &(P)

Exanpl es The size L(P) mght be the nunber of synmbols used to wite
the programin some al phabet or the number of synbols on the tape of

a universal Turing machine needed to describe a sinulation of the




program  Sonme plausible L(P) are excluded because of the require-
ment that there be only a finite nunber of prograns of each size.
For exanple, the nunber of statements in a FORTRAN programor the
nesting depth of loop progranms would not, as normally defined,
satisfy (2b). Size neasures which take structure into account are
discussed in [2,6] for grammars.

For a given pair (x,y) the running time T(x,y,P) could be
the time the program P uses to derive output y frominput x
(possibly also including the time for reading x and printing y).
QO her possibilities are the nunber of noves or nunber of tape cells
scanned by a Turing machine, the nunber of instructions executed by
the program One can al so normalize by sone function of x and vy ,
for exanple, T(x,y,P) could be actual running tine divided by
Xy .

The general function T(S,P) can be obtained from o(x,y,P)

in many ways, for exanple we could take T(S,P) as

max  T(x,y,B) »or &  1T(x,y,P)
(x,y)€S (x,y )€S

or as an average of T(x,y,P) , (x,y)€sS
The possibilities for the function c(L,T) are very large, for
exanpl e each of the follow ng satisfy the hypotheses for ¢ :

(1) (141) , L+T ,  (z41)(T#L)

Notice that the sinple product LT doesn't satisfy the hypotheses for
it is not unbounded in L when T=O . W inpose this requirement so
as to sinplify some later argunents. The very general nature of the

function ¢ precludes the possibility that all conplexity measures are



recursively related, a result which is true both for the length

L(P) and tinme T(x,y,P) . (See [12])

Remark 1

Al though the results below are quite general, some care nust be
used in applying themto actual inference situations. A najor considera-
tion is to choose neasures which do not degenerate into strictly tine

or strictly size in the limt. For exanple, S T(x,y,P)
’ (X’Y)ES

may be unbounded is S gets large or the average of (time/length)
my go to zero with large S . Depending on the choice of
c(L(P), T(s,P)) either situation could lead to degeneracy. One
must al so choose conplexity functions which reflect the intuitive
meani ng of the problem

Qur later proofs make use of the fact that the prograns can be

ordered in terms of increasing size. An Occam's enuneration of ¢

relative to Lci s an adm ssi bl e enuneration {Pi} satisfying

(1) L(B) < B(B) if i <]

It is obvious from(2)(b), (c) that a nmachine can find an Occam's
enuneration relative to L . One consequence of this is the follow ng

sinple result:

Lenma 1 Gven a conplexity measure C = ¢(L,T) on the infinite class
@ - and an Occam's enuneration of ¢ relative to L then for any
sanple S of some Pe ¢, there is an index k such that if

j > k then either



(5)(a) c(s,PJ.) > ¢(8,P)
or

(b) S i snot asanpl eof Ej.

Proof This is a consequence of the assunption that c¢ is increasing

and unbounded in each variable. W merely choose k as the first

i ndex for which
c(L(Pk), 0) > c(s,P)

If 3>k and S is a sample of F’-J then (4) guarantees that
L(Pj) > L(Pk)

and hence

C(S,Pj) e(L(E;), T(S,Pj)

v

c(L(Pj), 0) > ¢(s,P)

This proves the |enmm.

Now we prove the follow ng general theorem

Theorem 1 G ven a conplexity measure C(S,P) on a class ¢ there
is an inference machine M = ME which infers prograns of m ni mum
conplexity, that is, if Sis a sanple of sone programin ¢ ,
then Sis a sanple of MS) and for all Peez for which Sis a

sanpl e of (P)

(6) c(s,M(s)) < c(s,P)



Proof The intuitive idea for the proof is as follows: Run P,, P

2
on S for time t , successively increnenting t until some P, , i <t
runs successfully in time t . Then one need |ook at no prograns

whose total conplexity exceeds C(Pi,s) , hence one need exam ne only
a finite set of programs (cf. Lemma 1) and pick the best one.
To formally construct Mwe first assume an Occam's enumeration

for ¢ relative to length L . Then

Step 1 Calculate D(S,Pi,t) , 1<i <t. If D(S,Pi,t)=l for
1<i<t, increment t by 1 and repeat Step 1. Qherwise |let
to be the first t for which D(S,Pi,t)=o for some 1 <i <t
and let” i, be the first i , 1 <i <ty for which D(S,Pi,to)i-o
and proceed to Step 2.

Step 2 Use Lemma 1 to calculate k so that if j >k and Sis a

sanmpl e of P.J t hen

C(S,Pj) > c(s,PiO)

Step 3 Conpute the first integer m > tq such that

c(s,P; ) < ¢(0,m)
0

Step 4 Let ((S) denote the set of those j, 1 <j < k for which

D(S,Pj,m)=0

Sepmput e C(S,PJ.) , J € G(8)



Step 6 Let i be the first i € S) such that
C(s,P;) = min {C(5,P,) | J € G(8))

and put MS) = P.
1

Let us show that MS) has the desired properties. M- need

choose no program with conplexity greater than C(S,Pi ). Step 2
0
rules out prograns which are too long while Step 3 rules out prograns

which take too long to run on S, hence if j ¢ GS) then either

S is not a sanple of JP. or C(S,PJ.) > C(S,Pi ) so (6) holds for
0

M(S) . This proves the Theorem
The machine M constructed in the proof of Theorem 1 will in
certain cases have reasonabl e convergence properties as the sanple

size increases. An information sequence J4(P) is a sequence whose

range is %(P) . An initial segnent S, is the sanple
sn:w(P)illgi < n}

Gven an information sequence 8(P) , Pee , the machine Mwil |

eventual |y be correct on any input for which P is defined, that is

(7) If (x,y)e&(P), then there is an N such that (x,y)@(M(sn) )

for n > N.

This follows easily fromthe fact that Sc& (MS)) and that (X,y)GSn
for large enough n .

It may not be possible to obtain .&(P)c_.&(M(sn)) for n
large. If f is a recursive total function then it may happen that
any program for f has such rapidly growing running tine that M(Sn)

will be nerely a table for Sn . In other words, if the running times



for programs for f are all unbounded then size beconmes irrelevant
in the conplexity measure. |f the running tine is bounded then the
machi ne of Theorem 1 will eventually pick only programs which agree

with f wherever f is defined.

Theorem 2 Suppose g(P) is an information sequence for some program
Pec and t hat C(Sn,P) is bounded as m» . Then for the machine

M of Theorem 1, we will have

.&(M(sn)) > 4(p) for n large enough.

Proof Let i, denote the first index i for which .&(Pi) 2 &(P)

and c(sn, Pi) is bounded as me . Put b = 1yb c(sn, P6 ) and
choose X so that
C(L(PK),O) >b

The prograns P for kK > Kwll never be M(Sn) for their conplexity

must be larger than that of P.:L on s . Furthermore if k <X
0

and 4(P, )3 &(P) . we can choose n_so that Snk will not be a
sanpl e of &(Pk) . Thus if n is large enough, M(sn) must be one
of the prograns Pi for which i <K em,z«(Pi)Q %(P) . This proves
the theorem

Notice that if Pis total, MS) wll eventually be only Pj
such t hat .&(PJ.) =%(P) . This behaviour is called matching in the

literature on grammatical inference [ 7].



Corol lary Suppose that for all information sequences J(P) 'of a

given Pe C, the limt
v(®) = 1jm o(s,,F)
exists for all P such that 3(5):_:_,3(13) . Let v be the m ni num of

these y(P) . Then for n sufficiently |arge, y(M(Sn) =y

Proof As the proof of Theorem 2 indicates, there is a K such that

for all n, M(sn) is one of the programs P, , 1<i <k, and for

n |arge enough
s(M(s,)) 2 &(P)

Suppose i < K and &(P,) 24(P), v(P) =v . If j <K,

.&(P_J) > 4(P) and y(PJ.) >y then for n large enough

C(8,P5) >y () + v)/2

o) M(Sn) will not be P.J. This proves the Corollary.

Theorem 2 can be applied in any case where the program has
bounded running times. A slight nodification enables one to use this
result in the case when a bounding function for the running tine is

known.  To sinplify our discussion we shall assune that

(8) T(S, P) = max T(X’Y’P) .
(x,y)€s

W coul d extend our results (Theorem 3) to nore general ¢ , but the
extensions do not seemto warrant the additional conplexity of proof.
W continue to search the right generalization of Theorem 3. A
recursive total function b of two variables, which is increasing

in both is called a bounding function. The running tine of Pe C

10



—

is bounded by b if there is an o > 0 such that

T(x,y, P) SQ"b<X,y) ’ (x,y) € :3"(P)

W will call the least such « the bounding constant of P . A

boundi ng function gives rise to a new running time T defined for

(x,y) € &(P) by

Tb (x,y, P) = T(st,s P)/b(x9Y)

and for sSc &(P) by

T (S,P) = max T (x,y, P) .

1R s

(x,y)€s °

This in turn gives rise to the conplexity neasure C, defined by

Cb(S,P) = C(L(P)’ Tb(S’P))
Thus if sanples S are drawn from a program P which is known

to have its times bounded by a bounding function b , then one can

choose programs Mb(S) of m ni mal Cy conplexity and know t hat
(1, (8)) 2 &(P)

if the sanple S is large enough.

Remark 2 There are a nunber of classes of conputations wth known
boundi ng functions in terms of various types of prograns or machines
[13]. The conplexity neasure C, will be nore sensitive if the
boundi ng function chosen is a tight one. Thus, if we know a conputa-
tion has polynom al bounds we should try to find the particul ar

pol ynom al rather than just choose sone b that grows faster than any

polynomal. A bounding function that is too large may give rise to

degenerate neasures, of Remark 1.

11



——

r—

It may even be possible to infer a good bounding function as

part of the general procedure for program inference, Here we describe

one method for doing this. suppose (b} is a sequence of bounding

functions satisfying by =1, bk(x,y) <—bk+1(x’y) and

.. b
o bk+l X,y Fheo bk+1€x’y§
W will now show how to infer both a bounding function and then good

prograns which run on the sanple in that bound.

Theorem 3 Let ¢ be a class with conplexity neasure C (where
T(S,P) is given by (8)) and |et {bk} be a sequence of bounding

functions (satisfying (9)). There is an inference machine M which

will, for any information sequence J(P) , P€ ¢ , infer both a

sequence of positive integers {'En} and prograns M(sn) such that

(a) M(Sn) is a programin ¢ of |east (;b__ conpl exity

k
n

whose graph contains sn

If, furthernore, there is some program P such that &(P)< &(P) and

P has its running times bounded by sone b, then for n large gpoygh
(b) En = k , a constant
(c) s(m(s,)) 2&(P)

Broof Let [Pi} e an Occam's enuneration for ¢ relative to L .

Mw Il use a sequence fw }, o being the current guess as to a

b

boundi ng constant. Initiall Yy afl = 71' The nachi ne pr oceeds as

follows to obtain En and M(s_) .

12



-y

Step 1 For each i , 1 <i <nandk | 1<x<n Mconputes

(10) 5 (i,k) = max a(x,y,P, @ b, (x,y)
n sYaLfs )
(x,7)€s tomk
If 8 (i,k) =1 for 1<i, k <nthen Msets k= 1 and goes

to Step 3. Otherwise Mgoes to Step 2 .

Step 2 Mselects kn as the first index k such that & (i,x) =0
for some i <k . Mthen selects i as the first index such that
8, (i,k ) =0. Mthen selects En as the least integer such that
én(in,kn) = 0 and goes to Step 3 .

Step 3 If § (i,k) = 0 for sone i and k 1<i<n, 1<k<n
and if i =im for some m< n then M sets ¥p41 =a, . Other-

n
wse M sets « =1+ .
n

n+l
Step 4 Mselects M(s ) as the best programusing the al gorithm of

Theorem 1 with the neasure Cb

Ky

Let us now show that (a),(b),(c) hold. Condition (a) follows

directly fromthat fact that Step 4 uses the algorithmof Theoreml .
Consi der the set g of pairs (i,k) such that b, bounds the
running time of P., and &(P,) 2 &(P) . W will showthat if g
is not enpty then (b), (c) hold. Towards this end let (},%) be
the pair in g which mnimze the maxinumof i and k for
(i,k)e® . (In case of ties we choose the one which cones first in

the |exicographic ordering of pairs).

13



Ve | et 7] be the | east constant such that

d(x,y,Pa 8 Dp(x,y)) = 0, for all (x,y) € &(P)

and consider two cases

Case 1 The machine M makes at | east s different guesses of |

n .

In this case for n large we always have én(ﬁ,ﬁ) =0 . If
1 is not in it is because there is an (i, k) pair found first. In
particular ve have i <k < max 4,4 so that @, nust be eventually
constant. By our choice of (%,k) any pair (i,k) of |ower max{i,k)
will eventually be rejected because .&(Pi) doesn't contain %(P)
or because s (ik) = 1 for all k such that max{i,k) < max(},}) .
8

Thus in Case 1, i will eventually be I and k will eventually
n

be & .

Case 2 The machine M nakes o« different guesses of in and
a <cva .
In this case we consider the class & of pairs (i,k) with the
following properties
i) 4(p;) 2 &(P)
ii) d(x,y,Pi,&‘ b (x,y) = 0, for all (x,y)es(P)

If ® were enpty M would make nore than & guesses. It is easy

~

that if nis large enough we wll have i =1 and knz”li wher e

(I,¥) = nmin max{i,k)
(i,k)e€

where ties are again broken by taking the |east number in the |exicographic

order. This conpletes the proof of Theorem 3 .

14




One mght think that Theorem 3 can be formulated so that M

can actually infer the least integer k such that some program whose

graph contains %(P) has its running tine bounded by by Ve

suspect that this cannot in general be done.

Exanpl e Suppose s f2 are recursive functions such that there are
progr ans P(fl), P(fz) whi ch conmpute each argunent in time...b, sand b2,

respectively, and that no program does better for infinitely many

arguments. Let

]

£1(k) , n=2k-1/

f(n) =
2k

and consider the sequence of prograns P(i) such that

P(i) uses P(fl) to conpute for n odd, is undefined for

n=2k, k>i, and conputes f(2k), k<i by a table.

Thus the program |ength L(P(i)) will be unbounded, yet the running
time of P(i) wi || be bounded by b, . I f an inference schenme considers
only a bounded number of programs one may be able to infer that f
can be conputed in bk time for some k > 2 . If, however, the
schene considers nore and more prograns, one eventually encounters
t he P(i) whi ch woul d cause the erroneous guess of tine bound by -
& have not been able to convert exanples of this sort into a

proof that no machine can always find the |owest k for which there

P.) < b, (S.). However, we do

IS a Pj W th .&(P)C_.g((PJ.) and T(Sn. 5 S b8y

know that any machine that attenps to always find the | owest possible
k will have to look at arbitrarily many P, for some functions.

This can be forced by taking sone function of class k and replacing

15




it on a finite nunber of arguments with a function of class k+1 .

This suggests the following nodification to Theorem 3.

W supply the machine Mwith an auxiliary function A(s,k)
which nmaps a size and a bounding index into a size. This tradeoff
function A(g,k) deternmines the size of programto be considered in
searching for an inprovement to an answer pj of size g4 and conplex-

ity index k . Intuitively, A(g,k) says that the user of the inference

machine M prefers a programof class k-1 and size A(4,k) to a

program of size £ and class k .

There is a "natural" A function derived from the conplexity

function, nanely

A(s,k) = first size m such that
C(ﬂl,Tb (S>P>) > ¢(m,0) .
k
The construction for Theorem 3 can easily be nodified to include

A(s,k) . This still does not guarantee the nininumvalue for k |,

but seens to be a natural nodel of inference processes.

Remark 3 There has been a considerabl e amount of work [12] on
conplexity classes of functions. To remain consistent with this work,
we woul d have to restrict the choice of o {T(x,y,P)}) to ones
which give the same conplexity classes as ¢ = ¥

9 np y 9 (x,yGS) (Tb(x,y,PJ.) .

A good choice woul d be

T (S,P.) = max T (x,y,P.) + 1 % T (x,¥7,P.)
p\Pe " I sVasl.)
3T (xy)es I T8 (x,y)es P J

This (max + average) neasure gives the sane classes as nmax, and al so

di stingui shes among prograns with the same maxi numtine. Since the ratio

of this neasure with the max neasure is bounded away from 0 and o ,

16



Theorem 3 holds for it also. Furthernore, it is also bounded away from
zero, avoiding the degeneracy problem for the usual choices of ¢(L,T) .

The results derived here for progranms have a significantly
different flavor fromthose developed [7 ] for grammars. A centra
issue in granmmatical inference is the presence or absence of negative
information, i.e., strings in a sanple marked as not belonging to the
| anguage being learned. This problem does not arise in program inference
for two reasons. Wth grammars, an answer which generates too many
strings is normally considered wong, but our constructions allow ng
answers whose graph includes that of the hidden function seemquite
natural. This arises from the single-valuedness of functions -
if (x,y) appears in a sanple then no (x,y’) wWith y #y' can
appear. When &(M(S)) o &(P) , Mhas sinply chosen a program which
may be defined for some argunents where P is not. If one attenpted
to extend our results to relations, the problens associated with negative
information would reappear.

The results of this paper should be viewed in the context of a
renewed interest in inductive and scientific (hypothetico-deductive)
inference. In addition to the theoretical work on prograns and grammars
there is work on predicate calculus [16] and real chemistry [5].

Al'l of these efforts have'applied as well as theoretical conponents.
Sone of our work on programinference is discussed in [8]and [ 1]
and there is a fairly anbitious effort underway to infer |oop prograns
from sanple traces. Thus far, there has been surprisingly little
carryover fromone domain to the other and fromtheoretical results

to programs, but a conmon understanding of the issues seens to be

17



energing. There are also proposed applications of inference-techniques

to pattern recognition [ 9] and natural |anguage description [14]

whi ch provide constant

remnders of the weakness of existing results

18



-

[

e

—

[1]

[2]

[3]

141

[5].

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

(151

Ref er ences

Biermann, A, "On the inference of Turing Machines from sanple
conputations,” cs2kl, Stanford Conputer Science Department,
Cct ober 1971.

Biermann, A and J. Feldman, "A Survey of Gammatical Inference,"
in S Wtanabe, (Ed.), Frontiers of Pattern Recognition.

Blum M, "A Machine-independent Theory of the Conplexity of
Recursive Functions,” J. ACM 1k, No. 2, April 1967, pp.
322-336.

Blum, M, "On the Size of Machines,” [|nformtion and Control 11,
(1967), pp. 257- 265.

Buchanan, B., E Feigenbaum and J. Lederberg, " A Heuristic
Programm ng Study of Theory-Formation in Science,"”

Proc., 2nd ICJAI, London, 1971.

Feldman, J. A, J. Gps, J. J. Horning and S. Reder, "Ganmati cal
Inference and Complexity," S 125, Stanford University,
June 1969.

Feldman, J. A, "Some Decidability Results on Gammtical |nference
and Conplexity," Information and Control, 1972.

Feldman, J. A, "Automatic Programming," cs255, Stanford University,
February 1972.

Fu, K S, "on Syntactic Pattern Recognition and Stochastic
| anguages, "  TR-EE71-21, Purdue University, 1971.

Gold, M, "Linmiting Recursion," J. Symb. Logic 30, (1965),
pp. 28-48.

Gold, M, "Language ldentification in the Limt," Information
and Control 10, (1967), pp. 447-474. -

Hartmanis, J. and J. Hopcroft, "An Overview of Conputational
Conplexity," J. ACM 18,3 (July 1971), pp. 444-475.

Hopcroft, J. E, and J. D. Ullman, Formal Languages and Their
Relation to Automata, Addi son-VEsley, Reading, Mass., 1969.

Klein, S., et al, "The Autoling System" TR 43, Conput er
Sci ence, University of Wsconsin, September 1968.

Pager, D., "On the Efficiency of Algorithns," J. ACM 17, 4
(Cct ober 1970), pp. 708-715.




r

e

— -

[16] Plotkin, G D., "Automatic Methods of Inductive Inference,”
Ph.D. Thesis, Mchine Intelligence Dept., University of
Edi nburgh, 1971,

[17] Rogers, H, Jr., Recursive Functions and Effective Computability,
MGawH | | ,—New York, 1967

(18] Sinmon, H, "Experiments with a Heuristic Conpiler," Journal ACM
Cctober 1963, pp. u482-506.

[19] Meyer, A° R and D. M Ritchie, The Conplexity of |oop programs,
Proc, ACM 22nd Nat. Conf., pp—465-9:




