
STANFORD ARTIFICIAL
MEMO AIM-159

STAN-CS-253-72

INTELLIGENCE PROJECT .

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

BY

J. A. FELDMAN
P. C. SHIELDS

SUPPORTED BY

NATIONAL SCIENCE FOUNDATION
AND

ADVANCED RESEARCH PROJECTS AGENCYcp
ARPA ORDER NO. 459._

APRIL 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanitiesand Sciences
STANFORD UN IVERS ITY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-159

'COMPUTER SCIENCE DEPARTMENT
REPORT CS-253

APRIL 1972

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

(‘
bY

L
J. A. Feldman and P. C. Shields

1 ABSTRACT: Axioms for a total complexity measure for abstract programs
are presented. Essentially, they require that total complexity
be an unbounded increasing function of the Blum time and size
measures.

I

Algorithms for finding the best program on a finite
domain are presented, and their limiting behaviour for
infinite domains described. For total complexity, there are

7 important senses in which a machine can find the best program
for a large class of functions. -

c

This research was supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

.
The views and conclusions contained in this document are those of the

r author and should not be interpreted as necessarily representing the official

i
policies, either expressed or implied, of the Advanced Research Projects
Agency or the National Science Foundation.

Reproduced in the USA. Available from the National eechnical Informa-
tion Service, Springfield, Virginia 22151. Price: Full size copy
$3.00; microfiche copy $0.95.

%

c

c-

c

L
i

i
i

i-

11

L
f
L

We are primarily concerned, in this paper, with the question of

when a machine can learn a program from samples of its input-output

pairs. This problem of progrm inference is closely related to the

problem of grammatical inference, which has received a fair amount of

consideration [2]. There are, in the grammatical inference literature,

many results and discussions which can be carried over to program

inference. This paper arose out of an attempt to carry out what we

believed to be a trivial reworking of some of the results of [73

for programs. In fact, the results on programs turn out to be significant-

ly'different; we will discuss this issue further below.

We are interested in modelling the following situation. A

machine M receives at each time t , an input-output pair (x,y)

from an unknown program P in a known class @ of programs. At

each time, the machine is to guess some Pjs as the best program

for the finite number of input-output pairs seen so far. We show that

there are reasonable conditions under which M can guess the best

program at each finite time and also have good behaviour in the limit.

To do this, we need a formal notion of "best" program.

The key to our development is the combined complexity measure

including both program size and running time. Many of the difficulties

arising in other axiomatic treatments of complexity are elided in the

combined complexity approach.

More formally, our results will be formulated for programs. A

program can be taken to be any formal computational scheme for

evaluating a recursive function , such as a Turing machine descrip-

tion. To simplify the discussion it is assumed that the input and

output of a program are both positive integers. The graph 1(P)

I
L

-. 1

of a program P is the set of all pairs (x,y) such that F is

defined for x and the output of P given the input x is y .

A sample S of a program P is a finite nonempty subset of &(P) .

The class @ denotes a class of programs which can be effectively

enumerated by an admissible 1171 enumeration, such as the class of all

Turing machines, the class of FORTRAN programs, or the class of loop

programs 1191. An inference machine M =
%

is any formal effective

procedure for inferring programs from finite samples, that is, M

is defined on the set of samples csl of programs in @ and M(S)

is a program in @ . We will always require that S is a sample of

M(S) , that is

0) goes)) 3 s

Various complexity measures have been discussed, in particular

program running time and program size (see [12] for a discussion of

recent results). We wish to discuss measures of program complexity

which take into account both the size and running time of programs.

The simplest such measure is the product of size and running time.

Other measures are also useful. In order to obtain general results

we shall describe a complexity measure as any function satisfying a

simple set of axioms. The axioms for size and running time'are the

same as those discussed in r121, while the axioms for a combined

complexity measure are equivalent to those in CT].

First we assume that the program size or length L = L
@

satisfies the conditions

(2) There is an effective admissible enumeration {P,] such

such that

2

(4 r(n) = L(Pn) is a recursive positive integer valued

total function

(b) For each n , the set Kn = {m\r(m) = n} is finite

(c) The function r(n) = cardinality of K is a recursive
n

function.

The running time T(x,y,P) is a positive effectively computable

rational function and is defined if and only if (x,y) is in the

graph of P . There is a related recursive function

d(X,Y,W = [; ~~h~~~p~ q

We also assume that the combined running time T(S,P) is of the form

(3) T@,P) = cp (u wbY,P)l>
bbY)ES

where cp is a recursive function. The related function

D(S,P,m) = 0 if T(S,P) 5 m

1 otherwise

is then recursive.

Let c be a positive recursive rational valued function of two non-

negative rationalvariables which is increasing and unbounded in each

variable. The complexity measure C = C@ is then giv'-en by

CL&P) = dL(pLm,w 9 SC,=@)

Examples The size L(P) might be the number of symbols used to write

the program in some alphabet or the number of symbols on the tape of

a universal Turing machine needed to describe a simulation of the

3

program. Some plausible L(P) are excluded because of the require-

ment that there be only a finite number of programs of each size.

For example, the number of statements in a FORTRAN program or the

nesting depth of loop programs would not, as normally defined,

satisfy (2b). Size measures which take structure into account are

discussed in 1 2,6] for grammars.

For a given pair (x,y) the running time ThYA could be

the time the program P uses to derive output y from input x

(possibly also including the time for reading x and printing y).

Other possibilities are the number of moves or number of tape cells

scanned by a Turing machine, the number of instructions executed by

the program. One can also normalize by some function of x and y ,

for example, T(x,y,P) could be actual running time divided by

w*

The general function T(S,P) can be obtained from P(x,y,P)

in many ways, for example we could take T(S,P) as

T(X,Y,P) 2 or E
(X,YkS bbY >cs

ThY,P)

or as an average of T(X,Y,P) 3 (X,YkS .

The possibilities for the function c(L,T) are very large, for

example each of the following satisfy the hypotheses for c :

(L+l)(T+l) , L+T , (L+l)(T+l)

Notice that the simple product LT doesn't satisfy the hypotheses for

it is not unbounded in L when T=O . We impose this requirement so

as to simplify some later arguments. The very general nature of the

function c precludes the possibility that all complexity measures are

4

recursively related, a result which is true both for the length

L(P) and time T(x,y,P) . (See [X21)

Remark 1

Although the results below are quite general, some care must be

used in applying them to actual inference situations. A major considera-

tion is to choose measures which do not degenerate into strictly time

or strictly size in the limit. For example, 2c T(X,Y,P)
\ (X,Y)ES

may be unbounded is S gets large or the average of (time/length)

may go to zero with large S . Depending on the choice of

COJP), mm either situation could lead to degeneracy. One

must also choose complexity functions which reflect the intuitive

meaning of the problem.

Our later proofs make use of the fact that the programs can be

ordered in terms of increasing size. An Occamrs enumeration of @

relative to L is an admissible enumeration
- @ Ipi satisfying

(4) L(Pi) < L(Pj) if i 5 j . >

It is obvious from (2)(b), (c) that a machine can find an Occatn's

enumeration relative to L . One consequence of this is the following

simple result:

Lemma 1 Given a complexity measure C = c(L,T) on the infinite class

c",- and an Occam's enumeration of @ relative to L then for any

sample S of some P E @ , there is an index k such that if

j > k then either

5

4

c

L

(5)(a) c(s,pj) ’ c(s,p)

or

09 S isnotasampleof P..
J

Proof This is a consequence of the assumption that c is increasing

and unbounded in each variable. We merely choose k as the first

index for which

If jzk and S isasampleof P.
J

and hence

c(s,pj > = c(L(Pj), T(s,Pj)

2 c(L(pj)9 O> ' c(s,p)

This proves the lemma.

Now we prove the following general theorem.

then (4) guarantees that

Theorem 1 Given a complexity measure C(S,P) on a class @ there

is an inference machine M = M
@

which infers programs of minimum

complexity, that is, if S is a sample of some program in @ ,

then S is a sample of M(S) and for all p6@ for which S is a

sample of (P)

(6) c(s,NsH 5 W,p)

6

c

Proof The intuitive idea for the proof is as follows: Run Pl, P2 . . . Pt

on S for time t , successively incrementing t until some Pi , i St
.

runs successfully in time t . Then one need look at no programs

whose total complexity exceeds c(pi,s) 9 hence one need examine only

a finite set of programs (cf. Lemma 1) and pick the best one.

To formally construct M we first assume an OccaWs enumeration

for @ relative to length L . Then

Step 1 Calculate D(S,Pi,t) , 15 i 5 t . If D(S,Pi,t)=l for

l<i<t, increment t by 1 and repeat Step 1. Otherwise let

to be the first t for which D(S,Pi,t)=O for some 15 i St

and let+ io be the first i , 15 i < to for which D(S,Pi,tO)GO

and proceed to Step 2.

Step 2 Use Lemma 1 to calculate k so that if j > k and S is a

sample of P. then
J

c(s,pj) > '(','i >
0

Step 3 Compute the first integer m 2 to such that

C(S,P. > < c(wd
IO

Step 4 Let G(S) denote the set of those j, 1 < j 5 k for which

C o m p u t eStep 5 C(S,Pj) 3 3 E G(S)

7

i-

L.

G

L

I

L.

Ic-
i

Step 6 Let il be the first i f G(S) such that

C(S,'i) = tin (C(S,pj) 1 3 E G(S)?

and put M(S) = P.
5

Let us show that M(S) has the desired properties. #$I need

choose no program with complexity greater than C(S,Pi) . Step 2

0
rules out programs which are too long while Step 3 rules out programs

which take too long to run on S , hence if j # G(S) then either

S, is not a sample of P. or C(S,Pj) > C(S,Pi) so (6) holds for
3 0

M(S) l This proves the Theorem.

The machine M constructed in the proof of Theorem 1 will in

certain cases have reasonable convergence properties as the sample

size increases. An information sequence 4(P) is a sequence whose

range is &(P) . An initial segment Sn is the sample

'n = (&P)i 1 1 < i < n]

Given an information sequence g(P) , m , the machine M will

eventually be correct on any input for which P is defined, that is

(7) If (x,y)a(P), then there is an N such

for n 2 N .

thati (X,Y)wqJ >

This follows easily from the fact that SC ,& (M(S)) and that (x,y)ES
n

for large enough n .

It may not be possible to obtain &(P)c_&(M(Sn)) for n

large. If f is a recursive total function then it may happen that

any program for f has such rapidly growing running time that M(S,)

will be merely a table for S
n' In other words, if the running times

8

c

t-

;i
i.
I

L

for progrems for f are all unbounded then size becomes irrelevant

in the complexity measure. If the running time is bounded then the

machine of Theorem 1 will eventually pick only progras which agree

with f wherever f is defined.

Theorem 2 Suppose g(P) is an information sequence for some program

pf@ and that C(S,,P) is bounded as rwcx, . Then for the machine

M of Theorem 1, we will have

L(M(S,))~&(P) for n large enough.

Proof Let i. denote the first index i for which I z&(P)

and C(S,, Pi) is bounded as I-HCO . Put b = lob C(S,, Pi) Ed
0

choose K so that

The programs Pk for k > K will never be M(S,) for their complexity

must be larger than that of P.
IO

on Sn . Furthermore if k < K

and &P,)&&(P) , we can choose nk so that S
nlr

will not be a

sample of &(P,> . Thus if n is large enough, M(S,) must be one

of the programs Pi for which i < K and &(Pi)l &(P) . This proves

the theorem.

Notice that if P is total, M(S) will eventually be only P
3

such that ,&(Pj) =&(P) . This behaviour is called matching in the

literature on grammatical inference [71.

Corollary Suppose that for all information sequences d(P) 'of a

given P E C , the limit

Y (a = l&m c(sn,P)

exists for all f; such that &z&(P) . Let y be the minimum of

these v(F) . Then for n sufficiently large, y(M(S,) = y- .

Proof As the proof of Theorem 2 indicates, there is a K such that

for all n , M(S,) is one of the programs Pi , 15 i < k , and for

n large enough

Suppose i < K and &Pi)?&(P) , v(Pi) = y . If j < K ,

&(P. > 3 J(P)
J -

and v(Pj) >.v then for n large enough

m _n3 'j) > (Y('j) + Y>/2

so M(S,) will not be P. .
3

This proves the Corollary.

Theorem 2 can be applied in any case where the program has

bounded running times.

result in the case when

known. To simplify our

(8) T(S,P) = max

A slight modification enables one to use this

a bounding function for the running time is

discussion we shall assume that

T(X,Y,P) l

(X,Y)CS

We could extend our results (Theorem 3) to more general cp , but the

extensions do not seem to warrant the additional complexity of proof.

We continue to search the right generalization of Theorem 3. A

recursive total function b of two variables, which is increasing

in both is called a bounding function. The running time of PC C

10

L

c

E

i

I
I

L

i

is bounded by b if there is an CL' > 0 such that

Thy, 8 <dX,Y) 9 (x,y> E J(P)

We will call the least such a! the bounding constant of P . A

bounding function gives rise to a new running time Tb defined for

(X,Y> f WI bY

Tb (x,Y, ‘) = Thy, P)/b(X,Y)

and for SE&(P) by

Tb(S,P) = max
(X,Y)ES

Tb(x,Y, '1 -

This in turn gives rise to the complexity measure Cb defined by

cb(s,p) = dL(‘), Tb(s,p))

Thus if samples S are drawn from a program P which is known

to have its times bounded by a bounding function b , then one can

choose programs
%()S ofminimal Cb complexity and know that

L(~W) ~Jw)

if the sample S is large enough.

Remark 2 There are a number of classes of computations with known

bounding functions in terms of various types of programs or machines

1131. The complexity measure Cb will be more sensitive if the

bounding function chosen is a tight one. Thus, if we know a computa-

tion has polynomial bounds we should try to find the particular

polynomial rather than just choose some b that grows faster than any

polynomial. A bounding function that is too large may give rise to

degenerate measures, of Remark 1.

11

L-

i
i

i

t

It may even be possible to infer a good bounding function as

part of the general procedure for program inf'erence. Here we describe

one method for doing this. SuPPose tbkl is a sequence of bounding

functions satisfying bl 3 1 , bk(x,y) < b_ k+l(x'Y) and

We will now show how to infer both a bounding function and then good

programs which run on the sample in that bound.

Theorem 3 Let @ be a class with complexity measure C (where
-

T(S,P) is given by (8)) and let {bk] be a sequence of bounding

functions (satisfying (9)). 7%ere is an inference machine M which

will, for any information sequence J(P) , P E @ , infer both a

sequence of positive integers EnI and programs M(S,) such that

(4 Ns,) is a program in @ of least C
"i;,

complexity

whose graph contains S
n'

If, furthermore, there is some program F such that a(P)= a(F) and

p has its running times bounded by some bk , then for n large enough

(b) cn = c , a constant

(4 1(M(SJ) &9(P)

bProof Let [Pi} e an Occam's enumeration for @ relative to L .

M will use a sequence {a,] , (Yb being the current guess as to a

bounding constant. Initially CY = '
1 1' The machine proceeds as

follows to obtain zn and M(S,) .

12

L

i

L

I
IL

Step 1 For each i , 1 < i < n and k- - 9 15 k 5 n,M computes

(10) 6,(i,k) = max
bbY)ES,

d(X,Y,Pi'CY$k(X,Y)I

If 6&k) =l for lli, k 5 n then M sets kn = 1 and goes

to Step 3. Otherwise M goes to Step 2 .

Step 2 M selects k
n as the first index k such that hn(i,k) = 0

for some i < k . M then selects in as the first index such that

6,(i,kn) = 0 . M then selects Fn as the least integer such that

-6J$-pk,, = 0 and goes to Step 3 .

Step 3 If 6,(i,k) = 0 for some i and k 1Li 5 n , 1 <k <n

andif i =i
n m for some m < n then M sets an+1 =a! n . Other-

wise M sets my
n+l =l+CYn.

Step 4 M selects M(S,) as the best program using the algorithm of

Theorem 1 with the measure
'bk '

n

Let us now show that (a),(b),(c) hold. Condition (a) follows

directly from that fact that Step 4 uses the algorithm of Theorem 1 .

Consider the set /p of pairs (i,k) such that bk bounds the

running time of P.
1 and 1(Pi) z&(P) l We will show that if Ip

is not empty then (b), (c) hold. Towards this end let (!!,&) be

the pair in rp which minimize the maximum of i and k for

(i,k)W l (In case of ties we choose the one which comes first in

the lexicographic ordering of pairs).

13

c

(.

ti
1
t

i

d

We let cy? be the least constant such that

(x,Y+~p bfi(x,Y>> = 0) for all (x,y) E &(P)

and consider two cases

Case 1 The machine M makes at least CY~ different guesses of i
n'

In this case for n large we always have Sn(?,fc) = 0 . If

? is not i
n it is because there is an (i,k) pair found first. In

particular we have in < kn < ,maX {I,&] so that an must be eventually

constant. By our choice of w> V-Pair (i,k) of lower max[i,k)

will eventually be rejected because &(Pi) doesn't contain ,&(P)

or because 6,(i,k) = 1 for all k such that maX[i,k) < ma&$> .

Thus in Case 1, in will eventually be 1 and kn will eventually

be fi.

Case 2 The machine M makes G different guesses of

In this case we consider the class g of pairs

following properties

i> ~('i> z&(P)

i
n and

(i,k > with the

ii) d(X,Y,Pi,' bk(x,y) = 0 9 for t&L (X,y)@(P)

If p were empty M would make more than z guesses. It is easy

that if n is large enough we will have in =y and kn =x where

KW = min
(i,ex?

max{i,k)

where ties are again broken by taking the least number in the lexicographic

order. This completes the proof of Theorem 3 .

14

One might think that Theorem 3 can be formulated so that M

can actually infer the least integer k such that some program whose

graph contains J(P) has its running time bounded by bk . We

suspect that this cannot in general be done.

Example Suppose fl, f2 are recursive functions such that there are

programs P(f& P(f2) which compute each argument in time-A~bl~and b
2'

L-

c-

e

i

I’
i

c

i

1
L

respectively, and that no program does better for infinitely many

and consider the sequence of programs P (1i
such that

Pi(> uses P(fl) to compute for n odd, is undefined for

n = 2k , k > i , and computes f(2k) , kzi by a table.

Thus the program length L(P (i)) will b e unbounded, yet the running
.

time of P 1(> will be bounded by bl . If an inferehce scheme considers

only a bounded number of programs one may be able to infer that f

can be computed in bk time for some k > 2 . If, however, the

scheme considers more and more programs, one eventually encounters
.

the Pi(1 which would cause the erroneous guess of time bound bl .

We have not been able to convert examples of this sort into a

proof that no machine can always find the lowest k for which there

is a_ Pj with &(P) c_.&(Pj) and T(S
n' 'j) 5 bk(Sn) . However, we do

know that any machine that attemps to always find the lowest possible

k will have to look at arbitrarily many Pi for some functions.

This can be forced by taking some function of class k and replacing

15

it on a finite number of arguments with a function of class k+l .

This suggests the following modification to Theorem 3.

We supply the machine M with an auxiliary function A(R,k)

which maps a size and a bounding index into a size. This tradeoff

function A(&,k) determines the size of program to be considered in

searching for an improvement to an answer P
3

of size R and complex-

ity index k . Intuitively, A&k) says that the user of the inference

c‘
machine M prefers a program of class k-l and size A(&k) to a

program of size R and class k .

There is a "natural" A function derived from the complexity

t-
function, namely

i
?-

A@ dd = first size m such that

c(R,Tb k&p)) � cbb�) l

k

The construction for Theorem 3 can easily be modified to include

A(Wd . This still does not guarantee the minimum value for k ,

but seems to be a natural model of inference processes.

Remark 3 There has been a considerable amount of work [12] on

complexity classes of functions. To remain consistent with this work,

we would have to restrict the choice of cp(U{T(x,y,P)]) to ones

which give the same complexity classes as cp = max
(⌧,eS) CTbC⌧SY,�j) l

A good choice would be

Tb(S,Pj) = max
ix,Yks

Tb(x'Y,Pj) f

This (max + average) measure gives the same classes as max, and also

distinguishes among programs with the same maximum time. Since the ratio

of this measure with the max measure is bounded away from 0 and CO ,

16

Theorem 3 holds for it also. Furthermore, it is also bounded away from

zero, avoiding the degeneracy problem for the usual choices of
C(L,T) l

The results derived here for programs have a significantly

different flavor from those developed [7] for grammars. A central

issue in grammatical inference is the presence or absence of negative

information, i.e., strings in a sample marked as not belonging to the

language being learned. This problem does not arise in program inference

for two reasons. With grammars, an answer which generates too many

strings is normally considered wrong, but our constructions allowing

answers whose graph includes that of the hidden function seem quite

natural. This arises from the single-valuedness of functions -

if (x,y) appears in a sample then no (x,y') with y # y' can

appear. When &M(S)) z&(P) , M has simply chosen a program which

may be defined for some arguments where P is not. If one attempted

to extend our results to relations, the problems associated with negative

information would reappear.

The results of this paper should be viewed in the context of a

renewed interest in inductive and scientific (hypothetico-deductive)

inference. In addition to the theoretical work on programs and grammars,

there is work on predicate calculus 11-63 and real chemistry [5] .

All of these efforts have‘applied as well as theoretical components.

Some of our work on program inference is discussed in [81 and [l]

and there is a fairly ambitious effort underway to infer loop programs

from sample traces. Thus far, there has been surprisingly little

carryover from one domain to the other and from theoretical results

to programs, but a common understanding of the issues seems to be

17

emerging. There are also proposed applications of inference-techniques

to pattern recognition [93 and natural language description [lk]

which provide constant reminders of the weakness of existing results.

18

References

c

t 161

r,

L

i
/
L

I

i

I

El

[31

141

151.

C71

PI

L91

cm

WI

[=I

Cl31

D41

DS 1

Biermann, A., "On the inference of Turing Machines from sample
computations,"
October 1971.

CS241, Stanford Computer Science Department,

Biermann, A. and J. Feldman,
in S. Watanabe,

"A Survey of Grammatical Inference,"
(Ed.), Frontiers of Pattern Recognition.

Blum, M., "A Machine-independent Theory of the Complexity of
Recursive Functions,"
322-336.

J. ACM 14, No. 2, April 1967, pp.

Blum, M., "On the Size of Machines,"
(l967), PP* 257-265.

Information and Control 11,

Buchanan, B., E. Feigenbaum, and J. Lederberg, " A Heuristic
Programming Study of Theory-Formation in Science,"
Proc. 2nd ICJAI, London, 1971.

Feldman, J. A., J. Gips, J. J. Horning and S. Reder, "Grammatical
Inference and Complexity,"
June 1969.

CS 125, Stanford University,

Feldman, J. A., "Some Decidability Results on Grammatical Inference
and Complexity," Information and Control, 1972.

Feldman, J. A., "Automatic Programming,"
February 1972.

CS255, Stanford University,

Fu, K. S., '*On Syntactic Pattern Recognition and Stochastic
languages," TR-EE71-21, Pwdue University, 1971.

Gold,

Gold,

M
P,:

"Limiting Recursion," J. Symb. Logic 30, (1965),
28-48.

M., "Language Identification in the Limit," Information
and Control 10, (1967), pp. 447-474.

Hartmanis, J. and J. Hopcroft,
Complexity,"

"An Overview of Computational
J. ACM 18, 3 (July 1971), pp. 444-475.

Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

Klein, S., et al, "The Autoling System," TR 43, Computer
Science, University of Wisconsin, September 1968.

Pager, D., "On the Efficiency of Algorithms," J. ACM 17, 4
(October 197O), pp. 708-715.

i

[16] Plotkin, G. D., "Automatic Methods of Inductive Inference,"
Ph.D. Thesis, Machine Intelligence Dept., University of
Edinburgh, 1971.

[17] Rogers, H., Jr., Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

I183 Simon, H., "Experiments with a Heuristic Compiler," Journal ACM,
October 1963, pp. 482-506.

[19] Meyer, A. R. and D. M. Ritchie, The Complexity of loop progrms,
Proc. ACM 22nd Nat. Conf., pp. 465-9.

c’

I
i

