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Abstract

The author presents a generalization he worked out in 1950 of

von Neumann's method of generating random samples from the exponential

distribution by comparisons of uniform random numbers on (0,l) . It

is shown how to generate samples from any distribution whose probability

density function is piecewise both absolutely continuous and monotonic

on -=,a) .( A special case delivers normal deviates at an average

cost of only 4.036 uniform deviates each. This seems more efficient

than the Center-Tail method of Dieter and Ahrens, which uses a related,

but different, method of generalizing the von Neumann idea to the

normal distribution.
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Von Neumann's Comparison Method for Random Sampling

from the Normal and Other Distributions

George E. Forsythe

Computer Science Department

Stanford University

1. Introduction. In the summer of 1949, at the Institute for

Numerical Analysis on the campus of the University of California, Los

Angeles, John von Neumann ['] lectured on various aspects of generating

pseudorandom numbers and variables. At the end he presented an ingenious

method for generating a sample from an exponential distribution, based

solely on comparisons of uniform deviates. In his last snetence he

commented that his "method could be modified to yield a distribution

satisfying any first-order differential equation".

In 1949 or 1950 I wrote some notes about what I assumed von

Neumann had in mind, but I do not recall ever discussing the matter

with him. This belated polishing and publication of those notes is

stimulated by papers by Ahrens and Dieter [l, 21 in which several
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related algorithms are studied, and by a personal discussion $-ith the

authors on how the von Neumann dea can be extended.

In Section 2 the general method is presented, and in Section 3

its efficiency is analyzed. In Sections 4 and 5 it is shown how the

exponential and normal distributions show up as special cases. In

Section 6 the method for a normal distribution is compared with the

Center-Tail  method of [l] and [2]. In Section 7 possible generali7ati.01

are mentioned.

Although this introduction has emphasized historical matters,

the method of Section 6 is a good one,-and is competitive with the

best known methods for generating normal deviates.

I thank both Professors Ahrens and Dieter for their careful

criticism of a first draft of this paper.

2. The general algorithm. Let f(x) > 0 be

x > 0 and satisfy the first-order linear different-

defined for all

ial equation

( 11 f'(x) + b(x) f(x) = 0

where b(x) > 0. Let-
X

(2) B(x) =
J

b(t) d-t 7

0

and assume that

(3)

Then

(4)

is the unique solution of (1) PTith

1s

(0 _< x < +

1, and hence f is



the probability density distribution of a nonnegative random variable.

Suppose we have a supply of independent random variables u wi th

a unil'orm distribution  on [0, l), and that we wish to generate a random

variable y with the density distribution  f(x). Here is one way to

proceed.

We first prepare three tables of constants {qk] , (r,] , [dk)

for k = 0, 1, . . . . K, as follows. (K is defined below.) Let q. = 0.

For each k = 1, 2, . . . . K, pick qk as large as possible, subject

to the two constraints

(5)

(6)

qk - qk-1 5 ‘7

B(qk) - B(qk-l)  5 ’ ’

Next, compute

(7 > qk

rk = f(x) dx (k = 0, 1, . . . . K).

Here K is chosen as the least index such that rK exceeds the largest

representable  number less tIlah 1. (K may be chosen smaller, if one sets

rK L 1, and if' one is willing to truncate the generated variable  by

reducing any value above qK to the interval [qKml, qK).)

Finally, compute

(8) dk = qk - 9J.p1 (k = 1, 2, . . . . K).

For simplicity we define the functions

(9) Gk(X) = B(qkwl  + x) - B(qkwl) (k = 1, 2, . ..Y K).
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Now we present the algorithm. Steps 1 to 3 determine thich

interval [qk-l, qk) the variable y Cl1 belong to. Steps 4 to 11

determine tile value of' y within tllat interval.

1. [Begin choice of interval.] Set k C-1. Generate a uniform

deviate u.

2. [Test.] If u < r k, go to step 4.

3. [Increase interval,] If u > rks set k f-k + 1 and go back

to step 2.

4. [Begin computation of y in the selected interval.] Generate

another uniform deviate u and set w <-udk.

5. Set t WGk(w).

6. Generate another uniform deviate uJc.

7. [Test.] If u* > t, go to step 11.

8. [Trial continues.] If U* < t, generate another uniform deviate u.

9. [Test.] If u < u++, set tf---u and go back to step 6.

10. [Reject the trial.] If u > u*, go back to step 4.

11. [Finish.] Return yeqk 1 + w as the sample variable.

We now shob that the above algorithm works as claimed. Since we

assume that each u < 1, the test in step 2 must be passed when k = K,

if not sooner. Hence an interval [qkml, q
k

) is selected, and the values

of rk were chosen to make the probabilities of choosing the various

intervals correct.

Fix k. The remainder of the algorithm can be described as follows:

First? a random number w is selected uniformly  from the interval 0 < w < d
k'



Then the algorithm continues to generate independent uniform deviates

ui f'rom 10, 1) until the least n is found with

(10)

u2 > Gk(W) ( n = l), or

U >u <un+l - n n-l
< . . . <u <u

3 2 < GkcW) ( n 2 2).

With probability 1 such an n will be found, as will be shown. If n

is odd, we return y*qkS1 + w. If n is even, we reject w and

all the u, choose a new w, and repeat.

We now determine the probability  P(k, w) that one w determined

in step 4 will be accepted without returning to step 4. Let El(k, w)

be the universe of all events. For n = 2, 3, . ..) let E,(k, w) be

tile event

U < 11 < * .n n-l <u <u
3 2 < Gk(W

Then the probability  of E,(k, w) is given by

Prob fE,(k, w)] fJ

Gk(W)

dX2

0

Gkb')

\/
dx

2

0

Gk(w)n-l
=

(n-l) !

5

I-

( n = 1)

( n = 2)

(n 2 3)dx
3

. . .

(all n).
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--

The occurrence of (10) is the conjunction of E,(k, w) and not-

E,+l(k, w)* Since E,+l(k, w) implies E (k, w), the probability
n

that (10) occurs for a given n and w is

(11) Prob [I3 (k, w) and nOt-En+l(k,  w)] =
Gk(w)n-l Gk(w)n

n
(n-l) I - n ! l

Summing over all odd n, we see that

(12) P(k, F') =
‘k(w)”

1(n-l) ! - n I = e
'Gkh)

'

Since w < d
k' we have-

Gk(W) < 'kcdk) = B(qk) - B(qk-l) 2 '7-

-1
for all k and w.

Now d,-'dc is the probability  that w is selected in the interval

g< w < g+ ds.- - Combining this bith (l2), Fe see that the

probability  that 5 5 w 5 g + dg and that w is accepted is given

bY

0~) Prob (g 5 F' 5 g + dg and w is accepted] = e -Gk(w) dg- .

dk

Corresponding  to an accepted w, we return y = qkW1 + w as the

sample variable. Hence, from (lb), the probability  that y is in

the range x < y < x + dx, for given k, is- -
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1 -Gk(X - $1)
e dx

dk

1 -B(x) +- '(qk-1)
II e dx 9

dk

1
= - Ce

B(qk-l) -1 -B(x)
C e dx

1
= f

dkf (qk-1)

That is, ..

(15) Prob [ x < y <-

(4 dx,

bY (9)

bY (4).

f(x) dx
x + dx and y is accepted] =

dkf (qk-1)  l

Since this is proportional  to f(x) dx, we see that any accepted y

has the desired probability density distribution within the interval

hk-1' q& Since? from (13), the probability  of an infinite loop

back to step I+ is zero, the second half of the algorithm terminates

w'lttl probability 1. This concludes the demonstration  that the algorithm

works as claimed.

3* Efficiency of the algorithm. For a general function b , I--

shall derive a representation  for the expected number of uniformly dis-

tributed random variables u that must be used to generate one variable

y -with the probability  density proportional  to f(x). A similar deriv-

ation

algor

is given in PI.

The preliminary  game to select k -- steps 1 to 3 of the

thm -- requires one u.



The rest of the algorithm is different for each k, and we shall

first determine the expected number N(k) of steps to determine y.

To do this, we shall first assume t hat k is fixed and that w has

been picked in the interval 0 < w < dk. Define E,(k, w) as in Section-

2, and introduce the abbreviations

001 e = yp, w> = Probn {E_(k, w)) ( n = 1, 2, . ..)

and

(17) g = Gk(w .

Then, as in Section 2, we have the following expression for the

probability P(k, w) of accepting w without returning to step 4:

P(k, w) = (el - e2) + (e3 - e4) + (e5 - e6) + . . . .

Moreover, given k and w and given that w is accepted, the expected

number of uniform deviates u needed will be

maOh 4 = p(k, w)-'
c
2(el - e2) + 4(e3 - e4) + 6(e5 - e6) + l .0

3

2-l 1 (n+l).
n!

Similarly, the probability'1  - P(k, w) that w is rejected is given by

l- P(k, w) = (e2 - e3) + (e4 - e5) + (es - 7) + l *e l

Moreover, given k and w and that w is rejected, the expected number

of uniform deviates u needed is

8



mr(k, w> = cl - P(k, w)l’l [3(ep3)  + 5(e4-e5) + 7(e
6-7

') + . ..I

09)
1

'[

n-l
67 2

=
1-P(k, w) even n (n-l)! - n!

n>2
1 (n + 1) .

-

Now, if a w is rejected, the algorithm returns to step 4, a

new w is picked, and the process repeats. Let M(k, w) be the

expected number of uniform deviates selected until a y is finally

selected, given a fixed k and an initially chosen w. Then N(k)

is the average of M(k, w) over all w uniformly distributed on

0 < w < dk.-

We have

(20) M(k, w) = P(k, w)ma(k, w) + i1 - P(k, 41 br(k, w> + N(k)1  ,

since, in case w is rejected, the whole process is repeated. Using

the expressions (18) and (19) f'or ma(k, w) and m,(k, w), we get

from (20) that

M(k, w) =
x
n=l [

n-l
g

(n-l)! - n! II

(n+l) + cl - P(k, w)] N(k)

= 1 + eg + [l - P(k, w)] N(k),

or

(21) M(k, w) = 1 + e Gk(W) + [l - P(k, w)] N(k) .

Averaging (21) for 0 < w < d , and using (12) , we find that

-

-

1 dk
N(k) = 1 + -

dk

>'w' dw + N(k) c - + I"-""") dj .



Solving for N(k), we g e t

dk G. (w)
dk + ek dw

(22) N(k) = .

-Gk(W)
e dw

Finally, the expected number Nof uniform deviates drawn in the

main game until a y is returned is the average of N(k) over the

intervals, weighted by the probabilities of selecting the various intervals.

That is, 0)c N(k)  bk - rk-ll  l

k=l

If we make use of (4), (7), and (9) to express ?? in terms of B(x),

we obtain the ugly representation

dk + e
-B( qk-1)

J

9kco eB(") dx

z

qk-l=

B(qjp.l) Tr
e cYBCx) dx

k=l

%-1

(24 >

e -B(x) dx

J
e-B(x) dx

0

=
1

d ewB(qk-l)
k

+ e-2B(qk-l) eB(") dx
03

s
e-B(X) dx

L J
0
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4. Special case: exponential distribution. If b(x) '= 1

in (l), then B(x) = x and y(x) = eoX, corresponding to the exponential

distribution  treated in [3]. For the algorithm of Section 2 we have

= k, dk = 1,
-k

9k
rk=l-e , and Gk(x) = x, for all k. Since

dk

and Gk(x) are independent of k, steps 4 to 10 of the algorithm are

the same for all k. They can therefore be carried out independently  of

steps 1 to 5. By (l-2), the probability  that a chosen w is not accepted

is l- P(k, w) = 1 - eBw (for all k), and the average value of 1 - eWw

over 0 < w < 1 is e-l.-

If the preliminary  game of steps 1 to 3 were played, the interval

[k -1, 'k) would be selected with probability  rk - rk 1 = e -k -e-(k+Q _-

e-k
(1 - e -l), for k=l,2, . . . . Thus the interval [0, 1) would be

accept4 with probability  1 - e
-1 -1

, and rejected with probability  e .

1’01 Ir - 1, 2, . . . . ii' [k-l, k) is rejected, then [k, k+l) would be

accepted with probability  1 - e
-1 -I

, and rejected with probability  e .

-1
Since the rejection ratio for each interval has the same value e ,

which is the a priori probability of rejecting in the main game any w

selected in step 4, von Neumann could use the rejection of w as the

signal to change the interval from [k-l, k) to [k, k+l). Thus the

preliminary  game of steps l-3 is unnecessary  for the exponential distri-

bution. This made von Neumann's game very elegant. I know of no com-

parable trick for general b(x).

From (22) and (23), since N(k) = 5, we see that for the expon-

ential distribution

(25) i;s =
1 + (e-l) e=-1 -1 t 4.30026 ,
1 - e 1 - e

11



as stated in Cl1 l There was an error in ['I.

5. Special case: normal distribution. If b(x) = x in (l),

then B(x) = x2/2 and f(x) = /? e-x2/2 , corresponding  to the

positive half of the normal distribution. For the algorithm of Section

2 we have

40
= 0, q1 = 1, . ..$ qk =

42k - 1 (k > 2).

Hence

dl = 1, d, =L J-3 - 1, . . . , dk'J= -Jz3 (k > 2).

Also,

Gk(x) = -
2

+ !&l⌧ ck z �1 l

The values of rk must be computed from the probability  integral. The

table below gives 15-decimal values of qk3 %, rky and N(k) for k = 1,

2, . . . . 36, as computed in Fortran on Stanford's IBM 360/67 computer

in double precision.

To generate normal dwiatcs, one selects K and prestorcs the

.

values of rk, qk7 and dk for k = 1, 2, . . . . K. Then set qofieO and

dKfi-1. (The limit K = I2 permits normal deviates up to + 5.0 to

be generated, and the deviates will be truncated less than once in a

million trials. A higher limit will decrease the probability of trun-

cation.)

i
As suggested in [2], one should start the algorithm with a pre-

1

liminary determination  of the sign of the normal deviate. We do this



in steps Nl-NJ of the following algorithm. At entry to Step N4, u is

a uniform deviate on the interval w, 1). The rest is the algorithm

oi' Sctction 2, with the sign appended in the last step.

Nl.

N2.

N5.

N4.

rJ5.

N6.

J-v*

N8.

N9.

[13ct:in  choice of sign and interval.] Set k * 1. Generate a

uniform deviate u on ro, 1). Set u f--u.

[Test for sign.] If u < 1, set sf-landgotostepN4.

If u > 1, set se -1, and set u-u - 1.-

[Test for interval.] If u < rk, go to step N6.-

[Increase interval.] If u > rk, set k ek + 1 and go back

to step N4.

[Begin generation  of ly\ in the selected interval.] Generate

another uniform deviate u on [0, 1) and set w<-udk .

Set t eGk(w).

Generate another uniform deviate u* on [0, 1).

[Test.] If u* > t, go to step N13.-

NlO. [Trial continues.] If u* < t , generate another uniform deviate

U on [0, 1).

Nil. [Test.] If u < u*, set t f--u and go back to step N8.

NU. [Reject the trial.] If u 2 u*, go back to step N6.

Nl2. [Finish.] Return y f-- s ( qkol + w) as the sample normal variable.

As in Section 3, we let N(k) be the expected number of selections

of uniform deviates in steps N&-N13, as a function of k. We have

from (22):

13
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l+
s

edle dw

N(1) = 0

1 1

s

e-w2/2
dw

0

e'/2 -k
"k

dk +

N(k) = J
ew212 dw

'k-1

k+
qk

e

/

eow2/' dw

('k 2 2).

Yk-l

Wmerical values of N(k) are given in the table. Using the
asymptotic

formula

x+h x+h
V

m 2
e 2x 2I

/

+t*/li dte-

X

.x

one can show that

lim N(k) = 4.30026 .
k --> 03 1 - e

I
I
c

Cf. (25). The equality (26) was written to me by U. Dieter.

I have used the
03

&
> N (
k=l

same computer to establish that

k, (‘k - rk-l) : 3.03585 >

so that the expected number of uniform deviates chosen in order to

1

generate one normal deviate is 1 + y $ 4.03585 .

14
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The correctness of this algorithm for generating normal deviates,

< .J2" ~(~11 as the value 01‘ N, have be<?n confirmed in unpublished  experi-

mc'nts by A. I. E'orsythr? and independently by J. II. Ahrens.

6. Comparison with the Center-Tail method of Dieter and Ahrens.

In [l], Dieter and Ahrens give a related but different modification  of'

the von Neumann idea for the generation  of normal deviates. There are

only two intervals, the center and the tail, and the algorithms are

quite different for the two. The expected number of uniform deviates

needed is near 6.321, and computation of-a square root is required in

approximately 16 per cent of the cases.

The algorithm of Section 5 above requires no function call, but

its main advantage over the Center-Tail method  lies in requiring about

two-thirds the number of uniform deviates. 1 This should be reflected

in a shorter average time of execution.

The Dieter-Ahrens algorithm for the center interval closely resembles

my algorithm for each interval, and the proofs are very close to those

given above. The big difference is that in [l] all variables ui have

the cumulative distribution  function x2 (0 2 x < l), and the com-

parisons <are of the form

U ,\ un+l - n < un-l < u
n-2

<
l **

<u
3

<u <u
2 1'

In contrast, in this paper all variables ui have uniform distributions

and the comparisons take the form (for the principal case k = 1):

U21

U
n+l 2 un < u < u < <l.l <u < I

n-l n-2 "* 3 2 l

2

15



Changing the distribution  function in [l] costs an extra uniform deviate

and a comparison for each ui3 whereas forming U12/2 = Gl(w) in

Section 5 is done only once for each chain of u
i
's. Moreover, the

fact that u12/2 is usually small means that most of the time

U2 F U12/2 and hence
u1 is accepted immediately. This contributes

to keeping N low in my algorithm. Finally, the use of Gk(w) makes

it possible to use the von Neumann technique in any interval in which

Gk(w) can be evaluated.

In a more recent manuscript [2] Dieter and Ahrens have improved

their Center-Tail method  so that the comparisons are simpler and the

expected number of uniform deviates needed is reduced to near 5.236.

According to the authors, the improved Center-Tail method  is still some-

what slower than my algorithm.

7. Further generalizations. Let f(x) (-a < x < a) be the

probability  density function of a random variable F. Under what con-

ditions on f could the von Neumann idea be applied to pick a sample

from F? It is sufficient that the interval (-03 , w) be the union

of a set of' abutting intervals Ik = csk-1' $1 ck = "*, -2, -l,

0, 1, 2, . ..) such that in each closed interval I.k either f(x) - 0

or the following three conditions all hold: f(x) > 0, f is absolutely

continuous, and f is monotonic.

Then a preliminary  game can be played to select an interval Ik.

If b(x) = - f'(x)/f(x) 2 0 in Ik, the algorithm of Section 2 can

be adapted to select a value in Ik with a density distribution propor-

tional to f(x). (It may be necessary to subdivide Ik so that (5)

and (6) hold.)

16
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If b(x) < 0 in Ik, change x to -x and follow an'analogous

algorithm.

(a) One must evaluate various integrals like
Ja f(t) dt,

in order to determine the parameters needed to pick the

intervals Ik during execution, and to evaluate the needed

rk) $5 and dk' These computations have to be done only

once in designing the algorithm.

(b) One must evaluate Gk(w) for arbitrary w in 1% dkl

during each execution of the algorithm. Note that

G-ii(w) = B(qk-l + d - B(qk 1)

Y.k-1 + w qk-1 + w
f'(t)

=

J

b(t) d-t = -

/

dt
f(t)

'k-1 qk-1

::irlf*~~ on-l;, (b) :i :: :1011(' on-line, ti~c succes;:; of an a&orithm  would

~~~III to tl~~pcnd only on tire ;ihility  to evaluate., 222 f(x) rapidly. WC,

thus see that having f(x) = C exp ( CJY (x)) (and hence a solution of

an equation of -type (1)) is of great practical  advantage, but it is

not essential in principle to the use of von Neumann's idea.
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