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on (w,e) . A special case delivers normal deviates at an average
cost of only L4.036 uniform deviates each. This seens nore efficient

than the Center-Tail nethod of Dieter and Ahrens, which uses a related,

but different, nethod of generalizing the von Neumann idea to the

nornmal distribution.

i This research was supported in part by the Ofice of Naval Research

' under Contracts N-0001k-67-A-0112-0057 (NR Okk-Lo2) and
N-00014-67-A-0112-0029 (NR Okk-211), and by the National Science
Foundation under Grant GJ- 992. Reproduction in whole or in part
is permtted for any purpose of the United States Governnent.



Von Neumann's Conparison Method for Random Sanpling

from the Normal and Cther Distributions

George E. Forsythe
Conputer Science Depart nent
Stanford University

1. [ ntroducti on. In the sumer of 1949, at the Institute for

Nunerical Analysis on the canpus of the University of California, Los
Angel es, John von Neunann [3] | ectured on various aspects of generating
pseudorandom nunbers and variables. At the end he presented an ingenious
met hod for generating a sanple froman exponential distribution, based
solely on conparisons of uniform deviates. In his last snetence he
comrented that his "method could be nodified to yield a distribution
satisfying any first-order differential equation".

In 1949 or 1950 | wrote sone notes about what | assuned von
Neurmann had in mind, but | do not recall ever discussing the natter
with him This belated polishing and publication of those notes is

stimulated by papers by Ahrens and Dieter [1, 2] in which several



related algorithms are studied, and by a personal discussion vith the
authors on how the von Neumann dea can be extended.

In Section 2 the general method is presented, and in Section 3
its efficiency is analyzed. In Sections 4 and 5 it is shown how the
exponential and normal distributions show up as special cases. In
Section 6 the method for a normal distribution is compared yvith the
Center-Tail method of [1] and [2]. 1In Section 7 possible generalirations
are mentioned.

Although this introduction has emphasized historical matters,
the method of Section 6 is a good one,.and is competitive with the
best known methods for generating normal deviates.

I thank both Professors Ahrens and Dieter for their careful
criticism of a first draft of this paper.

2. The general algorithm. Let f(x) > O be defined for all

x > 0 and satisfy the first-order linear differential equation
(1) £'(x) + b(x) f(x) = 0 (0 < x < =),

where b(x) > 0. Let

X

(2) B(x) = f b(t) at ,
0

and assume that

(3) c f B(X) 4y < o
0

Then
) £(x) = ¢ le B
[ee]
is the unique solution of (1) vith J/‘ f(x) d&x = 1, and hence f is
0



the probability density distribution of a nonnegative random variable.
Suppose we have a supply of independent random variagbles u wi th
a unitorm distribution on [0, 1), and that we wish to generate a random
variable y with the density distribution f(x). Here is one way to
proceed.
We first prepare three tables of constants {qk} ) {rk} ) {dk}
for k =0,1,..., K, as follows. (K is defined below.) Let d9 = O-
For each k =1, 2, . .., K, picqu as large as possible, subject

to the two constraints

(5) qk - qk-l S 1,
(6) B(q) - Blg._,) =1

Next, compute
%%
(1) r, =.£ f(x) dx (k =0,1,..., K).

Here K is chosen as the least index such that rK exceeds the largest

representable number less thah 1. (K may be chosen smaller, if one sets

rK = 1, and if one is willing to truncate the generated variable by

reducing any value above to the interval [qK-l’ qK).)

%
Finally, compute

(8) dk = G4 - qk-l (k =1, 2,..., K).
For simplicity we define the functions
(9) Gy (x) =Blgy 4+ x)- Blg ) (& = 1, 2, . .., K).



Now we present the algorithm. Steps 1 to 3 determine vhich

interval ) the variable y +«ill belong to. Steps 4 to 11

Loy o

determine the value of y within that interval.

1. [Begin choice of interval.] Set k €= 1. Cenerate a uniform
deviate u.

2. [Test.] If u < go to step k.

I‘k,

3. [Increase interval.] If u > r , set k €%k + 1 and go back

k?
to step 2.
L. [Begin computation of y in the selected interval.] Generate

another uniform devigte wu and set w (—-—-udk.

5. Set t €—G ().

[oh)

Generate another uniform deviate u*.

7. [Test.] If u* > t, go to step 11.

8. [Trial continues.] If u* < t, generate another uniform deviate u.
9. [Test.] If u < u*, set t&——u and go back to step 6.

10. [Reject the trial.] If u > u¥*, go back to step k.

11. [Finish.] Return y(--qk 1 * v oas the sample variable.

We now show that the above algorithm works as claimed. Since we
assume that each u < 1, the test in step 2 must be passed when k = K,
if not sooner. Hence an interval {qk-l’ qk) is selected, and the values

of r, were chosen to make the probabilities of choosing the various

k

intervals correct.

Fix k. The remainder of the algorithm can be described as follows:

First, a random number w 1is selected uniformly from the interval 0 < w < 4. .

k



Then the algorithm continues to generate independent uniform deviates

u, trom [0, 1) until the least n 1is found with

u, > Gk(w) (n = 1), or

U o >ou < owoo < L < ug < u, < Gk(w) (n > 2).

With probability 1 such an n will be found, as will be shown. If n
is odd, we return y(——--qk_l + w. If n is even, we reject w and
all the u, choose a new w, and repeat.

We now determine the probability P(k, w) that one w determined
in step 4 will be accepted without returning to step k. Let El(k’ W)
be the universe of all events. For n = 2, 3, . .., let En(k’ W) be
the event

< < L. <
u, wg ug < u, < Gk(w).

Then the probability of En(k’ w) is given by

j dx,, (n = 2)

fl

Prob fEn(k, w)}

0
Gy (W) P Xn-1
\f de f de dxn (n > 3)
0 0 0
) 6, -1
i (n-1) (all n).



The occurrence of (10) is the conjunction of En(k’ w) and not -
En+l(k, w). Since En+l(k, w) implies E gk, w), the probability

that (10) occurs for a given n gand w is

n-1 n
G, (w) G, (w
(11) Prob fE (k, w) and not-g ., (k, wy = X 0 i )_
(n-1) ! n ! .
Summing over all odd n, we see that
n-1 n
G, (w) G, (w)
(12) P(k, w) = E KT Kl e G (W)
(n-1) ! n !
odd n
Since w < dk’ we have
1 1 = <
G w) < a(4,) B(ay) B(g,_,) < 1,
vhence
/= -\ — - \ -]_
(L) Flk, w) > e > for all k and w.
-1 . P
Now d, "dg  is the probability that w is selected in the interval
g < w < g + dg . Combining this vith (12), ve see that the

probability that g < w < g + dg and that w is accepted is given

by
(w) 8
() Prob {g < w <0+ de and w is accepted} = e G(W) __>
dk

Corresponding to an accepted w, we return y = + w as the

Q-1
sample variable. Hence, from (14), the probability that y is in

the range x < y < x + dx, for given k, is



! G (x = ay_y)
e dax
dy
1 -B(x) + B(g, ;)
- e e by (9)
e
1 B(q, ) _
_ ce k-1 1 B(x) dx
e
1
- (%) ax, by (4).
d, £ (g _,)

That is,

fx) dx
(15) Prob f x < y < x + dx and y 1is accepted} =

Since this is proportional to f(x) dx, we see that any accepted y
has the desired probability density distribution within the interval
[qk_l. qk). Since, from (13), the probability of an infinite loop

back to step 4 is zero, the second half of the algorithm terminates

with probability 1. This concludes the demonstration that the algorithm
works as claimed.

3. Efficiency of the algorithm. For a general function b , I

shall derive a representation for the expected number of uniformly dis-
tributed random variables u that must be used to generate one variable
y “with the probability density proportional to f(x). A similar deriv-

ation is given in [2].

The preliminary game to select k -- steps 1 to 3 of the

algor thm -- requires omne u.



The rest of the algorithm is different for each k, and we shall
first determine the expected number N(k) of steps to determine y.
To do this, we shall first assume that k 1is fixed and that w has

been picked in the interval 0 < w < 4. Define En(k, w) as in Section

K

2, and introduce the abbreviations

(16) e = en(k, w) = Prob {En(k, w)} (n=1,2,...)
and
(17) g = Gy (v

Then, as in Section 2, we have the following expression for the

probability P(k, w) of accepting w without returning to step L:
= ~ - + - + .. .
P(k‘ W) (el 62) + (85 eh) (es e6)

Moreover, given k and w and given that w is accepted, the expected

number of uniform deviates u needed will be

ma(k’ W) P(k, w)-l [e(el - e2) + h(e3 - eh) + 6(e5 - e6) +..0

3

(18) 1 gt g"

I

: N (n+1).
P(k, w) odd n | (n-1) ! n!

Similarly, the probability 1 - P(k, w) that w is rejected is given by

1 - P(k, w) = (e2 - eB) + <eh - eS) + (e6 - e7) + ...

Moreover, given k and w and that w is rejected, the expected number

of uniform deviates u needed is



mr(k, w) = [1 - P(k, w)]"l [3(e2-e3)+ 5(e)+-e5) + 7(e6-e7‘) +...]

(19) n-1 n
1 g e

e _— - (n + 1) .
1-P(k, w) evem n | (n-1)! n!

n>2

Now, if a w is rejected, the algorithm returns to step 4, a
new w 1is picked, and the process repeats. Let M(k, w) be the
expected number of uniform deviates selected until a y is finally
selected, given a fixed k and an initially chosen w. Then N(k)
is the average of M(k, w) over all w uniformly distributed on
Ofw<dk.

We have
(20)  m(k, w) = P(k, w)m_(k, w) + [1 - P(k, w)][m (k, w) + N(k)] ,

since, in case w 1is rejected, the whole process is repeated. Using
the expressions (18) and (19) for ma(k, w) and mr(k, w), we get

from (20) +that

M(k, w) (n+l) + [1 - P(k, w)] N(k)

I
o
|
5_

—) (n-1)!

1+ e® + [1 - Pk, w)] N(k),

or

(21) M(x, w) = 1 + e Gk(w) + [1 - P(k, w)] N(k)

Averaging (21) for 0 < w <_dﬁk and using (12) , we find that

1 Ay W 1 % -G, (w)
N(k) = 1 + f eGk( ) dw + N(x) |1 - j e K
dk 0 dk 0

dw



Solving for N(k), we get
d

ko Gy W)
dk + f e dw
0

(22) N(k) = .

fdk e —Gk(W) dw

0

Finally, the expected number N of uniform deviates drawn in the
main game until a y is returned is the average of WN(k) over the

intervals, weighted by the probabilities of selecting the various intervals.

That is,

(23) N - Z W) [r, - 1)

If we make use of (4), (7), and (9) to express N in terms of B(x),

we obtain the ugly representation

q.
-B(q, -) q ko
™) dk + e k-1 j k eB(X) ax f e B(X) dx
T -1 N 9g-1
B(aq, ) q - .o
e k-1 kg B(x) dx e B(x) dx
k=1
-1
(24 )
q.
® Kk
1
_ 4 e Bla1) .-2B(a,_) f B() 4
p Kk
f e-B(X) dx ' qk—l
A k=1

10



L. Special case: exponential distribution. If b(x) = 1

in (1), then B(x) = x and y(x) = e ~, corresponding to the exponential

distribution treated in [3]. For the algorithm of Section 2 we have

=k, 4 =1, r_ =1- ek , and Gk(x) = x, for all k. Since dy

and Gk(x) are independent of k, steps 4 to 10 of the algorithm are
the same for all k. They can therefore be carried out independently of

steps 1 to 3. By (12), the probability that a chosen w is not accepted

is 1 - Pk, w)=1-¢e " (for all k), and the average value of 1 - e "

over 0 < w < 1 1is e-l.

If the preliminary game of steps 1 to 3 were played, the interval
=k -(k+1)
k " Tk1” ¢ 7°
e-k(l - e—l), for k=1,2,.... Thus the interval [0, 1) would be

-1 -
accepted with probability 1 - e =, and rejected with probability el.

[k -1, k) would be selected with probability r

For k=1,2,..., it [k-1, k) is rejected, then [k, k+1l) would be
accepted with probability 1 - e-l, and rejected with probability 51.
Since the rejection ratio for each interval has the same value él,
which is the a priori probability of rejecting in the main game any w
selected in step 4, von Neumann could use the rejection of w as the
signal to change the interval from [k-1, k) to [k, k+1). Thus the
preliminary game of steps 1-3 is unnecessary for the exponential distri-
bution., This made von Neumann's game very elegant. I know of no com-
parable trick for general b(x).

From (22) and (23), since N(k) = N, we see that for the expon-
ential distribution

(5) F - —2xle)) . e
1 -e 1l -e

4.30026 ,

|
}—l
|
T



as stated in [1]. There was an error in [3].

5. Special case: normal distribution. If b(x) = x in (1),

. 2
then B(x) = XE/E and f(x) = /2/m % /2 , corresponding to the
positive half of the normal distribution. For the algorithm of Section

2 we have

g =0, qp =1 - q = Sk -1 (x> 2).
Hence
d; =1, d, = 5-1,...,dk,=,)2k-1 -}2k-5 (k > 2).
Also,
2
X
Gk(x) = 5 Oy 1% (k > 1)

The values of r, must be computed from the probability integral. The
table below gives 15-decimal values of gq, &, r, and N(k) for k - 1,
2,..., 36, as computed in Fortran on Stanford's IBM 360/67 computer

in double precision.

To generate normaldeviates, one selects K and prestores the
values of Tys Qo and dk for k =1, 2, . . . , K. Then set qo<s——o and
dK(—-:L. (The limit K = 12° permits normal deviates up to + 5.0 to
be generated, and the deviates will be truncated less than once in a
million trials. A higher limit will decrease the probability of trun-
cation.)

As suggested in [2], one should start the algorithm with a pre-

liminary determination of the sign of the normal deviate. We do this

1z




in steps N1-N5 of the following algorithm. At entry to Step N4k, u is

a uniform deviate on the interval [O, 1). The rest is the algorithm

ol’ Seetion 2, with the sign appended in the last step.

Nl. [Begin choice of sign and interval.] Set k €= 1. Generate a
uniform deviate u on [0, 1). Set u €= 2u.

N2. [Test for sign.] If u < 1, set s €= 1 and go to step Nk.

N35. If u > 1, set sé=— -1, and set u€—u - 1.

N4. [Test for interval.] If u < r , go to step N6.

k’

N5. [Increase interval.] If u > L set k €=k + 1 and go back
to step N4.

N6. [Begin generation of ly‘ in the selected interval.] Generate
another uniform deviate u on [0, 1) and set we—-udk .

NY . Set t© Q—Gk(w).

N8. Generate another uniform deviate u* on [0, 1).

N9. [Test.] If u¥ > t, go to step N13.

N10. [Trial continues.] If u* < +t, generate another uniform deviate
u on [0, 1).

N1l. [Test.] If u < u¥, set t &=u and go back to step N8.

N12. [Reject the trial.] Ifu >u¥, go back to step N6.

N15. [I'inish.] Return y €= s ( + w) as the sample normal variable.

g1

As in Section 3, we let N(k) be the expected number of selections
of uniform deviates in steps N4-N13, as a function of k. We have

from (22);:

13



N(1) = 0
1

2
f e_w /2 dw
0
9

3 \ 2
dk + e/e—K f ew/2 dw
A1

3 (k> 2).

: k
3 2
ek /2 f e /2 dw

9.1

N(k) =

Numericgl values of N(k) are given in the table. Using the

asymptotic
formula
 + h _ X + h
5 1x2/2
eit‘z at € 1
~ 1+ 5 ) 88 x=——dom ,
X b'S
X »
X
one can show that
e
; (26) lim  N(k) = T = L4.30026 .
L kK = o l—e‘

Cf. (25). The equality (26) was written to me by U. Dieter.

I have used the same computer to establish that
{ o
N = RZE:; N(k) (r, - r,_ 1) T 3.03585 ,

so that the expected number of uniform deviates chosen in order to

gelcrate one normal deviate is 1 + N = 4.0358s5 .

-

14



The correctness of this alporithm for generating normal deviates,

as well as the value of' N, have becen confirmed in unpublished experi-
ments by A, I. Forsythe and independently by J. H. Ahrens.

6. Comparison with the Center-Tail method of Dieter and Ahrens.

In [1], Dieter and Ahrens give a related but different modification of
the von Neumann idea for the generation of normal deviates. There are
only two intervals, the center and the tail, and the algorithms are
quite different for the two. The expected number of uniform deviates
needed is near 6.321, and computation of-a square root is required in
approximately 16 per cent of the cases.

The algorithm of Section 5 above requires no function @ll, but .
its main advantage over the Center-Tail method lies in requiring about
two-thirds the number of uniform deviates. ' This should be reflected
in a shorter average time of execution.

The Dieter-Ahrens algorithm for the center interval closely resembles
my algorithm for each interval, and the proofs are very close to those
given above. The big difference is that in [1l] all variables u, have
the cumulative distribution function v (0 < x < 1), and the com-

parisons are of the form

In contrast, in this paper all variables ui have uniform distributions

and the comparisons take the form (for the principal case k = 1):

Unel 209y n-1 n-2

15



Changing the distribution function in [1l] costs an extra uniform deviate
and a comparison for each u,, whereas forming u12/2 = Gl(w) in

Scction 5 is done only once for each chain of ui s. Moreover, the
. 2 . .
fact that uy /2 is usually small means that most of the time

2
u, > u /2 and hence u, is accepted immediately. This contributes

2 1

to keeping N low in my algorithm. Finally, the use of Gk(w) makes
it possible to use the von Neumann technigue in any interval in which
Gk(w) can be evaluated.

In a more recent manuscript [2] Dieter and Ahrens have improved
their Center-Tail method so that the comparisons are simpler and the
expected number of uniform deviates needed is reduced to near 5.236.
According to the authors, the improved Center-Tail method is still some-
what slower than my algorithm.

7. Further generglizations. Let f(x) (-» < x < o) be the

probability density function of a random variable F. Under what con-
ditions on f could the von Neumann idea be applied to pick a sample
from F? It is sufficient that the interval (-~ , ®) be the union

of a set of abutting intervals Ik = [qk—l’ qk] (k = ..., -2, -1,

0, 1, 2, . ..) such that in each closed interval 1, either f(x) = O
or the following three conditions all hold: f(x) > 0, f is absolutely
continuous, and f is monotonic.

Then a preliminary game can be played to select an interval Ik'

If b(x) =- £'(x)/f(x) > 0 in I the algorithm of Section 2 can

k.,

be adapted to select a value in I with a density distribution propor-

k
tional to f(x). (It may be necessary to subdivide I, so that (5)

and (6) hold.)

16



If b(x) < 0 in I, change x to -x and follow an analogous
algorithm.

The nmain practical difficultics of the alpgorithm are thoese:
X
(a) One must evaluate various integrals like ‘/CL £(t) dt,

in order to determine the parameters needed to pick the

intervals Ik during execution, and to evaluate the needed

r and d, . These computations have to be done only

k> 9k k
once in designing the algorithm.
(b) One must evaluate Gk(w) for arbitrary w in [O, dk]

during each execution of the algorithm. Note that

LIK(W) = B(qk_l + W) e B(qk l)

Q1 T W A1 +w

k-1 k £1(t)
= b(t) dt = — dt

£(t)
9g-1 -1
£(a,_4)
- In k-1 )
£q_, + w)
“ince only (b) iu done on-line, the success of an alporithmwould

seem Lo depend only on the ability to evaluate 4n f(x) rapidly. We
thus see that having f(x) = C exp ( 0} (x)) (and hence a solution of
an equation of type (1)) is of great practical advantage, but it is

not essential in principle to the use of von Neumann's idea.

17
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