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Aut omati c Progranm ng

I ntroduction

The term "automatic programm ng" was used by sonme of the early
designers of conpilers to describe the fruits of their efforts. There
Is reason to believe that they were overly sanguine, but they did
succeed in automating nmuch of what programmers did at that tinme.

The problem of parsing arithmetic expressions was a serious intellectual
issue and its solution led to inportant theoretical and practica
advances. There is currently a revival of the term "Automatic Programm
ing" and a certain amount of work directed toward automating what

programmers do at this time. This coincides with an increased amount of

work on how people should wite prograns, discussed by Hansen in this issue

Al nost anything in conputer science can be made relevant to the
probl em of helping to automate programming. W& will supress discussion
of work on editors, file systems, nunerical methods, etc., and try to
point out the basic results and problems in the field. Even so, a
paper of this size cannot deal adequately with the many inportant
questions.

W begin by naking a rough division of the work on automatic
progranming into two types. Type 1 is concerned with automating the
production of prograns in a particular domain of discourse. A system
of this type will have considerabl e know edge of the domain built in
and wi || often be asked to produce particular answers rather than
general routines. | claimthat inportant practical advances in this

area are possible with our current know edge. Efforts of the second



type are concerned with the fundamental problens underlying the notion
of automatic program synthesis. These are general and are normally

restricted to generating demonstrably correct programs. Systems con-

- structed along these lines should not be expected to be practical in the

near future and are thus relegated to Section 2 of this paper.

1. D rect approaches

Even within Type 1, there are a variety of ways of view ng the
;F'o lem Inits sinplest form automatic programming is just an atavistic
proliferation of special purpose |anguages. To an extent that does not
seem to be understood, special purpose |anguages are not only easier to
use, but can be much nore efficiently conpiled. [13] There has been
- wi despread use of special purpose |anguages in sone fields [33] but
subroutine packages are much nmore common. One reason for this is that
there has not been enough additional benefit to warrant putting a
speci al purpose |anguage around a package of routines. If the conpiler
puts together the routines in an obvious way, the user mght just as
- well do it hinself. One can view Type 1 work on automatic programm ng
as attenpting to provide languages in which it will be much easier to
wite good prograns involving |arge packages of routines.

A maj or problemone faces when trying to automate the witing of

prograns is this: Howis one to say what is required wthout witing
~ sone kind of progran? Wrkers in Artificial Intelligence have |ong

faced this problem of process description and_state descriptions. A
state description for the function squareroot m ght be:

(1) The X such that X*X = Z



A process description for the same function mght be an ALGOL program
to carry out Newton's nmethod for the solution. Two remarks are in order.

The state description above is nuch sinpler than any process
description ~-- this is not always the case. It is easier to describe
how to take the derivative of a polynonmial than to specify a set of
properties that a derivative nust have. Sinilarly, the syntax of a
programm ng |anguage is given nore clearly by a grammar than by a set v [
of conditions for well-fornmedness. The ease of giving either a state
or process description clearly depends on the |anguage used for descrip-
tion.

Secondly, in witing a squareroot procedure one is forced to
consider many details which are left out of (1). For exanple, what
precision is required, are tenporary cells available, etc.. Any
translator which works from state descriptions will (like people)
require a specification of the side conditions which constrain its
choice of solutions. Notice that this virtually requires an automatic
progranming system to be interactive. The program will not know what
values to give to side conditions and the user will not know what
conditions need to be specified. W will deenphasize the question of
side conditions for the remainder of this paper, but it will be an
inportant issue in any particular design.

Now | et us consider how one might design a translator for state-
ments like (1). Many systens have a general Newton's nethod root finder
and it would not be hard to wite a conpiler which recognized that (1)
fit the conditions for applying this routine. (ne would also require

a synbolic differentiation routine, but they are available. |f the



function to be inverted could not be differentiated, a nunerica
solution could be attenpted. The range of this class of conpiler is
inmpressive -- there is a vast collection of algorithms in nunerica
anal ysis and mathematical programmng which could be enployed. The
probl ens of designing a syntax which allowed for the recognition of
appropriate solution methods do not seem insurnountable. Rudimentary
systems of this sort have been conpleted by Fikes [15] and El cock
et a1 [8]. . -, (arhiv v e\
There is a closely related line of work which has been done in
the continuous sinmulation |anguages. These often provide fixed routines
for solving various boundary value, optimzation, etc., problens. The
SIANG [36] effort is a very promsing attenpt to place these features
in the setting of a general purpose |anguage. There have also been a
nunber of widely used high level procedural and non-procedural statenents
in general purpose |anguages. An exanple of a very sophisticated | anguage
primtive is the COBOL SORT verbh. A typical statement mght be
SORT FACULTY ON ASCENDI NG RANK;
ON DESCENDI NG AGE
One can also specify additional keys, and procedures and files for
input and output. The description of a file is witten in the DATA
division of COBOL and a description of the equipnent available for
sorting is described in the ENVIRONVENT division. The COBCL conpiler
selects a sorting nethod based on all this information. The business
oriented | anguages al so have powerful constructs for file handling and
report generation [33]. None of these has been designed with all the
generality and consistency one could desire, but they have proved very

useful to business programers.



W anticipate that Type 1 automatic programm ng research wll
succeed in producing systens which nake programmng in specific fomains
much easier. There are two lines of research to be pursued --, -
prototype domain |anguages and tools for building such |anguages. .

The domain for automated progranmng that has received the nost
attention is the managenent information area. The goal has been to
permt non-progranmers to specify fairly conplex calculations on |arge
data bases. The | ow success/effort ratio should serve to warn us of
ultimate difficulty of the task, but shouldn't prevent work on nore
circumscribed donmins. Managenent information systens immediately
encounter the problem of natural |anguage comunication [7] which can
be avoided in many instances. There are many large groups of conputer
users (e.g. organic chemsts, payroll programrers) who would be willing
to use an artificial language if it met their needs. There are even
tightly restricted domains |ike the Brookings nodel of the econony or
t he NCAR weat her nodel which mght justify an automatic programi ng
effort. The idea is to conbine some of the techniques discussed bel ow
wi th domai n-specific know edge to produce systems which will help
peopl e describe what they want the machine to do. Inevitably, such
specific projects will feed back ideas to the technique-oriented
research described here and the theoretical efforts discussed in Section 2.

There is a common nane for a program which translates a high |eve
description of a process into machine | anguage -- a conpiler.
Conpi l ers are anong the best understood of programs and this under-

standing is one of the cornerstones of automatic progranmng research.



A modern conpiler incorporates a |large set of ideas for parsing and
under st andi ng programs and for producing output which efficiently
carries out the conputation specified [21]. The work on global code
optinization [1] has been particularly inportant in providing ideas on
how to represent and nanipul ate conputations. There is at |east one
automatic progranming effort [5] which is primarily concerned with
optim zation of high-level procedural problem statenents.

The introduction of conplex data structures and their operators
in this generation of standard |anguages (PIA, Algol 68) and the extensible
| anguage efforts are also inportant steps towards higher |evel programm
ing. The other relevant topic from systenms progranming is Translator
Witing Systems (ms) [11]. The concentrated effort on s a few years
back can be viewed as an attenpt to provide tools for building special
purpose |anguages. The problem nay have been that they were not sufficient-
|y anbitious -- the languages constructible did not have enough
advantages to make their construction attractive. The addition of domain-
specific know edge and some techniques fromArtificial Intelligence to
the ideas devel oped in ™S research should provide the basis for systens
support for Type 1 automatic programmng efforts.

Artificial Intelligence |aboratories, especially those with robot
projects, have been conducting research of great relevance to automatic
programming.  The root problemis that a robot (even if it is only a
hand-eye) will have to plan and carry out courses of action (strategies).
The automatic strategy generation problemis the analog of the automatic
progranmming problem These are various doctrines on how to attack this

probl em the nost devel oped of which is STRIPS [16]. The existing



efforts have all been quite prinmtive giving rise to strategies that
do not have loops and that nornmally do not have even conditional state-
ments in them The strategy and programwiting efforts wll probably
diverge. The strategy efforts will have to cope with inconplete informa-
tion, error recovery and the other vagaries of the physical world at
a much earlier stage than automatic progranmming ones. Perhaps nore
importantly, there are |anguages (Planner [24], POP-2, [39], QAk [32],
SAIL [14]) at the Artificial Intelligence |aboratories which are continuous-
ly evolving to meet the needs of the strategy problem Currently
consi dered inportant are varied data structures, associative menory,
pattern nmatching, automatic back-tracking, concurrent processes and the
procedural representation of know edge. I suspect that these sane
concepts will prove to be crucial in producing automatic programi ng
systens. These artificial intelligence |anguages are also considered to be
alternatives to the nore abstract theorem proving systems di scussed in
Section 2 for a wide range of tasks. (ne can view these |anguages as a
speci al purpose |anguages for witing automatic programmng systens.
The follow ng exanple QA4 [32] statement is illustrative. It is the
recursive definition of a function SORT, which sorts a linear |ist
(bag):
(a) SORT = CASES(M 1, ()

ANX - Bt MN(XB) , X.SORT(B))
There are two cases. The first one (up to the ";") specifies that if
the argunent is enpty then the enpty bag is the value of SORT. The

general case is wittenin terms of the pattern matching facilities of



QA4 . The goal is to find a deconposition of the bag into an el enent
X and a bag B such that (+) X is not larger than any el enent of
B . Then the value of the function is the bag forned by prefixing
X to the sorted version of B . The use of pattern matching frees
the user fromdeciding howto find the smallest element, but nornally
gives rise to an inefficient algorithm .QA% will allow one to wite
a faster program by specifying nore details. A better (and much nore
difficult to achieve) solution is to have the system conpile efficient
prograns from statenents like (a) . This question of code optim za-
tion will arise yet again in Section 2
Mre broadly, nmuch of the artificial intelligence work in automatic
problemsolving is pertinent to the specific problemof automatic pro-
gramming. This was understood by Sinmon [34] who nade an early study of
the automatic program generation problem The article by Feigenbaumin
this issue provides a good entry into the current artificial intelligence
literature.
There are many other ideas which will also be useful to builders
of automatic progranmming systems. In addition to conputer science
devel opnents, the problemas here defined can exploit any systematic
advance within a subject -domain. One of the best exanples of this kind
of achi evenent is the MATHIAB [30]]system for synbolic nathematics.
There are a nunber of issues which cut across the sonewhat artificia
distinction we have nade between the systens of the first type and the
systems of the second type. The nost inportant of these is the issue
of process description versus state description. A second common

thread is the idea of user interaction. Neither of the systems of the



first type or of the second type seem possible today w thout on-1line
interaction. It is sinply inpossible for the programwiting program

to know what the user wants nor for the user to anticipate all of the

questions that the programwiting systemmy ask about his task specifica-

tion. A third conmon theme is the idea of attaching extra information
the statement of the problemso that side conditions or predicates
that nust be satisfied can be added to a program This idea was
present in the frequency statements to help optimzation of early
conpilers. More recently, Lowy [27] has suggested using range state-
ments (e.g. this variable takes only values from1 to 4 )to aidin
both error detection and optimzation. Assertions in addition to or in
pl ace of procedural statements play a central role in theoretica

studies of automatic programi ng

[1.  Theoretical Studies

Mich of the impetetus for the renewed interest in automatic
programm ng cane from the denonstrations by Waldinger [38] and Green
[20] that theorem proving programs were capable of producing sinple
programs.  There has been a great deal of attention devoted to solving
probl ens of the general form
(2) Find F(x) such that R(x,F(x))
where R is sone fixed relation. For exanmple, we could specify that
we wanted a square root routine by saying
(3) Find F(x) such that F(x)*F(x) = x .

Al though statenent (1) treated in nmost general formis equival ent

to statement (3) the Type 2 approach to the problemwould be quite



different. To solve the Type 2 problem a system would have to have
axions for conputer arithmetic and be able to constructively prove that

there was a program which converged (presumbly with an assumed accuracy)

to the square root for all possible input values. This problemis nuch
more conpl ex than anything that has been actually attenpted with a Type 2
approach. Mre typically the programs attempted are in a domain wth
simpl e axions, although the logic of the program produced may be in-
volved. A typical exanple is the following one from Geen [20].

The problemis to construct a LISP programto sort a list. The
t heorem proving program nust be given the properties of various LISP
functions in terms of axioms. These axioms describe the effects of
the functions when applied to lists. Ve also provide a statement of
the desired result in terms of a theorem The theorem prover then
attenpts to prove the theorem through a sequence of applications of the
axioms. |If a proof is found, the sequence of proof steps can be mapped
into a sequence of function applications which constitutes the desired
progr am

W will consider in detail only the sinpler problemof constructing
a program for arranging a pair of atons in increasing order. G een

uses ten axions for LISP, typical ones being

L) 1. x = car(cons(x,y))
L2. Yy = cdr(cons(x,y))
16. X = nil o cond(x,y,z) = z
7. X # nil o cond(x,y,z) =y

One nust then state the condition which the programis to satisfy. In

this sinple case we define a predicate R(x,y) which applies to two

10



pairs x,y andistrue iff y is a sorted version of x (this is an
instance of (2) above).

(5) R(x,y) d? [[car(X) < cdr(x)D>y =x] A

[car(x) £ cdr(x) > car(y) = edr(x) A cdr(y) = car(x)]]

Finally, we nmust specify the theoremwhose proof will result in
the desired program It is:

(6) (vx) (By)R(x,¥)

Gven the axions in (4), the definition (5) and a definition of <,
the programwas able to prove the theorem (6) by supplying the answer:
(7) y = cond(car(x) < cdr(x),x,cons(cdr(x),car(x)))
or in nore famliar notation:

y = if car(x) < cdr(x) then x else cons(cdr(x),car(x))

After deriving this function for sorting a pair of nunbers, Geen goes
on to show how a program for sorting arbitrary lists can be constructed.
For this purpose we need a predicate Rl (x,y) testing if vy

is a sorted version of x for arbitrary lists. The inportant step
is to add an induction axi om[29] which enables the programto prove
correctness for arbitrary length lists. In Geens systemthe user was
required to specify the particular induction axiom viz.
(b) [RL(nil,SORT(nil)) A (VX) [~ATOM(x)
A Rl(edr(x), SORT(edr(x))) 2 R1(x,SORT(x))]]

5> (v¥)RL(y,S0RT(y)) .

This states that if the desired function sorthas the property that it

sorts the enpty list, i.e. Rl(nil,SORT(nil) and if Rl holds for the

11



cdr (tail) of alist it holds for the whole list, then sort is the
function which makes Rl hold for arbitrary lists. Gven this axiom
the program was able to come up with a sort program for lists. The
problemis much nmore involved than we have indieated and he had to use
great care in breaking the probleminto pieces his programcould
handl e.
The current state theorem proving approach to program synthesis
is found in Manna and Val dinger [29]. They concentrate on a very
difficult problemwhich is central to-automatic programmng --
repetition. All interesting prograns have iterations or recursions,
usual Iy of dynamcally determined Iength. The choice of which form of
repetition to use and howto use it is (with the related question of
data structures) anong the nost inportant parts of program synthesis
(by humans or machines). Mnna and Waldinger point out how certain
problens give rise naturally to certain repetitive structures and how
these structures are naturally represented by different induction axions.
The proper choice of induction axiomis crucial for a program of this
type. Denonstration progranms are constructed using the counting up and
counting down version of Peano's axions for the integers and for |ist
axioms |ike (b) above. No program has yet been constructed which can
choose anong a large set of induction axions, but there is work in
progress on this problem
The theorem proving approach is obviously closely related to the

work on program verification which is discussed by Manna [ ]in this
issue. If we are to have an automatic program checker, it wll have to

be told what the programis supposed to do. This description nust itself

12



specify the desired result, so one mght hope to have the program
generated automatically. In fact, the program verification problemis
easier than the synthesis problem and is much further along. Floyd
[19] has suggested using the state-of-the-art in both areas in an
interactive system to help people construct denonstrably correct
probrams. Arelated issue is the formal translation of prograns into
nore efficient ones. The translation of recursion to iteration is the
primry concern [35].

The general programwiting problem as stated in (2) is clearly
recursively unsolvable. Even when it is solvable, the programrequired
may be arbitrarily large [6]. There is another line of theoretical
wor k which provides partial solutions to these difficulties, while
encountering several of its own. This is based on the notion of |earn-
ing (inferring) a program from exanples of its behavior.

This is theoretically feasible because of an apparently paradoxical
result on the inference of prograns. Although it is undecidable whether
a given program produces sone output, a machine can find the best program
which does so. The formal devel opment is beyond the scope of this paper
[(10], but we will outline the basic idea. Suppose we say that the
conplexity of a program on an input-output pair is the product of its
size and the time it takes to conpute the value of the output given the
input.  Suppose we have all the programs enunerated by size. Then the

machine proceeds as follows. Let Py (the first program) run for one

second on the input, then |et Pl , P2 both run two seconds and so on.

Eventual |y some program will halt with the right answer. This establishes

13



an upper bound, K on the conplexity of the best program Any program
of size greater than K can not be the best one. For the finite
nunber of smaller prograns, the machine sinply lets each one run until
its space-time product (conplexity) exceeds K and then choses the
best value of conplexity. This algorithm while proving the claim is
so inefficient as to defy even contenplating its inplenentation. There
are attenpts to develop reasonable algorithms for inferring prograns
as has been done for grammars [4]. If these work out, the inference
"met hod has several advantages.

First, the method will always yield the best programover a
finite domain, and the same nethod can be shown to have good properties
inthe limt for countable domains [10]. If a direct method for solving
(3) for F fails the following strategy could be applied. Use the
inference nethod to compute a program P which works for the specific
val ues known to obey R(x,y). Gven a new value x' conpute
R(x" , P(x")) . If it is true then P also works for x' . If
not, solve explicitly for a value y' such that R(x', y') by
nunerical or search techniques, infer a new program P which has
P’(x') =y’ and continue. This entire procedure will work in many
cases where theorem proving techniques would not and has at |east
theoretical interest. Inference techniques also have the obvious
advantage that they can be used when only exanples of the input-output
pairs are given. QOher inferential nethods are being considered by
Amarel [2].

The abstract work is meant to uncover basic principles which underly
the problem  The people who work in this area fully realize that for
practical solutions, their ideas will have to be conbined with

14
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those of the first type, incorporating specific know edge of the domain
begin treated. In fact, the systemof King [25] and the proposed system
of Floyd [19] are based on the use of domain-specific rules of inference
and nost Type 2 efforts are becom ng concerned with efficient strategies
for proofs in restricted domains. This brings themin close contact
with the artificial intelligence |anguages designed to be used for
searching solution spaces. The pattern matching, backup, etc. of these
| anguages is well suited for witing directed proof procedures. The
central problemis the representation of specific know edge in a way
that will be sinple enough for prograns to manipulate, but rich enough
to efficiently direct the problem solving program

There will never be a "solution" to the automatic progranm ng
problem  Consider the followng sinple statement over the positive
i ntegers
(8) Find A, B, C, N such that N> 2 and AV R =

There are, however, specific lines of work which promse to yield
practical benefits or insights into the nature of prograns. One can
hope that this spurt of interest in automatic progranmng wll be as

fruitful as the |ast.
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