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Automatic Programming

Introduction

The term "automatic programming" was used by some of the early

designers of compilers to describe the fruits of their efforts. There

is reason to believe that they were overly sanguine, but they did

succeed in automating much of what programmers did at that time.

The problem of parsing arithmetic expressions was a serious intellectual

issue and its solution led to important theoretical and practical

advances. There is currently a revival of the term "Automatic Programm-

ing" and a certain amount of work directed toward automating what

programmers do at this time. This coincides with an increased amount of

work on how people should write programs, discussed by Hansen in this issue.

Almost anything in computer science can be made relevant to the

problem of helping to automate programming. We will supress discussion

of work on editors, file systems, numerical methods, etc., and try to

point out the basic results and problems in the field. Even so, a

paper of this size cannot deal adequately with the many important

questions.
I
c

We begin by making a rough division of the work on automatic

L programming into two types. Type 1 is concerned with automating the

c
production of programs in a particular domain of discourse. A system

of this type will have considerable knowledge of the domain built in

i. and will often be asked to produce particular answers rather than

I

i i
general routines. I claim that important practical advances in this

area are possible with our current knowledge. Efforts of the second
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type are concerned with the fundamental problems underlying the notion

of automatic program synthesis. These are general and are normally

restricted to generating demonstrably correct programs. Systems con-

structed along these lines should not be expected to be practical in the

near

1.

b

future and are thus relegated to Section 2 of this paper.

Direct approaches

Even within Type 1, there are a variety of ways of viewing the

pro lem.
$

In its simplest form, automatic programming is just an atavistic

proliferation of special purpose languages. To an extent that does not

seem to be understood, special purpose languages are not only easier to

use, but can be much more efficiently compiled. [13] There has been

widespread use of special purpose languages in some fields [33] but

subroutine packages are much more common. One reason for this is that

there has not been enough additional benefit to warrant putting a

special purpose language around a package of routines. If the compiler

puts together the routines in an obvious way, the user might just as

well do it himself. One can view Type 1 work on automatic programming

as attempting to provide languages in which it will be much easier to

write good programs involving large packages of routines.

A major problem one faces when trying to automate the writing of

programs is this: How is one to say what is required without writing

some kind of program? Workers in Artificial Intelligence have long

faced this problem of process description and state descriptions. A

state description for the function squareroot might be:

(1) The X such that X*X = Z



A process description for the same function might be an ALGOL program

to carry out Newton's method for the solution. Two remarks are in order.

The state description above is much simpler than any process

description -- this is not always the case. It is easier to describe

how to take the derivative of a polynomial than to specify a set of

properties that a derivative must have. Similarly, the syntax of a i
(?

Al 'I
programming language is given more clearly by a grammar than by a set t "

of conditions for well-formedness. The ease of giving either a state

'or process description clearly depends on the language used for descrip-

tion.

Secondly, in writing a squareroot procedure one is forced to

consider many details which are left out of (1). For example, what

precision is required, are temporary cells available, etc.. Any

translator which works from state descriptions will (like people)

require a specification of the side conditions which constrain its

choice of solutions. Notice that this virtually requires an automatic

programming system to be interactive. The program will not know what

values to give to side conditions and the user will not know what

conditions need

side conditions

important issue

Now let us

ments like (1).

to be specified. We will deemphasize the question of

for the remainder of this paper, but it will be an

in any particular design.

consider how one might design a translator for state-

Many systems have a general Newton's method root finder

and it would not be hard to write a compiler which recognized that (1)

fit the conditions for applying this routine. One would also require

a symbolic differentiation routine, but they are available. If the

3



function to be inverted could not be differentiated, a numerical

solution could be attempted. The range of this class of compiler is

impressive -- there is a vast collection of algorithms in numerical

analysis and mathematical programming which could be employed. The

problems of designing a syntax which allowed for the recognition of

appropriate solution methods do not seeTll  insurmountable. Rudimentary

systems of this sort have been completed by Fikes [15] and Elcock

There is a closely related line of work which has been done in

the continuous simulation languages. These often provide fixed routines

for solving various boundary value, optimization, etc., problems. The

SLANG [36] effort is a very promising attempt to place these features

in the setting of a general purpose language. There have also been a

number of widely used high level procedural and non-procedural statements

in general purpose languages. An example of a very sophisticated language

primitive is the COBOL SORT verb. A typical statement might be:

SORT FACULTY ON ASCENDING RANK;

ON DESCENDING AGE;

One can also specify additional keys, and procedures and files for

input and output. The description of a file is written in the DATA

division of COBOL and a description of the equipment available for

sorting is described in the ENVIRONMENT division. The COBOL compiler

selects a sorting method based on all this information. The business

oriented languages also have powerful constructs for file handling and

report generation [33]. None of these has been designed with all the

generality and consistency one could desire, but they have proved very

useful to business programmers.
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We anticipate that Type 1 automatic programming research will

succeed in producing systems which make programming in specific fgmains "f*1 t rl
much easier. There are two lines of research to be pursued -- L, j- "i.r ,

..(., *d
dprototype domain languages and tools for building such languages.

The domain for automated programming that has received the most

attention is the management information area. The goal has been to

permit non-programmers to specify fairly complex calculations on large

data bases. The low success/effort ratio should serve to warn us of

ultimate difficulty of the task, but shouldn't prevent work on more

circumscribed domains. Management information systems immediately

encounter the problem of natural language communication [7] which can

be avoided in many instances. There are many large groups of computer

users (e.g. organic chemists, p ya roll programmers) who would be willing

to use an artificial language if it met their needs. There are even

tightly restricted domains like the Brookings model of the economy or

the NCAR weather model which might justify an automatic programming

effort. The idea is to combine some of the techniques discussed below

with domain-specific knowledge to produce systems which will help

people describe what they want the machine to do. Inevitably, such

specific projects will feed back ideas to the technique-oriented

research described here and the theoretical efforts discussed in Section 2.

There is a common name for a program which translates a high level

description of a process into machine language -- a compiler.

Compilers are among the best understood of programs and this under-

standing is one of the cornerstones of automatic programming research.

r-



A modern compiler incorporates a large set of ideas for parsing and

I understanding programs and for producing output which efficientlyL...

carries out the computation specified [21]. The work on global code

optimization [l] has been particularly important in providing ideas on

how to represent and manipulate computations. There is at least one

automatic programming effort [5] which is primarily concerned with

optimization of high-level procedural problem statements.

The introduction of complex data structures and their operators

in this generation of standard languages (PI& Algol 68) and the extensible

language efforts are also important steps towards higher level programm-

ing. The other relevant topic from systems programming is Translator

Writing Systems (TWS) [ll]. The concentrated effort on TWS a few years

back can be viewed as an attempt to provide tools for building special

purpose languages. The problem may have been that they were not sufficient-

ly ambitious -- the languages constructible did not have enough

advantages to make their construction attractive. The addition of domain-

specific knowledge and some techniques from Artificial Intelligence to

the ideas developed in 737s research should provide the basis for systems

i

L support for Type 1 automatic programming efforts.

1
,

j -

Artificial Intelligence laboratories, especially those with robot

projects, have been conducting research of great relevance to automatic

programming. The root problem is that a robot (even if it is only a

hand-eye) will have to plan and carry out courses of action (strategies).

The automatic strategy generation problem is the analog of the automatic

programming problem. These are various doctrines on how to attack this
\

1 problem, the most developed of which is STRIPS [16]. The existing
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efforts have all been quite primitive giving rise to strategies that

do not have loops and that normally do not have even conditional state-

ments in them. The strategy and program-writing efforts will probably

diverge. The strategy efforts will have to cope with incomplete informa-

tion, error recovery and the other vagaries of the physical world at

a much earlier stage than automatic programming ones. Perhaps more

importantly, there are languages (Planner [24], POP-2, [39], QA4 [32],

SAIL [lb]) at the Artificial Intelligence laboratories which are continuous-

ly evolving to meet the needs of the strategy problem. Currently

considered important are varied data structures, associative memory,

pattern matching, automatic back-tracking, concurrent processes and the

procedural representation of knowledge. 1 suspect that these same

concepts will prove to be crucial in producing automatic programming

systems. These artificial intelligence languages are also considered to be

alternatives to the more abstract theorem-proving systems discussed in

Section 2 for a wide range of tasks. One can view these languages as a

special purpose languages for writing automatic programming systems.

The following example Q,A4 [32] statement is illustrative. It is the

recursive definition of a function SORT, which sorts a linear list

bad:

(a) SORT = CASES(h[ ] , ( );

AX* Bt MIN (X,B) , X l SORT(B))

There are two cases. The first one (up to the ";'I) specifies that if

the argument is empty then the empty bag is the value of SORT. The

general case is written in terms of the pattern matching facilities of

7



gA4 l The goal is to find a decomposition of the bag into an element

X and a bag B such that (t) X is not larger than any element of

B . Then the value of the function is the bag formed by prefixing

X to the sorted version of B . The use of pattern matching frees

the user from deciding how to find the smallest element, but normally

gives rise to an inefficient algorithm. .&A4 will allow one to write

a faster program by specifying more details. A better (and much more

difficult to achieve) solution is to have the system compile efficient

programs from statements like (a) . This question of code optimiza-

tion will arise yet again in Section 2.

More broadly, much of the artificial intelligence work in automatic

problem solving is pertinent to the specific problem of automatic pro-

gramming. This was understood by Simon [34] who made an early study of

the automatic program generation problem. The article by Feigenbaum in

this issue provides a good entry into the current artificial intelligence

literature.

There are many other ideas which will also be useful to builders

of automatic programming systems. In addition to computer science

developments, the problem as here defined can exploit any systematic

advance within a subject -domain. One of the best examples of this kind

of achievement is the MATHLAB [30] system for symbolic mathematics.

There are a number of issues which cut across the somewhat artificial

distinction we have made between the systems of the first type and the

systems of the second type. The most important of these is the issue

of process description versus state description. A second common

thread is the idea of user interaction. Neither of the systems of the

-
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first type or of the second type seem possible today without on-line

interaction. It is simply impossible for the program-writing program

to know what the user wants nor for the user to anticipate all of the

questions that the program-writing system may ask about his task specifica-

tion. A third common theme is the idea of attaching extra information

tothe statement of the problem so that side conditions or predicates

that must be satisfied can be added to a program. This idea was

present in the frequency statements to help optimization of early

compilers. More recently, Lowry [27] has suggested using range state-

ments (e.g. this variable takes only values from 1 to 4 ) to aid in

both error detection and optimization. Assertions in addition to or in

place of procedural statements play a central role in theoretical

studies of automatic programming.

II. Theoretical Studies

Much of the impetetus for the renewed interest in automatic

programming came from the demonstrations by Waldinger [38] and Green

[ZO] that theorem proving programs were capable of producing simple

programs. There has been a great deal of attention devoted to solving

problems of the general form:

(2) Find F(x) such that R(x,F(x))

where R is some fixed relation. For example, we could specify that

we wanted a square root routine by saying

(3) Find F(x) such that F(x)*F(x) = x .

Although statement (1) treated in most general form is equivalent

to statement (3) the Type 2 approach to the problem would be quite

9



different. To solve the Type 2 problem, a system would have to have

axioms for computer arithmetic and be able to constructively prove that

there was a program which converged (presumably with an assumed accuracy

to the square root for all possible input values. This problem is much

>

more complex than anything that has been actually attempted with a Type 2

approach. More typically the programs 7attempted are in a domain with

simple axioms, although the logic of the program produced may be in-

volved. A typical example is the following one from Green [20].

The problem is to construct a LISP program to sort a list. The

theorem proving program must be given the properties of various LISP

functions in terms of axioms. These axioms describe the effects of

the functions when applied to lists. We also provide a statement of

the desired result in terms of a theorem. The theorem prover then

attempts to prove the theorem through a sequence of applications of the

axioms. If a proof is found, the sequence of proof steps can be mapped

into a sequence of function applications which constitutes the desired

program.

We will consider in detail only the simpler problem of constructing

a program for arranging a pair of atoms in increasing order. Green

uses ten axioms for LISP, typical ones being

4) ILL. x= car(cons(x,y))

L2. Y = cdr(cons(x,y))

~6. x = nil2 cond(x,y,z) = z

L7. x # nil1 cond(x,y,z) = y

One must then state the condition which the program is to satisfy. In

this simple case we define a predicate R(x,y) which applies to two

10
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pairs x,y andistrue iff y is a sorted version of x (this is an

instance of (2) above).

(5) R(x,Y) = [[car (x) < cdl-(x )3y=xlA
df.

[car(x) $ cdr(x)3 car(y) = cdr(x) r\ cdr(y) = car(x)]] .

Finally, we must specify the theorem whose proof will result in

the desired program. It is:

(6) (VX)@Y)R(X,Y)

Given the axioms in (4), the definition (5) and a definition of < ,

the program was able to prove the theorem (6) by supplying the answer:

(7) y = cond(car(x) < cdr(x),x,cons(cdr(x),car(x)))

or in more familiar notation:

Y = if car(x) < &r(x) then x else cons(cdr(x),car(x)) .

After deriving this function for sorting a pair of numbers, Green goes

on to show how a program for sorting arbitrary lists can be constructed.

For this purpose we need a predicate Rl (x,y) testing if y

is a sorted version of x for arbitrary lists. The important step

is to add an induction axiom [29] which enables the program to prove

correctness for arbitrary length lists. In Greens system the user was

required to specify the particular induction axiom, viz.

(b) [Rl(nil,SORT(nil)) A (VX) [-ATOM(x)

A Rl(cdr(x), SORT(cdr(x))) 2 Rl(x,SORT(x))]]

1 (~Y)~(Y,SORT(Y))  .

This states that if the desired function sort has the property that it

sorts the empty list, i.e. Rl(nil,SORT(nil) and if Rl holds for the

11
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cdr (tail) of a list it holds for the whole list, then sort is the

function which makes Rl hold for arbitrary lists. Given this axiom

the program was able to come up with a sort program for lists. The

problem is much more involved than we have indieated and he had to use

great care in breaking the problem into pieces his program could

handle.

The current state theorem proving approach to program synthesis

is found in Manna and Waldinger [29]. They concentrate on a very

difficult problem which is central to-automatic programming --

repetition. ALL interesting programs have iterations or recursions,

usually of dynamically determined length. The choice of which form of

repetition to use and how to use it is (with the related question of

data structures) among the most important parts of program synthesis

(by humans or machines). Manna and WaJdinger point out how certain

problems give rise naturally to certain repetitive structures and how

these structures are naturally represented by different induction axioms.

The proper choice of induction axiom is crucial for a program of this

type. Demonstration programs are constructed using the counting up and

counting down version of Peano's axioms for the integers and for list

axioms like (b) above. N’o program has yet been constructed which can

choose among a large set of induction axioms, but there is work in

progress on this problem.

The theorem proving approach is obviously closely related to the

work on program verification which is discussed by Manna [ ] in this

issue. If we are to have an automatic program checker, it will have to

be told what the program is supposed to do. This description must itself

12
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specify the desired result, so one might hope to have the program

generated automatically. In fact, the program verification problem is

easier than the synthesis problem and is much further along. Floyd

[19] has suggested using the state-of-the-art in both areas in an

interactive system to help people construct demonstrably correct

probrams. A related issue is the formal translation of programs into

more efficient ones. The translation of recursion to iteration is the

primary concern [35].

The general program-writing problem as stated in (2) is clearly

recursively unsolvable. Even when it is solvable, the program required

may be arbitrarily large [6]. There is another line of theoretical

work which provides partial solutions to these difficulties, while

encountering several of its own. This is based on the notion of learn-

ing (inferring) a program from examples of its behavior.

This is theoretically feasible because of an apparently paradoxical

result on the inference of programs. Although it is undecidable whether

a given program produces some output, a machine can find the best program

which does so. The formal development is beyond the scope of this paper

[lo], but we will outline the basic idea. Suppose we say that the

complexity of a program on an input-output pair is the product of its

size and the time it takes to compute the value of the output given the

input. Suppose we have all the programs enumerated by size. Then the

machine proceeds as follows. Let Pl (the first program) run for one

second on the input, then let Pl , P2 both run two seconds and so on.

Eventually some program will halt with the right answer. This establishes

13
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an upper bound, K on the complexity of the best program.
_--.

m program

of size greater than K can not be the best one. For the finite

number of smaller programs, the machine simply lets each one run until

its space-time product (complexity) exceeds K and then chases the

best value of complexity. This algorithm, while proving the claim, is

so inefficient as to defy even contemplating its implementation. There

are attempts to develop reasonable algorithms for inferring programs

as has been done for grammars [4]. If these work out, the inference

'method has several advantages.

First, the method will always yield the best program over a

finite domain, and the same method can be shown to have good properties

in the limit for countable domains [lo]. If a direct method for solving

(3) for F fails the following strategy could be applied. Use the

inference method to compute a program P which works for the specific

values known to obey R(x,y). Given a new value x' compute

Nx' 9 pbw l
If it is true then P also works for x' . If

not, solve explicitly for a value y' such that R(x' , y') by

numerical or search techniques, infer a new program P' which has

P/(x') = yl and continue. This entire procedure will work in many

cases where theorem proving techniques would not and has at least

theoretical interest. Inference techniques also have the obvious

advantage that they can be used when only examples of the input-output

pairs are given. Other inferential methods are being considered by

Amarel [2].

The abstract work is meant to uncover basic principles which underly

the problem. The people who work in this area fully realize that for

practical solutions, their ideas will have to be combined with

14



those of the first type, incorporating specific knowledge of the domain

begin treated. In fact, the system of King [25] and the proposed system

of Floyd [19] are based on the use of domain-specific rules of inference

and most rype 2 efforts are becoming concerned with efficient strategies

for proofs in restricted domains. This brings them in close contact

with the artificial intelligence languages designed to be used for

searching solution spaces. The pattern matching, backup, etc. of these

languages is well suited for writing directed proof procedures. The

central problem is the representation of specific knowledge in a way

that will be simple enough for programs to manipulate, but rich enough

to efficiently direct the problem solving program.

There will never be a "solution" to the automatic programming

problem. Consider the following simple statement over the positive

integers:

(8) Find A, B, C, N such that N > 2 and AN + BN = CN

There are, however, specific lines of work which promise to yield

practical benefits or insights into the nature of programs. One can

hope that this spurt of interest in automatic programming will be as

fruitful as the last.
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