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Abstract: Jack Ednonds devel oped a new way of |ooking at extremal

conbinatorial problems and applied his technique with a great
success to the problems of the maximal-weight degree-constrained
subgraphs. Professor C. St. J. A Nash-WI|ians suggested to use
Edmonds* approach in the ccntext of hamiltonian graphs. In the
present paper, we determne a new set of inequalities (the “comb
inequal ities") which are satisfied by the characteristic functions
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integer programming formulation. A direct application of the
|inear programming duality theoremthen |eads to a new necessary
condition for the existence of hamiltonian circuits; this condition
appears to be stronger than the previously known ones. Relating
l'inear programmng to hamiltonian Circuits, the present paper can
al so be seen as a continuation of the work of Dantzig, Fulkerson
and Johnson on the travelling sal esman probl em
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0. [ ntroduction

During my work on this paper, | enjoyed useful and inspiring
discussions with Professor J. A Bondy, Professor Jack Ednonds,
Dr. Steve Gallant, Professor C. St. J. A Nash-WIllians and Professor
Richard Rado. In particular, Professor Nash-WIliams suggested to
explore the relations between hamltonian circuits and |inear programm ng
and to use the term "weakly hamiltonian graphs" for graphs admtting
certain functions related to hamltonian circuits. | also thank

Mss Laurel L. Ward of MG Il University for conputing assistance.

If Vis a set, we define [V] = {Ac V. |A|=2}. Agraphis an
ordered pair G = (V,X) where Vis a set and X ¢c [V]. Al the
graph-theoretical definitions not given here can be found in [12].

A graph is n-cyclable if given any set S c Vwth|s|=n thereis
a cycle passing through all points of S. A graphis t-tough if, for
each set Sc V, the S-deleted subgraph G S has at nost max{|s|/t,1}
conponents (see [2]). If T,Ww are disjoint sets, we define

(T,wl={a Al =2 AnT#pP, AnWEBY. For a fixed graph

G = (v,x) and sets T,Wc V, we set q(T) = [x nlT]|,

q(T,W) - [x n [T,Ww]] . The subgraph (T,X n [T]) induced by T will
be denoted by T) ; the nunber of conponents of GT) wll be denoted
by k(T) .

If Vis a set, we denote by exp*V the set of all proper non-
empty subsets of V ; we denote by exp V the set of all odd-cardinality
subsets of V. W denote by N the set of all nonnegative integers.
If f is a real-valued function defined on S then we wite f£-T

rather than Z £(x)
XeSNT



1. Ednonds pol yhedra

Let us begin with a set of inequalities
n

L a(i,d)x(i) < b(j) (3 =12 . . .n) (1)
i=1

(a(i,3), b(j) being real numbers) which determne a bounded subset of

the n-dinensional Euclidean space R®  Then the set S of the lattice

poi nts of R (i.e., the points
X = (x(1),x(2), ..., %(n))

where the x(i)'s are integers) satisfying (1) is finite. |is convex

hul'l is a pol yhedron which can be characterized by a new set of

inequal ities

4 *
ii::la (1,3)x(1) < b*(j) (= 1,2..,m) . @

The pol yhedron deternmined by (1) will be denoted by P, the pol yhedron
determned by (2) will be denoted by E(P) .

Next, consider the following couple of linear progranmng problens:

- maximze ﬁ c(i)x(i) subject to xeS (3)
i=1
n

- maximze Y . c(i)x(i) subject to xeE(P) ) (W)
i=1

Since the vertices of E(P) cone fromS and S is a subset

of E(P) , we have

max ). c(i)x(i) = max Y. c(i)x(d) .
xeS xeB(P)



Therefore every optinmal solution of (3) is an optimal solution
of (4). Conversely, every basic optinmal solution of (4) is an optinal
solution of (3).

Hence, if we know how to pass fromthe inequalities (1) to the
inequalities (2), we can reduce the integer linear programm ng problem
(3) to the ordmnary (continuous) |inear programming problem (4).
Natural |y, starting from the inequalities (1), one can always deternine
the (finite) set S and, in turn, the inequalities (2). In practice,
however, this process may be extrenely [|engthy.

Apparently the only case where (2) has been explicitly determ ned
for quite a wide class of polyhedra (1) is the case of the maximum-
wei ght degree-constrained subgraphs. Here one begins with a graph
G=(V,X) and a weight-function c: E - R . The problemof finding a
maxi mumwei gh-t matching in Gis the follow ng integer |inear programing

problem naximze Y. c(x)f(x) subject to

xeX
£l {ul,vi<1l (uev) (5)
W >0 (xex) (6)

f(x) = integer .

The inequalities (5), (6) determne a polyhedron P in the
Eucl i dean space RE Ednonds [6] proved that E(P) is characterized

by the inequalities (5),(6), and

X

W] < 3 (Wl-1) (W eexpV) . (7)



Recently, another proof of this theoremhas been found by Balinski [1].

The inequalities (5) generalize into
£ [l vl< d(u)  (WY) (8)

where d is an arbitrary function da: v - N . Every integer-valued

function f satisfying (8) and the inequalities
0 <f(x) <1 (xeX) (9)

satisfies necessarily the inequalities
fe([wluy) < [é_-W_E’f_lX_l] (Weexp V,Y C [W,V-W]) . (10)

I ndeed, (8) and (9) inply

e(W1UY) < 2 ¥ () v+ f-Y) < % (aw+ Jx))

ueW

and (10) follows by the integrality of f. (Let us note that (7) is
a special case of (10) with d =1, Y=g and |w| odd.)
Conversely, Jack Ednonds proved ([6], Section 8, polyhedron I1)

that, if Pis defined by (8) and (9), then E(P) is determned by
(8), (9) and (10) ., Now, the duality theoremof |inear progranmmi ng

implies that
max f£.X = nmn z

where f ranges over all integer-valued functions satisfying (8), (9)

and

zZ = Z a(u)d(u) + b-X+ Z c(W,Y)[-q'—W%—m]

ueV D

where a,b,c ranges over all functions



a: VvV - [0,®)
b: X - [0,®) (11)
c: D={(W,Y): Weexp V,Y c [W,V-W]} = [0,®)

subject to the constraints

DECRLUR Loewy) > 1 (xex) (12)
xe[WlUY

Actual ly, one can choose the functions (Il) mninmzing z in a very

particular manner (see [ 8], Theorem (19)). Indeed, it can be shown that

mex f£+:X = min(d-S+ q(T)+ ): [Q-;VI_'%M]) (13)
W

where the minimm ranges over all partitions V = RUSUT and the
summation is extended over all (point-sets of) conponents of QR)

Now, with each partition V = RUSUT , one can associate the functions
(11) by setting

if uesS
ot herwi se

_b 1 if xelT]
b(x) _{o ot herwi se

c(W,Y) = 1 if Wis a component of G R) and Y = [WT]
>27 7 1 0 otherwi se.

D
—~~
=

I
N
o+~

Then the constraints (12) are satisfied and z becomes the
expression in the right-hand side of (13). In a sinilar fashion,
Berge's maxi mal matching formula [2] (see also [7], Section 5.6) relates

to the pol yhedron (5), (6), (7).



At this point, a proper credit should be given to Professor W T.
Tutte. Berge's maximal matching formula and the fornula (13) appear
to be just corollaries to his factor theorens contained in [13] and [1k].

Ednonds made it quite explicit (see Section 5 of [7] or Section 1
of [6]) that his approach to naxi nal -wei ght degree-constrained subgraphs
can be applied in other settings. |Indeed, many conbinatorial problens --
from the four-color conjecture to the determnation of Ransey nunbers to
t he questions of existence of block-designs -- are essentially integer
linear programming problems. In each case, the polyhedron P is defined
in a rather sinple way. The above exanpl es show how t he know edge of
the corresponding polyhedron E(P) -- which will be called the Ednonds
pol yhedron of P -- conbined with the duality theorem of |inear
programm ng could be used in solving each of these problens. Professor
Ri chard Rado pointed out to me that even the know edge of an in-between
pol yhedron contained in P and containing E(P) -- or equivalently, the
know edge of inequalities which are inplied by (2) but not by (1) alone

- could serve as a heuristic tool in obtaining correct conbinatorial
results. (In the next section, we determne such an in-between polyhedron
related to hamltonian circuits in graphs.) In this context, we nention
recent work of Hammer [11] who uses Bool ean functions to characterize
the lattice points contained in P .

There is also a link between the Edmonds® pol yhedra approach and
Gomory's integer |inear progranmng algorithm{9], [10]. (Gomory's
"cutting pl anes” correspond to the added inequalities in (2).) However,
a nore detailed discussion of this link exceeds the scope of the

present paper.



2. Weakly haniltoni an graphs

Let G = (V,X) be a graph. oviously, the characteristic function
- f: x - {0,1} of a hamiltonian circuit in G (if there is any) satisfies

t he contraints

0 < f(x) (xeX) (14)
Y £(x) < 2 (uev) (15)
£0Q] < [o]-1  (Qeexd V) . (16)

By a conbin Gw wll nean a set

K = ulw] (17)

where W,'s are subsets of V with W, #V and W, nwy| =1 for
all i =1,2y...,n . The inequalities (15), (16) and the integrality
of f inply that

Il

20 00T < fgl+ X (s ]-2) - 65 (18)

for each conb (17) in G. Indeed, one has

n n
or U [W] < L L £(x)+ ) £+ L W] <
i=1

ueWO uex i=1
ﬁ il:
w.|-1 (w,|-2) =
< 2|w0|+i=l (w | )+i=l |1|

n
. = 2|W0‘+2,Z (|wi|-1) -n
i=1

so that



n

£ Ul ] < [, |+ izzl( W, l-v - 2 . (19)

Now (18) follows since the left-hand side of (19) is an integer. The
right-hand side of (18) will be called the rank of the comb (17) and

denoted by r(K) ; then (18) can be witten as
£k < r(K) . (18%)

In particular, if each W, (i = 1,2,...,n) contains just two vertices
and these vertices are adjacent then

n

i=1

and (18) reduces into

1
£-(Wl U Y) _< gl + (5] = g |+ [ |¥]l.
The last inequality is also a special case of (10) with d = 2 .

By a weakly ham |tonian function on G we will mean any function

f: X - [0,o) which satisfies (14), (15), (16), (18). G will be called

weakly hamltonian if it admts a weakly hamltonian function f wth

£x = |v| . As we have shown, the characteristic function of a
ham [ tonian circuit is weakly hamiltonian and so every haniltonian
graph is also weakly hamltonian. The duality theorem of Iinear
programmng yields at once the follow ng characterization of weakly
hanmi | tonian graphs.

A graph G = (V,X) is not weakly haniltonian if and only if there

are functions



a. Vv - [O:Q)
b: exp. V - [0,®) (20)
c: D - [0,®)

(where Dis the set of all conbs in G) such that

Y a + )Y b@ + Y c(k) >1 (xexX) (21)

uex e[q] xeK

and z < |v| where
z=2 L a + L ( lal-D0p@+L r(®e(x) .
Vv * D
exp V
Restricting ourselves to a rather special subclass of functions

(20) we obtain a weaker theorem which may, however, seemto be nore

el egant.

THEOREM 1. If G=(V,X) is weakly hamltonian then there is no
partition V = RUSUT into pair-wse disjoint (possibly enpty) sets

with T #V and

o1+ L (% a(,7) ] < K1) (22)
I3

where the summation is extended over all ccxnponents H of R

Proof:  Assume that there is a partition V = RUSUT with T £V

which satisfies (22). Define the functions (20) by



1 if wueS

a(u) = {0 ot herwi se

1i f (qI[Ql]) is a component of ET)

b(Q) = 0 ot herw se

1 if (wo, [WO]) is a conponent of R
c(K) = and (W,: 1 <i < n} = [W,T]

0 otherw se
Then the constraints (10) are satisfied and we have

2 = 2fs|+ (fr] -x(m) +L1w, + 5 a(Wy,m)] =
=2|s|+ |7} -k(T)+ |R|+HZ [%q(H:T)] =

= i+ Is]+ [ 2a®T) 1 -K(T) < |v|

so that Gis not weakly hamiltonian.

TIEOREM 2. Let G = (V,X) be a graph and m a positive integer.

oW of V such that

there be subsets w,wo,w ot 1

l)..

omt 1 ‘ 2om+1
V=-wu u Wi) » X =[W,v] U U [Wi]
i=0 ’ i=0

W =mn , WiﬂW=¢ (i = 0,1,...,m)
i>0 = W, nw | =1 , [ |>e2
i>ji>0 =W1”Yj=¢

Then G is not weakly hamiltonian.

10

Let



Define the functions (20) by

)1 if uew
a(u) = {0 ot herw se

Pr oof :

*
0 for all Qeexp V

o'
—~
O
~
]

Omt1
1 if K= [Wi]
i =0

c(K) =

0 ot herwi se

Then the constraints (21) are satisfied and we have

= elle Wl (1) - B - g

so that Gis not weakly hanltonian.

THEOREM 3. Let G be a graph and n a positive integer such that

2nt+1l 2n+1
V= U W- J X = U [W-]

i=1 j=1 1<
WoNW, = , 3<i<i=a W, NW, =9

i<e < =W, n wj|=1.

Then G is not weakly hamiltonian.

Proof : Define the functions (20) by

1.

= if u eW,UW

2
a(u) = > *
Lo ot herwi se



if Q =Wi-(WlUW2) , 1>3

W

b(Q)

0 ot herwi se

ontl
if K=1[w]lu ( U [Wj] , ief{L2}
\J=3

Wl

c(K) =
0 ot herw se .

Then the constraints (21) are satisfied and we have

1 entl 1 2 2ntl
2= (W) + 3 .; (W, 13) + 3 i)_:_ (W, | +i§5 (4 |-1) -»)
on+1
= ig']_ IWil—(h-n - %) = |V‘_%

so that Gis not weakly hamltonian.

COROLLARY (One-two-three theoremy. If Gis weakly hamltonian then
(i) Gis |-tough,
(ii) G has a 2-factor,

(iii) Gis 3-cyclable.

Proof: (i) If G is not I-tough then there is a set S c V wth
k(GS) > max{|s|/t,1} . Evidently, S can be chosen to be non-enpty.
Setting T = V-Sand R=¢ we obtain a partition as in Theorem1

which satisfies (22). Therefore Gis not weakly hanmltonian.

(ii)  Every weakly hamiltonian function f satisfies the constraints

(8), (9) and (10) with d = 2 . From Edmonds® t heorem di scussed in

Section 1, it follows immediately that every weakly ham|tonian graph

has a 2-factor.
12



An alternative proof makes use of Theorem 1 and Tutte's factor
theorem [14]. Let G = (V,X) be a weakly haniltonian graph with no
2-factor. Then, by Tutte's theorem G admits a partition V = RUSUT
wth

Is|+ LI Jgq(H;T)] <It| -q(m) . (23)
Since |r|-q(T) < k(T) , Theorem1 inplies T =V . But then (23)

reads |x| . a(T) <|r| . |v| . Hence G cannot be I-tough (not even

2-connected) contradicting (i).

(i) Wat ki ns and Mesner [15] characterized graphs which are not
3-cyclable. Their theorem can be stated as follows: If Gis not
3-cyclable then either

(A) G is not 2-connected or

(B) thereis aset Sc Vwth§|=2, k(GS >3 or

(0 Gis a graph of Theorem2 with m= 1 or

(D) Gis a graph of Theorem? with n = 2 .
In the first two cases, Gis not [-tough and so, by (i), not weakly
hamiltonian. In case (C), Gis not weakly hamltonian by Theorem 2,

in case (D), Gis not weakly hamiltonian by Theorem 3.

13



3. Afterthoughts

(1) Prof essor Jack Ednonds drew ny attention to an interesting

observation which is closely related to his concept of a good characteri-

zation (as explained in [5]). A good characterization of graphs having
al-factor is provided by Tutte's theorem([13]. Once a |-factor in
(v,X) is exhibited, it is easy to check that it is a |-factor indeed

On the other hand, if (V,X) has no |-factor then there is a set Sc Vv
such that the nunber koﬂﬂ of odd conponents (i.e., conponents having
odd nunber of points) of G(v-S) exceeds |S| . Again, once such a

set Sis exhibited, it is easy to compute gﬁs) and check the

i nequal i ty ko(s) > s | .

Wth hamltonian and weakly hamltonian graphs, the situationis

different; besides, these two cases are -- in a way -- conplementary to
each other. It is easy to recognize a hamltonian circuit in a given

graph (although it may be exceedingly difficult to find one) but so far

we know no good way of recognizing that there is no such circuit. On

the other hand, it may be exceedingly difficult to check that a given
graph is weakly hamltonian -- indeed, the nunber of constraints put

upon weakly ham | tonian functions grows very fast with the size of G.
However, it is much easier to check that Gis not weakly ham|tonian.
Indeed, if Gis not weakly hamltonian then there exist functions (20)
satisfying (21) and z < |v|; noreover, these functions can be chosen to
have altogether at nost |X| nonzero val ues. Tocheck (21) and z < |v]

is relatively easy.

14



(2) One can think of real-valued functions defined on X as of

the points of the |X|-dinensional Euclidean space RS . Inthis space,
the hamltonian functions are the lattice points in the polyhedron (1%),
(15), (16). The weakly hamltonian functions form a pol yhedron which is
contained in (1), (15), (16) and contains the Ednonds pol yhedron of
(14), (15),(16) . Finding other linear inequalities which are satisfied
by all hamltonian functions, one would arrive at a better definition of
weakly hamltonian graphs (so that the weakly hamiltonian functions in
the new sense woul d constitute a proper subset of the weakly ham|tonian
functions as defined here). This process could eventually lead to the
deternmination of Ednonds pol yhedra corresponding to (14), (15), (16).
For instance, the Petersen graph (see Figure 1) is weakly haniltonian
(the corresponding weakly hamltonian function is obtained by setting
f(x) = %) but not hamiltonian. (Using the "1-2-3 theorenf, one can show
that every weakly hamiltonian graph with less than ten points is

hani | t oni an.)
(Figure 1)

Hence one may try to find new |linear inequalities, satisfied by all
ham [ toni an functions and violated by every function f that is defined
on the line-set X of the Petersen graph and which satisfies f£f.Xx = 10 .
However, here comes a bit of a surprise.

The 15 x 15 matri x

15



110101010100111
011011101010011
101100110111001
111100000111101
101100110101101
011010101101011
010111011011100
011111000011110
010111011010110
101101010110101
101110100001111
010111101011010
101010101101110
101010101101011
101101110-101100

Is nonsingular and its rows are the incidence vectors of hamltonian
paths in G(with lines enumerated as in Figure 1). Since the rows
L2
are linearly independent and satisfy the linear equation Y . 9,
l =
the hyperplane ) X = 9 contains one of the faces of E(P) .
J=1
Equivalently, the inequality

£:X<9 (2k)

must be included in the mniml set of inequalities describing E(P) .

\Wat happens here? W want to find a set of linear inequalities

whi ch woul d enable us to show -- via the easy part of LP duality theorem --

that the Petersen graph i s nonhamiltonian. However, we find that one of
the inequalities in this conplete set is the inequality (24), which is
equivalent to the desired conclusion. Wth a refined taste for pathetic

excl amati ons, one can say that the vicious circle is closed. In order

16



to prove that the Petersen graph is nonhamltonian, we must assune that
the Petersen graph is nonham ltonian.

But is the situation really that bad? Let us have a | ook at another
exanple. Let us consider the graph G= (V,X) in Figure 2 and the
15 x 15 matrix

ORPRO0OO0O000000O00O
ORORRRRRPRRRRPRORRO
RPORRRPRRRPRRRRPRRORH
ORPRPO0000000O0ORrRFR,OO
RPORRRPRRRPRRRRPRORRE M
ORrORRFRPRFPFPRPRPFPRORM
COoOO0O0O0O0OO0ORROO0OOO
PRrRrPRPRPRRPOORRRRERR RN
PRRrRPRPRPRPROORRRER,L
OrrO0O0O0COO0ORrRORRRRERo
FPooorororoocorogp
Porroroocoocoorooou
FPoroorrrRrRORRROL
Poorooococorororg
Crocoroorooocococog

which is nonsingular. Again, the rows of this matrix are the incidence
vectors of hanmiltonian paths in G and so the inequality fX < 8 nust
be included in the description of the related Edmonds pol yhedron. But
turn the pages back to Theorem 3 before giving out nore cries of despair.

(Figure 2)

This graph is not even weakly ham |tonian. To prove that Gis non-
hamiltonian, we only need the basic inequalities (15), (16), (18).

Therefore the nere presence of the inequality

£x < [v]-1 (25)

17



among those determning the Edmonds pol yhedron of hamiltonian functions
on G is not as disastrous as it nmay have seenmed to be.

Neverthel ess, our observations seemto indicate that the chances of
determ ning conpletely the Ednonds pol yhedra associated wi th ham |tonian
functions may be quite low. There may be a jungle of graphs which are
weakly ham|tonian yet not hamltonian and which require the inequality
(25) to be included in the conplete description of the related pol yhedra.
(The Petersen graph is one of them but who knows, there may be nuch
worse ones.) If this is the case then the conplete description of the
pol yhedra woul d necessarily involve showing that the jungle consists of
nonham | tonian graphs only. And this by-product itself may be dangerously

close to a characterization of nonham|tonian graphs.

(3) 1If, contrary to all our pessinmism the Ednonds pol yhedra of (1),
(15), (16) were known then the travelling sal esman probl em woul d be
reduced to a continuous linear programmng problem This approach to

the travelling sal esman problem has been adopted by Dantzig, Fulkerson,
and Johnson [4]. They noticed that, for practical purposes, one can often
manage just with the inequalities (15) and (16) in order to prove the
mnimlity of a tour (i.e., a hamltonian circuit in a line-weighted graph).
In solving the 42-city problem however, they were forced to use two

more linear inequalities (pointed to them by I. Qicksberg of RAND Corp.).
The graph (V,X) they dealt with was a complete graph with points

1,2,...,42 ; the first of the two additional inequalities read
f-X =42 3 f£-(14,15)+ f-Y -£:[8,V] < O (26)

where S = {15,16,19} and Y is the set of lines

18



{14,153} , {15,183}, f{17,16},{16,18},{20,19},{19,18} .

Actual ly, (26) is satisfied by every weakly haniltonian function. To

see this, set V\S = V- {15,16,19,18} , W, = {14,153 , W, = {17,116} ,
w5 = {20,193} . Then (18) inplies

f-U[Wi] < 38+3- {%} = 39
and so

feX+ £oY - £[S,V] = f-(U[wi] U [{18},V]) < 39+2 = L1 .
Therefore

X+ £(14,15) + £.¥Y - f-&v] <L2

and (26) fol | ows.

As for the other condition -- denoted by 67 in [5] -- the
situation is nuch nmore messy. Idon't see any way of deducing this
(more conplicated) one from(15), (16) and (18); perhaps it is independent
of them If this is the case, a nore general formulation of that
condition would yield an inproved definition of weakly hamltonian
functions. (Dantzig, Ful kerson and Johnson exhibit a non-integral function
([41, Figure 18) which satisfies (14), (15), (16) but violates their

condition 67. Perhaps this function is weakly haniltonian.)

(4) Thi s paper shoul d be considered as a work in progress. The idea,
and the definition, of weakly hamltonian graphs, is a dynamc one.

It is the author's hope that nore people will find nmore restrictive
linear constraints on hamltonian functions, inproving thus the present
definition of weakly hamiltonian functions and graphs. And one day this

process may lead to -- well, let us not be over-anbitious.

19
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F'ig. 2
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