SOME BASIC MACHINE ALGORITHMS FOR INTEGRAL ORDER COMPUTAT IONS

BY

HAROLD BROWN

STAN-CS-72-258
FESBRUARY 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY




Sone Basic Machine Algorithms for Integral Order Conputations
by Harold Brown

Abstract: Three machine inplemented algorithns for conputing with integral
orders are described. The algorithms are:
1. For an integral order R given in terms of its left regular
representation relative to any basis, conpute the nil radical
J(R) and a left regular representation of R J(R).
2, For a semsinple order R given in terms of its left regular
representation relative to any basis, conpute a new basis for
R and the associated left regular representation of R such that
the first basis element of the transformed basis is an integral
multiple of the identity element in Q % R
3. Relative to any fixed Z-basis for R conpute a unique canoni cal
formfor any given finitely generated Z-submodule of Q ® R

described in terns of that basis.
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Sone Basic Machine Algorithms for Integral Oder Conputations

Introduction and Definitions. In the investigation of certain algebraic

questions such as arithnetics in rational algebras and integral group
representations, the concept of a Z-order frequently occurs. A Z-order
is a discrete algebraic structure R +,.satisfying:
1.1 R, +, . is an associative ring ( not necessarily comutative
or with identity ),
1.2 R +is afree Z-nodule of finite rank, i.e., R +is a
"vector space" over the rational integers with a finite Z- basis. *
For exanple, the set of all upper triangular n x n matrices with integral
entries, Ly forms a Z-order of rank n(n + 1)/2,
Let B = ( byye..,b ) be any Z-basis for the Z-order R The
left regular representation of Rwith respect to Bis the( ring and

Z-nodul e ) hononor phi sm LRy: R -+ Mmm(Z) fromR into the Z-order of

n x nintegral matrices induced by LRB(bj) = ( t(‘.lj}Z) wher e

g oo ¢ (D) i . -
bj bk =% b5 'bse The coordi nate map Vg: R Mnxl(z) gi ven by
VB(x) = (xl""’xn)r where X =% .x.b, is also a Z-nodul e hononor phi sm
111
LR, and V_ are related as follows: For any x =£.x,b, and y in R
B B iil

VB(x-y ) = LRB(x)vB(y) =>:ixiLRB(bi)VB(y). Thus, the structure of Ris
*Basic definitions and theorems for Z-nodules can be found, e.g., in

MacLane and Birkhoff, A gebra, for rings in Divinsky, R ngs and Radicals

and for orders in Deuring, Algebren,



compl etely determined by the integral matrices LRB(bi),i =1,e.00,0
"This concrete representation of R as a set of n, n x nintegral matrices
is very convenient for computational purposes, particularly on a machine
and it will be assumed here that all orders are described by such
representations. Note that B' = (b;,...,b; } is another Z-basis for
Rif and only if b; = Eﬁuifﬁ where U = (u.IJ) i's uninodular, i.e.
Uis an integral matrix with DET(U) = 21, Moreover, =

1.3 Vg, (x) = U (x ),

L.k LRy, (x) = U LRy(x)U,

1.5 LRy, (b}) =% yu U™ LRo(b JU'.

Since a Z-order Ris of finite rank, R considered as a ring
satisfies the ACC ( ascending chain condition ) on left ideals. Also,
R contains a unique maxinmal nil left ideal, J(R), consisting of the sum
of all nil left ideals in R Thus, by Levitzki's theorem J(R) is also
t heuni quemaxi mal nilpotent ideal of R J(R) is called the nil radical
of R For exanple, J(Tn) is the subset of all strictly upper triangular
matrices in r and J(Mnxn(z)) consists of only the zero matrix.

Lenmma. R/J(R) is an order.

Proof. It needs only be shown that RIJ(R) is free as a Z-nodul e.
By the basis theorem for finitely generated Z-nodules, this is tantanount
to showing that RIJ(R) is torsion free. Assume that m(r + J(R)) = J(R
for somer + J(R in RJ(R and 0 # min Z Then mre J(R). Since J(R is
) = ek

nil, (mr =0 for sone k€ N Since Ris free, it is torsion

free. Thus ¥ = 0, i.e., red(R)and r = J(R = J(R.



In nost applications of the theory of orders, the order R is considered
as being enbedded in the rational algebra Q®R, the tensor product of
Qand Rover Z Q®R can be considered as the algebra of all n x 1 rational
col utm vectors with nultiplication defined by (xi)(yj) =zixiLRB(bi)(yj)-
It follows directly fromthe definitions that:
16Q®R is an n-di mensional algebra over Qwith
J(Q®R) =Q®J(R).
1.7 02R/0® J(R) 7 Q8E/JI(R)
For exanpl e, Q@(rn/J(Tn))gMnxl(Q) where the operations are conponentw se.
Since Q®®/J(R))is a finite dimensional algebra over Q it satisfies
the DCC ( descending chain condition ) on left ideals. Moreover,
J(Q®R/J(R)))= 0. Thus Q®R/J(R))is a senisinple algebra. In particular,
Q®®R/J(R)) nas an identity elenent e.
The usual initial step in conputational problems involving orders
is to determne J(R) and RRJ(R). Aso, these problens usually require
working with numerous Z-subnodul es of Q®®/J(R).wepresent here
effective algorithmc procedures to:
I Deternmine a Z-basis for J(R) in terns of the given representation
of R
[I. Determne the structure of the order RRJ(R) in anormalized
form i.e., determne a set of defining matrices, Migeoos,
for RIJ(R) such that M, is an integral multiple of the
identity matrix.

[11. Determne when two finitely generated Z-subnodul es of Q@R



described in terns of a basis B of R are equal.

In a second paper we will describe an effective procedure for
embedding R/ J(R) into a maxi mal % order of Q®®R/J(R). These al gorithns
have been inplemented on an IBM360/67.

Algorithns. The basic conputational procedure used in the algorithns

is uninodular row reduction of an integral matrix. This procedure is
central for many algorithns in discrete algebra, e.g., the basis theorem
for finitely generated abelian groups.

A mtrix A= (a.lj) is said to be in row reduced form( or row
echelon form) if it satisfies the follow ng condition:

| f E is the first nonzero entry in the k-th row of A then
for all i>k and j<s, a.iJ: 0.

Lenma. For any s x t integral matrix M= (mij)' there is an s x s
uni nodul ar matrix U such that UMis in row reduced form

The proof of this lema is given by the follow ng algorithm The
termnation of the algorithmis a consequence of the well-ordering of

the positive integers.

Row Reduction Al gorithm

1 Initialize: j 1, hel, U= (upq)(— sxs identity matrix.
2 Search the j-th colum of Mfor an element of mniml nonzero
magni t ude, say m 5 If no such elenment exists, go to step 6.
| f mkj I's the only nonzero el enent in the j-th colum, go to step 4.
3 Do for i = h,ht+l,...,k=-1,k+l,...,s:

Divi de mij by M 5 getting an integral quotient ay and remai nder



r. with | | <\ka.| ciee, mjo=mog + . For vos gt
My %% - ¥ and for v = 1,...s, Uiy © Yiv T Yevdic
| f ri;éo, k «i and go to step 3.
4 I nterchange the h-th and k-th rows of Mand the h-th and k-th
rows of U
5 heh + 1,
6 je g+ 1,
7 If j =s or h>t, exit, otherwise go to step 2.
In a machine inplenentation of the algorithm devices such as
i mredi ately exiting the search in step 2 and setting g to m_-l.J i f an
el ement mkj of magnitude 1 is found can speed up the process considerably
for certain classes of matrices.
The algorithmfor | and Il is based on the trace bilinear form
T:RXR- 2 defined by T(x,y) = TRACE(LRy(x.y)). T is a symmetric
form and by 1.4 it is independent of basis choice. T is conpletely
determned relative to a basis B of R by the symetric integral matrix
My = (-1‘(bi,bj)), and T(x,y) = VB(x)TMBVB(y). [f Uis a uninodul ar
change of basis matrix carrying B onto the basis B!, then I\/IBl = UMBUT.
Since DET(U) = %1, DET(MB) depends only on R This determinant is
cal l ed the Z-discriminant of R, and it is nonzero if and only if J(R = 0.
The relationship between J(R) and T is given in the followng |ema:
Lenma. Let RAD(T) be the subnodul e of elenents in R orthogonal
to R i.e., RAD(T) = { x€R | T(x,y) = 0¥ y€R} . Then RAD(T) = J(R).

Proof. For any x €J(R) and y€ R, xey is in J(R) since J(R is



an ideal in R J(R is nil. Thus (x-y)k = 0 for sone k €N, and, since
LR, i's a homomor phi sm LRB(x-y)k = 0. But any nilpotent matrix nust
have zerotrace. Hence J(R) < RAD(T). Conversely, if x€ RAD(T), then
"[‘(x,xk) = 0 for any k >0, i.e., TRACE(LRB(x)k) = 0 for any k> 1. This
inplies that the characteristic polynomal of LRB(x) is of the formaz!,
i.e., that LRB(x) is a nilpotent matrix. Hence by the definition of
LR ., x is nilpotent, Simlarly, rex is nilpotent for any r in R, Thus
X generates a nil left ideal in R and x €J(R).

Let § = (uij) be a uninodul ar matrix such that UMB is in row reduced

form  Then UM, is of the block form [g‘] where the rows of A are
X-independent ( or, equivg@ently, Qindependent ). Since My is symretric,
UMBUT is of the form [g where W is a nonsingular d x d integral

matrix. Let b =23“ﬁ'3'b3" Then B! = {b{} is a Z-basis for R and the
last n-d elements of B* forma Z-basis for RAD(T) and hence for J(R).
Moreover, t he set {bll+J(R) | i = 1....,d} forms a Z-basis for
R/J(R). Thus, the set { IRy, (0!) |1 = d+1,...,n} corresponds to a
%basis f'or J(R and the upper left d x d blocks of the matrices
LRB,(b:!L), i =1,...d, forma set of defining matrices for the order
R/J(R).

The order RIJ(R) has zero nil radical, and, for notational sinplicity,
we assume henceforth that J(R) =0, i.e., that Q®R is semsinple, gince
Q®R is semsinple, Q®R contains an identity element e and LRB(e) = In.
Here, we extend LRy 10 QRR in the obvious manner and I, dendtes the n x n

identitymatrix, B is a Qbasis for Q®R, Hence e can be expressed as



e =Z.1(qi/h.1)bi with g. and h, in2and GCD(q;,h;) = 1. Let t = LCM[h.l] :

"Then Ze N R = Zte., Notethat the coefficients q.l/h.1 and hence t can

beconstructively deternmined, e.g., byusing the row reduction algorithm

to solve over Q the r% x n system of |inear equations I =z.1(xi/y.l)LRB(bi),
. Z.

X5 and Y3

)

From t he equations T (q Jh, )t(J =1,i=1,,..,n it follows by

Jii
an el ementary nunber theoretlc argument t hat GCD(q.lt/h.l) =1, i.e., that
the entries in VB(te) are relatively prime. ( Here, as before,

(t(J)) LRB(bj) ). Since nul tiplication of Vg(te) by a uninodul ar '
matrix does not change the GCD of the entries, we can use the row reduction
algorithm to construct a uninodular matrix S satisfying
VB(te)TS =(1,0,4..,0). The matrix S'l is uninodul ar and has as first
row VB(te)T‘ Hence, the basis (bj) = S'l(bi) has as first elenent te,
and the matrices LRB,(b:!L), i=1,...,n, forma representation for the
order R of the desired type.

These procedures effectively solve | an3 IT. The row reduction
alrorithm al so yields an effective procedure for IIT,

Let Hbe a finitely generated 7-submodule of Q®R. H can be descri bed

relative to a basis 3 = (bl) of R bya nonzero integer D, and an integral

, , ok -
metrix F, as follows: Say H=g /[ ,%h.. Then h, z = 1q13 j

i = 1,.e0,ks Let Dy be the LCM of the denom nators of the q.l.J d

H
’ q gQ’

Fy = DH(qij). His conpletely determned relative to B by the pair
(D, Fy)e Moreover, this representation of Hby a pair (DH,F ) adnits

a normal form



A representation (DH,FH) of Hrelative to Bis said to be in
( Hermite ) normal formif:

2.1 DH >0,

2.2 Fy = (f.lj) has no zero rows.

2.3 1f £ is the first nonzero entry in the s-th row of F

t H

then (i) £t >0, (i) fij: 0 for i >s and j <t,
(iii) Offit <fstfor ics.

2.4 The GCD of DH and the f. 1.Jls 1.

| f (DH,FH) is any representation of Hrelative to B, then the
followi ng algorithm gives an effective procedure for determning a

normal form representation, (Dy,FY), for Hrelative to B

H
Normal Form Al gorithm

1 D}'I.e—lDH' .

2 Apply the row reduction algorithmto F,, obtaining a uninodul ar

H’
matri x W such that WFH = (tij) is in row reduced form Not e

that since Wis uninodular, the elenents g.(t../DL)b.,
JL) R

i=1,...,k, forma Z-generating set for H
3 Delete any zero rows in WFH’ obtaining an mx n matrix

Ff = (f:!tj).
4 Do for i =1,...;n:

Determine the first nonzero entry in the i-th row of F}'{,

| ]
say fl.. | f £,
Do for s = 1,.,.,i-1:

<O,f| . e =f! .,j :t,QQO’n'
1] 1J

1 1 |
| f f5t< 0 or fst >f Lo

i-th row of F}'I fromthe s-th row

subtract |£! /8] - tines the

8



Note that these row operations correspond to uninodul ar
transformations of Fi, and hence FE'J1 still determnes a
Z-generating set ( in fact a Z-basis ) for H

5 Conpute the GCD, say D, of Dk and the f! 13
6 DY« D/D; F « (1/D)F}.

In particular, it follows fromthis algorithmthat relative to any
basis B of R a finitely generated Z-nmodule, H possesses a normal form
representation.

Let B! = (b;q.)) be another basis for R say (Pj',ﬁ') = U(E:.,,.). | f

1

(DH’FH) is any representation of Hrelative to B, then (DH,FHU' )is

a representation of Hrelative to B's |If (DH,FH) is a normal form
representation, then (DH,FHU'l) satisfies 2.1, 2.2 and 2.4, but need
not satisfy 2.3.

The utility of the normal form representation is a consequence
of the followng |emma:

Lenma. Any two normal formrepresentations of Hrelative to B,
say (DH,FH) and (D"FI:I)’ must be idetical.

Proof. By 24and 2.1, Dy ( DY
such that DH cR (D} cR ). Hence Dy and D} depend only on H and

) is the least positive integer

Dy = Dh. Ty and F}'{ are both row reduced matrices by 2,3(ii). Since

neither matrix has any zero rows, the row di mension of FH( F}'{) IS
equal to the Z-rank of H i.e., Fy and Fy are of the sane dinensions,
and the sets of elenents of H determned by FH(bi) and by F}'{(b.l) form

L-bases for H  Thus there is a uninodular matrix T such that F}'{ = TFH.



i

From an analysis of the entry patterns in T, Fy and F}'{ it follows
that 1' is an upper triangular matrix and Fy and Fy have the sane echel on
pattern. Since T is uninmodular, its diagonal entries nust be #1, and
2.3(i) inplies that they nust be positive. Using these observations and
2.3(iii), an induction argunent on the row dinension gives that T nust
be the identity matrix, i.e., that F, = Fl

The normal formalgorithmeffectively solves I1l. Note that for
conput ations involving Z-subnmodules of Q@®R, it is usually nost efficient
to carry all subnmodules in normal form representation relative to some

fixed basis of R as this elimnates any problens of redundancy.

| npl enentation. The prograns inplementing these algorithms are structured

as a sequence of subroutines. The row reduction algorithm program
is coded in System/360/05 assenbler |anguage. The rest of the routines
are coded in FORTRAN IV.
The subroutines are:
1. ROWFRM, the row reduction algorithm routine.
2, INV, a routine to find the inverse of a uninodular matrix.
3.DEl', a routine to conpute the determnant of a square integral
matrix.
4, 6CD, a sinple Euclid% al gorithm program
5. RADRDC, the routine to deternmine J(R and R'J(R).
6. IDBAS, a routine to transform the basis of a sem sinple order
R into one in which the first basis elenment is a nultiple of
the identity in Q®R,

7. NORFRM a routine inplementing the normal formalgorithm

10



ROAFRM I NV, DET and NORFRM are each O(n3) units of time processes
where n is the row di mension of the matrix. RADRDC and IDBAS are both
Qn4) units of time processes where n is the Z-rank of R
fxamples.

1. Let T, denote the Z-order of all upper triangular 2x 2matrices

with integral entries. Let Rbe the suborder of T, with Z-basis

B = {bl , b2,b3} where

_ 12 31, _ 12 31, _ I3 6
b1“[oz] bz‘[ou] b3‘[o 2]'

Then,
- .
-6 -16 -8 -8 =20 -10
IR(b,)= | 2 6 2} , LRy(b,) = |4 10 &} |
5(Py) L 8 6 B2 b 8 6
(12 -30 -15
873 8 16 11
and
12 16 16
M, = |16 24 20 .
B 16 20 22

The row reduction algorithmapplied to My yi el ds the unimodul ar matrix

-1 1 0
U = 0 -:-1 1
h -1 -2
satisfying
7 L -4 0
UMBU = |4 6 0
0 0 O

Thus J(R) has rank 1 and R/'J(R) has rank 2 and discrimnant 8.

Let B' be the basis obtained by (b{) =U(b{).Then,

11



o
| v
]
o O )
N
—
Z
D =
|
N\ )
(o2
) =
]
r:D Ol
]
Loul

and, using 1.5,

2 2 0 2 3 0
LR, (b1) = o o o , LR, ()= Jo 1 of ,
BT o o0 o Bt e 22 1
[0 0 0
IR, (bt) = o o of .
B3 2 2 0

Hence, b§ is a basis for J(R) with corresponding matrix LRB'(bi)’

and RIJ(R) is the order with defining matrices
B9 )
1 o o] *+ ™ o 1} -
Let S be the order of rank 2 with defining matrices m, and m, and basis C
J(S) = 0, and q®s is semsinple. The unique solution of xym + x,m, = L
(te)T = (3,2). The unimodular

is X1 =13/2, X, = 1. Thus t =2, and VC
mat rix

satisfies Vc(te)Tw = (1,0), and

Using 1,5, we obtain the desired nornal ized representation matrices for

] = [].

Wth this representation, it is easy to see that Q®R/J(R) ¥ QXQ

RIJ(R =3, namely

where the operations on QXQ are conponentwi se and R'J(R) = 2ZX Z

2. Let R be the Z-order of all upper triangular 3x 3matrices
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with integral entries, and let B = (esk] 1<s<k<3 ) be the natural

Z-basis for R i.e., e, = (Sis{kj)' Let H be the Z-submodule of Q@R

with L-generating set

1/52/3 1/5 1/6 11/30 1/6 1/15 8/15 1/5
hy = 0 0 o0}, h,= 0 0 0 , h3 = 0 o 1/6] ,
0 0 0 0 0 0 0 0 o0
1/15 3/10 1/6 1/15 1/3 1/6
h, = 0 0o 2/15}, h5 = 0 0 2/1s}" .
0 0 0 0 0 o0

His represented relative to B by the pair (.DH,FH) with D, =30and

6 20 6 0 0 o0
511 5 0 0 O
FH = |2 16 6 0 5 0
2 9 5 04 O
210 5 04 O

Via the row reduction aldorithm F, is uninodularly transforned into

1 -21 -19 0 20 0
0 -1 -205 0 -244 0
Fi = L0 0 1 0 5685 0
0 0 0 0 1 0p-
0 0 0 0 0 0
The normal form al gorithm applied to Fi yi el ds
1 0 0 0 0 O
pno |01 0000
H o o1t o o0 0 °
0 0 0 01 0

Hence, H has the unique normal form representation relative to B

(D, Fyy), and H has as a Z-basis {(1/30)e11. (1/30)e,,, (1/30)613. (1/30)823} .

“Note that in this exanple a relatively large entry is produced by the
£ row reduction algorithm These large entries occur often, particularly

in internmediate calculations, and overflow nust be watched for.
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