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Abstract: Three machine implemented algorithms for computing with integral

orders are described. The algorithms are:

1. For an integral order R given in terms of its left regular

representation relative to any basis, compute the nil radical

J(R) and a left regular representation of R/J(R).

2. For a semisimple order R given in terms of its left regular

representation relative to any basis, compute a new basis for

R and the associated left regular representation of R such that

the first basis element of the transformed basis is an integral

multiple of the identity element in Q % R.

3. Relative to any fixed Z-basis for R, compute a unique canonical

form for any given finitely generated Z-submodule of Q @ R

described in terms of that basis.
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Some Basic Machine Algorithms for Integral Order Computations

Introduction and Definitions. In the investigation of certain algebraic

questions such as arithmetics in rational algebras and integral group

representations, the concept of a Z-order frequently occurs. A Z-order

is a discrete algebraic structure R, +, l satisfying:

1.1 R, +, . is an associative ring ( not necessarily commutative

or with identity >*

1.2 R, + is a free Z-module of finite rank, i.e., R, + is a

%ector space" over the rational integers with a finite Z-basis.
*

For example, the set of all upper triangular n x n matrices with integral

entries, 'f n' forms a Z-order of rank n(n + 1)/2.

Let B = ( bl,...,bn) be any Z-basis for the Z-order R. The

left regular representation of R with respect to B is the( ring and

Z-module ) homomorphism LRB: R + Mnxn (Z) from R into the Z-order of

n x n integral matrices induced by LRB(bj) = ( to) where

b/b
J k

=z$i(;)b..
1

The coordinate map VB: R+ Mml(Z) given by

V,(x) = (xl,...,xnT where x =Eixibi is also a Z-module homomorphism.

LRB and VB are related as follows: For any x =Cixibi and y in R,

V@'Y 1 = LRp(x)VB(y) =XixiLRB(bi)VB(y). Thus, the structure of R is

Basic definitions and theorems for Z-modules can be found, e.g., in

MacLane and Birkhoff, Algebra, for rings in Divinsky, Rings and Radicals

and for orders in Deuring, Algebren.
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completely determined by the integral matrices LRB(bi), i = l,...,n.

'This concrete representation of R as a set of n, n x n integral matrices

is very convenient for computational purposes, particularly on a machine,

and it will be assumed here that all orders are described by such

representations.

R if and only if

U is an integral

_ l.3 vB, lx>

Note that B* = (bl,...,bA ) is another Z-basis for

b; =
5
.uijbj where U = (u. . ) is unimodular, i.e.,

=J

matrix with DEI'(U) = fl. Moreover,=

= UDTVB(X ).
v m

1.4 Lq-y (4 = U-'LRB(x)UL,

L- 1.5 LRB,(b;) =EtujtU-TLRB(bt)UT.

Since a Z-order R is of finite rank, R, considered as a ring,

satisfies the ACC ( ascending chain condition ) on left ideals. Also,

R contains a unique maximal nil left ideal, J(R), consisting of the sum

of all nil left ideals in R. Thus, by Levitzki% theorem, J(R) is also

theuniquemaximal nilpotent ideal of R. J(R) is called the nil radical

of R. For example, J(T,) is the subset of all strictly upper triangular

matrices in 'f n and J(Mmn(Z)> consists of only the zero matrix.

Lemma. R/J(R) is an order.

Proof. It needs only be shown that R/J(R) is free as a Z-module.

By the basis theorem for finitely generated Z-modules, this is tantamount

to showing that R/J(R) is torsion free. Assume that m(r + J(R)) = J(R)

for some r + J(R) in R/J(R) and 0 # m in Z. Then rnrc J(R). Since J(R) is

nil, (mr)k = mkrk = 0 for some kE N. Since R is free, it is torsion

free. Thus rk = 0, i.e., rEJ(R) and r = J(R) = J(R).
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In most applications of the theory of orders, the order R is considered

as being embedded in the rational algebra Q@R, the tensor product of

Q and R over Z. Q@R can be considered as the algebra of all n x 1 rational

column vectors with multiplication defined by (xi)(yj) =cixiLRB(bi)(yj).

It follows directly from the definitions that:

1.6 Q@R is an n-dimensional algebra over Q with

J(QGOR) = Q@ J(R).

1.7 Q%R/Q@ J(R)% Q@@/J(R)).

For example, Q@@n/J(*$$)  i Mm1 (Q) where the operations are componentwise.

Since Q@@/J(R)) is a finite dimensional algebra over Q, it satisfies

the DCC ( descending chain condition ) on left ideals. Moreover,

J(Q@(R/J(R)))=  0. Thus Q@(R/J(R))is  a semisimple algebra. In particular,

Q@(R/J(R)) nas an identity element e.

The usual initial step in computational problems involving orders

is to determine <J(R) and R/J(R). Also, these problems usually require

working with numerous Z-submodules of Q@@/J(R)).  We present here

effective algorithmic procedures to:

I. Determine a Z-basis for J(R) in terms of the given representation

of R.

II. Determine the structure of the order R/J(R) in a normalized

form, i.e., determine a set of defining matrices, Ml,...,%,

for R/J(R) such that Ml is an integral multiple of the

identity matrix.

III. Determine when two finitely generated Z-submodules of Q@R



described in terms of a basis B of R are equal.

In a second paper we will describe an effective procedure for

embeddint; R/J(R) into a maximal %-order of Q@(R/J(R)>. These algorithms

have been implemented on an IBM 360/67.

Algorithms. The basic computational procedure used in the algorithms

is unimodular row reduction of an integral matrix. This procedure is

central for many algorithms in discrete algebra, e.g., the basis theorem

for finitely generated abelian groups.

A matrix A = (aij) is said to be in row reduced form ( or row

echelon form ) if it satisfies the following condition:

If aks is the first nonzero entry in the k-th row of A, then

for all i>k and j<s, a.. = 0.
13

Lemma. For any s x t integral matrix M = (mij), there is an s x s

unimodular matrix U such that UM is in row reduced form.

The proof of this lemma is given by the following algorithm. The

termination of the algorithm is a consequence of the well-ordering of

the positive integers.

Row Reduction Algorithm.

1 Initialize: j tl,h tl,U= (u&t sxs identity matrix.

2 Search the j-th column of M for an element of minimal nonzero

magnitude, say mkj" If no such element exists, go to step 6.

If m
kj

is the only nonzero element in the j-th column, go to step 4.

3 Do for i = h,h+l,...,k-l,k+l,...,s:

Divide m.
lj bY \j Fsetting an integral quotient qi and remainder
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r. with 1 ril <\\jl , i.e., mij = "kjqi + rim For V = j,...,t,
1

m. +-m. -
1V 1V \vCIi ad for V = l,...s,  uiv+ uiv - ukvqi.

If ri # 0, k t- i and go to step 3.

4 Interchange the h-th and k-th rows of M and the h-th and k-th

rows of U.

5 hth+l.

6 jcj+l.

7 If j = s or h>t, exit, otherwise go to step 2.

In a machine implementation of the algorithm, devices such as

immediately exiting the search in step 2 and setting qi to ;tm. . if an
23

element m
U

of magnitude 1 is found can speed up the process considerably

for certain classes of matrices.

*The algorithm for I and II is based on the trace bilinear form

'I?: R X R + Z defined by T(x,y) = 'I'RACE(LRD(x.y)),  T is a symmetric

form, and by 1.4 it is independent of basis choice. T is completely

determined relative to a basis B of R by the symmetric integral matrix

IVIB
= (*i'(bi,bj)),  and T(x,y) = VB(x)TMBVB(y). If U is a unimodular

change of basis matrix carrying H onto the basis B*, then M
B' = UMBUT.

Since WY(U) = &t-l, DET(MD) depends only on R. This deteMni.nant  is

called the Ldiscriminant'of  R, and it is nonzero if and only if J(R) = 0.

The relationship between J(R) and T is given in the following lemma:

Lemma. Let RAD(T) be the submodule of elements in R orthogonal

to R, i.e., HAD(T) = { xER 1 T(x,y) = 0 V yER) . Then RAD(T) = J(R).

Proof. For any x EJ(R) and ye R, x.y is in J(R) since J(R) is
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t

an ideal in R. J(R) is nil. rhus (x.y)k = 0 for some k CN, and, since

LR,< is a homomorphism, LRH(xey)
k

= 0. But any nilpotent matrix must

have zero trace. Hence J(R) C,RAD(T). Conversely, if XE RAD(T), then

T(x,xk) = 0 for any k >O, i.e., TRACE(LR,(X)~) = 0 for any k> 1. This

timplies that the characteristic polynomial of LRB(x) is of the form z ,

i.e., that LRB(x) is a nilpotent matrix. Hence by the definition of

LR.., x is nilpotent. Similarly, r.x is nilpotent for any r in R, Thus

x generates a nil left ideal in R, and x eJ(R).

Let 17 = (uij) be a unimodular matrix such that UMR is in row reduced

form. Then "I, is of the block form Ac3o where the rows of A are

X-independent ( or, equivalently, Q-independent ). Since MB is symmetric,

UM#T is of the form w 0[ 1o o where W is a nonsingular d x d integral

matrix. Let bi =C .u. .b.. Then P =
3 1J 3 f 1

b; is a Z-basis for R, and the

. last n-d elements of Br form a Z-basis for W(T) and hence for J(R).

Ploreover, the set
i:

b! + J(R) 1 i = 1
1 ,...,d] forms a Z-basis for

R/J(R). Thus, the set
i

LRBr(bl) Ii = d+l,...,n) corresponds to a

%-basis f'or J(R) and the upper left d x d blocks of the matrices

LRH,(bi), i = 1 ,...d, form a set of defining matrices for the order

R/cJ(R).

The order R/J(R) has zero nil radical, and, for notational simplicity,

we assume henceforth that J(R) = 0, i.e., that Q@R is semisimple, Since

ta@R is semisimple, Q@R contains an identity element e and LRB(e) = In.

Here, we extend LRB to Q,@R in the obvious manner and In denotes the n x n

ideniAtym&.E& B is a Q-basis for Q@R, Hence e can be expressed as
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e 'Ci(qi/hi)bi with q.
1
and hi in 2 and GCD(qi,hi) = 1. Let t = LCM[hi] .

'Then Ze n R = Zte. Note that the coefficients qi/hi and hence t can

be constructively determined, e.g., by using the row reduction algorithm

2
to solve over Q, the n x n system of linear equations In =Ci(xi/yi)LRB(bi),

X i and yi in ze

From the equationsC j(qj/hj)tl.!) =l,i=l ,...,n, it follows by

an elementary number theoretic argument that GCD(qit/hi)  = 1, i.e., that

the entries in VD(te) are relatively prime. ( Here, as before,

(t;$)) = LRB(bj) >. S'lnce multiplication of VR(te) by a unimodular '

matrix does not change the GCD of the entries, we can use the row reduction

algorithm to construct a unimodular matrix S satisfying

Vq(te)% = (l,G,...$). The matrix S
-1

is unimodular and has as first

row VB(te)
T

. Hence, the basis (bj) = &bi) has as first element te,

and the matrices LRg,(bj), i = I,..., n, form a representation for the

order R of the desired type.

These procedures effectivelv solve I an3 IT. The row reduction

3lL7orithm also yields an effective procedure for IIT.

Let H be a finitely generated Z-submodule of !&8R. H can be described

relative to a basis :3 = (b.) of R by a nonzero integer DH and an integral
1

matrix FH as follows: Say H =C r,l'hi. Then hi =C n
j=lqijbjV ClijEQV

i = l,...,k. Let DH be the LCM of the denominators of the q.. and
=J

Ffi = 'H(qij)o

H is completely determined relative to B by the pair

(u,, Q!. Ploreover, this representation of H by a pair (DH,FH) admits

a normal form.
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A representation (DH,FH) of H relative to B is said to be in

( Hermite ) normal form if:

2.1 DH >O.

2.2 FH = (f. .) has no zero rows.
13

2.3 If fst is the first nonzero entry in the s-th row of FH,

then (i) fst >O, (ii) fij = 0 for i >s and j St,

(iii) 0 <fit <fst for i<s.

2.4 The GCD of DH and the f. . is 1.
13

If (DH,FH) is any representation of H relative to B, then the

following algorithm gives an effective procedure for determining a

normal form representation, (Do&), for H relative to B:

Normal Form Algorithm.

2 Apply the row reduction algorithm to FH, obtaining a unimodular

matrix W such that WFH = (tij) is in row reduced form. Note

that since W is unimodular, the elements xj(tij/D$bj,

i=l ,...,k, form a Z-generating set for H.

3 Delete any zero rows in WFH, obtaining an m x n matrix

Yi ,= (fij).

4 Do for i = l,...;n:

Determine the first nonzero entry in the i-th row of F$

say f!It'
If fj&<O, f! . t -f! ., j = t,...,n.

13 13

Do for s = l,...,i-1:

If fit< 0 or f& >f!1t subtract LfAt/fltJ  - times the

i-th row of FI[i from the s-th row.
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Note that these row operations correspond to unimodular

transformations of F:, and hence FL still determines a

Z-generating set

5 Compute the GCD,

6 D;' D;I/D; F;t

II I1

( in fact a Z-basis ) for H.

say D, of Dh and the f! . .
13

(l/D)+

In particular, it follows from this algorithm that relative to any

basis B of R a finitely generated Z-module, H, possesses a normal form

representation.

Let B' = (bii) be another basis for R, say (b!Y) = U(b, ;). If
*J &J

(DH,FH) is any representation of H relative to B, then (DR,iiU-') is

a representation of H relative to B'. If (DH,~H) is a

representation, then (DH,FHU
-1

) satisfies 2.1, 2.2 and

normal form

2.4, but need

not satisfy 2.3.

The utility of the normal form representation is a consequence

of the following lemma:

Lemma. Any two normal form representations of H relative to B,

say (DH,FH) and (D+F$, must be idetical.

Proof.- - By 2.4 and 2.1, DH ( DA ) is the least positive integer

such that DHH c_R (DhH c_R ). Hence DH and DA depend only on H, and

DH = DA. Fy and Fi are both row reduced matrices by 2.3(ii). SinceI

neither matrix has any zero rows, the row dimension of FH ( Fh ) is

equal to the Z-rank of H, i.e., FH and FL are of the same dimensions,

and the sets of elements of H determined by FH(bi) and by F$bi) form

L-bases for H. Thus there is a unimodular matrix T such that Fi = TFH.
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From an analysis of the entry patterns in T, FH and Fh it follows

that I' is an upper triangular matrix and FH and F$ have the same echelon

pattern. Since T is unimodular, its diagonal entries must be k-1, and

2.3(i) implies that they must be positive. Using these observations and

Z.j(iii), an induction argument on the row dimension gives that If must

be the identity matrix, i.e., that FR = F&.

The normal form algorithm effectively solves III. Note that for

computations involving Z-submodules of Q@R, it is usually most efficient

to carry all submodules in normal form representation relative to some

fixed basis of R as this eliminates any problems of redundancy.

Implementation. The programs implementing these algorithms are structured

as a sequence of subroutines. The row reduction algorithm program

is coded in System/36O/OS  assembler language. The rest of the routines

are coded in FORTRAN IV.

The subroutines are:

1. ROWFRM, the row reduction algorithm routine.

2, INV, a routine to find the inverse of a unimodular matrix.

3. DE!', a routine to compute the determinant of a square integral

matrix.

4. GCD, a simple Euclid% algorithm program.

5. RADRDC, the routine to determine J(R) and R/J(R).

6. .IDSAS, a routine to transform the basis of a semisimple order

R into one in which the first basis element is a multiple of

the identity in &@R.

7. NORFRM, a routine implementing the normal form algorithm.
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ROWFRM, INV, JXI' and NORFRM are each O(n3 > units of time processes

where n is the row dimension of the matrix. RADRDC and IDEM are both

O(n
4

) units of time processes where n is the Z-rank of R.

tiamples.

1. Let T2 denote the Z-order of all upper triangular 2 x 2 matrices

with integral entries. Let R be the suborder of T2 with Z-basis

B = {bl 9 b2,b3  ) where

bl= [“o $ b2= [ d’ b3= b !$j .

Then,

LRB(bl) = Li -'i -4 , LRB(b2) = [i -:I -'j ,

and

MB =
The row reduction algorithm applied to MB yields the unimodular matrix

U =

satisfying

rhus J(R) has rank 1 and R/J(R) has rank 2 and discriminant 8.

Let B1 be the basis obtained by (bj) = U(t$). Then,
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and, using 1.5,

Hence, b; is a basis for J(R) with corresponding matrix LRB,(bj),

and R/J(R) is the order with defining matrices

Let S be the order of rank 2 with defining matrices ml and m2 and basis C.

J(S) = 0, and Q@S is semisimple. The unique solution of xlml + x2m2 = I2

T
is x1

= 3/z, x2 = 1, Thus t = 2, and 'Ctte) = (3,2)o The unimodular

matrix

satisfies VC(te)TW = (LO), and

-1id =

Usinp 1.5, we obtain the desired normali::ed representation matrices for

R/J(R) E'S, namely

With this representation, it is easy to see that Q@R/J(R)  g QXQ

where the operations on QXQ are componentwise and R/J(R) g 2ZX.Z.

2. Let R be the Z-order of all upper triangular 3 x 3 matrices
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with integral entries, and let B = [esk \ l<s<k c3 ) be the natural- -  -

Z-basis for R, i.e., esk = ($isckj,' Let H be the Z-submodule of Q@R

with L-generating set

H is represented relativ

FH =

to B by the pair (.DH,FH)  with DH = 30 and

6 20 6 oo o
5 115 0 0 0
2166050 .
2 9 5 04 0
210 5 04 0
b 1

Via the row reduction algorithm: F, is unimodularly transformed intoLI

1 -21 -19 0 -20 0’
0

[ 0
-1 -205 0 -244 0

FA= 0 1 0 56856 0
0 0 0 0 1 0
0 0 0 0 0 0

The norm&l. form algorithm applied to Fi yields

Hence, H has the unique normal form representation relative to B

(DH,F$ and H has as a Z-basis (1/30)eIl, U130)e12,  (1/70)e13,  W30)e23)  .

Note that in this example a relatively large entry is produced by the

row reduction algorithm. These large entries occur often, particularly

in intermediate calculations, and overflow must be watched for.
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