# THE DIFFERENTIATION OF PSEUDOINVERSES AND NONLINEAR LEAST 

## SQUARES PROBLEMS WHOSE VARIABLES SEPARATE

BY

G. H. GOLUB AND V. PEREYRA

STAN-CS-72-261
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERS ITY

# The Differentiation of Pseudoinverses and Nonlinear Least Squares Problems Whose Variables-Separate 

G. H. Golub*

and
V. Pereyra**
*Computer Science Department, Stanford University, Stanford, California 94305. This work was in part supported by the Atomic Energy Commission.
**Departamento de Computacion, Universidad Central de Venezuela, Caracas, Venezuela.

## ABSTRACT

For given data ( $t_{i}, y_{1}$ ), $i=1, \ldots, m$, we consider the least squares fit of nonlinear models of the form

$$
F(\underset{\sim}{a}, \underset{\sim}{\alpha} ; t)=\sum_{j=1}^{n} g_{j}(\underset{\sim}{a}) \varphi_{j}(\alpha ; t), \underset{\sim}{\alpha} \in R^{s}, \underset{\sim}{\alpha} \in R^{k} .
$$

For this purpose we study the minimization of the nonlinear functional
L.

$$
r(a, \underset{\sim}{\alpha})=\sum_{i=1}^{m}\left(y_{i}-F\left(\underset{\sim}{a}, \underset{\sim}{\alpha}, t_{i}\right)\right)^{2} .
$$

It is shown that by defining the matrix $\left.\{\underset{\sim}{\alpha} \underset{\sim}{\alpha})\}_{i, j}=\underset{j}{\varphi_{j}} \underset{\sim}{\alpha} ; t_{I}\right)$, and the modified functional $r_{2}(\underset{\sim}{\alpha})=\left\|\underset{\sim}{y}-\Phi(\underset{\sim}{\alpha}) \Phi^{+}(\underset{\sim}{\alpha}) \underset{\sim}{\underset{\sim}{\alpha}}\right\|_{2}^{2}, \quad$ it is possible to optimize first with respect to the parameters $\underset{\sim}{\boldsymbol{\sim}}$, and then to obtain, a posterior, the optimal parameters $\underset{\sim}{\underset{\sim}{a}}$. The matrix $\Phi^{+}(\underset{\sim}{\alpha})$ is the MoorePentose generalized inverse of $\Phi(\underset{\sim}{\alpha})$, and we develop formulas for its Fréchet derivative under the hypothesis that $\Phi(\underset{\sim}{\boldsymbol{\alpha}})$ is of constant (though not necessarily full) rank. From these formulas we readily obtain the derivatives of the orthogonal projectors associated with $\boldsymbol{( \sim )}$ ), and also that of the functional $\left.r_{2} \underset{\sim}{\alpha}\right)$. Detailed algorithms are presented which make extenside use of well-known reliable linear least squares techniques, and numerical results and comparisons are given. These results are generalizations of those of H. D. Scolnik[20].

## 1. Introduction

The least squares fit of experimental data is a common tool in many applied sciences and in engineering problems. Linear problems have been wellstudied, and stable and efficient methods are available (see for instance: Björck and Golub [3], Golub[8]).

Methods for the nonlinear problems fall mainly in two categories:
(a) general minimization techniques; (b) methods of Gauss-Newton type. The latter type of method takes into consideration the fact that the functional to be minimized is a sum of squares of functions (cf. Daniel [ 5], Osborne [14], Pereyra [15]). The well-known reliable linear techniques have been used mainly in connection with the successive linearization of the nonlinear models. Very recently it has been noticed that by restricting the class of models to be treated, a much more significant use of linear techniques can be made (cf. $[2,9,12,13,17,20])$.

In this paper we consider the following problem. Given data ( $\mathrm{t}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ), $i=1, \ldots . m$, find optimal parameters $\underset{\sim}{\underset{\sim}{\sim}}=\left(\hat{a}_{1}, \ldots, \hat{a}_{s}\right)^{\top}, \underset{\sim}{\alpha}=\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{k}\right)^{\top}$ that minimize the nonlinear functional

$$
\begin{equation*}
r(\underset{\sim}{a}, \underset{\sim}{\alpha})=\sum_{i=1}^{m}\left[y_{i}-\sum_{j=1}^{n} g_{j}(\underset{\sim}{a}) \varphi_{j}\left(\underset{\sim}{\alpha} ; t_{i}\right)\right]^{2} \tag{1.1}
\end{equation*}
$$

Throughout this paper a lower case letter in bold face will indicate a column vector, while the same letter with a subscript will indicate a component of the vector. Matrices which are not vectors are denoted by capital letters, and the (i,j) element of (say) a matrix A will be indicated by either $a_{i j}$ or $\{A\}_{i, j}$. The transpose of a vector $u$ is indicated by ${\underset{\sim}{u}}^{\top}$. Given a function $f(t)$, we shall denote by $\underset{\sim}{f}$ the vector whose components are
$\left(f\left(t_{1}\right), f\left(t_{2}\right), \ldots, f\left(t_{m}\right)\right)^{\top}$. The scalar product of two vectors $\sim_{\sim}^{u}$ and $\underset{\sim}{v}$ is indicated by

$$
\langle\underset{\sim}{u}, \underset{\sim}{v}\rangle=v_{\sim}^{\top} u .
$$

The only norm which will be used is the Euclidean norm, $\underset{\sim}{v} \|^{2}$ " $\left.\underset{\sim}{v}, \underset{\sim}{v}\right\rangle$. Given a matrix $A$ and $a$ vector $\underset{\sim}{b}$, then we say

$$
\underset{\sim}{A x} \cong \underset{\sim}{b}
$$

if $\underset{\sim}{x}=A^{+} \underset{\sim}{b}$ where $A^{+}$is the Moore-Penrose pseudoinverse.

We shall use the symbol $\mathbf{D}$ for the Fréchet derivative of a mapping and V for the gradient of a functional. We assume that the reader has some familiarity with pseudoinverses and Fréchet derivatives and their properties. A useful reference for the pseudoinverse is [19]; for details on the formalism and manipulation of Fréchet derivatives, we suggest [6, chapter 8].

Let

$$
\{\Phi\}_{i, j}=\varphi_{j}\left(\underset{\sim}{\alpha} ; t_{i}\right)(i=1, \ldots, m ; j=1,2, \ldots, n),
$$

and

$$
g(\underset{\sim}{a})=\left(g_{1}(\underset{\sim}{a}), g_{2}(\underset{\sim}{a}), \ldots, g_{n}(\underset{\sim}{a})^{\top} .\right.
$$

With the given notation, we can rewrite (1.1) as

$$
\begin{equation*}
r(a, \underset{\sim}{\alpha})=\|\underset{\sim}{y}-\Phi(\underset{\sim}{\alpha}) \underset{\sim}{(a)}\|^{2} . \tag{1.1'}
\end{equation*}
$$

Our approach to finding a critical point or a minimum of the functional (1.1') requires two additional hypotheses:

H-1. For any vector $\underset{\sim}{\underset{\sim}{b} \in \mathbb{R}^{n}}$, the system of nonlinear equations (1.2) $\underset{\sim}{g}(\underset{\sim}{a})=\underset{\sim}{b}$,

```
has a solution (not necessarily unique).
```

H-2. The matrix $\Phi(\underset{\sim}{\alpha})$ has constant rank, $r \leq \min (m, n)$ for $\alpha \in \Omega \subset \mathbb{R}^{k}$, $\Omega$ being an open set containing the desired solution.

Our aim is to be able to deal separately with the parameters $\underset{\sim}{\boldsymbol{\alpha}}$, and then proceed to obtain the parameters $\underset{\sim}{a}$, as it was done in [9, 20] whose results this paper generalize. The reader should also note the independent results obtained by Pérez and Scolnik [17], who in addition deal with nonlinear constraints.

In order to obtain this separation of variables, we consider, as in [9, 17, 20], the modified functional

$$
\text { (1.3) } \quad r_{2}(\underset{\sim}{\alpha})=\| \underset{\sim}{y}-\Phi\left(\underset{\sim}{\alpha} \Phi^{+}(\underset{\sim}{\alpha}) \underset{d}{ } \|^{2}\right. \text {, }
$$

which will be called the variable projection functional. Once optimal parameters $\underset{\sim}{\hat{\alpha}}$ have been obtained by minimizing (1.3), then auxiliary parameters $\hat{\mathrm{b}}$ are obtained as $\underset{\sim}{\hat{D}}=\Phi^{+}(\underset{\sim}{\hat{\alpha}}) \underset{\sim}{y}$, and finally we take $\underset{\sim}{\hat{a}}$ as any solution of the system of equations (1.2).

We shall show in Theorem 2.1 the relationship between critical or minimal
points encountered considering the original functional r(a, $\underset{\sim}{\alpha})$ and those obtained from the functional $r_{2}(\underset{\sim}{\alpha})$ and $\Phi^{+}(\underset{\sim}{\alpha}) \underset{\sim}{y}$. Both for our proof and for the numerical algorithms of Section 5, we need to develop formulas for the Fréchet derivative of the pseudoinverse of a matrix function. In Section 4, we develop these formulas and obtain the derivatives of the projectors and the Jacobian of the residual vector. The only hypothesis necessary on the rank of the matrix is that it should be constant on an open neighborhood of the point in which the derivative has to be calculated. This is necessary since otherwise the pseudoinverse is not a continuous function, and therefore it could hardly be differentiable. Our proof is coordinate-free. For the full rank case,
similar formulas have been obtained by Fletcher and Lill [7] (without) proof), by Hanson and Lawson [10], and by Pérez and Scolnik [17 J. In [7] and [17] this is used to deal with constraints via penalty functions. In [17] the authors choose to work with components, and also obtain a formula for the rank deficient case which is given in terms of the factors of a certain decomposition of the original matrix. Our formulas, besides being coordinate-free and thus much more convenient for algebraic manipulation, are given exclusively in terms of the original matrix, its derivative, and its pseudoinverse. The formula for the rank deficient case seems to be new.

In Section 5 we give a detailed -explanation of how to implement the method in an efficient way and in Section 6 we present some numerical examples and
$C$ comparisons. Extensive use is made of linear least squares techniques.

The authors wish to thank Professor Olof Widlund of the Courant Institute for his careful reading of this manuscript, and to Miss Godela Scherer of the Instituto Venezolano de Investigaciones Científicas for programming assistance. We are also pleased to acknowledge the kind hospitality and stimulating conversations with Dr. H. D. Scolnik of the Bariloche Foundation where this work was initiated in July 197. Several helpful suggestions were made by Miss Linda Kaufman and Mr. Michael Saunders.
2. A class of nonlinear least square-s problems whose parameters separate.

We are going to consider in this paper models of the form:

$$
\begin{equation*}
n(\underset{\sim}{a}, \underset{\sim}{\alpha} ; t)=\sum_{j=1}^{n} g_{j}(\underset{\sim}{a}) \varphi_{j}(\underset{\sim}{\alpha} ; t), \tag{2.1}
\end{equation*}
$$

where $\underset{\sim}{a} \in \mathbb{R}^{S}, \quad \alpha \in \mathbb{R}^{k}$, and the functions $g_{j}, \varphi_{\dot{j}}$, are continuously differentiable with respect to $\underset{\sim}{\sim}$, and $\underset{\sim}{\alpha}$ respectively. We shall call the functions $g_{j}$ autonomous, to distinguish them from the $\varphi_{j}$ which are dependent on $t$. We remark that the parameters $\underset{\sim}{\sim}$ and $\underset{\sim}{\alpha}$ form two completely disjoint sets.

The independent variable $t$ could be a vector itself as in [9, 17].
This requires only small notational changes and we shall not pursue it here.
Given the data $\left(t_{i}, y_{i}\right), i=1, \ldots, m, m \geq s+k$, our task is to find the values of the parameters $\underset{\sim}{a}, \underset{\sim}{\boldsymbol{\alpha}}$, that minimize the nonlinear functional: (2.2)

$$
r(\underset{\sim}{\alpha}, \underset{\sim}{\alpha})=\|y-\underset{\sim}{\sim}(\underset{\sim}{\alpha}, \underset{\sim}{\alpha})\|^{2}=\sum_{i=1}^{m}\left(y_{i}-n\left(\underset{\sim}{a}, \underset{\sim}{\alpha} ; t_{i}\right)\right)^{2}
$$

The approach to the solution of this problem is, as in [9, 17, 20], to modify the functional $r(\underset{\sim}{a}, \underset{\sim}{\boldsymbol{\alpha}})$, in such a way that consideration of the autonomous parameters $\underset{\sim}{\sim}$ is deferred.

In what follows we shall call $\Phi \underset{\sim}{\alpha})$ the matrix function
(2.3) $\Phi(\underset{\sim}{\alpha})=\left[\underline{\sim}_{1}(\underset{\sim}{\alpha}), \ldots, \varphi_{n}(\underset{\sim}{\alpha})\right]$.

For each fixed $\underset{\sim}{\boldsymbol{\alpha}}$, the linear operator
(2.4) $P_{\Phi(\underset{\sim}{\alpha})}=\Phi(\alpha) \Phi_{\sim}^{+}(\alpha)$,
is the orthogonal projector on the linear space spanned by the columns of the $\operatorname{matrix} \Phi(\underset{\sim}{\boldsymbol{\alpha}})$. We shall denote the linear operator $\left(I-F_{\Phi(\alpha)}\right)$ by ${\underset{\Phi}{\Phi}(\underset{\sim}{\alpha})}_{\perp}$.
$\mathbb{P}_{\Phi(\underset{\sim}{\alpha})}^{1}$ is the projector on the orthogonal complement of the column space of $\Phi(\underset{\sim}{\alpha})$. Similarly,
(2.4') $\quad \Phi^{P}=\Phi^{+} \Phi$
is the orthogonal projector on the row space of $\Phi$, and ${ }_{\Phi} P^{\perp}=I-{ }_{\Phi} P$. When there is no possibility of confusion we shall omit either the matrix subindex or the arguments in projections and functions, or both.

Taking $\underset{\sim}{b}$ as a new parameter vector, we consider the following auxiliary model:
(2.5) $n_{1}(\underset{\sim}{b}, \underset{\sim}{\alpha} ; t)=\sum_{j=1}^{n} b_{j} \varphi_{j}(\underset{\sim}{\alpha} ; t)$.

We define similarly the functional $r_{1}(\underset{\sim}{b}, \underset{\sim}{a})=\|\underset{\sim}{y}-\underset{\sim}{n}\|^{2}$.

For any given $\underset{\sim}{\boldsymbol{\alpha}}$ we have the minimal least squares solution

$$
\begin{equation*}
{\underset{\sim}{b}}^{*}=\Phi^{+}(\underset{\sim}{\alpha}) \underset{\sim}{y} . \tag{2.6}
\end{equation*}
$$

. Thus,


The modified functional is then the variable projection functional that we mentioned earlier and can be rewritten as:

$$
\begin{equation*}
r_{2}(\underset{\sim}{\alpha})=\left\|P_{\Phi}^{1}(\underset{\sim}{\alpha}) \underset{\sim}{y}\right\|^{2} . \tag{2.8}
\end{equation*}
$$

Once a critical point (or a minimizer) $\underset{\sim}{\boldsymbol{\alpha}}$ is found for this functional, then $\underset{\sim}{\underset{\sim}{\underset{~}{~}}}$ is obtained by replacing $\alpha$ $\alpha$ by $\underset{\sim}{\underset{\sim}{\underset{~}{~}}}$ in (2.6). Finally, by hypothesis $H-1$, $\underset{\sim}{a}$ is-obtained as any solution of the system of nonlinear equations
(2.9) $\underset{\sim}{g}(\underset{\sim}{a})=\underset{\sim}{\hat{D}}$.

The justification for employing this procedure is given by the following theorem:

Theorem 2.1 Let $r(\underset{\sim}{a}, \underset{\sim}{\alpha})$ and $r_{2}{ }_{2}^{(\alpha \underset{\sim}{\alpha}) \text { be defined as above. We assume that }}$ in the open set $\Omega \subset \mathbb{R}^{\mathrm{k}}, \Phi(\underset{\sim}{\alpha})$ has constant rank $r \leq \min (m, n)$.
(a) If $\hat{\underline{\hat{\alpha}}}$ is a critical point for a global minimizer in $\Omega$ ) of $\mathrm{r}_{2}(\underset{\sim}{\alpha})$, and $\hat{\underline{a}}$ satisfies:
(2.10) $\underset{\sim}{g}(\underset{\sim}{\underset{\sim}{\hat{a}}})=\Phi^{+}(\underset{\sim}{\underset{\sim}{\underset{\sim}{x}}} \underset{\sim}{X}$,
(then $\underset{\sim}{\hat{\alpha}} \underset{\sim}{\alpha}$ ) is a critical point of $r(\underset{\sim}{a} \underset{\sim}{\alpha})($ or a global. minimizer for $\underset{\sim}{\alpha} \in \Omega$ )
and $r(\hat{\sim}, \hat{\alpha})=r_{2}(\hat{\sim})$.
 Furthermore, if there is an unique $\underset{\sim}{a}$ among the minimizing pairs of $r(\underset{\sim}{a}, \underset{\sim}{\alpha})$, then $\underset{\sim}{\hat{a}}$ must satisfy (2.10).

We shall postpone the proof of this Theorem until the end of Section where we obtain a convenient expression for the gradient of the functional $r_{2}(\underset{\sim}{\alpha})$.
3. Algorithmia I. Residual calculation.

One of our main points in the algorithmic part of this paper is to emphasize, when possible and appropriate, the use of stable and efficient linear least squares techniques. Thus it is convenient to review some of the tools and introduce the necessary notation.

If $Q$ is an orthogonal matrix then, for every vector $\underset{\sim}{z}$,

$$
\|\underset{\sim}{2 z}\|=\|\underset{\sim}{z}\| .
$$

It is well-known (cf. [8, 10, 18]) that every $m \times n$ matrix $\Phi(m \geq n)$ of rank $\mathrm{r} \leq \mathrm{n}$, can be orthogonally transformed into "triangular" form, viz. there exist Q, Z orthogonal, such that
(3.1)

$$
Q \Phi Z^{\top}=\left[\begin{array}{c|c}
\tilde{T} & 0 \\
\hline 0 & 0
\end{array}\right] \equiv T
$$

where $\underset{T}{\sim}$ is an $r \times r$ upper triangular and nonsingular matrix. Then

$$
\Phi^{+}=Z^{\top} T^{+} Q=Z^{\top} \quad\left[\begin{array}{c}
\tilde{T}^{-1} \\
\hline 0
\end{array}\right] \quad 0 \quad Q,
$$

and consequently,

$$
P_{\Phi}=\Phi \Phi^{+}=Q^{\top}\left[\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right] Q ; \quad P_{\Phi}^{\perp}=Q^{\top}\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & I_{\mathrm{m}-\mathrm{r}}
\end{array}\right] Q .
$$

(Similarly, though we don't use it in our calculation: $\cap$

$$
\left.\Phi^{P}=\Phi^{+} \Phi=z^{\top}\left[\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right] \quad z ; \quad \Phi^{\perp}=z^{\top}\left[\begin{array}{l|l}
0 & 0 \\
\hline 0 & I_{n-r}
\end{array}\right] z .\right)
$$

Due to the isometric properties of the orthogonal trans: ${ }_{\text {formation }} Q$,
the least squares problem can be expressed as

$$
\min _{\underset{\sim}{b}}\|\underset{\sim}{y}-\Phi \underset{\sim}{b}\|^{2}=\min _{\sim}\|\underset{\sim}{Q y}-\underset{\sim}{b}\|^{2}
$$



$$
\begin{equation*}
\stackrel{\wedge}{\mathrm{b}}=\mathrm{Z}^{\top}\left[\frac{\tilde{T}^{-1}-\overline{\mathrm{y}}_{1}}{\underset{\sim}{\sim}}\right] \tag{3.2}
\end{equation*}
$$

A simple computation shows that:
(3.3) $\quad\|\underset{\sim}{y}-\underset{\sim}{\underset{\sim}{b}}\|^{2}=\left\|P_{\Phi}^{1} \underset{\sim}{y}\right\|^{2}=\left\|\bar{y}_{2}\right\|^{2}$.

Therefore, one can evaluate the nonlinear functional $r_{2}(\underset{\sim}{\alpha})$ of (2.8) for any value of $\underset{\sim}{\boldsymbol{\alpha}}$ in the following way: First the orthogonal matrix $\underset{\sim}{\boldsymbol{\alpha}} \underset{\sim}{\boldsymbol{\alpha}})$ that is used in the reduction of $\Phi(\underset{\sim}{\alpha})$ is determined; simultaneously, $\underset{\sim}{\bar{y}}=Q y$ is computed, and finally
(3.4)

$$
r_{2}(\underset{\sim}{\alpha})=\left\|{\overline{\underset{y}{z}}}_{2}\right\|^{2}
$$

is evaluated.
For minimization techniques not requiring derivatives this is all that is needed. For iterative techniques using the gradient of the functional or the Jacobian of the residual. vector function $\underset{\Phi}{\mathbb{P}}(\underset{\sim}{\alpha}) \underset{\sim}{y}$, we shall provide in the next section formulas which will also be useful in the proof of Theorem 2.1 .
4. Fréchet derivatives of pseudoinverses, projectors, and residual vectors.

In this section we develop formulas for the Fréchet derivative of the pseudoinverse of a matrix function. This leads to expressions for the derivatives of the associated orthogonal projectors, and for the residual vector function
(4.1) $\quad \underset{\sim}{r}(\underset{\sim}{\alpha})=P_{\Phi}^{\perp}(\underset{\sim}{\alpha}) \underset{\sim}{y}$.

As an aid to those readers not familiar with these concepts, we observe that an $m \times n$ matrix function $A(\alpha)$ is a nonlinear mapping between the linear space of parameters $\underset{\sim}{\boldsymbol{\alpha}} \in \mathbb{R}^{k}$ and the space of linear transformations $\mathcal{L}\left(\mathbb{R}^{\mathrm{n}}, \boldsymbol{R}^{\mathrm{m}}\right)$. Consequently, $\mathbf{D A}(\underset{\sim}{\boldsymbol{\alpha}})$ will be, for each $\boldsymbol{\alpha}$, an element of $\mathcal{L}\left(\Omega^{k}, \mathcal{L}\left(\Omega^{n}, R^{m}\right)\right)$. Thus, DA( $\left.\underset{\sim}{\alpha}\right)$ could be interpreted as a tridimensional tensor, formed with $k$ ( m X n ) matrices (slabs), each one containing the partial derivatives of the elements of $A$ with respect to one of the variables $\boldsymbol{\alpha}_{i}$. Still in another way, each column in the k -direction is the gradient of the corresponding matrix element.

Since all dimensions involved are different, it will be always clear in the algebraic manipulations how the different vectors, matrices, and tensors interact.

Lemma 4.1. For any $\underset{\sim}{\alpha} \in \Omega$, an open set of $\boldsymbol{R}^{k}$, let $B(\underset{\sim}{\alpha})$ be an $m \times n$ full column rank matrix function, and $\underset{\sim}{C}(\alpha)$ an $\eta \times m$ full row rank matrix function $\cdot$ If Bead $C(\alpha)$ are Fréchet differentiable in $\Omega$, then (4.2) $\quad \mathbf{D}\left(B^{+}\right)=-B^{+} \mathbf{D B} B^{+}+\left(\begin{array}{ll}B^{\top} & B\end{array}\right)^{-1} D_{B^{\top}} P_{B}^{\perp}$,

$$
\begin{equation*}
\mathbf{D}\left(\mathrm{C}^{+}\right)=-\mathrm{C}^{+} \mathbf{D C} \mathrm{C}^{+}+{ }_{C^{\prime}} \mathrm{P}^{1} \mathbf{D} \mathrm{C}^{\top}\left(\mathrm{CC}^{\top}\right)^{-1} \tag{4.3}
\end{equation*}
$$

proof. Since $B$ has full column rank, then $B^{+}=\left(B^{\top} B\right)^{-1} B^{\top}$, and

$$
D\left(B^{+}\right)=D\left(B^{\top} B\right)^{-1} B^{\top}+\left(B^{\top} B\right)^{-1} D B^{\top}
$$

But,

$$
\mathbf{D}\left(B^{\top} B\right)^{-1}=-\left(B^{\top} B\right)^{-1} D\left(B^{\top} B\right)\left(B^{\top} B\right)^{-1} .
$$

Therefore,
(4.4) $\quad D\left(B^{+}\right)=\left(B^{\top} B\right)^{-1}\left[D B^{\top}-D\left(B^{\top} B\right) B^{+}\right]$.

Developing $\mathbf{D}\left(B^{\top} B\right.$ ) and regrouping, we obtain (4.2). Since $C^{\top}$ has full column rank, (4.3) follows readily from (4.2).

$$
\text { Since } P_{A(\underset{\sim}{\alpha})}=A A+, P_{A(\underset{\sim}{\alpha})}^{\perp}=I-A A+, \text { it follows that }
$$

(4.5) $D P_{A}=D A A^{+}+_{A} D\left(A^{+}\right)$,
and

$$
\begin{equation*}
D P_{A}^{\perp}=-D P_{A} \tag{4.6}
\end{equation*}
$$

If $\mathrm{A}(\underset{\sim}{\boldsymbol{\alpha}})$ has full column rank, then from (4.5) and Lemma 4.1 we obtain

$$
\begin{equation*}
D{ }_{A} P_{A}^{\perp} D A A^{+}+\left(P_{A}^{+} D A A^{+}\right)^{\top} \tag{4.7}
\end{equation*}
$$

Similarly, if A has full row rank:

$$
\begin{equation*}
\mathbf{D}_{A} P=A^{+} \mathbf{D}_{A}{ }_{A}{ }^{\boldsymbol{P}}+\left(A^{+} \mathbf{D A}_{A^{\prime}} P^{\boldsymbol{L}}\right)^{\top} \tag{4.8}
\end{equation*}
$$

We shall prove now that formulas (4.7) and (4.8) are valid in the rank deficient case. For this purpose we shall prove first an auxiliary Lemma, and then obtain the derivative of the pseudoinverse of an arbitrary matrix function.

Let $\mathrm{A} \underset{\sim}{\boldsymbol{\alpha}})$ be an m X n matrix function, Fréchet differentiable,
and with constant rank $r \leq \min (m, n)$, on an open set $\Omega \subset \mathbb{R}^{k}$. Let $B(\alpha)$ be a maximal set of independent columns of $\underset{\sim}{A}(\boldsymbol{\alpha})$ in $\Omega$, and let $C=B+A$. It is well-known (see, for instance, [16]): (1) C has full row rank, (2) $A=B C$, (3) $A+=C+B+$. Due to our hypothesis, $B(\underset{\sim}{\alpha})$ can be formed with the same columns of $A(\underset{\sim}{\alpha})$ on a neighborhood of every $\underset{\sim}{\alpha} \in \Omega$, other useful relations that we shall use below are

$$
A A+=P_{A}=B B+=P_{B} ; B^{+} P_{A}^{\perp}=0 ;
$$

$$
\mathrm{CA}+=\mathrm{B}^{+} \mathrm{AA}^{+}=\mathrm{B}+; \stackrel{1}{\mathrm{P}_{\mathrm{A}} \mathrm{~B}}=0 ; \mathrm{P}_{\mathrm{A}}^{1} \mathrm{~A}^{\top}=0
$$

Lemma 4.2. With A, B, and C defined as above, the following formula is $\underline{\text { valid in } \Omega:}$

$$
\begin{equation*}
B \boldsymbol{D B}^{+} \quad P_{A}^{\perp}=\left(D A A+,^{\prime} \quad P_{A}^{\perp} .\right. \tag{4.9}
\end{equation*}
$$

Proof: From Lemma 4.1 we get

$$
\begin{aligned}
B D B+ & =-P_{B} D B B^{+}+\left(D B B^{+}\right)^{\top} P_{B}^{\perp} \\
& =-P_{A} D B B^{+}+\left(D B B^{+}\right)^{\top} P_{A}^{\perp} .
\end{aligned}
$$

Therefore,

$$
\text { (4.10) } \quad B D B+P_{A}^{\perp}=\left(D B B^{+}\right)^{\top} P_{A}^{\perp},
$$

On the other hand, since $A=B C$,
$\mathrm{DA}_{\mathrm{A}} \mathrm{A}^{+}=\mathrm{DB}_{\mathrm{B}} \mathrm{CA}++\quad \mathrm{BDC} \mathrm{A}^{+}=\mathrm{DB}_{\mathrm{B}}{ }^{+}+\mathrm{BDC}_{\mathrm{A}^{+}}$.

Thus,

$$
P_{A}^{\perp} D A \quad A^{+}=P_{A}^{\perp} D B B^{+},
$$

or
$\left(\begin{array}{ll}D_{A} & A^{+}\end{array}\right)^{\top} P_{A}^{\perp}=\left(\begin{array}{lll}D B & B^{+}\end{array}\right)^{\top} P_{A}^{\perp}$,
and this last expression together with (4.10) proves the Lemma.

Ieteorem 4.3. $\subset \quad \boldsymbol{R}^{\mathbf{k}}$ be an open set and for $\underset{\sim}{\alpha} \in \Omega$ let $A(\underset{\sim}{\alpha})$ be an $m \times n$ Fréchet differentiable matrix function having fixed rank $r \leq \min (m, n)$.

Then for any $\underset{\sim}{\boldsymbol{\alpha}} \in \Omega$ :
(4.11) D $A^{+}=-A^{+} D A A++A^{+} A^{+\top} D A^{\top} \quad P_{A}^{\perp}+A^{\perp} D^{\top} A^{\top} \quad{ }^{\top}+\quad$.
proof: With $B$ and $C$ as above, we have that

$$
\mathbf{D ~ A ~}^{+}=\mathbf{D}\left(\mathrm{C}^{+} \mathrm{B}^{+}\right)=\mathbf{D C}^{+} \mathrm{B}^{+}+\mathrm{C}^{+} \mathbf{D}_{\mathrm{B}^{+}},
$$

and hence by (4.3)

$$
\mathbf{D} A^{+}=-\mathrm{C}^{+} \mathbf{D C C ^ { + }} \mathrm{B}^{+}+\mathrm{C}^{\mathrm{P}^{1}} \mathbf{D C}^{\top} \quad \mathrm{C}^{+} \mathrm{B}^{+}+\mathrm{C}^{+} \mathbf{D}_{\mathrm{B}^{+}},
$$

since

$$
\left(\mathrm{Cc}^{\top}\right)^{-1}=\mathrm{c}^{\Psi^{\top}} \mathrm{c}^{+} .
$$

Substituting

$$
D C=D\left(B^{+} A\right)=D_{B^{+}} A+B^{+} D_{A}, C^{+} B^{+}=A^{+}, C^{P}{ }^{\perp}={ }_{A} P^{\perp},
$$

in the last expression we get:
(4.12)

$$
\begin{aligned}
& \mathbf{D A}^{+}=-\mathrm{A}^{+} \mathbf{D A A +}+\mathrm{C}^{+} \mathbf{D B}^{+}-\mathrm{C}^{+} \mathbf{D B}^{+} \mathrm{AA}++{ }_{A^{1}}{ }^{1} \mathbf{D C}^{\top} \quad \mathrm{C}^{+^{\top}} \mathrm{A}^{+} \\
& =-\mathrm{A}^{+} \mathbf{D A}_{\mathrm{A}} \mathrm{~A}++\mathrm{C}^{+} \mathbf{D B}^{+} \mathrm{P}_{\mathrm{A}}{ }^{1}{ }_{A} \mathrm{P}^{\boldsymbol{1}} \mathbf{D C} \mathrm{C}^{\top} \quad \mathrm{C}^{+^{\top}} \mathrm{A}+
\end{aligned}
$$

But,
(4.13) $\quad A^{P^{+}} D C^{\top} C^{+^{\top}} A^{+}=A^{P D} A^{\top} A^{+\top} A^{+}+A^{P} A^{\top} D_{B^{+\top}} C^{+\top} A^{+}$

$$
=A^{P D A^{\top} \quad \bar{A}^{+T^{\prime}} A+},
$$

since $A^{P A}=0$.
Substituting (4.13) into (4.12) and using the relationship $C^{+} \mathbf{D} B^{+} P_{A}=$ $A^{+} B D_{B}{ }^{+} \quad P_{A}=A^{+} A^{+}{ }^{\top} D_{A}{ }^{\top} \quad P_{A}$, given by Lemma 4.2, we finally obtain the desired result.

Corollary 4.3. Let $A(a)$ be as in Theorem 4.2. Then, for any $\alpha \in \Omega$. (4.14a) $D P_{A}=\mathbf{D}\left(A^{+}\right)=P_{A}^{1} D A A^{+}+\left(P_{A}^{1} D A A^{+}\right)$,
(4.14b) $D_{A} P=D\left(A^{+} A\right)=A^{+} D_{A} A^{P^{\perp}}+\left(A^{+} D_{A} A^{\perp}\right)^{\top}$.

Proof: Obvious. I
From this result it is now easy to derive an expression for the gradient of the functional $r_{2}(\underset{\sim}{\alpha})$ ( see (2.8)), provided the matrix $\Phi(\mathcal{\alpha})$ has constant rank on an open neighborhood of the point in which the gradient is calculated. In fact:

$$
\begin{equation*}
r_{2}(\underset{\sim}{\alpha})=\left\|P_{\Phi}^{1}(\underset{\sim}{\alpha}) \underset{\sim}{y}\right\|^{2}=\left\langle P^{1} \underset{\sim}{y}, P^{1} \underset{\sim}{y}\right\rangle \tag{4.15}
\end{equation*}
$$

and

$$
\frac{\frac{1}{2}}{} \nabla r_{2}(\underset{\sim}{\alpha})=-{\underset{\sim}{y}}^{\top} \dot{P} \quad\left[\begin{array}{lll}
P^{\perp} \mathbf{D} \Phi & \left.\Phi^{+}+\Phi^{\top} \mathbf{D}^{\top} \quad P^{\perp}\right] \underset{\sim}{y} .
\end{array}\right.
$$

Since $P_{\Phi}^{\perp} \Phi^{\top}=0$, we finally obtain:

Now we have the elements for proving Theorem 2.1.

Proof of Theorem 2.1.
From (2.2) we have that $r(\underset{\sim}{a}, \underset{\sim}{\alpha})=\|\underset{\sim}{y}-\Phi(\underset{\sim}{\alpha}) g(\underset{\sim}{a})\|^{2}$.
Therefore,

$$
\text { (4.17) } \quad \frac{1}{2} \nabla r(\underset{\sim}{a}, \underset{\sim}{\alpha})=-(\mathrm{y}-\Phi \mathrm{g})^{\top}\left(\mathrm{D} \Phi \mathrm{~g}+\Phi \mathrm{D}_{\mathrm{g}}\right)
$$

Assume now that $\underset{\sim}{\alpha}$ is a critical point of $\left.r_{2} \underset{\sim}{\underset{\sim}{\alpha}}\right)$, and that $\underset{\sim}{\hat{\alpha}}$ satisfies

$$
\text { (4.18) } \underset{\sim}{g}(\underset{\sim}{\underset{\sim}{a}})=\Phi^{+}(\underset{\sim}{\underset{\alpha}{\alpha}}) \underset{\sim}{y} .
$$

Then,

$$
\begin{align*}
\frac{1}{2} \nabla r(\underset{\sim}{\hat{a}}, \underset{\sim}{\hat{\alpha}}) & =-\left(P_{\Phi}^{2} \underset{\sim}{y}\right)^{\top}\left(D \Phi \Phi^{+} y+\Phi D_{\mathbb{\sim}}\right)  \tag{4.19}\\
& =\frac{1}{2} \nabla r_{2}(\underset{\sim}{\hat{\alpha}})
\end{align*}
$$

since $\underset{\sim}{y}{ }^{\top} P_{\Phi}^{1} \Phi \mathbf{D}_{\underset{\sim}{g}}=\underset{\sim}{0}$. Thus $(\underset{\sim}{\hat{a}}, \underset{\sim}{\hat{\alpha}})$ is a critical point of $r(\underset{\sim}{\text { a }} \underset{\sim}{\alpha})$,

Assume now that $\underset{\sim}{\alpha}$ is a global minimizer of $r_{2}(\underset{\sim}{\alpha})$ in $\Omega$, and $\underset{\sim}{\underset{\sim}{\sim}}$ satisfies (4.18). Then clearly, $r(\underset{\sim}{\hat{a}} \underset{\sim}{\underset{\sim}{\alpha}})=r_{2}(\underset{\sim}{\hat{\alpha}})$. Assume that there exists $\left({\underset{\sim}{a}}_{\sim}^{*}, \alpha^{*}\right),{\underset{\sim}{\alpha}}^{*} \in \Omega$, such that $r\left({\underset{\sim}{a}}^{*}, \underset{\sim}{\alpha}\right)<r(\underset{\sim}{a} \underset{\sim}{\hat{\alpha}} \underset{\sim}{\hat{\alpha}})$. Since for any $\underset{\sim}{\alpha}$ we have $r_{2}(\underset{\sim}{\alpha}) \leq r(\underset{\sim}{a}, \underset{\sim}{\alpha})$, then it follows that $r_{2}\left(\underset{\sim}{\alpha}{ }^{*}\right) \leq r\left(\underset{\sim}{a}, \underset{\sim}{\alpha}{\underset{\sim}{*}}^{*}\right)<$ $r(\underset{\sim}{\hat{a}}, \underset{\sim}{\alpha})=r_{2}(\underset{\sim}{\hat{\alpha}})$, which is a contradiction to the fact that $\underset{\sim}{\alpha}$ was a global
minimizer of $r_{2}(\underset{\sim}{\alpha})$ in $\Omega$. Therefore $\left(\hat{a}, \hat{\sim} \mathcal{N}_{\sim}\right)$ is a global minimizer of $r(\underset{\sim}{\sim}, \underset{\sim}{\alpha})$ in $\Omega$ and part (a) of the Theorem is proved.

Conversely, suppose that $(\underset{\sim}{\hat{a}} \underset{\sim}{\alpha})$ is a global minimizer of $r(\underset{\sim}{\alpha}, \underset{\sim}{\alpha})$ in $\Omega$, then as above

$$
\begin{gathered}
r_{2}(\underset{\sim}{\alpha}) \leq r(\underset{\sim}{a}, \underset{\sim}{\alpha}) \\
\text { Now let } \stackrel{\wedge}{\sim}_{*}^{\sim} \text { be a solution of } g(a)=\Phi^{+}(\underset{\sim}{\alpha}) \mathbb{y}
\end{gathered}
$$

Then we have

$$
r_{2}(\underset{\sim}{\alpha})=r\left({\underset{\sim}{*}}^{*}, \underset{\sim}{\alpha}\right) \leq r(\underset{\sim}{\underset{\sim}{\alpha}} \underset{\sim}{\hat{\alpha}})
$$

but since $(\underset{\sim}{a} \underset{\sim}{\alpha})$ was a global minimizer we must have equality. If there was an unique $\underset{\sim}{a}$ among the minimizes of $r(\underset{\sim}{a} \underset{\sim}{\alpha})$, then $\underset{\sim}{a} \stackrel{\wedge}{\sim} \cdot$ We still have to show that $\underset{\sim}{\alpha}$ is a global minimizer of $r_{2}(\underset{\sim}{\alpha})$. Assume that it is not. Thus, there will be $\underset{\sim}{\alpha} \in \Omega$, such that $r_{2}(\underset{\sim}{\alpha})<r_{2}(\underset{\sim}{\alpha})$. Let $\underset{\sim}{\bar{\alpha}}$ be a solution of $g(\underset{\sim}{a})=\Phi^{+}(\underset{\sim}{\alpha}) y$. Then $r_{2}(\underset{\sim}{\alpha})=r(\underset{\sim}{a}, \underset{\sim}{\alpha})<r_{2}(\underset{\sim}{\alpha})=r(\underset{\sim}{\alpha} \underset{\sim}{\alpha})$, which is a contradiction to the fact that $(\hat{\alpha}, \underset{\sim}{\alpha})$ was a global minimizer of $r(\underset{\sim}{a}, \underset{\sim}{\alpha})$. I
5. Algorithmia II. Detailed implementation of the Gauss-Newton-Marquardt algorithm.

```
    We shall now explain in detail how to apply the results of Section 4
    to the Marquardt modification of the Gauss-Newton iterative procedure; we make
    extensive use of linear least squares techniques. We shall include an econo-
    mical implementation of the Marquardt algorithm devised earlier by Golub
(see also [11,14]).
    We define the vector
```

$$
\underset{\sim}{{\underset{\sim}{x}}_{2}}(\underset{\sim}{\alpha})=P_{\Phi}^{\perp}(\underset{\sim}{\alpha}) \underset{\sim}{y} .
$$

The generalized Gauss-Newton iteration-with step control for the nonlinear least squares problem

$$
\begin{equation*}
\left.\min _{\underset{\sim}{\alpha}} r_{2}(\underset{\sim}{\alpha})=\min _{\underset{\sim}{\alpha}}\left\|\underset{\sim}{r}{\underset{\sim}{x}}^{(\alpha)}\right\|=\underset{\sim}{\operatorname{\alpha }}\right)\left\|P_{\Phi}^{\perp}(\underset{\sim}{\alpha}) \underset{\sim}{y}\right\| \tag{5.1}
\end{equation*}
$$

is given by
G.N. Starting from an arbitrary $\alpha^{0}$ :

$$
\begin{equation*}
\left.{\underset{\sim}{\alpha}}^{\ell+1}={\underset{\sim}{\alpha}}^{\ell}-t_{\ell}\left[\operatorname{Dr}_{\sim}{ }_{2}\left({\underset{\sim}{\alpha}}^{\ell}\right)\right]_{\underset{\sim}{r}}^{\underset{\sim}{r}}{\underset{\sim}{\alpha}}^{\ell}\right),(\ell=0, \ldots) . \tag{5.2}
\end{equation*}
$$

The parameters $t_{\ell}>0$, which control the size of the step, are used to prevent divergence. Usually $t_{a}=1$, unless $r_{2}\left({\underset{\sim}{\alpha}}^{l+1}\right)>r_{2}\left({\underset{\sim}{\alpha}}^{\ell}\right)$, in which case $t_{\ell}$ is reduced. Another use of the parameters $t_{\ell}$ is to minimize $r_{2}\left({\underset{\sim}{\alpha}}^{\ell+1}\right)$ along the direction $\left[{\underset{\sim}{\sim}}_{2}\left({\underset{\sim}{\alpha}}_{\alpha}^{\ell}\right)\right]^{+}{\underset{\sim}{r}}_{2}\left({\underset{\sim}{\alpha}}^{\ell}\right)$.

Marquardt's modification calls for the introduction of a sequence of non negative auxiliary parameters $\nu_{\ell}>0$.
G.N.M._ Define
where for each $\boldsymbol{\ell}, \mathrm{F}_{\boldsymbol{\ell}}$ is the upper triangular Cholesky factor of an $\mathrm{n} \times \mathrm{n}$
symnetric positive definite matrix $M_{\ell}$. Then the Gauss-Newton-Marquardt iteration is given by

$$
{\underset{\sim}{\alpha}}^{\ell+1}={\underset{\sim}{\alpha}}_{\ell}^{\ell}-\mathrm{K}_{\ell \sim}^{+} \underset{\sim}{\ell}, \quad \ell \geq 0 .
$$

Reasons for this modification are well-known. For more details and an interesting study of the convergence of this method we refer to [14]. We wish to make explicit now the "two-stage orthogonal factorization" given in [11] and [14], in order to show how to take advantage of the special structure of the problem.

$$
\text { Calling } \underset{\sim}{h}={\underset{\sim}{\alpha}}^{\ell+1}-{\underset{\sim}{\alpha}}^{\ell}, \quad \mathrm{DP}=\mathrm{Dr}_{\underset{\sim}{ }}(\underset{\sim}{\alpha})=D P_{\Phi}^{1} \mathbb{Z}
$$

and dropping the superscript $\boldsymbol{\ell}$ from here on in, one step of the Marquardt algorithm is equivalent to solving the linear least squares problem

$$
\underset{\sim}{\mathrm{Kh}} \cong\left[\frac{\underset{\sim}{-r_{2}(\alpha)}}{\underset{\sim}{\sim}}\right]
$$

In the first stage of the orthogonal factorization of $K$ an $m \times n$ orthogonal matrix $Q$ is chosen so that

$$
Q D P=R_{1}=\left[\frac{Q}{0}\right]^{n} \equiv\left[\frac{R_{1}^{\prime}}{O}\right]
$$

Thus,

$$
\begin{aligned}
& \qquad\left[\begin{array}{l|l}
Q & 0 \\
\hline 0 & I_{n}
\end{array}\right] \cdot\left[\frac{D P}{\nu F}\right] \equiv Q_{4}\left[\frac{D P}{\nu F}\right]=\left[\frac{R_{1}}{\nu F}\right], \\
& Q_{1}\left[\frac{-r_{2}(\alpha)}{0}\right] \equiv\left[\frac{\underset{\sim}{r}}{\underset{\sim}{\sim}}\right] \cdot \\
& R_{1}^{\prime} \text { and } \bar{r}_{\sim}^{r} \text { are saved for future use. }
\end{aligned}
$$

In the second stage we choose an $(m+n) \times(m+n)$ orthogonal matrix to reduce

$$
A \equiv\left[\begin{array}{c}
R_{1}^{\prime} \\
\hline \nu F
\end{array}\right] \text { to "triangular" form. }
$$

For this purpose we shall use successive Householder transformations as in [3], from where we adopt the notation.* "

On reducing the first column of $A$, which is of the form:

$$
{\underset{\sim}{a}}_{(1)}^{(1)}=\left[\begin{array}{l}
a_{11}^{(1)} \\
0 \\
\vdots \\
\cdot \\
0 \\
\hline \mu \\
0 \\
\vdots \\
0
\end{array}\right] m=\quad, \quad \mu=v f_{11}
$$

we use $Q^{(1)}=I-\beta_{1}{\underset{\sim}{u}}^{(1)_{\sim}^{u}}{ }^{(1)_{T}}$,
where

$$
\begin{aligned}
& u_{1}^{(1)}=\operatorname{sign}\left(a_{11}^{(1)}\right)\left(\sigma_{1}+\left|a_{11}^{(1)}\right|\right), \\
& \sigma_{1}=\left(a_{11}^{2}+\mu^{2}\right)^{\frac{1}{2}}, \\
& u_{m+1}^{(1)}=\mu, \\
& u_{1}^{(1)}=0, \text { otherwise, } \\
& \beta_{1}=2 /{\underset{\sim}{u}}_{(1)^{\top}}^{\underset{\sim}{u}}
\end{aligned}
$$

Now we observe that when $e^{(1)}$ is applied to a vector, any component corresponding to a zero component of $\underset{\sim}{\underset{\sim}{u}}(1)$ is left unchanged. In particular,
the band of zeros in A is preserved. Thus, in this first step we only need to transform the elements of rows number 1 and $m+1$. Consequently, $A^{(2)}=Q^{(1)_{A}}$ will have the schematic form:

where the asterisks indicate the modified elements.
It is now clear that at step $k, A(k)$ will have the form

$$
A^{(k)}=\left[\frac{0}{0} \frac{0 u \| \pi}{0} 0\right.
$$

The matrix $A^{(k+1)}, k=1, \ldots, n$, is obtained as follows:
i) $\quad 0 k=\left(\left(a_{k k}^{(k)}\right)^{2}+\sum_{i=1}^{k}\left(a_{m+i, k}^{(k)}\right)^{2}\right)^{\frac{1}{2}}$,
ii) $\beta_{k}=\left(\sigma_{k}\left(\sigma_{k}+\left|a_{k k}^{(k)}\right|\right)\right)^{-1}$,
iii) $u_{i}^{(k)}=0$ for $i<k, k+1 \leq i \leq m, m+k<i$;
$u_{k}^{(k)}=\operatorname{sign}\left(a_{k k}^{(i n)}\right)\left(\sigma_{k}+\left|a_{k k}^{(n)}\right|\right) ;$
$u_{i}^{(k)}=a_{i}^{(k)}, m+1 \leq i \leq m+k$.

$$
\text { iv) } \begin{aligned}
y^{\top} & =\beta_{k}{\underset{\sim}{u}}^{(k)^{\top}} A_{A}^{(k)}, \\
y_{j} & =\beta_{k}\left[u_{k}^{(k)} a_{k j}^{(k)}+\sum_{i=1}^{k} a_{m+i, k}^{(k)} a_{m+i, j}^{(k)}, j=k+1, \ldots, n .\right.
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \text { v) } a_{i j}^{(k+1)}=a_{i j}^{(k)}-u_{i}^{(k)} y_{j}, \quad \begin{array}{l}
i=k ; m+1, \ldots, m+k ; \\
j=k+1, \ldots, n ;
\end{array} \\
& a_{k k}^{(k+1)}=\operatorname{sign}\left(a_{k k}^{n n(k)} \sigma_{k}\right. \text {. } \\
& \text { - * }
\end{aligned}
$$

These formulas are similar to those given in [3], but are modified to take advantage of the structure of the matrix $A$.

Osborne's version of Marquardt's algorithm, modified for our present problem, is presented in the detailed flow-chart of Figure 1. DECR and EXP are the factors by which $v$ is either decreased or increased.


22-

We will evaluate $\mathrm{D}_{\underset{\sim}{r}}^{\underset{\sim}{2}}(\underset{\sim}{\alpha})=\mathrm{DP}_{\Phi}^{1}(\alpha)^{\mathbb{L}}$ for a given $\underset{\sim}{\alpha}$, according to

$$
\begin{equation*}
\left.D P_{\Phi(\alpha)}^{\perp}\right)^{\mathbb{Z}}=-\left(P_{\Phi}^{\perp} D \text { a }\right) \Phi^{+} \underset{\mathcal{L}}{ }-\Phi^{\Phi}\left(P_{\Phi}^{\perp} D \Phi\right)_{\sim}^{\top} \underset{\sim}{Y}, \tag{5.4}
\end{equation*}
$$

which is readily obtained from (4.14a).
In many applications, each component function $\varphi_{j}$ depends only upon a few of the parameters $\left\{\alpha_{t}\right\}_{t=1}^{k}$, and therefore its derivatives with respect to the other parameters will vanish. Those vanishing derivatives will produce m-columns of zeros in the tensor $\mathbf{D} \Phi$. In order to avoid a waste of storage and useless computation with zeros it is convenient to introduce from the outset the $k \times n$ incidence matrix $E=\left(e_{j t}\right)$. This matrix will be defined as follows:
$e_{j t}=1$ iff parameter $\alpha_{t}$ appears in function $\varphi_{j}$;
$\mathbf{e}_{j t}=0$ otherwise.
We shall also call $p$ the number of nonzero derivatives in $D \Phi: p=\sum_{t, j} e_{j t}$. The nonzero derivative vectors can then be stored sequentially in a bidimensional array $B(m \times p)$. In our implementation we chose to store the nonzero m-columns varying first the index corresponding to the different differentiations, and then that corresponding to the different functions. This information can then be decoded for use in algebraic manipulations by means of the incidence matrix $E$,

We now introduce some notation in order to describe the compressed storage of the nonzero columns of the tensor $\mathbf{D} \Phi$ in a more explicit fashion. We define, for $t=1, \ldots, k$,

$$
S_{t}=\left\{\text { set of ordered indices for which } e_{j t} \neq 0, j=1, \ldots, n\right\}
$$

$$
\psi_{t j}(\alpha)=\frac{\partial \varphi_{j}(\alpha)}{\partial \alpha_{t}} \quad, \quad j=1, \ldots, n, \quad t=1, \ldots, k
$$

We write the matrix B in partitioned form

$$
B=\left[B_{1}, B_{2}, \ldots, B_{k}\right],
$$

where

$$
B_{t}=\left[\psi_{t j_{1}}, \psi_{t j_{2}}, \cdots, \psi_{t j_{t}}\right]_{j_{i} \in-s_{t}} .
$$

A step-by-step description of the computation of $\mathbb{D P}_{\Phi}^{1} \mathbb{Z}$ follows. We assume that the rank of $\Phi(\alpha)$ is computationally determined and equal to $r \leq \min (m, n)$.
a) Compute $\Phi(\underset{\sim}{\alpha}), \mathbf{D} \Phi(\underset{\sim}{\alpha})$.
b) Form the $m \mathrm{x}(\mathrm{n}+\mathrm{p}+1)$ array

$$
G \equiv[\Phi(\underset{\sim}{\alpha}) ; \mathbb{X} ; D \Phi(\alpha)]=[A ; \mathbb{X} ; B] .
$$

c) Obtain the complete orthogonal factorization of $A$ (cf. Section 3):

$$
Q A Z^{\top}=T=\left[\begin{array}{c|c}
-T & 0 \\
\hline 0 & 0
\end{array}\right] ; \quad \widetilde{T}=\left[\begin{array}{l}
\square \\
O
\end{array}\right.
$$

Also

$$
\underset{\sim}{v}=Q \underset{\sim}{V} ; \quad C=Q B
$$

( $\widetilde{T}, \underset{\sim}{v}$, and $C$ will be stofrefo in the array G). Note again that (see Section 3):
d) Get the intermediary values:

$$
\text { e) } \underset{n \times k}{U}=\left(P^{\perp} D \Phi\right)^{\top} y=D \Phi^{\top} \quad Q^{\top}\left[\begin{array}{l|l}
0 & 0 \\
\hline 0 & I_{m-r}
\end{array}\right] \quad Q y=\bar{D}^{\top} \otimes v=\alpha_{\sim}^{\top}\left[\frac{0^{-}}{\frac{v_{2}}{\sim}}\right]
$$

(transposition in the tensor $\mathbf{D} \Phi$ refers to transposition within the "slabs" corresponding to the different derivatives, and must be interpreted adequately when decoding the information from the compressed storage array $G$; the appropriate AIGOL-60 code for computing $U$ with our storage convention would
c. be (assuming that $C=Q B$ is stored in the same place $B$ is:
f) Compute $S=Z$. U .
nxk

Solve the $k$, rxr lower triangular systems:

$$
\widetilde{T}^{\top} W=\widetilde{S} \quad \text { where } \underset{r \times k}{\widetilde{S}} \text { contains the first } r \text { rows of } S
$$

$$
\begin{aligned}
& \mathrm{n} 1 \leftarrow \mathrm{n}+1 ; \\
& \mathrm{L} \leftarrow \mathrm{n} 1 ; \\
& \text { for } t \leftarrow 1 \text { step } 1 \text { until } k \text { do } \\
& \text { for } j \leftarrow 1 \text { step } 1 \text { until } n \text { do } \\
& \text { if } E[j, t]=0 \text { then } U[j, t] \leftarrow 0 \text { else } \\
& \text { begin } L \leftarrow \mathrm{I}+1 \text {; acum } \leftarrow 0 \text {; } \\
& \text { for i} n \mathrm{n} 1 \text { step } 1 \text { until } m \text { do } \\
& \operatorname{acum} \leftarrow \operatorname{acum}+G[i, L] X G[i, n 1] ; \\
& U[j, t] \longleftarrow \text { acum } \\
& \text { end ; ) . }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{D}=\left[\begin{array}{l|l}
0 & 0 \\
\hline 0 & I_{m-r}
\end{array}\right] \cdot \begin{array}{l}
\text { C } \quad \begin{array}{l}
\text { i.e., Remember that the nonzero information } \\
\text { of } \bar{D} \text { is stored in the last } p \text { columns } \\
\text { and last m-r rows of } G) ;
\end{array}
\end{array}
\end{aligned}
$$

Store $W$ in the first $r$ rows of the $m \times k$ array $B$. Compute $\overline{\mathrm{D}} \underset{\sim}{x}$ and store the nonzero information in the last $m-r$ rows of $B$.
g) Finally, the $m \times k$ matrix $B$ is obtained as:

We emphasize the systematic use made of the triangular orthogonal decomposition of the matrix $\Phi(\underset{\sim}{\boldsymbol{\alpha}})$. We also warn the reader about the correct interpretation of the algebraic operations in which any tridimensional tensor intervene, as we exemplified in (e).

## 6. Numerical experiments.

We have implemented three different algorithms based on the developments of the previous sections for the case $\underset{\sim}{g}(\underset{\sim}{a})=\underset{\sim}{a}$ and rank $\Phi=n$. The methods minimize the variable projection functional $r_{2}(\alpha)=\left\|P_{\Phi}^{\boldsymbol{\Phi}}(\alpha) \mathbb{X}\right\|^{2}$ first, in order to obtain the optimal parameters $\underset{\sim}{\underset{\sim}{\alpha}}$, and then complete the optimization according to our explanation in Section 2. The algorithms differ in the procedure used for the minimization of $r_{2}(\underset{\sim}{\alpha})$.

Al. Minimization without derivatives. We use PRAXIS, a FORTRAN version of a 'program developed by R. Brent [4], who very kindly made it available to us. All that PRAXIS essentially requires from the user is the value of the functional for any $\underset{\sim}{\alpha}$. This is computed using the results of Section 3. In fact, the user has only to give code for filling the matrix $\Phi$ for any $\underset{\sim}{\boldsymbol{\alpha}}$, and our program will effect the triangular reduction and so on. It turns out that many times (see the examples) the models have some terms which are exclusively linear, i.e., functions $\varphi_{\vec{j}}$ which are independent of $\underset{\sim}{\alpha}$. Those functions produce columns in $\Phi(\underset{\sim}{\alpha})$ which are constant throughout the process. If they are considered first, then it is possible to reduce them once and for all, saving the repetition of computation. This is done in our program.

A2. Minimization by Gauss-Newton with control of step (see (5.2)).
The user is required to provide the incidence matrix E and the array of functions $\varphi_{j}$ and non-vanishing partial derivatives: G . See Section 5 for a more detailed description.

A3. Minimization by Marquardt's modification, as explained in Section 5 with
$F_{\ell} \equiv I . \quad$ User supplied information is the same as in A2.

Test problems. Problems 1 and 2 are taken from Osborne [14], where the necessary data can be found.

P1. Exponential fitting. The model is of the form:

$$
n_{1}(\underset{\sim}{a}, \alpha ; t)=a_{1}+a_{2} e^{-\alpha_{1} t}+a_{3} e^{-\alpha_{2} t}
$$

The functions $\varphi_{i}$ are obviously $\varphi_{1}(\underset{\sim}{\alpha} ; t) \equiv 1, \varphi_{j+1}(\underset{\sim}{\alpha} ; t)=e^{-\alpha{ }_{j}^{t}}, \quad j=1,2$.
So the different constants, in the notation of Section 2 are: $n=3, s=3, k=2$.
For the problem considered, $m=33$. The number of constant functions: $N C F=1$.
The number of non-vanishing partial derivatives: $p=2$.
In Table I we compare our results for methods Al, A2, A3, and those obtained by minimizing the full functional rear $\underset{\sim}{\boldsymbol{\alpha}})$.

P2. Fitting Gaussian with an exponential background.

$$
n_{2}(a, \underset{\sim}{\alpha} ; t)=a_{1} e^{-\alpha_{1} t}+a_{2} e^{-\alpha_{2}\left(t-\alpha_{5}\right)^{2}}+a_{3} e^{-\alpha_{3}\left(t-\alpha_{6}\right)^{2}}+a_{4} e^{-\alpha_{4}\left(t-\alpha_{7}\right)^{2}}
$$

The functions $\varphi_{j}$. are:

$$
\left.\varphi_{1}(\alpha ; t)=e^{-\alpha_{1} t} ; \varphi_{j}(\underset{\sim}{\alpha} ; t)=e^{-\alpha_{j}(t-\alpha} j+3\right)^{2} \quad, \quad j=2,3,4
$$

Thus: $n=4, s=4, k=7, m=65, p=7$.
Results for this problem appear in Table II.

P3. - Iron Mössbauer Spectrum with two sites of different electric field gradient and one single line [21].

The model here is the following:

$$
\begin{aligned}
& n_{3}(a, \underset{\sim}{\alpha} ; t)=a_{1}+a_{2} t+a_{3} t^{2} \\
& \text {-a I } \\
& \alpha_{3} \\
& -a_{6}\left[\frac{1}{1+\left(\frac{\alpha_{7}-t}{\alpha_{8}}\right)^{2}}\right]
\end{aligned}
$$

Clearly, $\varphi_{j}(\underset{\sim}{\alpha} ; t)=t^{J}, j=1,2,3 ;$ and $\varphi_{4}, \varphi_{5}, \varphi_{6}$ are the functions
L. inside the square brackets.

Here: $n=6, k=8, N C F=3, p=8, m=188, s=6$.
For this example we wish to thank Dr. J. C. Travis of NBS who kindly supplied the problem and results from his own computer program.

Comparisons are offered in Table III.
The qualitative behavior of the three different minimization procedures used in our computation follows the pattern that have been expounded in recent comparisons (Bard [1]). Gauss-Newton is fastest whenever it converges from a good initial estimate. As is shown in the fitting of Gaussians (Table II), if the problem is troublesome, then a more elaborate strategy is called for. Brent's program has the advantage of not needing derivatives, which in this case leads to a big simplification. On the other hand, it is a very conservative program which really tries to obtain rigorous results. This, of course, can lead to a long search in cases where it is not entirely justified.

As a consequence of our Theorem 2.1, and of our numerical expcs nce, we strongly recommend, even in the case when our procedure is no used, to obtair
initial values for the linear parameters when $g_{j}(\underset{\sim}{a})=a_{j}$ by setting ${\underset{\sim}{a}}^{\circ}$. $\Phi^{+}(\underset{\sim}{\alpha}) y$. This is done in our program for the full functional and in the program of Travis with excellent results.

The computer times shown in Table I and Table II correspond to the CPU times (execution of the object code) on an IBM 360/50. All calculations were performed in long precision; viz. 14 hexadecimal digits in the mantissa of each number. We compare the results of minimizing the reduced functional when the Variable Projection (VP) technique is used with that of minimizing the full functional (FF) for various minimization algorithms. In order to eliminate the coding aspect, we have used essentially the same code for minimizing the two functionals. The only difference was in the subroutine DPA which computes in both cases the Jacobian of the residual vector.

In the FF approach, the subroutine DPA computed the $m X(n+k)$ matrix B as follows: the first $n$ columns consisted of the vectors ${\underset{\sim}{j}}_{j}^{(\underset{\sim}{\alpha})}$ while the remaining columns were the partial derivatives

$$
\frac{\partial}{\partial \alpha_{\hat{\alpha}}}(y-\Phi(\underset{\sim}{\alpha}) \underset{\sim}{a})=-\sum_{j=1}^{n} a_{j} \frac{\partial \mathscr{q}_{j}(\underset{\sim}{\alpha})}{\partial \alpha_{n}},(\ell=1,2, \ldots, k) .
$$

These derivatives were constructed using the same information provided by the user subroutine ADA. We also obtained from DPA in the FF case, the automatic initialization of the linear parameters, viz. $\sim^{a^{0}=\Phi}{ }^{+}\left({\underset{\sim}{\alpha}}^{0}\right) \underset{\sim}{x}$.

For the numerical examples given here, the cost per iteration was somewhat higher for the VP functional. However, we see that in some cases there has been a dramatic decrease in the number of iterations; this has been observed previously (cf. [12]). Thus, in these cases the total computing time is much more favorable for the VP approach. This was especially true for $a_{\perp}$. three
methods of minimization when the exponential fit was made and when Marquardt's method was used in the Mössbauer spectrum problem,

For the Mossbauer spectrum problem, we used two sets of initial
values. We used those given by Travis [21], (say) $\underset{\sim}{\underset{\sim}{0}}$, and also $\underset{\sim}{\underset{B}{B}} \approx \beta^{\circ} \pm 0.05 \underset{\sim}{\beta^{\circ}}$. For ${\underset{\sim}{\beta}}^{\circ}$, the value of the functional is $3.04467 \times 108$ while for $\underset{\sim}{\underset{\sim}{0}}$, the value of the functional is $6.405 \times 10^{8}$; the final estimates of the parameters yielded a residual sum of squares less than $3.0444 \times 10^{8}$. When Brent's method was used on the full functional, the method did not seem to converge, but for the reduced functional, Brent's method converged reasonably well, In fact, after twenty minutes Brent's algorithm applied to the full functional with $\beta^{\circ}$ did not achieve the desired reduction in the functional.

The results we have obtained in minimizing the full functional for the first two problems using the Marquardt method, and those of problem 3 with Newton's method and ${\underset{\sim}{ㄹ}}^{\circ}$, are consistent with the results reported by Osborne and Travis.

From a rough count of the number of arithmetic operations (function and derivative evaluation per step are the same for both procedures, so that the work they do can be disregarded), it seems that for almost no combination of the parameters ( $m, n, k, p$ ) the VP procedure will require fewer operations per iteration than the $F F$ procedure. It is an open problem then to determine a priori under what conditions the VP procedure will converge more quickly than the $F F$ procedure when minimization algorithms using derivatives are used.

Another important problem is that of stability, The numerical stability of the process and of the attained solution must be studied. By insisting on the use of stable linear techniques, we have tried to achieve an overall numerically stable procedure for this nonlinear situation. Since the standards
of stability for non-linear problems are ill-defined at' this time, it is hard to say whether we have succeeded in obtaining our goal.

Exponential fit.


Table II

Gaussian fit.

| Method | Functional | Number of <br> Function <br> Evaluations | Number of <br> Derivative <br> Evaluations | Time <br> (seconds) |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{3}$ | FF | 11 | 9 | 23.35 |
| VP | 10 | 8 | 26.82 |  |

$r(\underset{\sim}{\hat{a}}, \underset{\sim}{\hat{\alpha}}), r_{2}(\underset{\sim}{\hat{\alpha}}) \leq 0.048$

Methods $A_{1}$ and $A_{2}$ were either slowly convergent or non-convergent.

Mössbauer Iron Spectrum.

$r(\underset{\sim}{\hat{a}}, \underset{\sim}{\hat{\alpha}}), r_{2}(\underset{\sim}{\hat{\alpha}}) \leq 3.0444 \times 10^{8}$
$\left(\widetilde{\beta}^{0}=(80,49,5,81,24,9.5,100,4)^{\top}\right)$

* Did not converge in finite amount of time.


## REFERENCES

1. Bard, Yonathan, "Comparison of gradient methods for the solution of nonlinear parameter estimation problems", SIAM J. Numer. Anal. I, pp. 157-186 (1970).
2. Barrodale, I., F. D. K. Roberts, and C. R. Hunt, "Computing best $\ell$ approximations by functions nonlinear in one parameter", Comp. J. 13, pp. 382-386 (1970).
3. Björck, A., and G. H. Golub, "Iterative refinement of linear least squares solutions by Householder transformations", BIT I, pp. 322-337, (1967).
4. Brent, Richard P., "Algorithms for finding zeros and extrema of functions without calculating derivatives", Stanford University, Computer Science Report STAN-CS-71-198 (1971).
5. Daniel, J. W., The Approximate Minimization of Functionals, Prentice Hall, New York, (1971).
6. Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York, (1960).
7. Fletcher, R. and Shirley A. Lill, "A class of methods for non-linear programming. II computational experience", in Nonlinear Programming (ed. by J. B. Rosen, 0. L. Mangasarian, and K. Ritter), pp. 67-92, Academic Press, New York (1970).
8. Golub, Gene H., "Matrix decompositions and statistical calculations,", in Statistical Computation (edited by Roy C. Milton and John A. Nelder), pp. 365-397. Academic Press, New York (1969).
9. Guttman, I., V. Pereyra, and H. D. Scolnik, "Least squares estimation for a class of nonlinear models", Centre de Rech. Math., U. de Montreal, (Jan. 1971). To appear in Technometrics,
10. Hanson, Richard, J. and Charles-L. Lawson, "Extensions and applications of the Householder algorithm for solving linear least squares problems", Math. Comp. 23 > pp. 787-812 (1969).
11. Jennings, L. S., and M. R. Osborne, "Applications of orthogonal matrix transformations to the solution of systems of linear and nonlinear equations", Techn. Rep. No. 37, Computer C., Australian Nat. Univ. (1970).
12. Lawton, William H. and E. A. Sylvestre, 'Elimination of linear parameters in nonlinear regression", Technometrics 13, pp. 461-467 (1971).
13. Osborne, M. R., "A class of nonlinear regression problems" in Data Representation, (R. S. Anderssen and M. R. Osborne, editors), pp. 94-101 (1970).
14. Osborne, M. R., "Some aspects of nonlinear least squares calculations', unpublished manuscript (Nov. 1971).
15. Pereyra, V., "Iterative methods for solving nonlinear least squares problems" , SIAM J. Numer. Anal. 4, pp. 27-36 (1967).
16. Pereyra, V., "Stability of general systems of linear equations', Aequationes Math. 2, pp. 194-206 (1969).
17. Perez, A., and H. D. Scolnik, "Derivatives of pseudoinverses and constrained non-linear regression problems", to appear in Numerische Mathematik.
--
18. Peters, G. and J. H. Wilkinson, "The least squares problem and pseudoinverses", The Comp. J. 13, pp. 309-316 (1970).
1.9. Rao, Radhakrishna C., and Sujit Kumar Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York (1971).
19. Scolnik, H. D., "On the solution of nonlinear least squares problems', Proc. IFIP-71, Numerical Math., pp. 18-23 (1971), North-Holland Pub. Co., Amsterdam. Also Ph.D. thesis, U. of Zurich (1970).
20. Travis, J. C., Radiochemical Analysis Section, Tech. Note No. 501, Nat. Bureau of Standards, pp. 19-33, Washington, D.C. (1970).

Pseudoinverse
Nonlinear Least Squares
-
Fréchet Derivative
Projectors
Orthogonalization

C Expgerilals aido dive constant term. IMPLIUIT KEAL*8(A-H,O-Z) MIMFHSIUN Y(200),T(200),ALF(20), AC(20) Exterinal aja
CALL LGER(N,M,KG,NLFUN, Y, T, ALF)
CALL VARPROCN,M,KG,NCFUN,Y,T,ALF, AC, ADA) CALL EXIT
no

SUEREUTINL VAKPKG(N,M,KG,NCFUN,Y,T,ALF, AC, ADA)
IMPLICIT RHAL*8(A-H, O-2)
Cummin al 200,201, AA 200,10$), E(20,20), B(220,20)$,UKK $(200)$,

* betalzolop

INTEGER P
CIMENSIUN UK1(20), BET1(20),2(20), DR(20,20),ZPR(200), DEL (20)
*, alf(KG), ALF1(20),AC(20),Y(M),T(M)
Exithival. ADA
NGNLINLARLCAST SQUARES PROGRAMFOR LINEAR COMBINATIONS OF NONLINEAR
c
b. C

C
$r$
c
C
c
i
c
6
c
$\stackrel{c}{6}$
C
c
fungtions.
wRITtENI NFUKTRAN 4 - Level g. inthis subroutine thereare write Statements using unit 3 as output. that unit number is installation depeivdent.
minimilationayosburne-marquardt algorithm (or gauss-newton with step CUNTKULBYMAKINGTHE SMALL CHANGES INDICATED IN THE SECOND LINE AFTER instructiunlageled 5, and after label 61).
Set itheuifferentiation of pseudoinverses and nonlinear least squares
phic Leinswiti Sevariables separaterby gene h. golub and vapereyra,
STANFURL U. TECHIN. REP. 261, MARCH 1972.
R : = NUMBER UF OBSERVATI UNS.
$N=$ INMMBFR UFFUNCT I UNS .
K!; = NUMBLR OF NuNLINEAR VARIABLES.
NCFUN = VUMBEK UFCUNSTANTFUNCTIONS, I.E. FUNCTIONS PHI WHICH DO NOT UEPENDUPON ANYPARAMETERS ALPHA.THEY SHOULD APPEAR FIRST.
$y=M-$ VECTUR UF UBSERVATIONS.
t = y-vecturijfindependent Variable,
$:=(N * K G I I N C I L E N C E M A T R I X . F(I, J)=1$ IFF VARIABLE 3 APPEARSIN FINCTIUNI. $P=$ S U MO FE(I,J).
AL $r=$ KG-VECTIJR OFINITIAL VALUES. ON OUTPUT IT WILL CONTAIN the optimal values of the nonlinear parameters.
AC = $\because$-VECTUR UFLINEARPARAMETERS (OUTPUT).


## cuntidue

Thf USER mustpriovidea subroutine that forgiven alf willevaluate THE FUNCTIUNS PHI ANU T H E I RPARTIAL DERIVATIVES D PHI(I)/D ALF(J), AT THE SAMPL PGINTSST . THE VECTUR SAMPLED FUNCTION PHI (I) SHOULD be Stored in thi I-TH CULUMN OF THE (MX(P+N+1))MATRIXA.THENONZERO
5. Dirivativesculumnvecturs should bestored sequentially in thematrixa STAKIINGINTHECOLUMNN+2. IF ITER=0 (THE FIRST TIME THIS SUBROUTINE IS Galleil. thematrixeshuulobe filled. with this matrixthe storage of Thliderivativesisfxplainedinthe following code:
$\mathrm{L}=\mathrm{N}+1$
(1) $\mathrm{J}=1, \mathrm{~K} G$
Uu $10 \quad 1=1, N$
IF (ElI,J) $10,10,11$
$11 \mathrm{~L}=\mathrm{L}+1$
DU $10 K=1, M$
A(K,L) $=$ = D P HI(I)/ D ALF(J)(T(K))
IU CONTINUE
THE N+1-TH COLUMN IJF A IS RESERVED FOR THE VECTOR OF OBSERVATIONSY.
THE SUBRUUTINE HLADING SHOULD BE: (ISEL $=0$ : FUNCT. AND DER. MUST B E COMP
ISEL = -1: ONLY FUNCTIONS MUST BE COMP. ISEL =1:ONLYDER. NECESSARY)
SUBROUTINE ADA( $N, M, K G, A, E, I T E R, P, T, A L F, I S E L)$
( ITER IS ANITERATION COUNTER PROVIDED BY VARPROI.
If IS ASSUMEO THAT THE MATRIX PHI (ALPHA) HAS ACWAYS FULL COLUMN RANK

ITER=0

C INSTRUCTIONSNUMBER200 A ND 400): EPSIIS A RELATIVE TOLERANCEFOR
C DIFFERENCE BETWEEN TWU CONSECUTIVERESIDUALS; ITMAX IS THE MAXIMUM
C THESIZE UF THE CORRECTION. EPS2 IS A RELATIVE TOLERANCE FOR THE
C NUMBERUFFUNCTIUN AND DERIVATIVE EVALUATIONS ALLOWED.
ITMAX=50
$E P S 1=1 C D-4$
$\therefore P S 2=500-6$
Cももみれ
$K G 1=K G+1$
D O $101=1, M$
$10 \quad A(I, N+1)=Y(1)$
2 CALL UPAIN,M,KG,NCFUN,ITER,ITER,R,Y,T,ALF,ADAI
$C T=1.0$
If(1TER.EU.O)
*WRITE(3,104)ITER,R
$I C=0$
IF(ITER) 3,5,3
5 CONTINUE
$X N U=0$.
Cれれれあれ
C*****IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT FOUR (4) STATEMENTS (SEE
C ALSO LAÓclól).
DO $4 \mathrm{I}=1, \mathrm{M}$
0C $4 J=1$, K
4 Xivu=xNU+B(1, J) **2
XNU $=$ USORT $(X N U /(M * K G))$
WRITE(3,105)XNU
C****\&FDUCTIUN OF B TUTRI ANGULAR FORM,
$30030 \quad 1=1, K G$
SGMA $=0$
DO $1111=1 \mathrm{M}$
115 SM $:=$ SGMA $+B(11,1) * * 2$
SGMA=OSbRT(SGMA)
IF(B(I,I)) 12,12.13
$12 \quad \mathrm{SG}=-1$.
GO Tu 14

```
    1. SG=1.
    14 UKI(I)=Si;#(SGMA+DABS(B(I,I)|)
        BET1(1)=1./(SGMA*(SGMA+DABS(B(I,I))))
        E(I,I)=-SG*SGMA
        IL=I+1
    2.3 Su 1 S I < = II, KGI
        ACU:4=1JK\(1)*B(1,12)
        Di) 10 I 3=11,M
    10 ACLM=ACUM+B(13,1)*B(13,12)
    l5 <(I2)=BETI(I)*ACUM
        , 30 J=I1,KG1
        B(l,J)=S(I,J)-UK1(I)*Z(J)
        1NO 30 I 2=11,M
    so B(I2,J)=H(I2,J)-B(I2,I)*Z(J)
Cれ##れなSAVETRIANGULAR FORM AND 2'.
            OO 40 I =1,KG
            DU 40 J=I,KG
    4J आK(I,J)=B(I,J)
    OU 41 I=1,M
    41 <PK(I)=B(I,KGI)
6*****RCDUCIIUN. SECOND PHASE.
    bO [F|XNU .EQ. O.DOIGO TO 300
    0)OO K=1,KG
    K1=K+1
    B(M+K,K)=XNU
    i) +2 J=K1,KG1
    4< S(M+K,J)=O.DO
        SoMa=E(K,K)**2
        B:! 51 J=1,K
    つ& 7GMA=5GMA+क(J+M,K)**2
        SSMA=DSURT(SGMA)
        |F(B(K,K.))52.52.33
    ちう Sij=-1.
    GU TH }5
    53 SG=1.
    54 UKI(K)=SG*(SGMA+UABS(B(K,K)))
        BETl(K)=1./(SGMA*(SGMA+DABS(B(K,K))))
        B(K,K)=-jG*SGMA
        U0 うら J=Kl,KGl
        ACUMF\JK\perp(K)*G{K,J}
        It(K et0. 1)GO TO 55
        K2=K-1
        0u j6 I=1,K2
        IM=I+M
    う6 ACUUM=ACUM+E(IM,K)*G(IM,J)
    jb Z(J)=LETI(K)*ACUM
        ju bl J=kl,kGl
        r(K,J)=3(K,J)-UK1(K)*Z(J)
        |! 57 I=1,K
        !r=:H+I
    j) \therefore(Mí,J) = &(:4I,J)-n(MI,K)末Z(J)
    *U GLPTINUE
C*****SULVE FUR DELTA-ALF.
    3コU N&=KG-1
        UEL(KG)=S(KG,KG1)/B(KG,KG)
```

```
        ALFI(KG)=ALF(KG) +DEL (KG)
        (0) SS I=1,N2
        11=KG-1
        12=11+1
        ACUM=B(IL,KG1)
        OU 5G J=I2,KG
        59) ACUM=ACUM-B(IL,J)*UEL(J)
        )LL(I1)=ACUM/d(11,11)
        つo ALFI(11)=ALF(111)+UEL(11)
    C*れ#**GET NEW RESIDUAL.
    310 ITER=ITER+1
            ISEL=-1
            WRITE(3,103)ITER
            WRITE(3,800)(ALF1(1),I=1,KG)
            IF(ITER .GT. ITMAXI GO.TO 400
            DO 900 I=1.M
    900 A(I,N+1)=Y (I)
        CALL DPA(N,M,KG,NCFUN,ITER,ISEL,RI,Y,T,ALFI,ADA)
        IC=IC+I
        WRITE(3,107)IC,RI
        IF(R-R1)61,60,60
        61 CUNTINUE
C*****IF GAUSS-NEWTON IS DESIRED REMOVE THE C FROM THE NEXT SIX (6) STATEMENTS
fr(XNU)110.111.110
C111 TT=0.5*TT
C IFITT .LT.S.DT4)GO TO 400
C DO 112 I=1,KG
C112 ALFI(I)=ALF(1)+TT*DEL(I)
C GU TO 310
C***れ*
    110 XNU=1.5*XNU
    WRITEI3,106IXNU
    C*****RETRIEVE TRIANGULAR FORM OF FIRST PHASE.
        DU 62 I=1,KG
        0O 02 J=I,KG
    62 B(I,J)=OR(I,J)
        i)O 63 I=1,M
    63 B(1,KGI)=2PR(1)
        GT TO 50
    OO KPS=K-K1
        K=Kl
        ACC=U.
        UAC=U.
        D1] 65 I=1,KG
        ALF(I)=ALF11I)
        ACC=ACC+ALF(I)**2
    65 DAC=DAC+DEL(1)**2
C****访If ICIS GREATER THAN 1THENNU HAS BEENINCREASED DURING THIS
C ITERATIUN.
    IF(IC .EQ. 1 ) XNU&O.5*XNU
    WRITE (3,200)IC,XNU
    ACC=OSQRT(ACC)
    OAC=USQRT(OAC)
    ACI = DAC/ACC
    WRITE(3,1O8)ACI
```

```
            I| (\IAC .LL. ACC*EPS1 . AND.EPS .LE. R*EPS2))
    * GU|,j % iO
        IStI= 1
    Gi, T) 2
4,!0 NI=iv-1
    AC(N)=A(N,N+I)/A(N,N)
    If(n erGe l)GUTU1.35
    MU 13U I=1,N1
    II=N-I
    12=I 1+1
    ACUM=A(11,N+1)
    UIJ 120 J=I2,N
    1\thereforeJ ACUM=ALUM-A(I1,J)*AC(J)
    130 AC(11)=ACUM/A(11,11)
    136 WFITE(3,209)
        WRITE(3,210)(AC(I),I=1,N)
        WKITE{3,215)(ALF(I),I=1,KG)
        WRITE(3,209)
    SOO RETURN
    1 0 3 FURMAT(1HU,' ITER=',I3,' PARAMETERS')
    104 FURMAT(1HO,' RESIDUAL',15,015.7)
    105 FORMAT(1HO:'NU=',015.7)
    106 FURMAT(1HO:' N U W AS INCREASED TO*.015.7)
    137 FOKMAT(1HO,[5,' NEW RESIDUAL',D15.7)
    10 FLRMAT(IHO:' THENORM OF THE RELATIVE CORRECTION IS=0.015.3)
    2 DU FGRMATIIHC.IS,' NUIS'.D15.7)
    2J9 F!iRMAT(1HO,501'*'))
    2lU FIKMAT(1HO,: HEIGHTSO//(4015.7))
    215 FUFMAT(1HO,' NONLINEAR PARAMETERS'//(4015.71)
    80% FIKMAT(1HO.4020.10)
    ND
C
C**&UMPUTATIGN OF THE UERIVATIVE OF THE VARIABLE PROJECTION.
    IMPLICIT REAL*8(A-H,O-2)
    COMMON A(200,20), AA(200,10),E(20,20),B(220,20),UKK(200),
    * stTA(20) %p
    INTEGER P
    OIMENSION ALF(KG),Z(120),X(20),U(20,20),Y(M),T(M)
    EXTIRNAL A D A
    CALL ADA(N,M,KG,A,E,ITER,P,T,ALF,ISEL)
    Nl=N+1
    N2=1
    IF(ISEL.GT.O)GO TO 111
    IF(ITER.GT. O)N2=NCFUN+1
    OO 110 I=1,M
    00 110 J=N2,N
    110 AA([,J)=A(1,J)
C**&**RとUUCTIUN UF A TO TRIANGULARFORM, COMPUTATION OF V=OY, AND
C SELECTIVE COMPUTATIONOFQB ACCORDING TO VALUE OF ISEL.
    1 1 1 D|juI=1,N
        I 1 1 = I +1
        IF(ISEL.GT.O)GO TO 2 2
```

```
        IFIITEK .ITT. O .AND. I .LE.NCFUNIGOT O }
        SUMA=0.
        O)1 1 11=I,M
        11 SGMA=うぶ4A+ふ(11,I)**2
        SGMA=OSURT(SGMA)
        1F(A(I,I))12,12,13
        12 SG=-1.
        GUT@ 14
    7 Il=NCFUN+1
    13 GO TO 20
    14 SG=1.
        UKK(I)=SG*(SGMA+DABS(A) I,I)))
        BETA(I)=1./(SGMA*(SGMA+DABS(A(I,I))))
        A(I,I)=-SG*SGMA
        I1= I11
        8 IF(ISEL)20,21,22
    20 NN=N1
GOTO23
    21 NN=NI+P
        GOTO 2 3
        <2 NN=Nl+P
        II=N+2
    23 OU1 5 I 2=II,NN
&- ACUM=UKK(I)*A(I,I2)
    DO1 4 I 3=111,M
    10 ACUM=ACUM+A(I3,I)*A(13, 12)
    15 L(I2)=5ETA(I)*ACUM
        OU 1 7 J=I1,NN
        A(I,J)=A(I,J)-UKK(I)*Z(J)
        DU 1 7 IL=I11,M
        17 A(I2,J)=A(I2,J)-A(I2,I)*Z(J)
        30 CONTINUE
        IF\ISEL.GT.OIGOTO 50
        R=0.
        UU 40 I=NL,M
        40 R=R+A(I,NI)**2
            IFI IStL .LT. OIRETURN
```



```
    C CUMPUTATIUN OF X.
        50 N2=N-1
        X(N)=A(N,N1)/A(N,N)
        IF(N.EQ.1)G O TO 310
        DO 300 I=1,N2
        II=N-I
        I2=I I +1
        ACUM=A(I1,NI)
        OO2 O O J=I2,N
    200 AC UM=ACUM-A(I1;J)*X(J)
    300 X(II)=ACUM/A(II,I1)
    C*****COMPUTATIUNO F U.
    310 L=N1
        UO 60 J=1,KG
        OU 60 I=1,N
        IF(E(I,J))70,70,71
        70
        U(I, J)=0.
```

```
        Gl. TJ 60
        11 L=L+1
            ACUM=0.
            (i)] कuO K=N1,M
        000 ACUM=ACUM +A(K,L)*A(K,N1)
        U(I,J)=ACJM
    oo cuntinue
C*****COMPUTAT IUN UT W(STOREO IN UPPER PART O F B).
            DU 80 J=1,KG
            i3(1,J)=U(1,J)/A(1,1)
            DO 80 I=2,N
            ACUM=U(I,J)
            11=1-1
            DO 79 L=1,I1
        7 9 ACUM=ACUM-A(L,I)*B(L,J)
    80 B(I,J)=ACUM/A(I,I)
C*****COMPUTATION OF D-SNAKE* X(STORED IN LOWER PART OF B).
            DO9 OI=N1,M
            L=N1
            OU9 O J=1,KG
            ACUM=0.
            0 0 900 K=1,N
            IF(E(K,J))900,900,92
        3 2 L=L+1
            ACUM=ACUM+A(I,L)*X(K)
    900 CUNTINUE
        90 B(I,J)=ACUM
C******FINALLY,DPA(ALF)*Y IS PRODUCED AS QTB.
            DO }95K1=1,
            K=N-Kl+1
            DO 93 I=1,KG
            K2=K+1
            ACUM=UKK(K)*B(K,I)
            DO 94J=K2,M
        3 4 ACUM =ACUM+A(J,K)*B(J,I)
        93 L(I)=BETA(K)*ACUM
        DO 96J=1,KG
        B(K,J)=B(K,J)-UKK(K)*Z(J)
            D09 6I=K2,M
        9 6 O(I,J)=B(I,JJ-A(I,K)*Z(J)
        9 5CONTINUE
C*****CUMPUTATIUN OF ETA=ORTOGONAL COMPONENT OF Y; RESPECT OF A.
            DO 120I=1,M
            ACUM= Y(I)
            DU 119 J=1,N
    119 ACUM=ACUM-AAI I,J)**(J)
    120 B( I,KG+1)=ACUM
            RETURN
            ENO
C
    c
    SUBROUTINE ADAIN,M,KG,A,E,ITER,P,T,ALF,ISEL)
    C OSOURNE'S EXPONENTIALFITTING.TWOEXPONENTIALS AND CONSTANTTERM.
    IMPLICIT REAL*8(A-H,O-Z)
```

```
            INTEGER P
            1)IM:NSI(NW A(200,20 1,E(20,20),ALF(KG),T(M)
            L=0
            IFIIIEK.GT. OIG0 TU b
    C*****IN THIS CASE THE INCIDENCE MATRIX E IS:
    C
    C
        E(1,1)=0.
        E(1,2)=0.
        E(2,1)=1.
        E(2,2)=0.
        E (3,1)=0.
        E(3,2)=1.
        P=2
        DO 4 I=1,M
        4 A(I,I)=1.0DO
        5 IFIISEL GT. OIGO TO 16
            DU 1 0 I = 1,M
            A(I,2)=DEXP(-ALF(L+1)*T(I))
        10 A(I,3)=DEXP(-ALF(L+2)*T(1))
                        IF (1SEL 114,15,16
        lbD O 17I=1,M
            A(I,5)=-T(I)*DEXP(-ALF(L+1)*T(I))
            1 7A(I,6)=-T(I)*DEXP(-ALF(L+2)*T(I);
        14RETURN
        15 DO 20 I =1,M
        A(I,5)=-T(I)*A(I, 2)
    2 0 A(I,6)=-T(I)*A(I,3)
        RETURN
        END
    C
    C-
        SUGRUUTINE LEER(N,M,KG,NCFUN,Y,T,ALF)
        IMPLICIT KEAL*8(A-H,O-Z)
        OIMENSION Y(200),T(200),ALF(20)
    C#****LEER KEALSTHEDATA.SEEFORMATS 100,102.
    1 REAU(1,100,END=500)N,M,KG,NCFUN, (T\I),Y(I),I=1,M)
    100 FORMAT(415/(2015.7))
        WRIIE(3,101)N,M,KG,NCFUN, (I,T(I),Y(I),I=1,M)
    101FORMAT\1H1;: NUNLINEARLEAST SQUARESSPROBLEM'//: NUMBER O f.FUNC
        *TIONS=',13,3X O
        *ERVATIONS=',I3/1* NUMBER OF VARIABLES =0, 13, NUMBEROF CONSTANT
            * FUNCTIONS=1,13//
            *T(I)
                Y(1)://(15,2020.7))
            Nl=1
            READ(1,102)(ALF(I),I=N1,KG)
    102 FINMAT(4020.7)
        WRITE(3,103){ALF(I),I=N1,KG)
    103 FUPMAT(IHO;: IN IT I A L NONLINEAR PARAMETERS://(4020.7))
        WRITE(3,104)
    104 FGKMAI ( 1HO.50('**))
```

$500 \begin{aligned} & \text { RETURN } \\ & \text { CALL EXIT } \\ & \text { ENU }\end{aligned}$

```
    NUMGER UF FUNCTIUNS= 3 NUMBER OF UBSERVATIONS= }3
```

    NUMBEROF VARIABLES \(=2\) NUMBEROF CONSTANT FUNCTIONS \(=1\)
    T(I)
0.0
$0.1000 c 0 c 0 \quad 02$ 0.2000000002 0.3000000002 0.4000000002 0.5000000002 $0.60000000 \quad 02$ 0.7000000002 0.8000000002 0.900000002 0.1000000003 0.1100000003 0.1200000003 0.1300000003 0.1400000003 0.1300000003 0.1600000003 0. 1700000003 0.1800000003 0.1900000003 0.2000000003 0.2100000003 0. 2200000003 0.2300000003 0.2400000003 0.2500000003 0.2600000003 0.2700000003 0.2800000003 0.2900000003 $0.300 \sim 000003$ 0.3100000003 0.3200000003

Y(I)

$$
\begin{array}{lll}
0.84400000 & 0 & 0 \\
0.90800000 & 0 & 0 \\
0.93200000 & 00 \\
0.93600000 & 00 \\
0.92500000 & 00 \\
0.90800000 & 00 \\
0.88100005 & 00 \\
0.85000000 & 0 & 0 \\
0.81800000 & 00 \\
0.78400000 & 0 & 0 \\
0.75100000 & 00 \\
0.71800000 & 0 & 0 \\
0.68500000 & 00 \\
0.65800000 & 00 \\
0.62800000 & 0 & 0 \\
0.60300000 & 0 & 0 \\
0.58000000 & 00 \\
. & .55800000 & 00 \\
0.53800000 & 00 \\
0.52200000 & 00 \\
0.50600000 & 00 \\
0.49000000 & 00 \\
0.47800000 & 00 \\
0.46700000 & 00 \\
0.45700000 & 00 \\
0.44800000 & 00 \\
0.43800000 & 00 \\
0.43100000 & 00 \\
0.42400000 & 00 \\
0.42000000 & 00 \\
0.41400000 & 00 \\
0.41100000 & 00 \\
0.40600000 & 00
\end{array}
$$

INITIAL NONLINEAR PARAMETERS

$$
0.10000000-01 \quad 0.20000000-01
$$

$$
\text { RESIDUAL C } 0.49178610-02
$$

$N U=0.2444940001$
ITER $=1$ PARAMETERS

$$
0.12950688730-01 \quad 0.21832093270-01
$$

1 NEW RESIDUAL 0.5609383 D-04
1 NU IS 0.1222470001

ITER $=2$ PARAMEIEKS
0.1292835923D-01 U.21999673600-01

I NEW RESIOUAL $0.54684430-04$
1 NU IS 0.6112350000
THE NURM OF THE RELATIVE CORRECTION IS = $0.6630-02$
ITEK = 3 PARAMETERS
$0.12878376470-019.22100227510-01$
1 NEWRESIDUAL 0.5465016D-04
1 NU IS O.3056175000
THENORMOF THERELATIVE CORRECTIUNIS = $0.4390-02$
ITER=4 , PARAMETERS
$0.12868316320-010.22121080540-01$
L. 1 NEW RESIDUAL 0.5464895D-04

1 NU IS 0.1528088000

THE NORM OF THE RELATIVE CORRECTION IS = $0.905 \mathrm{D}-03$

WE I GHTS
$0.3754132000 \quad 0.1936239001$-0.14650820 01
NONLINEAR PARAMETERS
0.12868320-01 0.2212108D-01

