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ABSTRACT

For given data (’Gi : yI) , i=ly...,m , we consider the least squares fit

of nonlinear nodels of the form

n
Fla , @ ;t) = 321 g;(a) o5l ; t) , a er®, .

For this purpose we study the mnimzation of the nonlinear functional

- 2
r(a , @) = 121 (v; - Fa, 2, £,0)° .

It is shown that by defining the matrix {qi(cx)}i j= 9. (@; t.), and the
~ ’ Ji~ 1

modi fied functional (@ =y - 2@ @ y 5. it is possible to

optimze first with respect to the parameters g, and then to obtain, a

posteriori, the optiml paraneters é\,° The matri x Q+(s) is the Moore-
Penrose generalized inverse of Q(g) , and we develop formulas for its
Fréchet derivative under the hypothesis that a(g) is of constant (though
not necessarily full) rank. Fromthese formulas we readily obtain the deri-
vatives of the orthogonal projectors associated with Q(g) , and al so that

of the functional =n, (). Detailed algorithns are presented which make exten-

sive use of well-known reliable linear least squares techniques, ,.4 numerical

results and conparisons are given. These results are generalizations of those

of H D. Scolnik[20].



-

1.  Introduction

The least squares fit of experimental data is a common tool in many
applied sciences and in engineering problens. Linear problens have been well-
studied, and stable and efficient nethods are available (see for instance:
Bjorck and Gol ub [3], Golub[8]).

Met hods for the nonlinear problens fall mainly in tw categories:

(a) general mnimzation techniques; (b) nethods of Gauss-Newton type. The
latter type of method takes into consideration the fact that the functional

to be mnimzed is a sumof squares of functions (cf. Daniel [ 5], Gsborne [14],
Pereyra [15]). The well-known reliable linear techniques have been used
mainly in connection with the successive linearization of the nonlinear nodels.
Very recently it has been noticed that by restricting the class of nodels to

be treated, a much nore significant use of linear techniques can be made (cf.

[2, 9, 12, 13, 17, 20]).

In this paper we consider the follow ng problem Gven data (t., v.)
1 1
. . . T T
i=t,. . ..m, find optimal paraneters §= ('a‘l seees Q,S) , Q._. @1 enes é,\k)
that mnimze the nonlinear functional
m n
(1.1) ra, )= T oy - Foe) olas )17,
i=1 j=1 d ~ 1
Throughout this paper a |ower case letter in bold face will indicate a
colum vector, while the sane letter with a subscript will indicate a conponent

of the vector. Matrices which are not vectors are denoted by capital letters,
and the (i,j) elenent of (say) a matrix Awll be indicated by either 5
I
or {A}i - The transpose of a vector u is indicated by ¥ . Gven a
3 ~

~

function f(t) , we shall denote by f the vector whose conponents are



T
(f(t1) , f(tg) seees f(tm)) . The scal ar product of two vectors u and v

is indicated by

(W, V) =Vu

P~

The only norm which will be used is the Euclidean norm v “2

Gven a matrix A and a vector b, then we say

)

AX = b

+

. + . .
if x = Ab where A" is the Mbore-Penrose pseudoinverse.

~

VW shall use the synbol D for the Fréchet derivative of a mapping and
V for the gradient of a functional. W assume that the reader has some
fanmiliarity wth pseudoinverses and Frechet derivatives and their properties.
A useful reference for the pseudoinverse is [19]; for details on the formalism
and mani pul ation of Fréchet derivatives, we suggest [6, chapter 8].

Let

{8}

i3 cpj(g;ti) (i=t,...,m 5 J=1, 2,...,n) ,

and

i

8@ = (g, &) .. (a) .

Wth the given notation, we can rewite (1.1) as

(LY)  ra, @ =lly- @ ga | .
Qur approach to finding a critical point or a mnimmof the functional (1.1")

requires two additional hypotheses:

n . .
H1. For_any vector be R™, the system of nonlinear equations

(1.2) g(ﬁ) = E s
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has a solution (not necessarily unique).

H 2. The matrix Q(g) has constant rank, r < min (m, n) for « Qci ,
- —_ o~

() being an open set containing the desired solution,

Qur aimis to be able to deal separately With the paraneters « , 554 then
proceed to obtain the parameters g, as it was done in [9, 20] whose results
this paper generalize. The reader should also note the independent results
obt ai ned by Pérez and Scol nik [17], who in addition deal with nonlinear
constraints.

In order to obtain this separation of variables, we consider, as in

[9, 17, 20], the nmodified functional
(13) i @=ly-t @i,

which will be called the variable projection functional. ce optiml para-

neters /o\( have been obtained by mininizing (1.3), then auxiliary parameters 4§
are obtained as ﬁ: ﬂé‘) y,, and finally we take g as any solution of the
system of equations (1.2).

W shall show in Theorem 2.1 the rel ationship between critical or m ninal

poi nts encountered considering the original functional r(g} 91.) and those obtained
fromthe functional re(ﬁ) and §+(%)x . Both for our proof and for the nuner-
ical algorithnms of Section 5, we need to develop fornulas for the Fréchet deri-
vative of the pseudoinverse of a matrix function. In Section 4, we devel op

these fornulas and obtain the derivatives of the projectors and the Jacobian

of the residual vector. The only hypothesis necessary on the rankofthe matrix
Is that it should be constant on an open neighborhood of the point in which the
derivative has to be calculated. This is necessary since otherw se the pseudo-

inverse is not a continuous function, and therefore it could hardly be differ-

entiable. Qur proof is coordinate-free. For the full rank case,

-3-
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simlar formulas have been obtained by Fletcher and Lill [7] (wi thout)

proof), by Hanson and Lawson [10], and by Pérez and Scolnik [17 J. |pn |7} and

[ 17] this is used to deal with constraints via penalty functions. |p [17] the
authors choose to work with conponents, and also obtain a formula for the rank
deficient case which is given in terns of the factors of a certain deconposition
of the original matrix. Qur formulas, besides being coordinate-free and thus
mich nore convenient for al gebraic manipulation, are given exclusively in

ternms of the original matrix, its derivative, and its pseudoi nverse. The
formula for the rank deficient case seems to be new.

In Section 5 we give a detailed -explanation of how to inplenent the nethod
in an efficient way and in Section 6 we present sone nunerical exanples and
conparisons. Extensive use is made of |inear |east squares techniques.

The authors wish to thank Professor O of Wdlund of the Courant Institute
for his careful reading of this manuscript, and to Mss CGodel a Scherer of the
Instituto Venezol ano de |nvestigaciones Cient{ficas for programming assistance.
W are also pleased to acknow edge the kind hospitality and stinulating con-
versations with Dr. H D. Scolnik of the Bariloche Foundation where this
work was initiated in July 1971. Several helpful suggestions were made by

M ss Linda Kaufman and M. M chael Saunders.



2., A class of nonlinear |east square-s problems whose paranmeters separate.

W are going to consider in this paper nodels of the form

n
(2.1) n(g, a3 t) = Z g.(a) w:(a; t) ,
J-=1 J ~ d~

where a e R%, ae Rk, and the functions gj » Py s are continuously differ-
entiable with respect to a , and g respectively. W shall call the functions
g; autonomous, to distinguish them from the @ whi ch are dependent on t
Ve remark that the paraneters a and g formtwo conpletely disjoint sets.
The independent variable t could be a vector itself as in [9, 17].
This requires only small notational changes and we shall not pursue it here.
Gven the data (’Ci, Yi) v =i, M, m> s+ %, our task is to find

the values of the paraneters a , o , that nininize the nonlinear functional:

(2.2) r(e, @) = |l x - nle, o) |I° = f (v; = n (g g ti))e .

i=1
The approach to the solution of this problemis, as in [9, 17, 20], to
modi fy the functional r(a, @), in such a way that consideration of the auto-

nonous paranmeters a is deferred.

In what follows we shall call §(x) the matrix function

(2.3) 2(2) = [9,(@) ,..0s g, (@] .

For each fixed o« , the linear operator

(2-)4-) P@ (a) = @FSQ) §:(d) B
is the orthogonal projector on the linear space spanned by the colums of the

matrix &(x) . W shall denote the linear operator (I - P L



4

P;(a) is the projector on the orthogonal conplement of the columm Space of
§(a) . Sinilarly,

(2‘,4',) @P = §+§ »
I's the orthogonal projector on the row space of & , and @p* =TI- ;P.
When there is no possibility of confusion we shall omt either

the matrix subindex or the arguments in projections and functions, or both.

Taking b as a new parameter vector, we consider the follow ng auxiliary

model
Il
(2.5) n (o, a5 t) = '21 LIENCERON
J=
Ve define similarly the functional r (b, a) =| y - n1”2.

For any given a we have the minimal |east squares solution
*
(2.6) b = §+(g) y -

Thus,

@) e (e =) = g - @ Y - e,

Q(Qj) XHZ .

The nodified functional is then the variable projection functional that

we nentioned earlier and can be rewitten as:
(2.8) (o) IIPL 2
. I‘ = N

Once a critical point (or a mnimzer) g is found for this functional, then
ﬁ’is obt ai ned by replacingﬂg by Q,in (2.6). Finally, by hypothesis H|,

£ is-obtained as any solution of the system of nonlinear equations

(2.9) gla) =5 .



i
5
]
|

The justification for enploying this procedure is given by the following
t heorem

Theorem 2.1 Let r(a, a) and r{e) be defined as above

V& assume that
in the open set ac gk

§ (o) has constant rank r < mn (m, n)
~ el 3] .

A
a) If o j i . -
(a) | = 18 & critical point or a global minimizer in Q) of v (@)
/\ . . - ~
and a satisfies: 2 ’
A
(2.10) gE) =" @) L
(then Q) is acritical point of ,r(’{b 2‘.) (or a global. mnimzer for

o eq)

~

and r(8, @) = r,(d) .

A Ay
(b) If (s, @) is a global nininizer of sf~uy for

4 L]
then & is a global m nim zer of re(a) in Q and r

NP R

~

————

- - , A
Furthermore, if there is an unique f. among the nininizing pairs of r(,?,' 21)’
t hen é must satisfy (2.10).

Ve shall postpone the proof of this Theorem until the end of Section
4,
where we obtain a convenient expression for the gradient of the functional

(@)
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3. Algorithma |. Residual calculation.

One of our main points in the algorithmc part of this paper is to enpha-

size, when possible and appropriate, {he yse of stable and efficient |inear

| east squares techniques. Thus it is convenient to review sone of the tools

and introduce the necessary notation.

If Qis an orthogonal matrix then, for every vector z ,

ezl = iz

It is well-known (cf. [8, 10, 18]) that every mx n matrix & (m> n)

of rank r <n , can be orthogonally transformed into "triangular® form Vi z
J
there exist Q, Z orthogonal, such that

(3.1) etz =[T(o

1]
L=}
-

~

where T is an r x r upper triangular and nonsingular matrix. Then

Due to the isonmetric properties of the orthogona

trans:torpation Q,

-8-



the |east squares problem can be expressed as

min | 3 - ap [* = min | g - arp®

m
b

~

v, r
~
Calling ¥y = Q and partitioning it as J = [ZJ}(H] r) o+ We obtain

~_1_
A T 'y
G.2)  p-z _5=1J

~

A sinple conputation shows that:
: L2 i .2 -2
(3 .3) Ty -ee 1" =18 g =1l ZI° -

Therefore, one can eval uate the nonlinear functional rz(a) of (2.8)

for any value of o in the followng way: First the orthogonal matrix Q)

that is used in the reduction of é(g) i's determned; sinultaneously, ;}J= Q

Is conmputed, and finally

- 2
.8 @ =5,
I s eval uat ed.
For mnimzation techniques not requiring derivatives this is all that
is needed. For iterative techniques using the gradient of the functional or
the Jacobian of the residual. vector function P;( )L ve shall provide in the
o ~

next section fornulas which will also be useful in the proof of Theorem 2.1.



4. Fréchet derivatives of pseudoinverses, projectors, and residual vectors.

In this section we devel op formulas for the Fréchet derivative of the
pseudoi nverse of a matrix function. This |eads to expressions for the deri-
vatives of the associated orthogonal projectors, anq for the residual vector

function
i

As an aid to those readers not famliar with these concepts, .o ohserve
that an mx n matrix function A(e) is a nonlinear mapping between the
linear space of parameters a e " and the space of linear transformations
.s(Rn s “m) . Consequently, D’A(fq‘) will be, for each « , an elenent of
t®®, t®" , *™) . Thus, DA(a) could be interpreted as a tridimensional
tensor, formed with k (mX n) matrices (slabs), each one containing the
partial derivatives of the elenments of A with respect to one of the variables
@ . Still in another way, each colum in the k-direction is the gradient
of the corresponding matrix element.

Since all dinmensions involved are different, it will be always clear

in the algebraic manipulations how the different vectors, matrices, .4 tensors

i nteract.

Lemma 4.1. For any @ € Q, an open set of ak, let B(a) be an mx n full

colum rank matrix function, and C(¢) an n x mfull row rank nmatrix function .

If R(Qd C(a) are Fréchet differentiable in g, then
(4.2) DE") = -3'DBE + (B 8)”! Dp Pg ,

(4.3) D" =-ctDcct + CPL D' (cc' )™

-10-



proof . Since B has full colum rank, then B' = (BT B).'1BT . and

DE) = o BB + (8 B)'DE

But ,

D )= -3 B D@ B (8 B)'.
Theref or e,
(v2)  DGB) =@ 8D -DE 8 3.

Devel opi ng D(BT B) and regrouping, we obtain (4.2). Since C' has full
column rank, (4.3)follows readily from (4.2). l
. B 4 _ ,
Si nce PA(E’.) = AA+ PA(g) =1 - AA+, it follows that
+ +
(4.5) DPA=DAA +AaDA) ,

and

L
(4.6) D®, = -Dp, .

If A(g) has full colum rank, then from (4.5) and Lemm 4.1 we obtain
L

(4.7) Dz, p,Da % + (PyDa Aty

Simlarly, if A has full row rank:

(L.8) Dp-a'Da P + (a'Da P*) .
A

A A

W shall prove now that formulas (4.7) and (4.8) are valid in the rank
deficient case. For this purpose we shall prove first an auxiliary Lemma,

and then obtain the derivative of the pseudoinverse of an arbitrary matrix

function.

Let  A(g) be an m X n matrix function, Fréchet differentiable,

-11-



and with constant rank r < min (m n) , on an open set Qc RE . Let B(a)

be a maximal set of independent colums of A(e) inQ, and let C _ g .,

"~

It is well-known (see, for instance, [16]); (1) C has full row rank, (2)
A =B, (3) At = C+B+ . Due to our hypothesis, B(a) can be formed with
the sane colums of A(g) on a nei ghborhood of every a« ¢ Q , Gther useful

relations that we shall use below are

AA+

I
o
"
o
o
-+
n
o

Lemma 4.2. Wth A, B, and C defined as above, the following fornula is

valid in Q :

-+ L . 4
(4.9) BDB P, = (DA A+, P, -

Proof: From Lemma 4.1 we get

B D B+ =—PBDB B+ + (DB B+)T P;
_ + +J 4
—-PADBB + ( DB B) PA-

Ther ef or e,

(4.10)  BD B+ PZ = (DB BY) B,

On the other hand, since A = BC,

Da A" = Ds CA++ BDC a+ = Ds " + BDC a* .

-12-



Thus,

i + 4 +
PADA A = PADB B

or

(DAA+TP.L= +. 7T 4
) B, = (DB B") P,

and this last expression together with (4.10) proves the Iemma.l

-

k
Deteorem 4.3, _ < R pe an open set and for o eQlet A(x) be an

Mx N Fréehet differentiable matrix function having fixed rank r < mn (m

Then fOr any 4 e Q :

~

+ ¥ T
(h.11) D A+ =a"Daar + 22" DA’ pZ+AP‘ D' A+ A+
proof: With B and C as above, we have that

+
DA” = p(c's") = pc* Bt + ¢tDE*

and hence by (4.3)

+ + +_+ 4T
Da =-CDCCB+CPDC C+’B++C+DB+
since
T -1 + o+
(cc )™ =" ¢t
Substituting
- + +
DC = D(E2) = D" 4 + 8'Da , ¢*5* - 2*

in the last expression we get:

-13-
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(4.12) DA" = -a'Da A+ + ¢'DB* - ¢'DB" A+ g’ T,
A
= -a"Da A+ + cTDB' P1+ P [)CT +
ata ct A
But,

(4.13)

1 LIS, T +T 4+ T T 47

T $+T-'
= APDA A A+

. T
since APA =0.

Substituting (4.13) into (4.12) and using the relationship c'pst P,

+ + + 4+ T T , - ;
ABDB P =AA DA P, . given by Lenma L.2, we finally obtain the

desired result.l

Corollary 4.3. Let A(a) be as in Theorem4.2. Then, for any « ¢ q.

~

(k1) Dp, = D(aa") p:\DA At + (P;DA IS

(4.1) D,P = D(a%a)

+ L + 4,7
ADAAP +(ADAAP) :

Proof:  Covious. |

Fromthis result it is now easy to derive an expression for the gradient

of the functional r,(g) (see (2.8)), provided the matrix 8 (@) has constant

rank On an open nei ghborhood of the point in which the gradient is calcul ated.

In fact:
(5.15)  ry(e) = | P;(a) g P =Py, Py,

and

14



3vry(e)= -y P [PDe sts' Ds Pl .

~

: 1+ : :

Si nce Fg@ =0, we finally obtain:
T +

(416) % v ry(@) y PDe &y

Now we have the elenents for proving Theorem 2. 1.

Proof of Theorem 2.1.

From (2.2) we have that r(a, @) = | ¥ - @(g)g(g{}“z :
Therefore,

(%.17) 3 vr(s, @) = -(y - 3g) (Da g +8Dg) .

Assune now t hat Qis a critical point of re(i)’ and that & satisfies

~

(2.18)  g(&) = s Ry .
Then,
(419) #9vr(E 3 - -(Fy (Ds ¢y + eDg)

= %Vrz(é) 3

. T 1
since y P§§D§=g, Thus (g, %)is a critical point of r<§; o)

Assune now t hat §’, is a global mnimzer of rg(a) inQ and &
satisfies (4.18). Then clearly, r(g, Q) = r2(é) . Assunme that there
. % * *
exists (2, o) , a@ e Q, such that r('g‘*, g)*) < r(é\) Q) . Since for any

@ we havery(e) < r(a, @) , then it follows that re(g*) < r(a” ¢ <

r(@, Q) =r2(é) , Which is a contradiction to the fact that « was a gl obal

i ~15-
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m ni m zer of rz(a) in Q. Therefore (Q, 9) is a global minimizer Of
~T~ ~ ~

r(i, a) in 0 and part (a) of the Theoremis proved.

A A, o :
Conversely, suppose that (a, @) is a global minimzer of r(a, @) in
Q, then as above
rg(é\) < r(é, Q) .
* . +,A
Now I et a Dbe a solution of g(a) =28 (2)y .
Then we have
A * A A A
@ =1, D<@ D,
. A A L .
but since (a, g) was a global mnimzer we nust have equality. |f there was

an unique @ anong the mininizers of r(a, @), then g =8 . we still

have to show that 5’::: is a global mnimzer of re(a). Assume that it is not.

Thus, there will be 2 e, such t hat re@) < r2(§2 . Let E be a sol ution
+ —

of g(a) =8¢ @y . Then r2@)=r@,@<r2(§)=r_/§\.‘,'@),V\/nichisa

contradiction to the fact that (,Q,Q) was a global minimzer of r(a, @) .

-16-




S. Algorithmia I|. Detailed inplenentation of the Gauss-Newton-Marquardt

al gorithm

Wwe shall now explain in detail how to apply the results of Section k4
to the Marquardt nodification of the CGauss-Newton iterative procedure; we make
extensive use of linear |east squares techniques. \w shall include an econo-
mcal inplementation of the Mrquardt algorithm devised earlier by Golub

(see al so [11,14]).

we define the vector

32(3’) = P;(d)y

-~

. The generalized Gauss-Newton iteration-with step control for the nonlinear
[ | east squares problem
.
. . . i
(51  ninzy@ =m0 @ | o= mia | Bl
' s given by
}
. - G.N, Starting froman arbitrary o°:
4+ L £
. (5:2) @ =@ - t,[Dry(@)] ") , (2=0,...) .

The paraneters t, >0, which control the size of the step, are used

. ; 2 _
to prevent divergence. Usually t,=1, unless r,(y +1) S re(i’,z) ,in
whi ch case t, is reduced. Another use of the parameters t, s to mnimze
I+1 : : £+
re(g )y along the direction [,Dfe(fé )] ‘1;2(52) .
Marquardt's modification calls for the introduction of a sequence of non

negative auxiliary paraneters v, > 0.

GN M. Define

] )
ro(a) r(a")

Kl b4 £l = O . n s
v,

where for each £, F, is the upper triangular Cholesky factor of an n x n

]

-17-



symmetric POSitive definite matrix M, .

Then the Gauss—Newton-Marqua.rdt
iteration is given by

2+1 Ji +
g =.9’.'Kl£.z’ £>O‘

Reasons for this nodification arewell-known. For more details and an

interesting study of the convergence of this method we refer to [14]. Ve

. . v .-
wish to make explicit now the "two-stage orthogonal factorization” given in
[11] and [14], in order to show how to take advantage of the special structure
of the problem

; _ A+ ! 2 i
Calllngn-z -a, DP:D.E?_(E:): DPQI

and dropping the superscript s from here on in, one step of the Marquardt

algorithmis equival ent to solving the linear least squares problem

-ro ()

~
o
i 2 :

o)

In the first stage of the orthogonal factorization of Kan m xn

orthogonal matrix Qis chosen so that

1 O O

Thus,
Q 0 DP DP R1
0 Iﬂ VF Q1 vF vk ?
(@) z
Q1 — = | —— .
0 0

R; and r are saved for future use.

-18-



corresponding to a zero conponent of u(1)

In the second stage we choose an (m+n) x (mtn) orthogonal matrix
to reduce

1]
R1

to "triangular™ form.
vF

For this purpose we shall use successive Householder transformations as in
[3], from where we adopt the notation.* '

On reducing the first colum of A which is of the form

(1))
a
011
(1) . )

a = R =

~1 ) m 2 u Vf11
0 J
"
0

LO

We use Q“) =T - 612(1)’2(1)r

>

wher e

u1 (1) = S:Lgn (a1(1ﬂ))(o.1 + la’1(1l),) f)
g9, = (a121 + U'e)% >
o1

m+t - P s

u§” =0 , otherwi se,
T
81 = 2/}&(1) }\1‘(1) .

Now we observe that when Q(1)

is applied to a vector, any conponent

is left unchanged. 1 particular,

-19-



the band of zeros in Ais preserved. Thus, in this first step we only need
to transform the elements of rows nunber 1 and m+1 Consequent | y

2 , _ s
a2 :Q“)A will have the schematic form

o %
)y
where the asterisks indicate the modified elements.

It is now clear that at step k , A(k)

O
A(k) - <:)

0.0
26

O

The matrix A&+)

will have the form

-

, k=1,...,n, 1is obtained as foll ows:

k
D= (e Tl 0%

1), - (e, + sy

(x) _ :
iii)u;’ = 0 for Ik, k+1<i<m,m+k<i;

(k)

w, = sign (alckk"))(c:k + laﬁ)l) ;

k k
u£ ) = ag ), m+1<i<m+k,

-20-



iv) ¥ =8, o 6T, (i)

J

0,0, & @
vy = pu{Mal® k) .
J Bk k akJ + i; am"'i,k a m+i,j| P J=k+1,."’n .
Finally,
V) a.r(.lﬁ"]) - a(l?) _ u(k) y. i=k; mH, ... mtk;

(J ) ij 1 J J=k+1,...,n;

K+ ; a(ky

. = - sign (akk )ok ;

These fornmulas are sinilar to those given in [3], but are nodified to
take advantage of the structure of the matrix A.
Csborne's version of Marquardtt's algorithm nodified for our present

problem is presented in the detailed flowchart of Figure 1. The parameters

DECR and EXP are the factors by which v is either decreased or increased.
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. 1 . .
Ve will evaluate Dg,(a) = DP@(Q)'Y' for a given ¢ , according to

J

which is readily obtained from (4, 1k4a).

In many applications, each conponent function 9, depends only upon a
few of the paraneters {at]}c‘:,l , and therefore its derivatives with respect to
the other paraneters wll vanish. Those” vani shi ng derivatives wll produce

m col ums of zeros in the tensor Dg§. In order to avoid a waste of storage

and usel ess conputation with zeros it is convenient to introduce from the

outset the k x n incidence matrix E = (ejt) . This matrix will be defined
as foll ows:

ejt =1 iff paraneter @, appears in function Py 3

e., = 0 otherw se.

jt

W shall also call p the number of nonzero derivatives in Dg:p =) e
t,J
The nonzero derivative vectors can then be stored sequentially in a bidinensional

Jt

array B(mxp) . In our inplementation we chose to store the nonzero m col ums
varying first the index corresponding to the different differentiations, and then
that corresponding to the different functions. This information can then be
decoded for use in algebraic manipul ations by neans of the incidence matrix E ,
V¢ now introduce some notation in order to describe the conpressed storage

of the nonzero colums of the tensor D& in a nore explicit fashion. Ve

define, for t=1,...,k ,

St={set of ordered indices for which ejt,é 0 , j=t1,...,n};

-23-



oo, (2)

\ytj(g)::_s-i_ F) ,j=1,oo-,n) t=1,aoo,ko .

t

W wite the matrix B in partitioned form

B1,

B=[B1’B2,uno, k

wher e

B.o= (4, s8,s seeeslys 1. .
t t31’it32’ ’itat 5 e«s%

A step-by-step description of the conputation of DP;X foll ows.
Ve assune that the rank of &(g) is conputationally determined and equal to
r<mn (mn) .
a) Conpute &(2) ,Dé(q).

b) Form the m X (nt+p+1 ) array

(9]
]

[2(a) ; v ; D2(g)] =[A; y 5 B].

c) Obtain the conplete orthogonal factorization of A (cf. Section 3):

1) - [
5 T o=
O

= rXr

g
&

Al so v

(T,x, and C will be stoe inthe array G). Note again that (see Section 3):

i
i
00 L o*m

d) Get the internediary val ues:
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e

010 (i.e., Remenber that the nonzero information

D = . C of Dis stored inthe last p (ol ums
0 Im-r_ and last mr rows of Q;
~-1
T v
+ T ~ Y }r
,}f,:AX.:Z 1 (v = = ) .
2 L |} mer
L . o] o 0
) U = (PD2) y-Ds @ Q= Dev =0 |
nxk 0 13 ~ v,
mr ~2

(transposition in the tensor Dg refers to transposition within the "slabs"

corresponding to the different derivatives, 5,4 nust be interpreted adequately

when decoding the information fromthe conpressed storage array G ; the

appropriate ALGOL-60 code for conmputing U with our storage convention would

be (assuming that C = QB is stored in the same place Bis :

n{é—n+1 3
L& n1
for te 1 step Tuntil k do

for | &« 1step 1 until n do

if E[j,t] = 0 then U[j,t]e O else
tﬁgﬂ‘ LI+t ; acumé&0 ;
for ie- n1 step 1 until m do
acum¢— acum + G[i,L] X G[i,n1] ;
U[j,t]¢—acum
end ;)
f) Compute S=z. U.
nxk

Solve the k , rxr [lower triangular systens:

~

T'w=F , where § contains the first r rows of S .
rxk
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Store Win the first r rows of the mxk array B. Conpute D8 and

store the nonzero information in the last mr rows of B.

g) Finally, the mxk matrix B is obtained as:

o . _W_+-ﬁ® - Qs
Be- PQQ&)I = gxm () ‘£ = .

- )

V¢ enphasize the systematic use made of the triangular orthogonal decom

position of the matrix &(¢) . & also warn the reader about the correct

interpretation of the algebraic operations in which any tridinensional tensor

intervene, as we exenmplified in (e) .
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6. Nunerical experiments.

VW have inplemented three different algorithms based on the devel opments

of the previous sections for the case g(g) = o and rank & = n .

The nethods m ninmize the variable projection functional re(ﬁ’.) = HP%' (a)l“g
first, in order to obtain the optimal paraneters Q © and then conplete
~ the optimzation according to our explanation in Section 2. The al gorithns

differ in the procedure used for the minimization Of re(oz).

¢ Al. Mninzation wthout derivatives. % yse PRAXIS, a FORTRAN version of

a 'program devel oped by R. Brent [4], who very kindly made it available to us.

Al'l that praxzs essentially requires fromthe user is the value of the functional

Lo for any @ . This is conputed using the results of Section 3. |, fact, the

L user has only to give code for filling the matrix & ¢, any o, and our
program wi Il effect the triangular reduction and so on. |t turns out that

L many times (See the exanples) the nmodel s have some terns which are exclusively

[ linear, i.e., functions 9; which are independent of @ . Those functions

- produce colums in &(a) which are constant throughout the process. |f they

are considered first, then it is possible to reduce them once and for all,

saving the repetition of conputation. This is done in our program

A2, Mnimzation by Gauss-Newton with control of step (see (5.2)).

The user is required to provide the incidence matrix E and the array

of functions P and non-vani shing partial derivatives: G. See Section 5

for a nore detailed description.

A3. Mnimzation by Marquardt's nodification, as explained in Section 5 with




F, =1 . User supplied information is the same as in Ag,

Test probl ens. Problems 1 and 2 are taken from Csborne [14], where the

necessary data can be found.

Pl. Exponential fitting. The nodel is of the form

-a1 t - "Q’et
n1 (E: a; t) = a1 + ase + a.3e

. -o.t
The functions ®; are obviously P (g 3 t) =1, c%_‘_ 1(3; t)=e s J=1,2 .

So the different constants, in the notation of Section 2are: n=3, s=3, k=2 .

For the problem considered, m=33. The nunber of constant functions: NCF =1.

The nunber of non-vanishing partial derivatives: p=2 .

In Table | we conpare our results for methods A, A2 A3, and those

P2, Fitting Gaussians with an exponential background.

2 2 2
-, t ~o, (t-a.) -, (t-a,) -, (t-o,
ne(g, @ t) = a1e 1 + a2e 2 5 +a5e 3 6 +ahe u 7)
The functions @ are:
2
-a,t —o (t-or, )
1
CP‘I (ro\l-’ t) =€ 5 (pj(g; t) =e Y I3 ’ J=2,3,4 .

Thus:  n=h, s=k, k=7, m=65 , p=7 .

Results for this problem appear in Table II.

P3. "Iron Mossbauer Spectrum with two Sites of different electric field gradient

and one single line [21],
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The model here is the follow ng:

ni(g,g; t) = a, + ast + a3t2
r !
4 - o + O.Sae - th2 4+ - (01 "0'502 't)e
-a | ! *3 | _.Ot§
- af ! N !
5 Q’h+0.5al-t2 &, - O5w. - t,2
% ). —
- 8 1
%6 o, - 62
1 +( 1 )
o

Gearly, wj(g; t) = t7, §=1,2,3 ; ande, 5 5, g are the functions
inside the square brackets.

Here: n=6, k=8, NCF=3, p=8, m=188, s=6 .

For this exanple we wish to thank Dr. J. ¢, Travis of NBS who kindly
supplied the problem and results from his own conputer program

Conparisons are offered in Table II1.

The qualitative behavior of the three different mnimzation procedures
used in our conputation follows the pattern that have been expounded in recent
conparisons (Bard [1]). Gauss-Newton is fastest whenever it converges from
a good initial estimate. As is shown in the fitting of Gaussians (Table I1),
if the problemis troublesome, then a nore elaborate strategy is called for.
Brent's program has the advantage of not needing derivatives, which in this
case leads to a big sinplification. n the other hand, it is a very conservative
program which really tries to obtain rigorous results. This, of course, can
lead to a long search in cases where it is not entirely justified.

As a consequence of our Theorem 2.1, and of our numerical expc: nce  we

strongly recommend, even in the case when our procedure i s no:. used, to obtair
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initial values for the linear parameters when ng3)= 8 by setting

ff . §+(2?)y', This is done in our program for the full functional and in

the program of Travis with excellent results

The conputer tines shown in Table | and Table Il correspond to the CPU
times (execution of the object code) on an IBM 360/50. All cal cul ations
were perforned in long precision; viz.‘li‘hexadecinal digits in the mantissa
of each nunber. W conpare the results of mnimzing the reduced functional
when the Variable Projection (VP) technique is used with that of mnimzing
the full functional (FF) for various mnimzation algorithnms. In order to
elimnate the coding aspect, we have used essentially the same code for
mnimzing the two functionals. The only difference was in the subroutine
DPA whi ch conputes in both cases the Jacobian of the residual vector.

In the FF approach, the subroutine DPA conputed the mx (n+k) matrix

B as follows: the first n colums consisted of the vectors Eﬁ(g) whil e

the remaining colums were the partial derivatives

2y isa) - ¥ e @
S, (y - ¢(2)a) = J_; j g , (1=1,2,...,k)

These derivatives were constructed using the sane information provided by the
user subroutine ADA. W also obtained from DPA in the FF case, the autonmatic
initialization of the linear paraneters, viz.h9°=§ +@£)x :

For the nunerical exanples given here, the cost per iteration was sonmewhat
higher for the VP functional. However, we see that in sone cases there has
been a dramatic decrease in the number of iterations; this has been observed
previously (cf. [12]). Thus, in these cases the total conputing time is nuch

nmore favorable for the VP approach. This was especially true for a.. three
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met hods of minimzation when the exponential fit was made and when
Marquardt's met hod was used in the MSssbauer spectrum probl em
FPor the Mossbauer spectrum problem we used two sets of initia
values. W used those given by Travis [21], (say) Qf, and al so
B° ~8° %o.05 Ef. For B° . the value of the functional is 3.04k67x 108

~ ~

while for B°, the value of the functional is 6.405x 108;the final
estimates of the parameters yielded a residual sumof squares |ess than
3.04k4Y X 108 . Wen Brent's method was used on the full functional

the method did not seem to converge, but for the reduced functional
Brent's method converged reasonably well, |p fact, after twenty minutes

Brent's algorithm applied to the full functional with g° did not

achieve the desired reduction in the functional.

The results we have obtained in mnimzing the full functional for the
first two problens using the Marquardt nethod, and those of problem3 with
Newt on" s net hod and gf, are consistent with the results reported by Osborne
and Travis.

Froma rough count of the nunber of arithmetic operations (function and
derivative evaluation per step are the sane for both procedures, so that the
work they do can be disregarded), it seens that for alnost no conbination of
the parameters (m n, k, p) the VP procedure will require fewer operations
per iteration than the FF procedure. It is an open problem then to deternine
a priori under what conditions the VP procedure will converge nore quickly
than the FF procedure when minimzation algorithns using derivatives are used.

Anot her inportant problemis that of stability, The numerical stability
of the process and of the attained solution nust be studied. By insisting on
the use of stable linear techniques, we have tried to achieve an overal

nunerically stable procedure for this nonlinear situation. Since the standards



of stability for non-linear problens are ill-defined at' this tine, it is

hard to say whether we have succeeded in obtaining our goal
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Exponential fit.

Tabl e |

Nunber of Nunber of Tine
Met hod Functi onal Function Derivative (seconds)
Eval uati ons Eval uati ons
FF 1832 —_ 191.00
Al
VP e, 10O —_ 9.00
FF 11 11 5.05
Ap
VP L L 3.20
FF 32 26 12.55
A
VP L L 3.12
A
r(8, 8) , (@) < 0.5465 x 10-4
Table 11
Gussian fit.
B Nunber of Nunber of
Met hod Functi onal Functi on Derivative Ti me
Eval uati ons Eval uations (seconds)
FF 11 9 23.35
As
VP 10 8 26.82

r(®, &) , r,(8) < 0.048

Met hods A and A, vere either slowy convergent or non-convergent.
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Tabl e IIT

Mossbauer |ron Spectrum

Nunber of Nunmber of

Met hod Funct i onal Initial Function Derivative Ti me
Val ues Eval uations  Eval uations (seconds)

FF ’ *

Ay ,g.
VP B 65 0 70.00

A, FF B b n 34,34
VP g 4 I 41.64
FF B 7 7 52.27
VP ¥ 6 6 59. 60

A5 FF E" 16 16 118.22
VP £ 3 3 35.35
FF -3 18 18 130.50
VP 8" 6 6 61.92

r®, &) , r,(8)<3.0444x 10°

o T
(B"=(80, 49, 5, 81, 24, 9.5, 100, 4) )

* Did not converge in finite amount of tine.
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CrERExDCIVER PRUGRAM FUR USE OF VARPRO IN PROBLEM 1: FITTING OF TWO
L EXPONENTLIALS ANDC UNE CUONSTANT TERM,

IMPLICTIT REAL*8(A-~He0=~Z)

VIMERMSTUN Y(200) o TU2C0) ALF(20),AC120)

EXTEANAL ADA

CALL LUERINgMy G NUFUNy Yo ToALF)

CALL VARPRUOINs My KGyNCFUN, Y,y TyALFoAC,ADA)

CALL EXIT

ND

SUBRGUT INL VARPRU(N,M'KGyNCFUNQY:T,ALFQAC’ADA)
IMPLICIT REAL*¥8(A-He0-2) —t
CuMMUN A(200920) 9 AAL200910)9E(20920)4B(220,20) yUKK(200) ,
* BETA(20) 4P
) INTEGEK P
CIMUNSTIUN UKL(20)9BETL(20)52(2G)9DR(20,20),2PR(200),DEL (20)
* g ALFAKG) g ALFL1(20)9AC(20) oY M), TIM)-
EXTERNAL ADA
NGNL INc ARLcAST SQUARES PROGRAM FOR LINEAR COMBINATIONS OF NONLINEAR
FUNCTIUNS.
ARITTENT NFUGRTRAN4 - LEVEL G. INTHIS SUBROUTINE THEREARE WRITE
STAT=MENTS USING UNIT 3 AS OUTPUT. THAT UNIT NUMBER IS INSTALLATION
DEPENOENT
MINTMTIZATICNSYUSBORNE-MARQUARDT ALGORITHM (OR GAUSS-NEWTON WITH STEP
CUNTHULUYMAKING THE SMALL CHANGES INDICATED IN THE SECOND LINE AFTER
INSTRUCTIUNLABELEDSes ANDAFTER LABEL 61).
Set 'THEDIFFERENTIATION OF PSEUDOINVERSES AND NONLINEAR LEAST SQUARES
PRLUCLEMS WHUSEVARIABLES SEPARATE'*BY GENE H. GOLUB AND V.PEREYRA,
STANFORE Ue TECHNG. REP 2619yMARCH 1 9 7 2 |
t o= NUMBCR OF OBSERVATI ONSe
N = HUMGER JF FUNCT | GNS .
K5 = NUMBLR UF NUNLINEAR VARIABLES.
NCFUN = NUMBER SFCONSTANTFUNCTIONS, ILE.FUNCTIONS PHI WHICH DO NOT
UEPENDUPON ANY PARAMETERS ALPHA.THEY SHOULD APPEAR FIRST.
YL Y M- VECTUR JF UBSERVATIONS.
T = Y=VECTORIFINDEPENDENTVARIABLE,
i L ‘= (N%KG) INCIUENCEM A TR I X .E(I4J) =1 IFF VARIABLE 3 APPEARS I N
FUNCTIUNIl« P= S UMO FE(I4Jd)e
AL F = KU-VECTJOR OFINITIAL VALUES. ONOUTPUT IT WILL CONTAIN
THEZ OPTIMAL VALUES OF THE NONLINEAR PARAMETERS.
AC = N -VECTUR UF LINEARXPARAMETERS (OUTPUT).
:::::::’.n-':w‘:#:****—‘k*********#****#*****************************##***#****#*****#*****

- r

i alslalakasisiaie o iele

N

-

oW
1

o

CUNT IS

c THE US £ MUSTPROVIDE A SUBRUUTINE THAT FORGIVEN ALF WILL EVALUATE

C THe FUNCTIUNS PHIANDT H E | RPARTIAL DERIVATIVES D PHI(I)/D ALF(J), AT THE
SAMPLLC PGINTSST . THE VECTUR SAMPLED FUNCTION PHI (I) SHOULD BE STORED IN

L FHe  I-TH CUOLUMN OF THE (M X (P+N+1)}) MATRIX A. THE NONZERC

" GiRIVATIVESCUOLUMNVECTURS SHOULD BE STORED SEQUENTIALLY IN THE MATKIX A

STAKTINGINTHECO L UMNN+2, IF ITER=0 (THE FIRST TIME THIS SUBROUTINE IS
CALLED) o THEMATRIXESHUOULD BE FILLED. WITH THIS MATRIX THE STORAGE OF
THe DERIVATIVESLISEXPLAINEDINTHE FOLLOWING CODE:

L = N+]

DU 113 Jd=14KG6
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DU 1O I=14N
I FLE(TILJ)D10y10,11
11 L=L+1
DU 10 K=1,M
AlKoL) "=*DPHI(1)/ DALF{J)(T(K))
10 CONTINUE
THt N+1-TH COLUMN NF A |S RESERVED FOR THE VECTOR OF OBSERVATIONS Y.
THE SUBRUUTINE HEADING SHOULD BE: ( ISEL =0 : FUNCT. AND DER, MUST B E COMP
ISEL = -1 ¢ ONLY FUNCTIONS MUST BE COMP. ISEL =1 :ONLY DER, NECESSARY)

SUBROUTINE ADA(NyMyKGyA»EoITERyPyTyALFy ISEL)

(ITER IS ANITERATION COUNTER PROVIDED BY VARPRD).
If IS ASSUMED THAT THE MATRIX PHI (ALPHA) HAS ACWAYS FULL COLUMN RANK

W WA WEITY  TRPRINTING

****#***#****#*******##******#*****t*t*#*#&*t**ttttt#tttt‘***t*ttt#*&***#t*#*
- ITER=0 ’

C¥¥#xxTH: THREEFULLOWING PARAMETERS ARE USED IN THE CONVERGENCE TEST (BETWEEN

ocococcc o000 0

c INSTRUCTIONSNUMBER 200 A N D 400)2 EPS1 | S A RELATIVE TOLERANCE FOR
- C DIFFERENCE BETWEEN THNO CONSECUTIVE RESIDUALS; ITMAX IS THE MAXIMUM
C THE SIZE UF THE CORRECTION. EPS2 IS A RELATIVE TOLERANCE FOR THE
C NUMBER UF FUNCTION AND DERIVATIVE EVALUATIONS ALLOWED.
Lo [ TMAX=50
ePS1=10D-4
{ PS2=50D-6
L Ckk gkt
KG1=KG+1

D O 101=1M
10 AUI N+1)=Y({1)
L 2 CALL UPA(NJMyKGINCFUNyITERyITERsR,YoToALFoADAL .
CT=1«Du e e e e o
L} *WRITE(3,104) I TER,R
1C=0
IF(ITER) 395,43
5 CONTINUE
- XNU=0,
Cokaedek
" Cx%x&k [F GAUSS-NEWTON IS DESIRED REMOVE THE NEXT FOUR (&) STATEMENTS (SEE
. C ALSG LABeL 61) .
DO 4 I=1.M
UG 4 leyKG
4 XNUSXNU+B (1 9Jd) X%2
XNU= USQRTIXNU/ (M*K5) )
WRITE(3,105)XNU
Crekxxf DUCTIUN GF 8 TOTRI ANGULAR FORM,
3 D0 3D I=1,KG
SGMA=0
DU 11 1 1=1 oM
11 s6MA= SCGMA+B( 11, I )%*%2
SGMA=USORT(SGMA)
IF(B(Is1))12512,13
12 Se=-1,
GO Tu 14
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s SG=1.

14 UKLI(I)=Su%(SGMA+DABRS(B(I,1)))
BETLI(1)=1e/{SCGMAX(SGMA+DABS(B(1,1))))
BUI4+1)=—SG*SGMA
IL=1+1

. 23 DL 1Y 12=114K61

N ACUM=UK LLI)*B(1,12)

' S 16 13=)1.M
lo ACUM=ACUMHB(I3,1)*B(13,12)
1 Zi12)=BETI(I)*ACUM
ull 30 J=I1,KGl
Bl1aJ)=80143)-UKLL1)*2(J)
DO 30 J2=11,.M
30 BUI29Jd)1=8B(124J)=-BlI2+1)*2(J) -t
CxxxxkSAVE TRIANGULAR FORM AND 2°,
U 40 I=1.KG
U 40 J=19KG
40 HRAT9JI=B(I,J)
dJ 41 I=1eM
41 LPRI1)=B(1,KG1)
Uk REDUCT LoNe SECOND PHASE.
5J  [F(XNU +tQe 0eDQIGO TO 300
DL ol K=1l4KG
Kl=K+1l
MKy )=XNU
DU 4¢ J=K19KG1
4¢  BIM¥KeJ)=0.D0
SoMATH (K9 ) x%2
M) 81 J=14K
20 JOMARSGMA+B(JM g K ) %% 2
SGMA=DSQRT(SGMA)
IF(G(K'K',52'52.33
b SteE~1,
GU Ty 54
53 §G=1.
54 UKL(K)=SG*(56MA+DABS (BIKyK)))
BUTlI{K)=1e/{SGMAX{SCMA+DABSI(B(K.K))))
UK K)=-3G¥SGMA
Ji 59 J=K1,KG1
ACUMFUKLIK ) *BLKyJ )
[HF(K +tQs 1)60 TO 55
Ka=K-1
N} 26 I=l.K2
IM=]eM
D6 ACUMSACUMAR(IM,K) %8 IMyJ)
55  Z24J)=LEeTI(K)*ACUM
DU 57 J=K14KG1
ClRed)=B8IKaJ)~UKL(K)*Z( J)
vl 57 1=s14K -
HT=n+¢1
20 UMl gd) oMl od)=B(MIK)IXZ{U)
sy GUNTINUE

CrxxxxxSULVE FUR DELTA-ALF.

34 Ng=KG=~1
DELIKG)=G(KGeKGL)/BIKGyKG)
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ALFLIIKG)=ALF(KG)+DELLKG)
CU 53 I=1,N2
11=KG~1
12=11+1
ACUM=B(T11,KG51)
DU 59 J=12,K6

59 ALUM=ACUM=~B(I1,J)%0DEL(J)
DLLIIL)=ACUM/BLIL,11)

58 ALFI(I1)=ALFUIL)+DEL(]1)

Cxxxx%GET NEW RESIDUAL .

310 ITER=ITER+1
I1SEL=-1
WRITE(3,103)ITER
WRITE(398U0)(ALFL{1),1=14KG)
IFCITER GT. ITMAX) GO .TO 400
DU 900 I=1.M

900 A(I4N+1)=Y (I)

CALL DPA(N.H:KG.NCFUN'ITER.lSELoRl.Y.T.ALFl.ADA)
IC=IC+1
WRITE(3,107)1CyR1
IF{R-R1)61,60,60

61 CUONTINUE :

CHxxxk [F GAUSS-NEWTON IS DESIRED REMOVE THE C FROM THE NEXT SIX (6) STATEMENTS

c IF(XNUI1104111,4110

Clll TT=0.5%TT7

c CO0 112 I=1,KG

Cll2 ALFI(I)=ALF(])+TTHDEL(])
C GU TU 310

CHXxkprk

110 XNU=1.5%XNU
WRITE(3,106)XNU ‘
CrxxxxKETRIEVE TRIANGULAR FORM OF FIRST PHASE,
DU 62 I=14K6
DG 62 J=14KG
62 BlIyJ)=0R(I,J)
D0 63 I=1,M
b3 U(IQKGI)=ZPR!¥’
G Tk 59
ol  LEPS=R~-K]
K=K 1

ACC=0,
LDAC=u,
DI 65 I=14K6G
ALF(I1)=ALF1(I)
ACC=ACCH+ALF(I)*%2
55 DAC=DAC+DE ¥
c*::ww IC 1S é(RIE)ATZER THAN LTHENNU HA'S BEEN INCREASED DURING THIS
c ITERATIUN,
IFUIC +EQe 1 ) XNU=Q. S*XNU
WRITE(35200) ICyXNU
ACC=DSQKT(ACC)
DAC=00SQRT(DAC)
AC1=DAC/ACC
WRITE(3,108)AGL
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(mmommme e e

L

4.1

l (f \j'
130
135

5C0
10
104
105
12¢
13
10 3
2 )
299
219
215
VY

I (0AC JLbte ACC*EPSL «ANDS
¥ CUTUru 0

ISkl =1

G T 2

Ni=N-]
M;('\:)=£\(N.N*I)IA(N,N)

1T N ofGe 1)GUTL1.35

Du 130 I=14N1

I1=N-1

{2=11+1

ACUM=A(114N+1)

U0 120 J=124N
ACUM=ACUM=-A(TI1,J)*ACLJ)
ACC11)=ACUM/A(I1,11)
WKITE(3,209)
WRITE(34210)CAC(I)9I=14N)
WRITE(3,215)(ALF(I),I=1,KG)
WRITE(3,209)

RETURN

3 FURMAT (1HU, ! ITER="913,°

EPS ,LE.

PARAMETERS ')

FORMAT(1HO,®* RESIDUAL® y15,015.7)

FORMAT(1HOs* NU='9D15.7)

R¥EPS2))

FURMAT(1HQs* N U WA S INCREASED TO*,D15.7)

7 FOKMAT(1HOsI54" NEW RESIDUAL'3D15.7)

FURMAT(1HO,* THENORM OF THE RELATIVE CORRECTI ON 1S=%4D15.3)
FURMAT(1HGs1S,” NUIS*¢D15.7)

FORMAT{LIHO,50( ' %))

FOKMAT(1rH0," WEIGHTS'//(4D15.7))

FUKMAT(1HO9" NONLINEAR PARAMETERS'/7/14D15.7))

FIRMAT( LHO 94020410 )
e ND

SUBRUUT INE DPA(N'M'KG'NCFUN’ITER'ISEL’R'Y'T'ALF’ADA,

T S - - ——— - — . — o ————"

C*xxx%xCUMPUTATION OF THE DERIVATIVE OF THE VARIABLE PROJECTION.

110

IMPLICIT REAL*8(A-Hy0-2)

COMAON AL200920)9AA(2004510)4E(20,20) 9B(220,20) yUKK(200),

* pETA(20) oP
INTEGER P

DIMENSION ALF(KG)3Z(120)9X(20),U(20920)9Y(M),T(M)

EXTERNALADA

‘_,ALL ADA(NgM,KG'A’E' ITER'P!‘riALF’ ISEL)

N1=N+1

Ne=1

IF(ISEL.GT1.0)60 TO 111
IF(ITER «GTe OIN2=NCFUN+1
DO 110 I=1l4M

UG 149D J=N2oN
AAM([9d)=A(14J)

Cr¥xxx*xkcDUCTIUN UF A TO TRIANGULAR FORM, COMPUTATION OF ¥=QYy AND
SELECTIVE COMPUTATIONOFQB ACCORDING TO VALUE OF ISEL.
1 1 10033 1I=1yN

C

Ili=i+1
IF(ISEL.GT.0)GO TO 22
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21
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23

lo
15

17
30

40

C**xx%kD-SNAKE IS CONTAINED NOM IN A(I9Jd)oI=NtlgeeesM3 J=N$2,4,0.9N#P+]1,
C

50

200
3040

[FUITER oi6Te O «ANDe | oLE«NCFUN)GOT O

DU 1 1 11=I.M
SOMA=SIGHA+AL 11, | ) *%2
SOMA=D5QRT(SGMA)
IFr(ACTL 1) )12412913

Su==1,

GU TG 14

IY=NCFUN+1

GU TG 20

SG=1.
UKK(I)=SO*(SGMA+DABS(A(I,1)))

SETA(I)=1./7(SGMA*(SGMA+DABS(A(1,1))))

AlI 31 )==-SG*SGMA

I1=111

IFCISEL)20421422

NN=N1

GO TO 23

NN=N1+P

G0 TO 2 3

NN=N1+P

11=N+2

00 1 5 12=11yNN
ACUM=UKK(I)*A(I,12)

D01 413=111sM
ACUM=ACUM+ALI3, 1 )*A{ 13, 12)
ZUI2)=bETA(I1)*ACUM

D3 1 7 J=11yNN
AlI,J)=A(]19J)-UKKLI)*2(J)
DU 1 712=1I11.M
A(I129J)=A(124J)-A012,1)%2(J)
CONTINUE

IFCISEL «GTL0)GO T O 50
R=0,

DU 40 I=N1lyM
R=R+A(1yN1)*%2

IF{ IStL +LT. O)RETURN

CUMPUTATIUN OF X.
NZ2=N-1
X{N)=A(NyN1)/A(NyN)
IF(N .EQ. 1) G O T0 310
DO 300 I=14N2

I1=N-1

I2=11+1

ACUM=A(I14N1)

DG2 0 0J=124N
ACUM=ACUM=-A{I1,J)%X(J)
X({I1)=ACUM/AlIl,I11)

C*x%xx%COMPUTATION O F U .

310

70

L=N1

DO 60 J=14KG6

DU 60 I=1,N
IFCE(I»J))T09T70,71
UlLed)=0,

~4h-
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r
8

13

|
]

S T3 60
1 L=L+1
ALCUM=(0,
21} 600 K=N14M
YOI ACUM=ALUM+A(K L ) *A{K4N1)
JUT g J)=ALiIM
6O CunT INuE
C*¥xx2COMPUTAT TUN UF W (STORED IN UPPER PART O F B).
DU 80 J=1,KG
B{1yd)=U(19J)/A(1,1)
DG 80 I=24N
ACUM=U(I44)
{l=1-1
DO 7 9 L=1,11 - =
7 9 ACUM=ACUM=-A(L,I 1*B{L,J)
U BlIsJ)=ACUM/ALI,I)
CH*%%xCOMPUTATION OF D-SNAKE* X{STORED IN LOWER PART OF B).
DO9 0I=Nl,M
L=N1
809 0J=1,KG
ACUM=Q,
0 0900 K=1yN
IF(E(KyJ))900,900,92
3 2 L=L+1
ACUM=ACUM+A(T,L ) *X(K)
900 CUNTINUE
90 BlI.J)=ACUM
Cxxxk¥FINALLY,DPA(ALF)*Y ISPRODUCED AS QT8.
DO 9 5 Kl=1,N
K=N-K1+1
DU 93 I=14KG6
K2=K+1
ACUM=UKK(X)*B{K, 1)
DO 94 J=K2sM
3 4 ACUM=ACUM+A(JK)*B(J,1)
93 ZUI1)=BETA{(K)*ACUM
DO 96 J=14KG
BIKyJ)=B(KyJ)-UKK(K)*Z(J)
DUO9 61=K24M
9 68(I+d)=8BlI4J)~A(I4K)%Z{J)
9 5 CUNTINUE
CHxxkxCUMPUTATION OF ETA=ORTUGONAL COMPONENT OF Yy RESPECT OF A.
DO 120 I=1,M
ACUM= Y(1)
DU 119 J=1,N
119 ACUM=ACUM—AAL T+Jd)%X(J)
120 Bl I4KG+1)=ACUM

RETURN
END
C
C ———————————————————————————— - ——— -
C
SUBKUUT INE ADA(NyMyKGyAsE9y ITERyPyToALF, ISEL) .
C OSEGRNE'S EXPONENTIAL FITTING.TWO EXPONENTIALS A N D CONSTANT TERM.

IMPLICIT REAL*8(A~-H,0-2)




- INTEGER P
DIMUNSTON A1200220 153E(20520) 9 ALF(KG) 9T (M)
L=0
IFCITER «6Te GIGO TO 5

LR*EEXIN THIS CASE THE INCIDENCE MATRIX E IS:

[55)

E(Ipl]z(}o
E(l+2)=0.
E(Ztl’=lo
6(272’1'0.
E(341)=0.
E(B’Z’zla
pP=2
DO 4 I=14M
4 All,1)=1.0D0
S5 IFUISEL «GT. 0)GO TO 16
DU 1 0I=1eM
AlI,2)=DEXP(~ALF(L+1)*T(I))
1 0 A{I¢93)=DEXP{=-ALF(L+2)*T(]))
C IFUISEL)14,15,16
Il bDO 17I=1.4M
Al(Iy5)=-TCI)*DEXP(-ALF(L*+1)*T(1))
1 7AU{I46)=-T{I)*DEXP(-ALF(L+2)%T(]))

aCCoo
O = C

14RETURN
15 DO 20 I=1,M
; AlT45)==T(I)*AlI,2)
. 2 0 A(I96)==T(I)*A(I,3)
RETURN
‘ END
L
Cc
v C
L SUBRUUTINE LEER(NyMyKGyNCFUNgYsTyALF)
IMPLICIT REAL*8(A-Hy0-Z)

DIMENSION Y(200),T(200) 4ALF(20)
| CRexskl EER  REAUS THE DATACSEE FORMATS 1004102,
L 1 REAU(111001END=500’N,M,KG,NCFUN"Tll)’vtI"I=1'"’
100 FORMAT(41I5/(2D15.7))
WRITE(35101)NgyMyKGoNCFUNo (T sTC(IDoY(I)oI=14M)
101 FORMAT(1H1,*' WNON LINEAR LEAST SQUARES PROBLEM®//* NUMBER O f- FUNC
- *TIONS=Y,13,3X ’ NUMBER OF OBS
*ERVATIONS=%,13// * NUMBER OF VARIABLES =%,13, *NUMBEROF CONSTANT
* FUNCTIONS=',13// ' !
, xT(1) Y(1)*//(15,2D020.7))
Nl=1 )
ReAD(L,102) (ALFUI) yI=N1,KG)
102 FURMAT(4D20.7)
WRITE(3,103)¢ALF(I)yI=N1,KG)
103 FURMAT(LHCs® I NI T I AL NONLINEAR PARAMETERS®//(4D20.7))
WRITE(3,104)
104 FGRMAT ( lHU95G("%%))
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KETURN

CALL EXIT

END

)J

()
g

Y7~



NUN LINEARLLASTSQUARESPROBLEM

NUMWER OUF FUNCTIUNS= 3

NUMBEROF VARIABLES =

| T(I) Y1)
1 0eU 0.844000000 0
2 0.103CCO0CD V2 C«39080000D0 0
3 0.2000000D 02 0.93200000 00
4 0.33600000 02 0.93600000 00
5 0.400000CD 02 0.92500000 00
6 0 .54G0000D 02 0.90800000 GO
7 0. 60000000 ©2 0.88100005 0Q,
8 0«.7000000D0 2 0.85C0000D00 0
9 0.80000000 02 0.81800000 00
10 0.90000000 02 0« 7840000D0 0
11 0.10000G0DO0 3 0.75100000 00
12 0.11000000 03 0.7180000D00 0
13 0.12000000 C3 0.6850000D0 00
14 0.1300000003 0.6580000D0 00
15 0. 140000000 3 0.6280000D 0 0
16 0.13000000 03 0.603000000 0
17 0.160000000 3 0.58000000 00
18 0. 17C00000D 03 -« 55800000 00
19 0.18000000 03 0.53800000 00
20 0.1900000D 03 052200000 00
21 0.20000000 03 0.50600000 0O
22 0.21000000 03 0.4900000D0 00
23 022000000 03 Ce4780000D 00
24 0.23000000 03 0.4670000D 00
25 0.2400000D0 3 0.4570000D 00
26 0.2500000D00 3 0.44800000 OO
27 0.26000000 03 0.43800000 00
28 0.2700000D0 3 0.4310000D0 00
29 0.2800000D 03 0.4240000D 00
30 0.2900000D 03 0.4200000D0 00
31 0.300~0000 03 0.41400000 OO
32 0.31000000 03 0.41100000 00
33 0.3200000D 03 0.40600000 00

NUMBER OF UBSERVATIONS= 33
2 NUMBER OF CONSTANT FUNCTIONS= 1

INITIAL NONLINEAR PARAMETERS

| 0.1000000D-01 0.20000000-01
**t***********#**********************t**#*********

RESIDUAL C 0.49178610-02
NU=  0.244494CD Cl
ITER= 1 PARAMETERS
0.12950688730-01 0.21832093270-01
1 NEW RESIDUAL Oe5609383D-04
1 NU 5 0.1222470D0 1

THE NORM UJFTHE RELATIVE CORRECTION IS=
_hR

0.1370 00



ITER= 2 PARAMETLKS

Uel1292835923D~-01 Ue219996736C0-01
| NLW RUSIDUAL  0.54654430-04
1 ~U IS 0C.5112350D 0C
THE NURM OF THE RELATIVE CORRECTION IS= 0e663D-02
ITok= 3 PARAMETERS
o 0.12878376470-01 302210022751D-01
1 NEWRESIDUAL 0.5465016D-04

INU IS 0.3056175000

« THENORM OF THERELATIVE CORRECTIUN IS= 0.4390-02
ITER=4 PARAMETERS
0.1286831632D~-01 0.2212108054D-01

L 1 NEW RESIDUAL 0.5464895D-04

1 NU IS 0.1528088D0 O

r

THE NORM OF THE RELATIVE CORRECTION IS= 0.905D-03
y **************#*******************#**#**t*********
WEIGHTS

0.37541320 00 0419362390 Ol -0.1465082D 01

NONL INEAR PARAMETERS

L  0.1286832D-01 0.2212108D-01

3 e ek o R kol R ook o e ok o ol ko ok 3ok R kel koK O ok e ks ok
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