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i ABSTRACT

For given data (ti , y.) , i+...,m ,
1 we consider the least squares fit

of nonlinear models of the form

c

L
For this purpose we study the minimization of the nonlinear functional

.L - It is shown that by defining the matrix (#(z)]i j = cp.(~ ; t.) , and the

modified functional r2(z) = 11 E - @(&+(a) y 11; ,
J" i

N -N it is possible to

optimize first with respect to the parameters z, and then to obtain, a

posteriori, the optimal parameters 8.H The matrix r'(g) is the Moore-

Penrose generalized inverse of O(z) , and we develop formulas for its

Frechet derivative under the hypothesis that 4(z) is of constant (though

not necessarily full) rank. From these formulas we readily obtain the deri-

vatives of the orthogonal projectors associated with O(g) , and also that

of the functional
32 C)a . Detailed algorithms are presented which make exten-

sive use of well-known reliable linear least squares techniques, and numerical

results and comparisons are given. These results are generalizations of those

of H. D. Scolnik [20].



1. Introduction

The least squares fit of elcperimental data is a common tool in many

applied sciences and in engineering problems. Linear problems have been well-

studied, and stable and efficient methods are available (see for instance:

Bjb'rck and Golub [3], Golub[8]),

Methods for the nonlinear problems fall mainly in two categories:
c

(a) general minimization techniques; (b) methods of Gauss-Newton type. The

latter type of method takes into consideration the fact that the functional
i

to be minimized is a sum of squares of functions (cf. Daniel [ 51, Osborne [l&j,

Pereyra [15]). The well-known reliable linear techniques have been used

L
mainly in connection with the successive linearization of the nonlinear models.

Very recently it has been noticed that by restricting the class of models to

t be treated, a much more significant use of linear techniques can be made (cf.

r P, 9, 12, 13, 17, 201).
L
.

L

In this paper we consider the following problem. Given data (t i9 Yi > 9

i=l, . . ..m , find optimal parameters Pi I2= (N 1 I***> I."> &IT

that minimize the nonlinear functional

(1.1)
m

Throughout this paper a lower case letter in bold face will indicate a

column vector, while the same letter with a subscript will indicate a component

of the vector. Matrices which are not vectors are denoted by capital letters,

and the (i,j) element of (say) a matrix A will be indicated by either a

CA3

ij
Or

$3
. The transpose of a vector u is indicated by u' . Given a

N N
function f(t) , we shall denote by f the vector whose components are

N
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q 1 9 fb2) t***3 . The scalar product of two vectors u and v
N N

is indicated by

(ll, V☺ =vTu l

N-

The only norm which will be used is the Euclidean norm,
II z II2 = (1 9 1) l

Given a matrix A and a vector 2, then we say

Ax =bN N

if x = A+b where A+N Cv is the Moore-Penrose pseudoinverse.

We shall use the symbol D for the Fre'chet  derivative of a mapping and

V for the gradient of a functional. We assume that the reader has some

familiarity with pseudoinverses and Frechet derivatives and their properties.

A useful reference for the pseudoinverse is [lg]; for details on the formalism

and manipulation of Fre/chet  derivatives, we suggest [6, chapter 81.

Let

and

(@I U = cpj(E ; ti> (i=l,...,m ; j=l, 2,...,n) >

With the given notation, we can rewrite (1.1) as

(1.1') da 9 -f$ = 11 x -

Our approach to finding a critical point or a minimum of the functional (1.1')

requires two additional hypotheses:

H-l. For any vector &z Rn , the system of nonlinear equations

-29
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has a solution (not necessarily unique).

H-2. The matrix B(g) has constant rank, kr 5 min (m, n) for CY E ncR ,
u

fl being an open set containing the desired solution,

Our aim is to be able to deal separately with the parameters z, and then

proceed to obtain the parameters f?;, as it was done in [g, 201 whose results

this paper generalize. The reader should also note the independent results

obtained by Pe'rez and Scolnik [17], who in addition deal with nonlinear

constraints.

In order to obtain this separation of variables, we consider, as in

E9, 17, 201, th e modified functional

(1.3) ‘2 (El = II x - @ (g)@+(g) d12 Y

which will be called the variable projection functional. Once optimal para-

meters $N have been obtained by minimizing (1.3), then auxiliary parameters 6

are obtained as 6 = i+((d) y ,rVN and finally we take i as any solution of the

system of equations (1.2).

We shall show in Theorem 2.1the relationship tbetween critical or minimal

points encountered considering the original functional r(3 cr> and those obtained
N

from the nLnctiona1  r2($ and @'(z)g . Both for our proof and for the numer-

ical algorithms of Section 5, we need to develop formulas for the Frbchet deri-

vative of the pseudoinverse of a matrix function. In Section 4, we develop

these formulas and obtain the derivatives of the projectors and the Jacobian

of the residual vector. The only hypothesis necessary on the rank of the matrix

is that it should be constant on an open neighborhood of the point in which the

derivative has to be calculated. This is necessary since otherwise the pseudo-

inverse is not a continuous function, and therefore it could hardly be differ-

entiable. Our proof is coordinate-free. For the full rank case,
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similar formulas have been obtained by Fletcher and Lill [7] (without)

proof), by Hanson and Lawson [lo], and by Pe'rez and Scolnik [17 J. In [7J and

[ 171 this is used to deal with constraints via penalty functions. In [17] the

authors choose to work with components, and also obtain a formula for the rank

deficient case which is given in terms of the factors of a certain decomposition

of the original matrix. Our formulas, besides being coordinate-free and thus

much more convenient for algebraic man:pulation, are given exclusively in

terms of the original matrix, its derivative, and its pseudoinverse. The

formula for the rank deficient case seems to be new.

In Section 5 we give a detailed -explanation of how to implement the method

in an efficient way and in Section 6 we present some numerical examples and

comparisons. Extensive use is made of linear least squares techniques.

The authors wish to thank Professor Olof Widlund of the Courant Institute

for his careful reading of this manuscript, and to Miss Godela Scherer of the

Institute Venezolano de Investigaciones Cientfficas  for programming assistance.

We are also pleased to acknowledge the kind hospitality and stimulating con-

versations with Dr. H. D. Scolnik of the Bariloche Foundation where this

work was initiated in July 191. Several helpful suggestions were made by

Miss Linda Kaufman and Mr. Michael Saunders.
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2. A class of nonlinear least square-s problems whose parameters separate.

We are going to consider in this paper models of the form:

(2.1) hb, g; t> =

where a E gs,
k

N a,& , and the functions gj I 9. 9J
are continuously differ-

entiable with respect to 2, and g yespectively. We shall call the functions

Qj
autonomous, to distinguish them from the

9
which are dependent on t .

We remark that the parameters 2 and g form two completely disjoint sets.

The independent variable t could be a vector itself as in [g, 171.

This requires only small notational changes and we shall not pursue it here.

Given the data (ti, yi) , i=l,..., m ,m>s+k, our task is to find

the values of the parameters 2 , z , that minimize the nonlinear functional:

The approach to the solution of this problem is, as in [g, 17, 201, to

modify the functional r(2 z) , in such a way that consideration of the auto-

nomous parameters a
N is deferred.

In what follows we shall call @(a) the matrix function
N

(2.3)

For each fixed cy , the linear operator
N

(2.4) p@(a> N - ’= ad m+(a)
N

is the orthogonal projector on the linear space spanned by the columns of the

matrix G(g) . We shall denote the linear operator (I - P
g(i2))



1
p@ (g> is the projector on the orthogonal complement of the ~01um.n  space of

Ug) l Similarly,

t

is the orthogonal projector on the row space of @ , and
(pl

=I-
mp '

When there is no possibility of confusion we shall omit either

the matrix subindex or the arguments in projections and functions, or both.

Taking 2 as a new parameter vector, we consider the following auxiliary

i
model:

p.51 h&,z;t)= f
j=l

bjvj(g;  !I l

L,
We define similarly the functional r&, a) = 11 x - ~~11~ .

N

L

I

For any given z we have the minimal least squares solution

(2.6) $ = @+(a> y .WN

‘L . Thus,

(2.7) min r,(b, cr) = r,(b*, cu) = 11 z - @(cu)i+(cy)  ;u1/* = (1~' 2

b
N- N -

Q(g)  l
XII

r

L
The modified functional is then the variable projection functional that

we mentioned earlier and can be rewritten as:

(2.8)

Once a critical point (or a minimizer) g is found for this functional, then

$ is obtained by replacing CY by & in (2.6). Finally, by hypothesis
N N H-l9

QN is-obtained as any solution of the system of nonlinear equations

-6-
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(2.10)

(2,then

and r($

E) is a critical point of -r(s g) (or a global. minimizer for 2 s 0)

g> = r2(k) .

i.

‘i

!

c

The justification for employing this procedure is given by the fouowing

theorem:

Theorem 2.1 Let r-(2, a) and
ry- r (CY) be defined as above

2N .
in the open set blC Rk , O(z) has constant rank r ,< min

(a) If 9- -

and 2- - satisfies:

We assume that

cm, 4 l

04 If $, $1 is a global minimizer of r(a a) for
@en

-Nthen r is a ilobal minimizer of r*(a) in ",-and<2(& r($ 2) .
N - W w N

Furthermore, if there is an unique g

then 2 must satisfy (2.10).

among the minimizing pairs of r(3 a) ,

We shall postpone the proof of this Theorem until the end of Section

where we obtain a convenient expression for the gradient of the functional
4,

r&) l

-7-
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3. Algorithmia I. Residual calculation.

One of our main points in the algorithmic part of this paper is to empha-

size, when possible and appropriate, the use of stable and efficient linear

least squares techniques. Thus it is convenient to review some of the tools

and introduce the necessary notation.

If Q is an orthogonal matrix then, for every vector 2 ,

It is well-known (cf. [S, 10, 181) that every m x n matrix 9 (m 2 n)

ofrank r<n, can be orthogonally transformed into "triangularfc form
3 viz l >

there exist Q, 2 orthogonal, such that

(34 1

N

where T is an r x r upper triangular and nonsingular matrix.

Q+ = ZTT+~=ZT

I

Qt

and consequently,

(Similarly, the@ we don't use it in Our CalCUhtions:

ep = 1+Q = z' Ir O[+1 z ; epL
= z'

0 0

Then

0 0i+ 3 z *I
0 In-r

Due to the isometric properties of the orthogonal trans:formation Q ,

-89 ,
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the least squares problem can be expressed as

min 11 y - Qb ii*
b - -

= min II By, - @ill2 .
bH N

Calling z = G& and partitioning it as j? 'C J we obtain

A
b 2’=
N . .a. .

A simple computation shows that:

(3 03) II z - @i /I2 = II 4 yJ* = 11 &II2 .

Therefore, one can evaluate the nonlinear functional r2(E) of (2.8)

for any value of cy
N in the following way: First the orthogonal matrix Q(E)

that is used in the reduction of Q(g) is determined; simultaneously, z z q

is computed, and finally

is evaluated.

For minimization techniques not requiring derivatives this is all that

is needed. For iterative techniques using the gradient of the functional or

the Jacobian of the residual. vector function P'@(%) 2, we shall provide in the

next section formulas which will also be useful in the proof of Theorem 2.1.

-9.
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4. Fr&het derivatives of pseudoinverses, projectors, and residual vectors.

In this section we develop formulas for the Fr&het derivative of the

pseudoinverse of a matrix function. This leads to eqressions for the deri-

vatives of the associated orthogonal projectors, and for the residual vector

function

As an aid to those readers not familiar with these concepts, we observe

that an m x n matrix function A(U) is a nonlinear mapping between the
N

linear space of parameters cy E Rk
N and the space of linear transformations

wn 9 Rrn)  l Consequently, D'A((r) will be, for each cy , an element of
N N

X(Rk , S(n” , a”)) . Thus,DA(cx) could be interpreted as a tridimensional

tensor, formed with k (m X n) matrices (slabs), each one containing the

partial derivatives of the elements of A with respect to one of the variables

QI
i'

Still in another way, each column in the k-direction is the gradient

of the corresponding matrix element.

Since all dimensions involved are different, it will be always clear

in the algebraic manipulations how the different vectors, matrices, and tensors

interact.

Lemma 4.1. For my a! E 0, k
N an open set of R , let B(a) be an m x n full

- N -

column rank matrix function, and C(a) an n x m full row rank matrix function .
N -

If B(g)and C(Q) are F&he-t differentiable in n , thenN

(4.2) D(B+) = -B+DB  B+ + (B’ B)-' DBT pi ,

D cc+) = -C+ DC c+ + $' DcT (ccT )-' .

-10.



proof. Since B has full column rank, then B+ = (d B)-'BT , and

DP+> = qBT B)" B' + (BT B)-'DBT .

But,

D(BT B)-' = -(BT B)" qBT B) (BT B)'l .

Therefore,

(4.4) D(B+) = (BT B)-'[ DB~ - D(B~ B) B+] .

Developing D(B~ B) and regrouping, we obtain (4.2). Since CT has full

dolumn rank, (4.3) follows readily from (4.2). m

Since PA(z) = AA+ , Pi(:) = I - AA+ , it follows that

(4.5) DPA = DA A+ + A D(A+) ,

and

(4.6) DP; = -DpA .

If A(g) has full column rank, then from (4.5) and Lemma 4.1we obtain

(4.7) DPA ’= pAaA A+ + (P~DA ~+f .

Similarly, if A has full row rank:

(4.8) DAp = A+DA A~As + (A+DA A~Af .

,We shall prove now that formulas (4.7) and (4.8) are valid in the rank

deficient case. For this purpose we shall prove first an auxiliary Lemma,

andthen obtain the derivative of the pseudoinverse of an arbitrary matrix

function.

Let A(Q) be an m X n
N matrix function, Frkhet differentiable,

-

-8-l

-II-
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and with constant rank r 5 min (m, n) , on an open set n c Rk . I&, B(a)
@

be a maximal set of independent columns of A(Q) in n , and let C
N = B+A .

It is well-known (see, for instance, [16]): (1) C has full row rank, (2)

A =BC, (3) A+ = C+B+ . Due to our hypothesis, B(Q) can be formed with
cd

the same columns of A($ on a neighborhood of every cy e 0, , Other usefulccl
relations that we shall use below are

AA+ = PA = BB+ = PB ; B+P;: = 0 ;

CA+
I 1 +*= B+&I+ = B+ ; PAB = 0 ; PAA =: 0 .

Lemma 4.2. With A , B , and C

valid in n :

(4.9) BD'B+ Pk =(DA A+,'

Proof: From Lemma 4.1 we get

defined as above, the following formula is

B D B+ =-PBDB B+ + (DB B+>' pi

= -PADI B+ + ( DB B+j Pi .

Therefore,

(4.10) BD B+ Pi = (DB B+,' P'
A '

On the other hand, since A = BC ,

D A A' = DB CA++ BDC A+ = DB B++ BDC A+.

-12-
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Thus,

I
PADA A+ = PIDB B+ ,

or

(DA A+)T pi = (DB B+)' pi ,

and this last expression together with (4.10) proves the Lemma.l

Let Cl c RkTheorem 4.3. be an open set and for g E 0, let A($ be an

m x n F&he-t differentiable matrix f'unction having fixed rank r 5 min (m, n) .

!l!hen for any my E Q :N

(4.11) D A+ = -A+m A +  +  A+A+~ DAM ’ A
T

PA+AP mT A+ A+ .

proof: With B and C as above, we have that

DA+ = D(C+B+) = d B+ + C+DB+ ,

and hence by (4.3)

D A+ = -C+DC C+B++ C$mT C+B+ + C+DB+ ,

since

@CT ) -1 = CJ c+ .

Substituting

Dc = D(BfA > = DB” A + $DA , c$+ = A+
’ cp

p
=APL,

in the last expression we get:

-13.
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(4.12) DA+ = -A+DA A+ + c+DB+ - C+bB+ AA++
A
p'&' cfa+

= -A+DA A+ + C+DB+ P;+A$ DCT c+T A+ .

But,

( 4 . 1 3 )  AP* DCTC+TA+ = APDAT A+TA+ +Ap AT DB+T +T +
C’A

*+T’
= APDAT A A+ ,

since APAT = 0 .

Substituting (4.13)

A+BDB+ PA

into (4.12) and using the relationship C+DB+ PA =

'= A+A+ *D AT PA , given by Lemma 4.2, we finally obtain the

desired resu1t.n

Corollary 4.3. Let A(a) be as in Theorem 4.2. Then, for any cy e n l

N .
N

- (4.k) DpA = D(AA+) = P’DA A+ + (P’DA A+)
A A 9

(4.1&b) DA.e = D(A+A) = A+DA AWL + (A+DA A~l)T .

Proof: Obvious. I

From this result it is now easy to derive an expression for the gradient

of the functional r2&) ( see (2.8)), provided the matrix @&) has constant

rati on an open neighborhood of the point in which the gradient is calculated.

In fact:

(4.15) ‘*k$ = 11 PLi@(E) JL II2 = ( $y > PLx > ,

and

-14.
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* v r2(cY) = T 1
N

=-- P [PAD@ Q+ '+@ DaT @ly l

Since Pi#+T = 0 , we finally obtain:

(4.16) * v r*(a) = T LN ,ypp @+x*

Now we have the elements for proving Theorem 2.1.

Proof of Theorem 2.1.

From (2.2) we have that r(E, g) = 11 x] - @(cu)g(a)l12 .
N -

Therefore,

Assume now that G is a critical point of q(u) , and that & satisfies
rY N N

Then,

(4.19) & V r(s 2) = -&T (D@ @+L + #DE)

= $ v ‘2@ y

since T 1
,y pgD~=g. Thus (5 g) is a critical point of r(% g) ,

Assume now that g is a global minimizer of T;(z) in 0 , and 6

satisfies (4.18). Then clearly, r($ $)
N

* *
- = &J . Assume that there

exists (2, a! ) ,z*ED , such that r(c*, $j < r(& GJ . Since for any

z we have r2($ 5 rb, 2) 9 then it follows that r2($) ,< r($ E") <

4, !I = r2@, 9 which is a contradiction to the fact that E was a global

- -15.
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minimizer of r2(cr) in n . Therefore (e, 9> is a global aimizer of
N NN

r(z, CU) in n and part (a) of the Theorem is Droved.N

Conversely, suppose that (& 2 is a global minimizer of r(s 9 in

n, then as above

Now let i be a solution of &(d = @'(& .

Then we have

A A
but since (3 o) was a global minimizer we must have equality.N If there was

an unique E among the minimizers of r(2 2) , then a* = k . We stillN N

have to show that k is a global minimizer of r2($. Assume that it is not.

Thus, there will be i E n , such that r2@) < r,(b) .
N Let E be a solution

of 4%) = 'p+@Jy . Then r#) = $3 3 1 r2(QJ = r(& QJ , which is a

contradiction to the fact that &, g) was a global minimizer of r(s z) . I

,
1

c

-16.
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5. Algorithmia II. Detailed implementation of the Gauss-gewton-Marquardt

algorithm.-

We shall now explain in detail how to apply the results of ktion 4

to the Marquardt modification of the Gauss-Newton iterative procedure; we make

extensive use of linear least squares techniques. We shall include an econo-

mical implementation of the Marquardt algorithm devised earlier by Golub

(see also [ll, 141).

We define the vector

z2($ = pL
@(# l

The generalized Gauss-Newton iteration-with step control for the nonlinear

least squares problem

(5.1) min r2($ = min
a

* ll:2(:) II = min II $(
aw N

is given by

- G.N. Starting from an arbitrary a0 :
N

The parameters tp > 0 , which control the size of the step, are used

to prevent divergence. Usually t
a

= 1 Y unless r2(aJ+‘) > r2(& , in

which case tR is reduced. Another use of the parameters tl is to minimize

r,(a'+') along the direction [pr,&)]&
N

l

N

MarquardVs modification calls for the introduction of a sequence of non

negative auxiliary parameters vL > 0 .

G.N.M. Define- -

Y Y

where for each 1 , FQ is the upper triangular Cholesky factor of an n x n

-17-
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symmetric positive definite matrix MI . Then the Gauss-Newton-krquardt

iteration is given by

Reasons for this modification are well-known.

interesting study of the convergence of this method

wish to make explicit now the "two-stage*brthogonal

For mre details and an

we refer to [14]. We

factorization” given in

[ll] and [14], 'in order to show how to take advantage of the special structure

of the problem.

Calling h = cyR+l I
'EY DP =Ds(g’) = oP;x

and dropping the superscript 1 from here on in, one step of the &rquardt

algorithm is equivalent to solving the linea,r  least squares problem

e

!
In the first stage of the orthogonal factorization of I( an m x n

orthogonal matrix Q is chosen so that

Thus,

R; and F are saved for future use.N

-18.



In the second stage we choose an (m+n)  X (m+n)  orthogonal matrix

to reduce
%

RiAS HvF
to “triangular” form.

For this purpose we shall use successive Householder transformations as in

['], from where we adopt the notation.* '

On reducing the first column of A, which is of the form:

c.

L

‘L.

1

i

* (1)’
El1

.

.

.

,o

P
0
l

.

LO _

I -

m. R M = Vfl,

we use Q(1) ZZ 1 - fj u(l)
1N 2

(UT
Y

where

9
(1) (1) (1)= sign (a,1 )(a1 + la,, 1) Y

(
2

a1 = "11 + P2>* 3.

U (1)
m-t1 =II,

(1)u. =o1 , otherwise,

Now we observe that when Q(1) is applied to a vector, any component

corresponding to a zero component of u (1)
N is left unchanged. In particular,

-19-
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the band of zeros in A is preserved. Thus, in this first step we only need

to transform the elements of rows number 1 and m+1 .

A (2) (1)
ConsequentlyY

=Q A will have the schematic form:

(2)A =

>
n

>
m-n,.

>

n

where the asterisks indicate the modified elements.

It is now clear that at step k , A (k) will have the form

04A = .

The matrix A (k+l 1 , k= l,...,n , is obtained as follows:

i> ( (a(k))2 +ok= kk )2)* ?

L

ii) pk = (ok(ak + Ia Y

(k)iii)ui = 0 for i<k ,k+l<i<m,m+k<i- - ;

04
Uk

od (k)= sign (a& )(ok + Ia& 1) ;

U 04 a 04i =i Y m+l<i<m+k.

-ao-
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iv) y' = 8, U(kr,(k>
t-d I

‘j 04 (k)
'm+i,k a m+i,j I j J=k+l,...,n .

Finally,

VI .@+I > (k) (k)
ij =a.. -u.

1J 1 yj 9

(k+1) 04aa = - sign (au )ok . cL :

i=k; m+l,...,m+k;

j=k+l ,...,n;

These formulas are similar to those given in [3], but are modified to

take advantage of the structure of the matrix A .

Osborne's version of Marquardt's  algorithm, modified for our present

problem, is presented in the detailed flow-chart of Figure 1.
The parameters

DECR and EXP are the factors by which v is either decreased or increased.

,

i
‘t

t

-21-
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1.Yitprc: Marquardt's algorithm (Osborne  1141)

Computel-7DP CID&> ;

bCc - ,r*(,) ;

I Rtrducc  [DP;f?]  to
\ -7

l.rian(7lhr  form:

+
no

-IV

1tmax < Ite
2)

Astop



c

We will evaluate or+(~) = DPLlu @(dx for a given g, according to

(5.4) Dp&,z = -(pi D a )  4+x - 8 (I+@)‘~  >
N a4

which is readily obtained from (4&a).

In many applications, each component function cp.
3

depends only upon a

few of the parameters (at},k=l ., and therefore its derivatives with respect to
- D(r*

the other parameters will vanish. Those vanishing derivatives will produce

m-columns of zeros in the tensor Da . In order to avoid a waste of storage

and useless computation with zeros it is convenient to introduce from the

outset the k X n incidence matrix E = (e
jt

) . This matrix will be defined

as follows:

e
jt

= 1 iff parameter cyt appears in function
‘Pj ;

L

e
3

= 0 otherwise.

We shall also call p the number of nonzero derivatives in D@ : p = 1 e
W

jt

The nonzero derivative vectors can then be stored sequentially in a bidimensional

array B(m)(P) l
In our implementation we chose to store the nonzero m-columns

varying first the index corresponding to the different differentiations, and then

L-
L

I,

that corresponding to the different functions. This information can then be

decoded for use in algebraic manipulations by means of the incidence matrix E ,

We now introduce some notation in order to describe the compressed storage

of the nonzero columns of the tensor D@ in a more explicit fashion. We

define, for t= l,...,k ,

L

St = [ set of ordered indices for which e
jt

h 0 , j=l,.. .,n ] ;
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\ We write the matrix B in partitioned form

B = [B,‘B2,-,Bk]  ,
I

(,
where

c

(‘

c

A step-by-step description of the computation of m& follows.

We assume that the rank of Q(g) is computationally determined and equal to

r 5 min (m,n) .

4 Compute Q(g) y D@(g) .

b) Fmm the m x (n+p+t ) array

G = [@(g) ; x ; D@(g)3 = [A ; ;E[; ; BJ .

4 Obtain the complete orthogonal factorization of A (cf. Section 3):

wT =‘I’=

Also V=Qy'Cv hr' c

-!T? 0+1-0 O

=BB

;

rxr

.

Y L Y and C will be stored in the array G ). Note again that (see Section 3):

A T 0 0pQ (z) = Q [+ 1 Q*

O *m-r

0 Get the intermediary values:
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( i.e
of

., Remember that the nonzero information
B is stored in the last p

and last m-r rows of G);
columns

4 u =
nxk

(p’D@)’ z z D@T QT
0 0

b-t 3
0 I

sit =

m-r

(transposition in the tensor Da refers to transposition within the "slabs"

corresponding to the different derivatives, and must be interpreted adequately

when decoding the information from the compressed storage array G ; the

appropriate  ALGOL-60 code for computing U with our storage convention would

be (assuming that C = QB is stored in the same place B is :

nl+n+l ;

Lf--I ;

for tf- 1 step 1 until k do-

for j c-1 s-be2 1 until n dollLL

if E&t1 = 0 then U[j,t]t 0 else

begin L+-I+1 ; acum+O ;

for i+ nl step 1 until m do

acumt-scum + G[i,L] X G[i,nl] ;

U[j,tJ+acum

end ; ) .-

f > Compute S = Z . U .
nxk

Solve the k , rxr lower triangular systems:

+w =z , where z
rxk

contains the first r rows of S .
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Store W in the first r rows of the mXk array B . Compute @z and

store the nonzero information in the last m-r rows of B .

d Finally, the mXk matrix B is obtained as:

We emphasize the systematic use made of the triangular orthogonal decom-

position of the matrix G(g) . We also warn the reader about the correct

interpretation of the algebraic operations in which any tridimensional tensor

intervene, as we exemplified in (-e) .

c

c

c

c
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6. Numerical experiments.

We have implemented three different algorithms based on the developments

of the previous sections for the case $2) = E and rank 9 = n l

Themethods  minimize the variable projection functional r2(g) = /lP'
ii (cy,JJ 2

first, in order to obtain the optimal parameters g , and then complete

the optimization according to our explanation in Section 2. The algorithms

differ in the procedure used for the m&&.zation of r2(z).

c Al. Minimization without derivatives. We use PRAXIS, a FORTRAN version of

c
a 'program developed by R.-Brent [4], who very kindly made it available to us.

All that PRAXIS essentially requires from the user is the value of the functional

for any a! .N This is computed using the results of Section 3. In fact, the

L user has only to give code for filling the matrix @ for any 2, and our

program will effect the triangular reduction and so on. It turns out that

many times (see the examples) the models have some terms which are exclusively

linear, i.e., functions cp.
J
which are independent of Q) . Those functionsN

.

produce columns in H(Q)rV which are constant throughout the process. If they

are considered first, then it is possible to reduce them once and for all,

saving the repetition of computation. This is done in our program.

A2. Minimization by Gauss-Newton with control of step (see (5.2)).

The user is required to provide the incidence matrix E and the array

of functions
cpj

and non-vanishing partial derivatives: G . See Section 5

for a more detailed description.

5. Minimization by Marquardt's modification, as explained in Section 5 with



Fl =I. User supplied information is the same as in A2.

c

L.

i

i

1
i

I
L

Test problems. Problems 1 and 2 are taken from Osborne [lb], where the

necessary data can be found.

Pl. Exponential fitting. The model is of the form:

-a t
h, (2, E; t) = al + a2e ’

C." r
+ a e

-cY2t
3 .

The functions cpi are obviously  Q, (z ; t) s 1, tp+ &; t) = e
-Qljt

9 j=1,2 .

So the different constants, in the notation of Section 2 are: n=3, s=3, k=2 .

For the problem considered, m=33. The number g constant functions: NCF = 1 .

The number of non-vanishing partial derivatives: p--2 .

In Table I we compare

obtained by minimizing the

our results for methods Al, A2, A3, and those

full functional r(2 E) .

P2. Fitting Gaussians with an exponential background.

-a t
h2(z, E; t) = ale ' + a2e

-a2(t-cu5)2
+ a e

-a$t-a6)2

3
+ a e

-a4(t-a7)2

4 .

The functions Q. are:
J

-cY t

cp&;t)=e ’ ; Qj(g; t) = e
-cyj (t-a. 2

J+3
)

9 j=2,3,4 .

Thus: n=4, s&, k=7, m=65 , p=7 .

Results for this problem appear in Table II.
L

P3. - Iron M'dssbauer  Spectrum with-two. sites of different electric field gradient

and one single line [21].
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The model here is the following:

h3(a, cr; t) = a1 + a2t + a3t2cy(v

r 1

- a

4

I 1
1+ I

aIs +o.5cy2 -t2 +

I
1 +

1

Q), -o.5cu2 -t 2

- - -cy3 a3 11

+ 1

1+ I @+
- o&t -t 2

\ ‘6
I.5a-0lI

.

Clearly, Qj(~; t) = tJ 9 j=l&5 ; and CQ t Q
5 f cp6 are the functions

inside the square brackets.

Here: n=6, k=8, NCF=3, p=8, m=188, s=6 .

For this example we wish to thank Dr. J. CL Travis of NBS who kindly

supplied the problem and results from his own computer program.

Comparisons are offered in Table III.

The qualitative behavior of the three different minimization procedures

used in our computation follows the pattern that have been expounded in recent

comparisons (Bard [l]). Gauss-Newton is fastest whenever it converges from

a good initial estimate. As is shown in the fitting of Gaussians (Table II),

if the problem is troublesome, then a more elaborate strategy is called for.

Brent's program has the advantage of not needing derivatives, which in this

case leads to a big simplification. On the other hand, it is a very conservative

program which really tries to obtain rigorous results. This, of course, can

lead to a long search in cases where it is not entirely justified.

As a consequence of our Theorem 2.1, and of our numerical exptl ace, we

strongly recommend, even in the case when our procedure is noi, used, to obtair:
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initial values for the linear parameters when gj($ = aj by setting

a0 = P+(g >Y l This is done in our program for the full functional and in

the program of Travis with excellent results.

The computer times shown in Table I and Table II correspond to the CPU

times (execution of the object code) on an IBM 360/50. All calculations

were performed in long precision; viz. 14 hexadecimal digits in the mantissa
h p9"c

of each number. We compare the results of minimizing the reduced functional

when the Variable Projection (VP) technique is used with that of minimizing

the full functional (FF) for various minimization algorithms. In order to

eliminate the coding aspect, we have used essentially the same code for

minimizing the two functionals. The only difference was in the subroutine

DPA which computes in both cases the Jacobian of the residual vector.

In the FF approach, the subroutine DPA computed the m x (n+k) matrix

B as follows: the first n columns consisted of the vectors ~~(5) while

the remaining columns were the partial derivatives

$ (Y - @(cy)a) = -NN
a

jfI, aj p 9 (l=l,z,...,k) .
=

a

These derivatives were constructed using the same information provided by the

user subroutine ADA. We also obtained from DPA in the FF case, the automatic

initialization of the linear parameters, viz. a0 =@ +(a")~ .N N

For the numerical examples given here, the cost per iteration was somewhat

higher for the VP functional. However, we see that in some cases there has

been a dramatic decrease in the number of iterations; this has been observed

previously (cf. [El). Thus, in these cases the total computing time is much

more favorable for the VP approach. This was especially true for a.,. three
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methods of minimization when the exponential fit was made and when

Marquardt% method was used in the 6ssbauer  spectrum problem,

l?or the Mossbauer spectrum problem, we used two sets of initial

values. We used those given by Travis [21], (say) !$', and also

p 4” 2 0.05 8'. For
N

8" ,
N

the value of the functional is 3.04467  X 108

while for r, the value of the functional is 6.405 x 108 ; the final

estimates of the parameters yielded a residual sum of squares less than

3.0444 x lo8 . When Brent's method was used on the full functional,

the method did not seem to converge, but for the reduced functional,

Brent's method converged reasonably well, In fact, after twenty minutes

Brent's algorithm applied to the full functional with p" did not
N

achieve the desired reduction in the functional.

The results we have obtained in minimizing the full functional for the

t
first two problems using the Marquardt method, and those of problem 3 with

Newton's method and &, are consistent with the results reported by Osborne‘L

L
I

and Travis.

From a rough count of the number of arithmetic operations (function and

derivative evaluation per step are the same for both procedures, so that the

work they do can be disregarded), it seems that for almost no combination of

the parameters (m, n, k, p) the VP procedure will require fewer operations

per iteration than the FF procedure. It is an open problem then to determine

2 priori under what conditions the VP procedure will converge more quickly

than the FF procedure when minimization algorithms using derivatives are used.

Another important problem is that of stability, The numerical stability

of the process and of the attained solution must be studied. By insisting on

the use of stable linear techniques, we have tried to achieve an overall

numerically stable procedure for this nonlinear situation. Since the standards
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of stability for non-linear problems are ill-defined at' this time, it is

hard to say whether we have succeeded in obtaining our goal.



Table I

Exponential fit.

Method Functional
Number of
Function

Evaluations

Number of Time
Derivative (seconds)
Evaluations

FF 1832 191.00
Al

VP *..- mo 9.00

FF 11 11 5.05
*2

VP 4 4 3.20

FF 32 26 12.55

*3 VP 4 4 3.12

r(k, 8) ., r2@ 5 0.5465 x 10-4
NN

Table II

Gaussian fit.
-_I_

Method Functional
Number of
Function

Evaluations

Number of
Derivative Time
Evaluations (seconds)

FF 11 9 23.35
A3 VP 10 8 26.82

Methods Al and A2 were either slowly convergent or non-convergent.
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Table 111

M&sbauer  Iron Spectrum.C

Method
Number of

Functional
Number of

Initial Function Derivative
Values

Time
Evaluations Evaluations (seconds)

Al

FF

VP

0

I! *

g 65 0 70.00

I

FF 4
A2 &O 4 34.34

VP
0

& 4 4 41.64
FF 1

0

7 7 52.27

VP
0

z 6 6 59e 60

FF 16A3 &O 0 16 118.22

VP & 3 3 35.35
FF

VP

0

rfl,

r
18

6

18

6

130.50

61.92

r($ $ Y r2(&) 5 3.0444 x 108

( ss”= (so, 49, 5, 81, 24, 9*5, 100, 41T >
* Did not converge in finite amount of time.
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i-IMI:edtiu  Ukl~Z~~,k~~~T1~20~,Z~2~~,OR~2~,2~~~ZPR~Z~~~,~EL  (20)
* ,aLF,CKG),ALF1(20),AC(20),Y(M),T(M)-

t-:XT tHNA1.  A D A
Ni;NLil\irA~+  LiiAST S Q U A R E S  P R O G R A M  F O R  L I N E A R  CCHWINATIONS  O F  N O N L I N E A R
FUNI;TIUM5.
wKITTi3  I N  Ftitc’T&;;Al\i  4  - L E V E L  G .  I N  T H I S  S U B R O U T I N E  T H E R E  A R E  W R I T E
STATkMf:tiTS  U S I N G  U N I T  3 A S  O U T P U T .  T H A T  U N I T  N U M B E R  I S  I N S T A L L A T I O N
DE ~kitii)tGdT.
kJhIHtL~TIGN  3Y  OSdOKNE-MARQUAKQT ALGORITHM (OR G A U S S - N E W T O N  W I T H  STEP
CiNTwL  dY kAKIrVG 1‘i-IE S M A L L  CHANGkS I N D I C A T E D  I N  T H E  S E C O N D  L I N E  A F T E R
INSTI~JCTIUN LAbtLtD  5, A N D  A F T E R  L A B E L  61).
5tt @ JHF I~IFFiRENTIATIUh  O F  P S E U D O I N V E R S E S  A N D  N O N L I N E A R  L E A S T  S Q U A R E S
Pk4,:‘L  t&S titiuSti VAK IABL E S S E P A R A T E ’ 5Y G E N E  H .  GOLUB  A N D  V.PEREYRAt
STAN-UG.2.L  U. TECHN.  AEf'. 261,MARCH  1 9 7 2 .
f,’ = !\CIM II Cl4 i-!f 03St:RVATI  ONS.
h = !d.JM!s f- K \,,F FUNCT  I MS.
k!; = &tfMi’ri.~ tjF NUNLINFAR  VARiAbLES,
lULt-ut\  = hUMt.JfiK :JF CilNSTANT FUNCTIQNS,  I .E .  F U N C T I O N S  P H I  W H I C H  D O  N0T

bkYf!ND UPOK A N Y  P A R A M E T E R S  ALPHA.THEY  SHWJLD  A P P E A R  F I R S T .
Y = M- VtCTtlR rlF ObSkRVATIONS.
T = .‘j-VfCTr !ti i.)F INDEUENUENT V A R I A B L E ,
ia = (N*KGl IIVCWENCE M A T R I X .  E(I.3) = 1 I F F  VARIA8LE 3  A P P E A R S  I N

F:JNCl’iW  I l P =  S U M  O F  E&J).
!\L f‘ :: fit;-Vki;Tdi-‘\  O F  INITII1L V A L U E S .  O N  O U T P U T  I T  W I L L  C O N T A I N

THt- O P T I M A L  V A L U E S  OF T H E  N O N L I N E A R  P A R A M E T E R S .
c\(; z ‘\I - VkCTW tjf L IS\lEA% P A R A M E T E R S  ( O U T P U T ) .

:3 ,;: 8 4: ;‘; .& j& Q f * .L ..b 4.-.~~~,.4~4P44444848444*44*44444***4444444444*4*4*44**~4*4*44*4444444444
CUh T I >JtJfi

- ^
Ttdt- ilS t-i: WST PRGVIl)E A SU3KOUTfNii  T H A T  F O R  G I V E N  A L F  W I L L  E V A L U A T E
;tW[UNCTfWS Pi-t1 ANb  T H E I R  YAKTIAL DERWATIVES  0 PHIII)/D  ALFtJ), AT THE

,

t-L
L QUltiTS T . THE VEC;TOK  SAMPLED FUNCTION PHI (I 1 SHOULD BE STORED IN
I-Tt-1  WLUMN Ok THk (t4 X W+N+lH  M A T R I X  A .  T H E  NONLERO

d, ti IVI’IT~V~~S  Cr3LUfW  ViZCTCjKS  S H O U L D  BE S T O R E D  SEQUENTIALLV  I N  T H E  MAT&IX A
51’Ar\:IIW I& THt C O L U M N  N+2, I F  ITER=O (THE F IRST TIME THIS S U B R O U T I N E  IS
~;ALLkG)rTHc  PIATKIX E SHClULD  B E  F I L L E D .  UITH T H I S  M A T R I X  T H E  S T O R A G E  isF
Ttic. iXKIVuTiVt,S IS FXPLAINED IN T H E  F O L L O W I N G  C O D E :
L = iti+I.
!)U Ii1 .I=1 ,KG
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- c Ub A.0 I=l,lV
c I F  (E(I,3))10,1~,11
c Ll L=L+l

- c Dtl 10 K=l,M
c A(K.1)

I

‘=’ D P H I ( I ) /  D  ALF(3)  (T(K))
c 1iJ Ccx4TIWE
ii T id t. N+l-TH  C0LUMN  f1F

i c
A IS RESERVED FOR THE VECTOR OF: QBSERVATIONS  Ye

1 c
THE SlJBHC)UTINti HtAUING S H O U L D  B E :  ( I S E L  = 0
ISliL = -1 :

: FUNCT. AND DER. MUST B E  CWlP

i L
ONLY FUNCTIONS MUST BE COMP. ISEL = li t U4l.Y DER. N E C E S S A R Y )

t

: \ L”

c
SUUfGBJTIfW  ADA(N,Y,KG,A,E,ITER,P,l,ALF,ISEL)

c
c
c

(ITi%  IS Ah ITEHATION C O U N T E R  PROVIOED  B Y  VARPRO).

c
If IS ASSUMB THAT THE MA’TRIX  PHI (ALPHA) HAS A C W A Y S  FULL COLUMN RANK

L
*f~s******~$$~~+****************************~********~****~~*****?**~****~*~

I T@K=G
C;+r***TH~ THKtTE  FclLLOWING  PARAMETERS ARE USED IN THE CONVERGENCE TEST t6ETWEEN
c INSTKUCTIUNS  N U M B E R  200 A N D  400): EPSl I S  A  RECATfVE TULERANCE  FOR

- c DlFFtrfiENCE  B E T W E E N  TWU  C O N S E C U T I V E  R E S I D U A L S ;  I-WAX IS T H E  MAXIWH
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c

L
nlUMyll~cli4  tif; FUNiL;TI9N  AND D E R I V A T I V E  EVALUATIUNS ALLUYIEO.
I IHAX=5u
iivs I= lL*D-4

i !Ps2=500-6

LC
*****

KGl=KG+l
, D O  16 I=l*M,

i
19 A(I,N+l)=Y(I)

2 CALL DPA~N,M,KG,NCFUN,ITER~ITER~R~Y~T~~~F,ADA).-. - - - _. - - -  - -  - - - - - -
CT= r.0~2 _______- -- - - - - - - - - -
I f  (IJri-4 .EbL 01
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L WKI TE (3, UP+)  I JI5R.R
IC=O
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5 CO~TlNUk

LI XNU=O.
c**;QL**r
c*‘s***IF  G A U S S - N E W T O N  IS DfSIREO  REMOVE THE NEXT F O U R  (4) STATEMENTS (SEE

.c Aijc CArjcL 611 l

/ LX.2  4 J=l,KG
4 Xi\U=Xb+ij+t3  ( I *3) **:2

XNU= uSO:~T(XNU/(M*KG) 1
WHITk(3,105)XNU

C*****~~FDUCTILJN  of d TO TRi ANGULAR
-3 i)f.) 30 I=l,KG

SGMA=O -
t)tJ 11 1 I=1 ,!“!

11 5 t;pl ,;= SGMA+LJ(  11, IW*Z
SGPIA=USWT(SGMA)
iF(H(I,1))12rlZ,13

12 SG=-1.
GO Tk1  14

FORM,





ACC=u.

, I)13  h5 i=l,KG
ALF(I)=ALF1(1)

I ACC=ACC+ALF(1)**2
b5 0AC=DAC+DEL~&~**2

C*SW* IF

c
IC I S  G R E A T E R  T H A N  1 TMN NU H A S  BEEN INCREASED D U R I N G  T H I S

ITEKAi-IUh,
IF{ 1c .EO. 1 )  xNy~O,$HwNu
WRITk~3,~UO)IC,X~U
AtX=DSQkT(ACC)
DAC=LSQKT( ZiAC)
ACI=l.+AC/ACC
WHITf&lC’8)A$l



L

I

c-

L

c

c

L

II ((i;:-iC .LI, ACC*Ef’S1 .AND. EPS Ati. WEPS2))
:f GI! 7 Ij ,‘t c ti

I 5 !I I.. = 1
c;IJ T.1 2

/+, ! 'j iv I= lu - 1
n~(~~)=A(i~,N+I)/A(N,N)
iF(h *;-&de 1)Gti TLi 1 . 3 5
r>u  I.30 I=l&il
Il=bJ-I
22=11+1
ACUpI=A(  Il,h+l)
Of> 1LO 3=1&N

1 ‘! <:I MiUM=AcUi+AdJf,  JHACdJ)
133 AC(11)=ACUM/AlIl,Il) - 9
135 WITI-Ei3,209)

~RITt(~,210)(AC(I),I=l,NJ
~klTtts,~l5,(ALFtI,,TrllKG)
WXT~(3,209J

5G ‘3 R E T U R N
1 0 3  FORlfATWW,’ ITER=‘,I3,’ QARAMETERS'J
la4 FORMATWiO,’ RESIDUAL',IS,D15.7) _
103 WRMAT l H-IO, ’ NU=@,D15,7J
136 FOKHAJ~lt-iO,’ N U  W A S  IhjCREASED  TO’,D15.7)
1 3 7  F:IC;rMAT( lt40,15,’ NEW H&iSIDlJAC',Dl!LtJ
112 3 WRhAJ(lhO,’ Ttiii NORM OF THE RELATlVf CORRECTION IS=',D15.3)
2 0t.J FC;RMAT(  1i-46, I S , ’ N U  IS',D15.7)
239 f!~)lidAT  ( lHO,50(  * *@ ) 1
.a3 WkMATi(t&‘ WtIGHTS'//t4015.7~)
215 hJRMAT(  ltid, N O N L I N E A R  PARAWETERS'//~40~3.7~~
ilo ii FtitWAT( IH0.402U.10 1

.i YI‘)
c
c --r--------------------------------------~--~----------------------------------

c
SUtifbjUTfNE DPA~N,#,KG,NCFUN,ITER,ISEL,R,Y,T,AlF,ADAJ

C****WUMPUlATION  OF THE L)ERIVATIVE  OF THE VARIABLE l’R03ECTION.
IMPLICIT KEACWHA-H,O-2)
Cf!Mdtl~J  A(%00,2ti),AA(200,10),&(20,20J  ,Bt220,20)  ,UKK(200),

* ~fzi-A(IL0) ,Q
IhTtGE.2  P
UIIUIFNSIQN  ALF(KG~,Z(lZO),X(20J,U~2Om2O~gY~hl),T(W)
EXTtKfuAL  A D A
CALL A~A(N,M,KG,A,E,ITER,P,T,A~F,~SE~J
Nl=N+l
1\1;;1=  1
IFWZL .GJ. 0160 TO 111
ZFWEK  .GT. G)N2=NCFUN+l
90 11u I=l,H
IJ(j 11-f)  JzrV2.N

1 1 Cl AM I,J)=ii( I,J)
C*****ticbULTIbN  uf A T O  TRIAMGULAR  F O R M ,  C O M P U T A T I O N  O F  V=OY, A N D
c StLECTIVt COw'UTATIUN OF QB ACCORDING TO VALUE OF ISEL.

1 1 1  01J iij3 I=l,N
Ili=I+l
/FiISLC  .Gf. 0) G O  T O  2 2

-
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I+( ITEK .GT. 0 .ANU. I .Lit. NCFUN)GO  T O  7
Sd=lA=!3.
ixl 1 1  Xl=I,M

11 G’~A-~,X~A+~~  11, I )**l
Ld’W=3SJRTtSGMA)
1t3N1,1))12,12,13

A% s,=-1.
G;o l‘[J 14

7 Il=NCFUN+l
GLI T(! 23

:1 SG=l.
UKK(I)=S~s(SGMA+DABS(Ao)))
~~TA(I)=1./(56~A*(SGnA+DABS(A(III))))
NI,I) =-SWSGMA
Il=Ill

8 IH ISEL)20,21,22
2i) NN=Nl

G O  T O  23
21 NN=rJl+P

GU TO 2 3
22 NN=Nl+f

I l=N+Z
2 3 DO 1 5  LZ=Il,NN

ACUM=UKK(I~*AtI,I2)
00 1 4  13=Ill,H

16 ACUN=ACUM+A(  13, I )-+A( 13, I21
15 L(IZ)=LETA(I#+ACUM

&xl 1 7  J=Il,ruu
A(I,J)=A(I,J)-UKKtI)*Z(J)
DC) 1 7  IL=Ill,bl

17 4~12,3~=A~12,3~-A112,1~*2~~~
30 C O N T I N U E

IF{ ISiC .GL WGQ T O  5 0
R=O.
ou 40 i441,M

4cI R=WAII,N1)**2
Ii-4 IStL .lT.  OIRETURN

C*****D-SNAKt  IS CONTAINED NOM IN  A(I,J~,I=N+l,...,~~  .J=N+2,.,,,N+P+l,
C WHPUTATXJN  O F  X .

50 NZ=N-1
XtN)=A(N,Nl)/A(N,N)
IfiN .EU. 11 G O  To 310
00 3 0 0  I=l,ru
I l=N-I
I2=11+1
ACUH=A(  Il,Nl)
Uci 2 0 0  3=12,N

2130 A C U M  =ACUH-AtIl,J)*X(JB
3tiii XtIl)=qCUH/A(Il,Il)

C*****CDMQUTAJION  O F  U .
3 1 0 L=Nl

OfI 60 J=l,KG
DO 60 I=l,N
if(E(I,J))70,70,71

7 0 UH,J)=0.
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I ‘J
Il. C=l+l

ACUM=O.
iI13 t-,ti!!  K=Nl,M

tbi; I2 ~~~M=A~UM+A(K,L)+A(K,Nl)
d(I,J)=Aii)M

i>;i CdN? INUC
C*****CLM-‘U~AT  Illi’v 1Jk

Ui) iid J=l,KG
ir (STORE0  IN UPPER  PAHT O F  8).

d(l,J)=U(l,J)/AIl,l)
1’113  230 IZ2.N
ACUM=U(  1,~)
11=1-l
NJ 7 9  C=l,Il - s

7 9  ACUM=ACUM-AtL.1 WBIL,J)
8ti d(I,J)=ACUH/A(I,i)

C*****COhPUTATION  O F  D - S N A K E *  XtSTORED  I N  L O W E R  P A R T  O F  8).
DO 9 0  i=Nl,M
L=Nl
00 9 0  J=l,KG
ACUM=O.
0 0  900 K=l,N
IF(E(K,J))900,900,92

3 2  L=L+l
ACUM=ACUM+Atr,L)*X(K)

960 CtiWINUE
90 B(i,J)=ACUM

C*****FINALLY, DPA(ALF)*Y IS P R O D U C E D  A S  Of B.
00 9 5  Kl=l,N
K=N-Kl+l
I)il 93 I=l,KG
KZ=K+l
ACUM=UKK(Kb*8(K,I)
D O  9 4  J=KZ,M

3 4  ACUM=ACUM+A(J,K)*B(J,I)
9 3 L( I )=BETA(K)*ACUM

D O  9 6  J=l,KG
S(K,J)=btK,J)-UKK(K)*Zt  3)
00 9 6  I=K;Z,M

9 6  d(l~J)=U(I,J)-A(I,K)*Z(J)
9 5  WNTINUE

C*****~iJWUTATIQN  OF ETA=ORTClGONAL  COfWfNVENT  OF Y, R E S P E C T  O F  A .
00 1 2 0  I=l,M
ACUM=  Y(I)
Uti i19 J=l,i\l

11'3  ACUM=ACU+AAt  I,JHWJ)
123 H( I,KG+1)=ACUM

KETWN
IrrlLil

/ c”
,.
------------------------------------------------------------------------------

C
SUf3fiiJuTXNk  ADA(N,M,KG,A,E,ITER,PpT,ALF,ISELj
OSLGRNE  ’ s E X P O N E N T I A L  FITTING.TWO  EXPONENTIALS A N D  CONSTAW Tt?‘R#,
I M P L I C I T  REALWtA-H,Q-Z1
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k.. DU 4 I=l,M
4 A(Irl)=i.ODd

5 IFtISEL  .M. ObGO T O  1 6
DU 1 0  1=1&l
A(I,2)=DEXP(-ALF(L+l)*T(~~)

1 0  A(I,3)=DfXP(-ALF(L+Z)*T(~)~

c I F  ( lSEL 114,15,16
l b  D O  1 7  I=l,H

A(l,5)=-T(I)+DEXPI-AL~(L+l~*~g~~)
1 7  A(1,6)=-T(I)+OEXP(-ALF(L+2~*1~~~)

. 1 4  R E T U R N
15 00 20 I=l,M

.
b AU&b=-T(I)*A(l,Z)

L 2 0  AU,61 =-T(I)*AtIr3)
R E T U R N

I

kc
E N D

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

/ i;

i
su~iiwuTiNE  LEEK(N,H~KG,NCFUN~Y,TIALF)
Ii~PLICIT  hEAl.*8(A-H,O-2)
DIMENSIW  Y~200~,1~20U~,ALFIZO~

1 (p*ort**L~~R
IL 1

ti(EALjS T H E  DATA.SEE F O R M A T S  100,lQZ.
REAU(l,130,~ND=~00)N,~,K~,~CFU~~(~~I),~(~~,I=l,M)

li)c)  FORMAT(4IT/(2015.7~)
WRIiE(i~lOl~N~~~KG~NC~U~~~~~~~~~~Y~I)+Irl~~~

101 F O R M A T  ( 1Hl, ’
c *TlONS=’  , 1 3 , 3 X

WN L I N E A R  L E A S T  S Q U A R E S  PROBLEW// NUW3ER  O f -  FUf’dC

*fRVATIONS=r,13// ’ N U M B E R  6F VARIABILES
‘WWBER OF OBS

4: FUNCTIONS=‘,I3//
9953,’  NUWBER  OF C O N S T A N T

8 I
, *l(l) Y~I)‘//~IS92020.7~)

Nl=1
/ KtAD(l,lOZ)(ALF(I),I-N1,KGB

1 0 2 Fi~HFIAT t W20.7)
~KIIE(3,L03)~ALF(I)rI~~lg~~~

103 FbJQ,MAT ( MO, ’
WR1TE(3,104)

I N I T I A L  NOIYLIhJEAR  PARAfiETERS’//(9DZQ.7~)

104 tibKMA?  ( lno,5G(‘*‘))
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N U N  L I N E A R  LL;AST  SUUAHfS P R O B L E M

NUMRER UF V A R I A B L E S  = 2 NlJPiBEH O F  C O N S T A N T  F U N C T I O N S =  1

1 T(i) Y(l)

1 Q.ci
2 0.13ZXOCD i)Z
3 0.200c70c00  02
4 0.3x00001)  02
c, o.4o@~~oco 02
6 0 .  SirOOOOOD  02
7 0.60000000 02
8 0.7QdOOGOD  0 2
9 0.8c)OOGGGD 02

10 0 . 9 0 0 0 0 0 0 0  0 2
1 1 0 . 1  OOOOGOD 0 3
1 2 0 . 1 1 0 0 0 0 0 0  0 3
1 3 0 . 1 2 0 0 0 0 0 0  c3
1 4 0 . 1 3 0 0 0 0 0 0  03
1 5 0.14000000  0 3
1 6 0 . 1 3 0 0 0 0 0 0  0 3
1 7 0 . 1 6 0 0 0 0 0 0  0 3
1 8 0. Lf@OOOOD  0 3
1 9 0 .18000000  03
20 0.19OQOOOD  0 3
21 0 . 2 0 0 0 0 0 0 0  03
22 0.21000000 03
2 3 .o. 2 2 0 0 0 0 0 0  0 3
2+ . 0 . 2 3 0 0 0 0 0 0  0 3
25 0.24OOOOGD  0 3
2 6 O.25OOOOGD  0 3
2 7 0 . 2 6 0 0 0 0 0 0  0 3
2 8 0.27OOOOGD  0 3
2 9 0.2t3OOGOOD 03
3 0 0.29OOOOGD  03
3 1 0 .300~0000  03
32 0.31000000 03
33 0.32OOOOOD  03

0 .  tr440OOOD 0 0
2.908OOOOD  0 0
0 . 9 3 2 0 0 0 0 0  0 0
0 . 9 3 6 0 0 0 0 0  0 0
0 . 9 2 5 0 0 0 0 0  0 0
0 . 9 0 8 0 0 0 0 0  00
0 . 8 8 1 0 0 0 0 5  @a,
0.85G00000  0 0
0 . 8 1 8 0 0 0 0 0  0 0
0.78400OOD  0 0
0 . 7 5 1 0 0 0 0 0  0 0
0.718OOOOD  0 0
0*685OoOOD  -00
@*658UOOOD  00
0.628OODOD  0 0
0.603OOOOD  0 0
0 .58000000  00
0 l 558000OU 00
0.538OOOOD  0 0
0.522DOOOD  0 0
0 .50600000  00
0.49OOOOOD  00
0.478O;oOOD 0 0
0.467OODOD  0 0
0.457DOOOD  0 0
0 .44800000  00
0.43800OOD  0 0
0.43100OOD  0 0
0.424OOOOD  0 0
0.42OOOOOD  0 0
0 .41400000  00
0.411uo000  0 0
0.406OQOOD  0 0

I N I T I A L  N O N L I N E A R  P A R A M E T E R S

0.10000000-01 0.20000000-01

R E S I D U A L C 0.49178610-02

N U = L244494CD  01

ITER= 1 QARAMETERS

0.12950688730-01 0.21832093270-01

1  N E W  R E S I D U A L  iJ.56093830-04

1 NUIS 0 . 1 2 2 2 4  700 0 1

T H E  N O R M  tJF THE R E L A T I V E  C O R R E C T I O N  IS=

-hQ
0 . 1 3 7 0  0 0



c

IPEK=  2 PAAAtik1 tkS

&129283592m-41 %219996736~..?-01

I NCti HCSICJUAC Lfi466443b04

1 ILU IS O.b1123500 01)

Ti-tti NiiKM Of: THE KELA!-IVE C3KRECTION IS=

iTfk= 3 YAtiAMkTEKS

o.Ud7tWT6470-01 ~L2i?lOU227510-01

1 NEW R E S I D U A L  0,546T016D-04

1 N U  I S  0 . 3 0 5 6 1 7 5 0  00

T H E  NOW O F  T H E  R E L A T I V E  CDRRECTILIN I S =

ITER= 4 , PARAMETERS

Lb

L

,t
L

i

1

0.12868316320-01 0.22121080540-01

1 N E W  R E S I D U A L  0.54648950-04

1  N U  I S  0,15280880  0 0

T H E  NORN  O F  T H E  R E L A T I V E  C O R R E C T I O N  I S = 0.9050-03

*+4**4*44*44*4*4*+4*44**4**4******************4***

WE I GHT’S

0.37541320 00 Oa1936239D 01 -iMe 01

NUNLSNEAR  PARAMETERS

L 0.12868320-01  0.2212108D-01

0.6630-02

0.4390-02
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