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Abst r act

An n-omino is a plane figure conposed of n unit squares joined
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the edge of a unit square to the edge of a unit square in some
(n-1)-omno so that the new square does not overlap any squares.
Let t(n) denote the number of n-omnoes, then it is known that the
sequence ((’s(n))l/n . n =1,2,...) increases to alinit 6, and
3.72 < @ < 6.75. A procedure exists for conputing an increasing
sequence of nunbers bounded above by e . (Chandra recently showed
that the limt of this sequence is 6.) In the present work we give
a procedure for conputing a sequence of numbers bounded bel ow by o .
Wiether or not the limt of this sequence is O remains an open

question. By conputing the first ten terms of our sequence, we have

shown that 0 < 4.65.
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Conput er Sci ence Depart ment
Stanford University

1. [ ntroduction

W begin with some definitions and a fornulation of the problem
treated in subsequent sections. Also included in this sectionis a
brief indication of sone of the known results dealing with the n-om no
enuneration problem Sonme of what follows together with nore details
may be found in [3] or [X4].

Let C denote the set of all integer points in the Cartesian
plane, that is, C = 1x1 where | denotes the set of all integers.

El ements of C are called cells, and tw cells are said to be connected
if the distance between themin the Cartesian plane is 1 . The set of
cells C may be regarded as the vertex set of an infinite planar

graph R whose edges consist of all pairs of connected cells in C.

For each natural number n , let R(n) denote the connected subgraphs
of R having exactly n vertices. CQearly, R(n) has infinitely

many elements for each nunber n , but we are only interested in certain
equi val ence classes defined on R(n) by means of the autonorphism
group o of R.

The autonorphismgroup o of R consists of isonetries of the
pl ane which map C onto C; nore precisely, an elenent of is the

restriction of such an isometry to C. An inportant subgroup T of



corresponds to the set of translations of the plane which map C onto C .
Al of the elements of o may be forned by cambining the elenments T

wi th conbi nati ons of some of the follow ng isonetries of the plane:
reflection along the x-axis or y-axis, 90°, 180° , or 270° rotation
about the origin.

Two elenents of R(n) are said to belong to the same translation
class if one of these elements can be transformed into the other by an
element of 7. The set of all translation classes induced in R(n)
by 7 is denoted T(n) . Representative elenments of the translation
classes induced in R(4) by 3 are shown in Figure 1. In the figure,
boxes have been drawn around the cells of the animals, and the
vertices and edges of the graphs have not been indicated in the
conventional way.

Two el enments of R(n) are said to be the same if one of them can
be transformed into the other by an elenment of » . The set of equival ence
classes induced in R(n) by - is denoted S(n) . Representative
el ements of the equivalence classes induced in R(4) by » are shaded
in Figure 1.

Let t(n) =|T(n) | and s(n) =1S(n) |, then it follows fromthe

definitions that
(1) 3 t(n) < s(n) < t(n) < 8s(n) (n = 1,2,...) .

Furthermore, it was shown in [3] (i) that the linits

(2) 6 = lim (‘G(n))l/n , 8' = lim (s(n))l/n
exist,  (ii) o =6, (iii) o> @&@)Y™ for all n, (iv) and

8 > 3,72 . This last result was an inprovement over 6 > 3.14 and
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Representative elenments of classes in T(4) .

Figure 1.



@ > 3.20 given in Eden [1], and [5] respectively. Al so/Eden showed

t hat
o o< ()

and since
1/n
w  w((A)) %
n —w

it follows fromhis result that 0 <6.75. Thus, the best bounds on

o after [3] were
3.72 < @ <6.75.-

Read [6] (for nore details see also [4]) gave a nethod for conputing
the generating function for the number of elenents of T(n) involving
n-on noes whose cells occupy no nore than r rows of cells in the
plane. For exanple, when r = 2 this generating function is
(14-x2)/(l-—2x+1<6 . In general, Read's method gives rise to a
rational function pr(x)/qr(x)\M th p,. and 4, relatively prine

pol ynom al s such that qr(O) =1 . Thus, if the largest real root

of qr(l/x) is a, , then it follows that @ <, <8 for
I = 1,2,... . Therefore, this method leads to a procedure for
improving |ower bounds on O indefinitely. It mght be renmarked that

the anount of work required by this method to inprove the bound 3.72 < @
(proved by an entirely different method in [3]) appears to be prohibitive

An alternative procedure for inproving |ower bounds on 6 indefinitely
was proposed by the | ate Leo Moser. Consider the set Wn) of translation
classes of n-ominoes X such that X has exactly one cell inits

bottomrow and nore than one cell in all other rows; also, one cell in



the top row of X is to be distinguished fromthe other cells. For

exanple, W1) has one elenent, W2) is enpty, and W3) has four
elements. Figure 2 illustrates the elenents of W4) ; the distinguished
cells in top rows are marked with a cross. Now we use el enents of

Wn) to construct elements of a set T*(n) consisting of translation
classes of n-omnoes X such that X has exactly one cell in its

bottom row and a distinguished cell inits top row Let t*(n) =1T*(n) |,

then it is easy to see that

(5) t(n-1) <t (n) < nt(n) ,
and this inplies

(6) lim (5@ - 6 .

n-—ow

Now we estimate t*(n) from bel ow. Every elenment X eT*(n)
corresponds to a unique sequence (Xl" , .,xk) with xlew(nl),..,,xkew(nk)
where k , N ,...,n  are certain nunbers uniquely deternined by X
withn = n ..+nk ‘
with lines running along the bottom of each row of X containing

This sequence is found by cutting X into pieces

exactly one cell. The el ement X; lies between the i-th and (i+1)-st
of these lines, and the distinguished cell in the top row of X IS
either the distinguished cell of X (incasei =k ), or it is the
cell joined to the unique cell in the bottom row of X471+ Letting
w(n) = [W(n) | , it follows that

(7 t* = > win,) . ..w
(n) kgli (n,) (n,)

where the inner sum extends over all conpositions (nl" , "nk) of n

into k positive parts. |f (w*(l),w*(e),...) is any sequence of



Figure 2. El ements of W4)



non-negative nunbers such that w*(n) < wn) , then of course

@  tm oz 8L ). ey

k=1
Setting
(9 f(0 = nglw*m)xn .
we have
(0) TEEL - nf__;l T () ...W*(nk)} &

where the inner sum extends over all conpositions (nl,...,nk) of n
into exactly k positive parts for k = 1,2,... . The coefficient of

X" in the power series in (10) is a |ower bound for t*(n) so |ong

as 15w*(n) <w(n) . Thus, if we define
(11) £.(x) = ’z?_lw(roxn ,

and define a sequence (ti(l),ti(z),'”.) by

f (%) ®
(1) iFmy - Lot
1 fr X nel r
then it follows that
* * *
(13) t_ 1(n) <t (n) <t (n)
for r = ,2,... and n = 1,2,... . Furthermore, if we put
— s * 1/n
(1) @, = lin (t ()77,
n —o
then 9, <9, <. . . <6. Finally, we cone to the computation of ¢_ .



Si nce fr(x)/(l- fr(x)) is a rational function which generates a
sequence of increasing positive integers, it follows that P, is equa
to the largest real root of the equation fr(l/x)-l = 0 . Thus, Moser's
procedure comes down to enunerating the sets w(1),...,W(r) to find ?, -
One has nore and nmore work to find inprovements by this method, and
indeed, so far no one has had the anbition required to calcul ate ?,
for a large enough nunber r to inprove the bound 3.72 <6 .

So far we have seen two procedures for inproving |ower bounds
on 6 indefinitely. No such procedure is known for inproving the upper
bound on 0 , and it is our goal in this paper to show that such a
procedure exists. Furthermore, we shall achieve a considerable
i nprovenent over Eden's bound 0 <6.75. The next section deals
with conbinatorial aspects of this problemwhich |ead to a technica
probl em invol ving generating functions. This problemis dealt with
inthe third section, and in the final section we discuss the calculations

which lead to our new upper bound for 6 .



2. n-Om noes Viewed as Sequences of Tw Qs

In this section we develop an idea which originates with Eden [1].
W begin with a description of this idea, refornulating it so that our
devel opnent appears straightforward. The idea is that a unique planted
plane tree E, enbedded in R may be associated with each n-amno X .
The tree E, is then interpreted as a sequence of "twigs", that is
certain snmall subtrees al so enbedded in R . Eden's set of twigs E
(shown in Figure 3) is finite, and each YeE is assigned a weight
- w(Y) = %‘9 , where a denotes the nunber of cells in Y less 1
and b denotes the nunber of "dead" cells in Y . (Dead cells are
colored black in Figure 3.) Let X denote the set of all sequences
of elements of E having length k for k = 0,1,..., and define the
weight of e to be W(¥) = xw(y,) . ..w(¥,) where ¥ = (¥ ,...,T,)
for k = 1,2,..., and define the weight of the enpty sequence to be x .

It turns out that sequences of twigs corresponding to elements of

n

T(n) have weight K'y" , and the sumof the weights of all finite

sequences of elenents of Eis

-1 © k
(1) x{l - L W(Y)} y x{ ) W(Y)}
YeE k=0 YeE

W(¥)

[
&I)Ma
™

Si nce (YeE)w(Y) = y(l-+x)3 , the generating function given by (1) is

® 3nt+l
X n 3 _ 2n \.m n
) S Z 1 = E: 2
(2) = xy (1+x) n=0 nm=1 Cm'l)x v

Thus, if it is shown that there exists an injection of T(n) into the

set of finite sequences of E having weight "y , then we are
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justified in concluding that the coefficient e(n,n) of 5 in

this power series is an upper bound for t(n) . Hence, if l/e is
the radius of convergence of the "diagonal ? power series of (2), that
I's, the power series

®

~ (3) 2 e(n,n)zn )

n=0

then 6 < & where 0 is defined in ($1.2). Rut,

«
_{ 3n _ 27
(4) e(nyn) = n_J_) and & =4 |
and this is Eden% result nentioned in §l.
L. It remains to describe an injection of T(n) into the set of finite
| sequences of elenents of E having weight x'y" . Suppose XeR(n) ,
[

then a spanning tree Ey of X which is at the same tine a planted plane
tree enbedded in R may be defined as follows: Assign |abels 1 and O
to the left-nost cell in the bottomrow of X and the cell below this
one respectively, then draw an edge from cell O into cell 1 . Now

we define a process which generates a spanning tree of X assigning

— o

| abel's 1,...,n to the vertices of X . The process consists of a

sequence of n steps P(l),...,P(n) which may be described in general.
P(i): An edge has been drawn from cell 3 into cell i

Three cells together with cell j, surround cell i which for the

: noment we cal | a, » b, , c; going clockwise around cell i from

cel | iy - I a; is a cell of X and has not been labelled earlier

in this process, then an edge is drawn fromcell i into a, , and

a, 1S assigned the successor of the last |abel used in this process.

1
Repeat this for b, and P and go onto P(i+l) or stop if

I =n. It can be shown easily by induction that carrying out



P(1),...,P(n) creates a spanning tree of X which is also a planted
plane tree enbedded in R. At vertex i inthis tree we find exactly
one of the twi gs shown in Figure 3, denote this twig by LA and
define B . (Yi,...,Yn) . See Figure 4 for an example of a spanning
tree created by this process; the sequence of twigs in this exanple is
(Eu, E,Eg By Eg Eg Bg B¢ B E8) , and
xw(Ey) . - w(Eg) = x-xey-xgy.y.xey.w.y.y.xy.xy.y = )éLOylo

Now we show that the weight of E = (¥;,...,¥,) is xy" for
all XeR(n) . To see this, we need the concept of the partial planted
pl ane trees enbedded in R which are formed by the sequences (Yl’”"Yk)
for K =1,...,n . Mdify step P(i) above by adding the operation of
coloring cell i black. (Assune that all cells of X are white
initially.) Carrying out nodified steps Pp(1), ...,P(k) gives rise to
the partial planted plane tree having tw gs LTI WY, Suppose
xw(Yl). . W“k) = xayb , then it is easy to show by induction that the
number of black cells (which we call dead cells) in the partial tree
is b, and the total number of cells in the partial treeis a. Since
every cell of X is colored black after carrying out nodified steps
P(1), ...,P(n) , and since X has n cells altogether, it follows that
W(EX) = x"

Finally, if X,X'eR(n) , and X is a translation of X', then
Ey is a translation of L Thus, the spannipg tree of a representative
element of a translation class of n-omnoes is representative of the
spanning trees of all the n-omnoes in the translation class. This

conpl etes the description of an injection of T(n) into the set of

finite sequences of elenents of E having weight xy" .
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Qur devel opment of Eden's idea now follows naturally. The spanning
tree E; of XeR(n) may be viewed as a sequence of elenents selected
froma set of "larger" twigs. For exanple, such a set of tw gs may be
defined for k = 1,2,... as follows: Let E(k) denote the set of all
partial planted plane trees Z enbedded in R such that (1) the
dead cells of zare connected to the root of zwith a path of length
less than k , and (2) Z must be a sub-tree of the partial spanning
tree of some polyomino. The weight of an elenment YeE(k) is defined
to be wk(Y) = xayb where a denotes the total nunber of cells in
Y less 1, and b denotes the total -number of dead cells in Y .

The weight of a sequence ¥ = (Y ..,Yr) of elements of E(K) is

17
defined to be wk(i) = xwk(Yl) : "Wk(Yr) . Every n-omino X gives rise
to a unique sequence of elements of E(k) , and it can be shown by
induction that the weight of such a sequence is % . 1t follows from
these definitions that E(1) = E, and the elements of E(1) are shown
in Figure 3. The elenents of E(2) are conpactly represented by the
drawings in Figure 5 which are interpreted as follows; Each draw ng
represents the collection of twigs having in common the dead cells
marked as black vertices. The elements of each collection are obtained
by including all subsets of the cells marked with square vertices as
white cells of a twig. The sumof-the weights of all the twigs in each
collection is witten below each draw ng.

Fol I owi ng (1), the sum of the weights of all finite sequences of
elements of E(k) is given by

-1 ©
(5) x{1- L W(Y)} = L e mn)xy" |

YeE(k) m,n=0

and the coefficient ek(n, n) of xy® is an upper bound for t(n)

14



Figure 5. Elements of E(2) -

15



Furthermore, it can be shown that n) < ek(n,n) for k = 1,2,...

ekf-l(n’
and all n, in fact, for any fixed k , strict inequality nust hold
for all sufficiently large n . (Since our final result does not

depend on these clains, we shall not bother to prove them) Thus, if

l/e}( denotes the radius of convergence of the diagonal power series

of the power series given in (5), we have & 262> ... 26, where o
is defined in (1.2). In the next section we show how to conpute an

upper bound for & 3 infact, it follows fromthe results proved there
that €, =6.75,€,<5.50 , and & < 5.25 . The amount of work
required by this procedure for k = L4 or 5say, may not be
prohibitive, and the upper bound for O might be further inproved by
this nethod. However, there is a set of twigs nore efficient than the
extension of Eden's set and it is the procedure associated with this
set that we plan to push to the limts of our conmputing ambition.

There are eight L-shaped k-sets of cells near a given cell u
which we call L-contexts of u ; rather than take space to define these
L-sets precisely, we nerely picture themin Figure 6.Using this
concept, we describe the set of twigs L shown in Figure 7. Each
element of L is conposed of the follow ng things: (i) a root
cell along with a specified L-context of this cell, (ii) a set
(possibly enpty) of open cells which is linearly ordered, and
(iii) each open cell is assigned one of its L-contexts. In Figure 7
we have marked the L-context of a twig's root cell with asterisks, the
root cell itself is colored black, the open cells are colored white, and
the L-context assigned to each open cell is indicated with an L .
Wiere necessary (that is, intwigs L and L5 ), the linear order

3
assigned to the open cells of a twig is indicated by nunbering them

16
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Every el enent XeR(n) corresponds to a unique n-term sequence of

elements of L . Just as in Eden's nethod, this sequence is constructed
algorithmcally by assigning a linear order to the cells of X at the
same time assigning an elenent of L to each cell of X .The left-
nost cell u in the bottomrow of Xis cell 1 of X. The L-context
U of u which consists of the cell to the left of u and the three
cells below u formthe L-context of a twig (which we will specify in
a moment) Whose root is u . Let w and y denote the cells connected

to the right and above u , and let x denote the cell (£ u)

connected to wand y . The twig assigned to u (that is, cell 1
of X ) is (i) Ly, if wx,ygx , (ii) L, , if w,xfX , yexX ,
(iii) LE’ if wiX , x,yeX , (iv) I, , if v#X , WeX | (V) L5,

if w,yeX. It is easy to check that (i)-(v) cover all possible
situations. The L-context of atwigis interpreted as a set of cells
whose status of belonging or not belonging to X is known. This is the
case with the root of the twig assigned to u . Note however that this
is true for cell 2 of twgs L3 and L5 only after the twi g assigned
to cell 1 has been specified. Nowthe linear order assigned to the
cells of X and the assignnent of twigs to the cells of X is carried
out by doing Q(2),...,q(u) where Qi) is defined as foll ows: Suppose
| abel s l,...,ji 1 have been given to cells of X with ji 1 t he

last |abel given any cell. Go to cell i of X which is the open cell
of a twig assigned to yet another cell of X, and let the L-context
specified be the L-context of the twig to be assigned to cell i . All
previously labelled cell of X are deleted, and cell i is viewed as

the root cell of some connected component of X . Now the twi g assigned

tocell i is determined in the same way as for cell 1, and the open

19



cell (or cells) belonging to this twig is (are) labelled 13, (or

1+, and 2+j, according to the linear order specified by the Iinear
order of the open cells of the twig). Note that generally the L-context
of cell i may require one to reflect and/or rotate the appropriate
twig to be assigned to it. The sequence of elenents of L assigned

to X by this method is defined to be Ly = (xl,...,xn) wher e X, is
the twig assigned to cell i by Qi) . The spanning tree and sequence
of twigs generated by this nethod corresponding to the decom no shown

in Figure 4 is shown in Figure 8.

Cearly, a conmon sequence is assigned to the elements of a
translation class of n-omnoes, and n-ominoes belonging to different
translation classes are assigned different sequences. Hence, there is
an injection of T(n) into the set of n-sequences of L . Furthernore,
_if the elements of L are given the weights W(Ll) =y, w(Le) = Xy ,
W(L5) = x2y ,W(Lu) = Xy, W(LS) :x2y , and the weight of a sequence
X = (Xl’Xz" .. ) of elements of L is defined to be W(X) = XW(Xl)W(Xg),“
t hen W(LX) = xy" to all XeR(n) . Thus, there is an injection of
T(n) into the set of sequences of L with weight S g

Letting £(m,n) denote the nunber of sequences of L having
wei ght xmyn , Wwe can use (1) with L in place of Eto find

(6) Y f(mun)x"y" - =
m,n=0 1-y(1+2x+ QX%

= n 2\n
= Z xy (1+2x+2x")
n=0

n-|

Thus, £(n,n) is equal to the coefficient of x in (L+2x+ 2x2)n ,

that is,

20
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n
(7 £(n,n) = Z (k,k+l,r;1-2k—l) 2" k| s

but
(8) }io (k,kflf;_ek_oén'k'l = %—i ki(k,kl-li@k-l)(i)k<7l§>k+l

n n
%(\715+ /ig+ l) < (2+2/2)"

In

[t follows that

(9) 6 = im (Y™ < 1t (@)Y? < 2+2/2 < .83,

n-—owo n"’ﬂ’

which is already a substantial inprovenent on Eden's bound 6 <6.75 .
W can inprove further on © < 4,83 using L in anal ogy to our
inprovenent on e < 6.75 using E .

Consider the infinite set H of twigs generated fromthe set of
twigs L in the following way. Every partial spanning tree of a
polyomino is a menber of H, where the spanning tree is generated with
the procedure Q corresponding to the set of twigs L . Each twig XeH
is like a polyomno except that (i) it has a unique root cell
indicated, (ii) a particular L-context is associated with the root
cell, (iii) a spanning tree of X is indicated, (iv) all nonterm nal
nodes of the spanning tree are dead cells, and (v) sane of the terminal
nodes of the spanning tree nmay be open cells, each with an associ ated
L-context. Thus, the subset of H consisting of n-cell twigs with no
open cells is isomorphic to T(n)

A partial order < may be defined on H as follows: For any

X,¥eH put X < ¥ whenever

22
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(i) X has fewer cells than Y ,

(ii)  the root of X has the sane L-context as the root of ¥,

(iii) the spanning tree of X is isonorphic to a subtree of ¥

rooted at the root of ¥ .

In essence, X < ¥ whenever ¥ can be "grown" from X by repeatedly

appl ying the process Qto the open cells of X . The elenent ¢
(a twig of no cells) is considered to be the smallest elenent of H.
The covering relation of H ordered by <is a tree with root § .
A finite subset C (£ {#}) of H is called a cut if every elenent
of His comparable to sonme element of C (for exanple, the set L
forms a cut of H). Acut is said to be minimal if no other cut is
properly contained in it.

Gven a mniml cut C, it is easy to show that the spanning tree
of any n-omino X can be uniquely deconposed into a spanning tree
corresponding to elements of C . The set of twigs corresponding to X
are ordered by the |abel assigned to their root by the process Q.

The set C of twigs thus forns a "complete" set of building bl ocks,

that is, a set of twigs capable of constructing any n-onmino. Furthernore,
using the weight function w defined on L , we define the weight of

and

an elenent X = (Xl,...,xk) of Cto be w(X) = w(X cew(X

the weight of a sequence Y = (Yl,...,JY_i) of elenents of Cis

defined to be W(¥) = xw(Y "W(Yj) . Thus, if C, denotes the

1)
sequence of elenments of C corresponding to XeR(n) , then W(LX) = W(CX) .
Hence, there is an injective mapping of T(n) into the set of all
sequences of C having wei ght xy" .

Next, suppose C and C' are mninal cut sets, and every elenent

of Cis dominated by some el ement of C*, then we wite C<Cr. It

23



is rather easy to prove that if f,(m,n) denotes the nunber of

C
sequences of C with weight X'y", and if C<c', then

lc(n,n) > zc,(n,n) . The point is, if sequences of elenents of C
and C' are converted into sequences of elenents of L , then the
sequences giving rise to the nunber zC,(n,n) constitute a subset of

the sequences giving rise to the nunber zc(n,n) . Thus, for each

sequence (Cl,Ce,,,,) of mninmal cuts with C,<Cy< i) e have

(10) zcl(n,n) >

02(n,n) >. . . >1t(n)

To calculate fc.(”’”) we use (1)- with Cs in place of E :
i

@®
(11) = Z £, (m,n) X"y
1 - z w(T) * myn=0 71
‘l‘eC:.L

Thus, estimating lCi (nyn) in (11) presents us with the problem of
estimating from bel ow the radius of convergence of the "diagonal function”
of a rational double power series. W want to use the fact (inplied

by (10)) that if I/h].L denotes the radius of convergence of

zcl(n,n)xn , then
|

(12) ANy >SN, >0 >0

This is the problemtreated in the next section.

2L



3. The Diagonal of a Rational Function

In this section we tell how to find a lower bound for the circle
of convergence of the diagonal of a double power series which represents
a rational function. Mre precisely, suppose Pp(x,y) and Q(x, y) are
polynom als with integer coefficients such that P(0,0) = 1 and
Q(x,y)/P(x,y) is in reduced form then consider the representation of

Q(x,y)/P(x,y) as a power series

(1) F(x,y) = 220 - ¥ p(mn)f"
P,y m,§=0 ’

The di agonal of F(x,y) is defined to be

(2) Fy(z) = ¥ f£(n,n)z"
n=0

In Section 2 we encountered the problem of determning an upper bound for

(3) ® = Lin inf (£(n,n))Y?

n-—-oo

that is, cp'l is a lower bound for the radius of convergence of FD(z) :
To solve this problem we use the integral representation for FD(z)
given in [2].

We can suppose there exist positive constants a and B such that
the power series in (1) represents F(x,y) for all x and y such
that |x| <a, |Jy|<g . Thus, the function ¥(s,zs 1)s 1 is
represented by the Lauren-t power series

o

()-I-) F(S, ZS- 1) S-l = z f(m, n) Znsm-n-l
m, n=0

inside the circular annulus A = {s: ls l <a, lZHS-l|<B} —

{s: |z {5'1 < |s] < @} which is not enpty provided |z| <oB . pote
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that the residue of F(s,zs'l)s'l at s=01is just
if C

FD(z). Thus,
isacircleinside Awith its center at s

= 0, then we can
apply the residue theorem to conclude that

(5)

-1, -1
F(z) = —%ij(‘:]?(s,zs )s Tds

furthernore, the integral on the right is the sum of the residues of

F(s,zs'])s'1 at the singularities enclosed by C . Now we take into
account the special formof F(x,y) .

There exi st nunmbers u,v with w = utv , together with polynomials
Po(z),_,. ,“,,r,z;PW(z) with integer coefficients such that

v . u .
(6) P(x,y) = }. yJPV_ i (xy) + Z:LX‘)Pv+ J-(XIY)
j= 5=

Using this formof P(x,y), we have

- -1
(7) F(s,zs_%s']': s leQ(S,zs )
Z P.(z)s'J

j=0 7

There exi st functions % = :rl(z),...,uw = nw(z) such that

w . w
(8) Y pfa)s? = p(a) VT (s-n))
j=0 " =1 Y

in fact, the functions TR ..)uw aredi stinct

on the left in (8)is irreducible.

distinct and treat this case only.

provi ded the pol ynom al

We shall assumethe =nts are

Suppose s is inside C for |

= 1,.e.,t, and 11.
Cfor j = t+l,...,w .

J i s outside

Then we can cambine (5), (7) and (8), and sum
the residues of F(s,zs'l)s'l at

nj for j =1,...,t to find
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(9) F (z) = i x L Q(x zx'l) P (z) ]1[' -t
- . . . Z -
D j=1 9 3’773 w k=l ("J' “k)
k£j
Hence, the singularities of FD(z) forma subset of the roots of the
equation
w

(10) R(z) = P (z) TT (n.(z) =%, (2)) o

; J k

Jrk=1

JFk

and a | ower bound for the radius of convergence of FD(z) is the
m ni mum nmodul us of all these roots. |f it is known that
{f(n,n): n = 0,1,...} is an increasing sequence of integers, a |ower
bound for the radius of convergence of FD(z) is the smallest real
root of (10). Note that if the =nts are not all distinct, then the
product in (10) is 0, and this test fails.

Finally, R(z) , the function defined by the left nmenber of (10),

is symetric in x o, 5 SO R(z) can be expressed as a pol ynoni al

1,
in Po/Pw”' ’Pw/Pw-l . Consulting Uspensky [7, pages 277-291], we
see that R(z) is closely related to the descrimnant of sVP(s,zs'l)
regarded as a polynonial ins . Furthernore, the descriminant of a

pol ynom al can be conputed in terms of its coefficients by means of
Sylvesterts determ nant.. Applying the formulas given in Uspensky, we

find
(1) (B ()T PR(z)= det Mz) |,

where Mis a (2w-1) x (2w-1) matrix whose first w!| rows consist

of cyclic shifts of (Pw’Pw P.,0,...,0) > and the next wrows

_l,ooc’ O
consist of cyclic shifts of (WB,(w-1)B ., +++sP):0, ® 0.
Thus we are led to the following conclusion: If F(x,y)is a

rational function with the formgiven in (1), and if the diagonal
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FD(z) of F(x,y) generates an increasing sequence of integers, then
an upper bound for ¢ defined in (3) is the largest real root of the

polynomial equation

(12) det M(1/z) = 0 .
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4. Conputational Results

A sequence ().1,%.2,)\5,---) of upper bounds for & were conputed
corresponding to a sequence of increasingly larger mniml cut sets

c of H. The mniml cut ci is defined to contain all

128070 o
twigs having at nost i dead cells. Thus, we clearly have C; <Cipq
i = 1,2,. ...

The conputation was performed on the PDP-10 at Stanford
University% Artificial Intelligence Center with a program witten
in SAIL, an AIGOL dialect. The results are summarized bel ow. The
conputation of )‘10 requi red approxi mately one hour of conputer tine.
In addition, the largest real root of equation 12 of Section 3for
Cio Was found to be 7.005 . Since 7\.10 nust be smaller than )»9 ,
however, we disregard this root as a spurious one introduced by

repl aci ng FD(z) by R(z) , and select the smaller root 4.65. Fran

the table we conclude that

(1) lim (t(n))l/n = 9 < 465
n—o

b |

1 5 4.83

2 21 4.83

3 93 4.83

4 Lo9 4.80

5 1803 4.77

6 7929 4.74

7 34928 4,72

8 151897 4.70

9 656363 4.67

10 2821227 4.65

Table 1
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