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An n-omino is a plane figure composed of n unit squares joined

together along their edges. Every n-omino is generated by joining

the edge of a unit square to the edge of a unit square in sOme

(n-l)-omino so that the new square does not overlap any squares.

Let t(n) denote the number of n-ominoes, then it is known that the

sequence ((t(n))+ : n = 1,2,...) increases to a limit 0 , and

3.72 < 0 < 6.75 . A procedure exists for computing an increasing

sequence of numbers bounded above by 0 . (Chandra recently showed

that the limit of this sequence is 0 .) In the present work we give

a procedure for computing a sequence of numbers bounded below by 0 .

Whether or not the limit of this sequence is 0 remains an open

question. By computing the first ten terms of our sequence, we have

shown that 0 < 4.65 .

This research was supported by the Office of Naval Research under grant
number N-0001~-67-A-0Ill2-0057  NR 044-402, and by the National Science
Foundation under grant number GJ-992. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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t Let C denote the set of all integer points in the Cartesian
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1. Introduction

We begin with some definitions and a formulation of the problem

treated in subsequent sections. Also included in this section is a

brief indication of some of the known results dealing with the n-omino

enumeration problem. Some of what follows together with more details

may be found in [3] or [4].

plane, that is, C = 1x1 where I denotes the set of all integers.

Elements of C are called cells, and two cells are said to be connected

if the distance between them in the Cartesian plane is 1 . The set of

cells C may be regarded as the vertex set of an infinite planar

graph R whose edges consist of all pairs of connected cells in C .

For each natural number n , let R(n) denote the connected subgraphs

of R having exactly n vertices. Clearly, R(n) has infinitely

many elmts for each number n , but we are only interested in certain

equivalence classes defined on R(n) by means of the automorphism

-

group J of R .

The automorphism group 2 of R consists of isometries of the

plane which map C onto C ; more precisely, an element of Bp is the

restriction of such an isametry to C . An important subgroup Y of J'
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corresponds to the set of translations of the plane which map C onto C .

All of the elements of Sp may be formed by canbining the elements 7

with combinations of scme of the following isometries of the plane:

reflection along the x-axis or y-axis, 90' , 180' , or 270° rotation

about the origin.

Two elements of R(n) are said to belong to the same translation

class if one of these elements can be transformed into the other by an

element of y . The set of all translation classes induced in R(n)

by 7 is denoted T(n) . Representative elements of the translation

classes induced in R(4) by 3 are shown in Figure 1. In the figure,

boxes have been drawn around the cells of the animals, and the

vertices and edges of the graphs have not been indicated in the

conventional way.

Two elements of R(n) are said to be the same if one of them can

be transformed into the other by an element of $ . The set of equivalence

classes induced in R(n) by $ is denoted S(n) . Representative

elements of the equivalence classes induced in R(4) by Bp are shaded

in Figure 1.

Let t(n) = IT(n) 1 and s(n) = IS(n) 1 , then it folloys from the

definitions that

(1) $ t(n) 5 44 ,< t(n) ,< 844 (n = 1,2,...) .

Furthermore, it was shown in { 31 (i) that the limits

(2) 0 = lim (t(n))'/" , 0' = lim (s(n))Vn
n+ao nd=

exist, (ii) 0' = 0 , (iii) 8 2 (t(n))'/"

0 > 3.72 . This last result was an improvement

for all n , (iv) and

over 0 > 3.14 and
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Figure 1. Representative elements of classes in T(4) .



0 > 3.20 given in Eden [l], and [5] respectively. Also/Eden showed

that

’ (3)

and since

(4)

it follows from his result that 0 5 6.75 . Thus, the best bounds on

0 after [ 3 ] were

3.72 < 0 5 6.75 l -

Read [6] (for more details see also [&I) gave a method for computing

the generating function for the number of elements of T(n) involving

n-ominoes whose cells occupy no more than r rows of cells in the

plane. For example, when r = 2 this generating function is

4
(1+x2)/(1-2x+x  ) . In general, Read's method gives rise to a

rational function pr(x)/qr(x)  with p, and qr relatively prime

polynomials such that %( )0 = 1 . Thus, if the largest real root

of qr(l/x)  is ar j then it follows that ai 5 ai+l < 0 for 4

i = 1,2,... . Therefore, this method leads to a procedure for

improving lower bounds on 0 indefinitely. It might be remarked that

the amount of work required by this method to improve the bound 3.72 < 0

(proved by an entirely different method in [3]) appears to be prohibitive.

An alternative procedure for improving lower bounds on 0 indefinitely

was proposed by the late Leo'Moser. Consider the set W(n) of translation

classes of n-ominoes X such that X has exactly one cell in its

bottom row and more than one cell in all other rows; also, one cell in

4
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the top row of X is to be distinguished from the other cells. For

example, W(1) has one element, W(2) is empty, and W(3) has four

elements. Figure 2 illustrates the elements of W(4) ; the distinguished

cells in top rows are marked with a cross. Now we use elements of

W(n) to construct elements of a set T*(n) consisting of translation

classes of n-ominoes X such that X has exactly one cell in its

bottom row and a distinguished cell in its top row. Let t*(n) = IT*(n) I ,

then it is easy to see that

(5) t(n-1) It*(n) ,< nt(n) ;

(6) lim (t*(n))l/" = 0 .
ndo0

Now we estimate t*(n) from below. Every element X eT*(n)

corresponds to a unique sequence (X
1' . . .) Xk) with XleW(nl),...,XkeW(nk)

where k , n ,...,
1 nk are certain numbers uniquely determined by X

with n = nl+ . ..+n
k

. This sequence is found by cutting X into pieces

with lines running along the bottom of each row of X containing

exactly one cell. The element Xi lies between the i-th and (i+l)-st

of these lines, and the distinguished cell in the top row of Xi is

either the distinguished cell of X (in case i = k ), or it is the

cell joined to the unique cell in the bottom row of Xitl . Letting

w(n) = pw 1 7 it follows that

(7) t*(n) = f C w(nl) . ..w(n.&
k=l

where the inner sum extends over all compositions (n
J'

. . .,
?k) of n

- into k positive parts. If (w*(l),w*(2),...)  is any sequence of

5
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Figure 2. Elements of W(4) .
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non-negative numbers such that w*(n) 5 w(n) , then of course

(8) t”(n) L
k=l

. ..w*(nk) .

Setting

f(x) = f w*(n)x" ,
n=l

we have

I.

a”) ,$$$ = I?!(
*

where the inner sum extends

c w*(n,) . . . w*(n.& 1 xn

over all compositions (n ,..+I~)
1

of n

into exactly k positive parts for k = 1,2,... . The coefficient of

n in the power series in (10) is a lower bound for t*(n) so longX

as l_<w*(n) <w(n) . Thus, if we define

0-u f,(x) = f w(n)xn ,
n=l

and define a sequence (t*r(l),t~W,  l l 4 bY

i

then it follows that

(13) t: ,(n) <t:(n) <t*(n)-

for r = 1,2,... and n = 1,2,... .

04) 'r = lim (t:(n))lln ,
n-00

Furthermore, if we put

-. then 'p, 5 cp, 5 . . . 5 0 . Finally, we come to the cmputation of cp, .

7



Since fr(x)/(l- fr(x)) is a rational function which generates a

sequence of increasing positive integers, it follows that cp, is equal

to the largest real root of the equation f,(l/x)-1 = 0 . Thus, Moser's

procedure cmes down to enumerating the sets W(l),...,W(r) to find cp,

One has more and more work to find improvements by this method, and

indeed, so far no one has had the ambition required to calculate cp,

for a large enough number r to improve the bound 3.72 < 0 .

So far we have seen two procedures for improving lower bounds

.

on 0 indefinitely. No such procedure is known for improving the upper

bound on 0 , and it is our goal in this paper to show that such a

procedure exists. Filrthermore, we shall achieve a considerable

improvement over Eden% bound 0 5 6.75 . The next section deals

with combinatorial aspects of this problem which lead to a technical

problem involving generating functions. This problem is dealt with

in the third section, and in the final section we discuss the calculations

which lead to our new upper bound for 0 .

8
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2. n-Ominoes Viewed as Sequences of Twigs

In this section we develop an idea which originates with Eden [l].

We begin with a description of this idea, reformulating it so that our

development appears straightforward. The idea is that a unique planted

plane tree EX embedded in R may be associated with each n-amino X .

The tree Ex
is then interpreted as a sequence of fftwigs", that is,

certain small subtrees also embedded in R . Eden's set of twigs E

(shown in Figure 3) is finite, and each YeE is assigned a weight

1 w(y)
a b= x y , where a denotes the number of cells in Y less 1 ,

and b denotes the number of "dead" cells in Y . (Dead cells are

colored black in Figure 3.) Let Ek denote the set of all sequences

of elements of E having length k for k = OJ,..., and define the

weight of keEk to be W(F) = xw(Yl) . ..w(Y.> where f = (Yl,...,Yk)

for k = .1,2,... , and define the weight of the empty sequence to be x .

It turns out that sequences of twigs corresponding to elements of

T(n) have weight xnyn , and the sum of the weights of all finite

sequences of elements of E is

(1) x l- E w(Yl}-l=;x{&Ew(Y)}k
YeE

= f c w(f) .
k=O jieEk

Since (YeE)w(Y) = y(l+~)~ , the generating function given by (1) is

(2) X = f xy"(1+x)3"  =
1 -y(l+~)~ n = O

Y& Tgy::)xrnyn '
=

Thus, if it is shown that there exists an injection of T(n) into the

L

e

- set of finite sequences of E having weight xnyn , then we are

9
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justified in concluding that the coefficient e(n,n) of xnyn in

this power series is an upper bound for t(n) . Hence, if l/& is

the radius of convergence of the "diagonal? power series of (2), that

is, the power series

(3) f +-hn)zn t
n=O

then Q 5 & where 0 is defined in ($1.2). Rut,

27and e = T ,

and this is Eden% result mentioned in $1.

It remains to describe an injection of T(n) into the set of finite

sequences of elements of E having weight xnyn . Suppose XeR(n) ,

then a spanning tree EX of X which is at the same time a planted plane

tree embedded in R may be defined as follows: Assign labels 1 and 0

to the left-most cell in the bottom row of X and the cell below this

one respectively, then draw an edge frm cell 0 into cell 1 . Now

we define a process which generates a spanning tree of X assigning

labels l,...,n to the vertices of X . The process consists of a

sequence of n steps P(l),... ,P(n) which may be described in general.

P(i): An edge has been drawn fram cell ji into cell i l

Three cells together with cell ji surround cell i which for the

moment we call ai ) bi f 'i going clockwise around cell i from

cell ji . If ai is a cell of X and has not been labelled earlier

in this process, then an edge is drawn from cell i into ai , and

a.1
is assigned the successor of the last label used in this process.

Repeat this for bi and ci , and go on to P(i+l) or stop if

i = n . It can be shown easily by induction that carrying out

ll



pm ,...,P(n) creates a spanning tree of X which is also a planted

plane tree embedded in R . At vertex i in this tree we find exactly

one of the twigs shown in Figure 3, denote this twig by Yi , and

define
s = (ylY�*�yn~  l See Figure 4 for an example of a spanning

tree created by this process; the sequence of twigs in this example is

(E4, E4,E8 E3 E6 E8 E8 E6 E-, E8> Y md

a41 . ..W(E8) = x.x2y.x2y.y.x2y*xy*y*yqr*xy*y  = x y10 10

Now we show that the weight of 5 = (Y,,...,Y,) is xnyn for

aXL XeR(n) . To see this, we need the concept of the partial planted

plane trees embedded in R which are formed by the sequences (Y,,...,Y,)

for k = l,...,n . Modify step P(i) above by adding the operation of .

coloring cell i black. (Assume that all cells of X are white

initially.) Carrying out modified steps P(l) J .**t P(k) gives rise to

the partial planted plane tree having twigs Yl, . . ., Yk . Suppose

My,> . . . W(Yk) = xayb , then it is easy to show by induction that the

number of black cells (which we call dead cells) in the partial tree

is b, and the total number of cells in the partial tree is a . Since

every cell of X is colored black after carrying out modified steps

p(1) Y ***An) Y and since X has n cells altogether, it follows that

W(%) = xnyn .

Finally, if X,X' CR(~) , and X is a translation of XT , then

%
is a translation of

5 t l
Thus, the spannipg tree of a representative

element of a translation class of n-ominoes is representative of the

spanning trees of all the n-ominoes in the translation class. This

completes the description of an injection of T(n) into the set of

finite sequences of elements of E having weight xnyn .





Our development of Eden's idea now follows naturally. The spanning

tree
Ex

of XeR(n) may be viewed as a sequence of elements selected

from a set of "larger" twigs. For example, such a set of twigs may be

defined for k = 1,2,... as follows: Let E(k) denote the set of all

partial planted plane trees 2 embedded in R such that (1) the

dead cells of Z are connected to the root of Z with a path of length

less than k , and (2) Z must be a sub-tree of the partial spanning

tree of scme polyomino. The weight of an element YeE(k) is defined

to be w,(Y) = xayb where a denotes the total number of cells in

Y less 1 , and b denotes the total-number of dead cells in Y .

The weight of a sequence ? = (Yl,...,Yr) of elements of E(k) is

defined to be W,(f) = xwk(Yl) . ..wk(Yr) . Every n-omino X gives rise

to a unique sequence of elements of E(k) , and it can be shown by

induction that the weight of such a sequence is xnyn . It follows from

these definitions that E(1) = El and the elements of E(1) are shown

in Figure 3. The elements of E(2) are compactly represented by the

drawings in Figure 5 which are interpreted as follows; Each drawing

represents the collection of twigs having in common the dead cells

marked as black vertices. The elements of each collection are obtained

by including all subsets of the cells marked with square vertices as

white cells of a twig. The sum of-the weights of all the twigs in each

collection is written below each drawing.

Following (l), the sum of the weights of all finite sequences of

eltients of E(k) is given by

(5) w(Y) -' = f ek(m,n)xmyn ,
> m,n=O

and the coefficient ek(n, n> of xnyn is an upper bound for t(n) .

14
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Furthermore, it

andall n, in

can be shown that ek+l(n,n) ,< ek(n,n) for k = 1,2,...

fact, for any fixed k , strict inequality must hold

for all sufficiently large n . (Since our final result does not

depend on these claims, we shall not bother to prove them.) Thus, if

e17 denotes the radius of convergence of the diagonal power series
n

of the power series given in (5), we have &l L E’2

is defined in (1.2). In the next section we show

upper bound for &k ; in fact, it follows from the results proved there

> . . . >Q I where 0-

how to compute an

that &l = 6.75  , &2 5 5.50 , and 5 ,< 5.25 . The amount of work

required by this procedure for k = 4 or 5 say, may not be

prohibitive, and the upper bound for 0 might be further improved by

this method. However, there is a set of twigs more efficient than the

extension of Eden's set and it is the procedure associated with this

set that we plan to push to the limits of our computing ambition.

There are eight L-shaped h-sets of cells near a given cell u

which we call L-contexts of u ; rather than take space to define these

4-s&s precisely, we merely picture them in Figure 6. Using this

concept, we describe the set of twigs L shown in Figure 7. Each

element of L is composed of the following things: (i) a root

cell along with a specified L-context of this cell, (ii) a set

(possibly empty) of open cells which is linearly ordered, and

(iii) each open cell is assigned one of its L-contexts. In Figure 7

we have marked the L-context of a twig's root cell with asterisks, the

root cell itself is colored black, the open cells are colored white, and

the L-context assigned to each open cell is indicated with an L .

Where necessary (that is, in twigs L3 and L5 1, the linear order

- assigned to the open cells of a twig is indicated by numbering them.

16
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Every element XcR(n) corresponds to a unique n-term sequence of

elements of L . Just as in Eden's method, this sequence is constructed

algorithmically by assigning a linear order to the cells of X at the

same time assigning an element of L to each cell of X l The leti-

most cell u in the bottom row of X is cell 1 of X . The L-context

U of u which consists of the cell to the left of u and the three

cells below u form the L-context of a twig (which we will specify in

a mcment) whose root is u . Let w and y denote the cells connected

to the right and above u , and let x denote the cell (f u)

connected to w and y . The twig assigned to u (that is, cell 1

of X ) is (i) Ll , if w,x,ykX , (ii) L2 , if w,xkX , yeX ,

(iii) L3 , if wfi , x,yeX , (iv) L4 , if ykX , weX , (v) L
5 f

if w,yeX l It is easy to check that (i)-(v) cover all possible

situations. The L-context of a twig is interpreted as a set of cells

whose status of belonging or not belonging to X is known. This is the

case with the root of the twig assigned to u . Note however that this

is true for cell 2 of twigs L
3

and L
5

only after the twig assigned

to cell 1 has been specified. Now the linear order assigned to the

cells of X and the assignment of twigs to the cells of X is carried

out by doing Q(2),...,Q(u) where Q(i) is defined as follows: Suppose

labels l,...,ji 1 have been given to cells of X with ji 1 the

last label given any cell. Go to cell i of X which is the open cell

of a twig assigned to yet another cell of X , and let the L-context

specified be the L-context of the twig to be assigned to cell i . A-u

previously labelled cell of X are deleted, and cell i is viewed as

the root cell of some connected component of X . Now the twig assigned

to cell i is determined in the same way as for cell 1 , and the open

19



cell (or cells) belonging to this twig is (are) labelled l+ji (or

l+ji and 2+ji according to the linear order specified by the linear

order of the open cells of the twig). Note that generally the L-context

of cell i may require one to reflect and/or rotate the appropriate

twig to be assigned to it. The sequence of elements of L assigned

to X by this method is defined to be $ = (Xl,...,Xn) where Xi is

the twig assigned to cell i by Q(i) . The spanning tree and sequence

of twigs generated by this method corresponding to the decomino shown

in Figure 4 is shown in Figure 8.

Clearly, a common sequence is assigned to the elements of a

translation class of n-ominoes, and n-aminoes  belonging to different

translation classes are assigned different sequences. Hence, there is

an injection of T(n) into the set of n-sequences of L . Furthermore,

_ if the elements of L are given the weights w(Ll) = y , w(L*) = XY 9

w(s) = X2Y t w(L4) = XY > w(L5) = *x y , and the weight of a sequence

x = (x1,x2,. . . ) of elements of L is defined to be W(z) = xw(X,)w(X,>... ,

then W(LX) = xnyn to all XeR(n) . Thus, there is an injection of

T(n) into the set of sequences of L with weight xnyn .

Letting a(m,n) denote the number of sequences of L having

weight xmyn , we can use (1) with L in place of E to find

(6) f l(m,n)xmyn = x
m,n=C

2
l-y(1+2x+*x )

= f xyn(l+2x+2x2)n  l

n=C

Thus,
n-l!(n,n) is equal to the coefficient of x in (1+2x+*~*)~  ,

that is,-

20





(7)

but

(8)

,t(n,n) =
k,k+l,:-2k-1 >

2n-k-l t

n-k-l

n
< (2+2J2)n .

It follows that

(9) 0 = lim (t(n))+ 5 XIII (I(n,n))'in 5 2+2J2 < 4.83 .,
n+= n+ce -

which is already a substantial improvement on Eden% bound Q ,< 6.75 .

We can improve further on Q < 4.83 using L in analogy to our

improvement on 8 < 6.75 using E .

Consider the infinite set H of twigs generated from the set of

twigs L in the following way. Every partial spanning tree of a

polyomino is a member of H , where the spanning tree is generated with

the procedure Q corresponding to the set of twigs L . Each twig XeH

is like a polyomino except that (i) it has a unique root cell

indicated, (ii) a particular L-context is associated with the root

cell, (iii) a spanning tree of X is indicated, (iv) all nonterminal

nodes of the spanning tree are dead cells, and (v) sane of the terminal

nodes of the spanning tree may be open cells, each with an associated

L-context. Thus, the subset of H consisting of n-cell twigs with no

open cells is isamorphic to T(n) .

A partial order < may be defined on H as follows: For any-

z,%H put % ,< k whenever

22
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( 1i 2 has fewer cells than ? ,

(ii) the root of 2 has the same L-context as the root of 7 ,

(iii) the spanning tree of 2 is isomorphic to a subtree of ?

rooted at the root of ? .

In essence, 2 _<? whenever 7 can be "grown" from z by repeatedly

applying the process Q to the open cells of X . The element fi

(a twig of no cells) is considered to be the smallest element of H .

The covering relation of H ordered by 5 is a tree with root fl .

. A finite subset C (f: I#]) of H is called a cut if every element

of H is camparable to some element of C (for example, the set L

forms a cut of H ). A cut is said to be minimal if no other cut is

properly contained in it.

Given a minimal cut C , it is easy to show that the spanning tree

of any n-omino z can be uniquely decomposed into a spanning tree

corresponding to elements of C . The set of twigs corresponding to X

are ordered by the label assigned to their root by the process Q .

The set C of twigs thus forms a ?xmplete" set of building blocks,

that is, a set of twigs capable of constructing any n-omino. Furthermore,

using the weight function w defined on L , we define the weight of

an element Z = (Xp-Xl) of C to be w(z) = w(Xl) . ..w(X.) , and

the weight of a sequence ? = (Yl,...,Y.) of elements of C is
J

defined to be W(P) = xw(Y,) . ..w(Yj) . Thus, if Cx denotes the

sequence of elements of C corresponding to XeR(n) , then W(LX) = W(Cx) .

Hence, there is an injective mapping of T(n) into the set of all

sequences of C having weight xnyn .

Next, suprpose C and C* are minimal cut sets, and every element

of C is dcffninated  by scme element of C* , then we write C CC* . It

23



is rather easy to prove that if Ic(m,n) denotes the number of

sequences of C with weight xmyn , and if C < Cr , then

LC(n,n) ,> Q,(n,n) . The point is, if sequences of elements of C

and C' are converted into sequences of elements of L , then the

sequences giving rise to the number +(n,n) constitute a subset of

the sequences giving rise to the number IC(n,n) . Thus, for each

sequence (Cl’C2’  l l .
) of minimal cuts with Cl <C2 < . . . , we have

(10) lc (n,n) ,> lc (n,n) ,> . . . >-t(n) .
1 2

To calculate ac (n,n) we use (l)-with Ci in place of E :
i

(J-l)
1 _ c� w(T)  = m$a lCi(m,n)⌧my�  l

TeCi

Thus, estimating ac (n,n) in (XL) presents us with the problem of
i

estimating from below the radius of convergence of the "diagonal function"

of a rational double power series. We want to use the fact (implied

by (10)) that if l/hi denotes the radius of convergence of

LC (n,n)xn , then
i

w x1-> h* ,> . . . ,> 8 .

This is the problem treated in the next section.
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3. The Diagonal of a Rational Function

In this section we tell how to find a lower bound for the circle

of convergence of the diagonal of a double power series which represents

a rational function. More precisely, suppose P(x,Y> and Qh Y> are

polynomials with integer coefficients such that P(O,O) = 1 and

Q(x,Y)/'~(x,Y) is in reduced form, then consider the representation of

Q(xYY)/P(xYY) as a power series

(1)

The diagonal of F(x,y) is defined to be

(2) Fg(z) = f f(n,n)zn .
n=O

In Section 2 we encountered the problem of determining an upper bound for

(3) cp= lim inf (f(n,n))'/" ,
n+a

that is, cp -' is a lower bound for the radius of convergence of FD(z) .

To solve this problem, we use the integral representation for FD(z)

given in [2].

We can suppose there exist positive constants a and p such that

the power series in (1) represents F(x,y) for all x and y such

that 1x1 < cx ,
1y(  <B l Thus, the function F(s,zs -1)s -1 is

represented by the Lauren-t power series

(4) F(s,zs -1)s’l = f f(m,n)znsm-n-l
m,n=O

inside the circular annulus A = {s: Is I <a, l4s-ll  < s3 =
1s: lz I@ < IsI < CX] which is not empty provided IzI <G@ . Note
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that the residue of F(s,zs-')s -' at s = 0 is just FD(z) : Thus,

if C is a circle inside A with its center at s = 0 , then we can

apply the residue theorem to conclude that

(5) FD(z) = L s F(s,zs-')s-'ds  ;
2ni

C

furthermore, the integral on the right is the sum of the residues of

-1 -1
F(s,zs )s at the singularities enclosed by C . Now we take into

account the special form of F(x,y) .

There exist numbers u,v with w = u+v , together with polynomials

p,(z>,  l l l ., P,(z) with integer coefficients such that

(6) p(x,Y) = ~ Yjpv_ j (xY> + ~ "j'+ j(xY) '
j=O j=l

Using this form of P(x,y) , we have

(7)
-1 -1

V-
'a(

-1
F(s,zs )s = ' w s,zs )

There exist functions fil = fi,(z),...,n, = fiw(z) such that

(8) f P.(z)2 = P,(z) fi (s-xj) ;
j=O J j=L

in fact, the functions "1, fiw. ..) are distinct provided the polynomial

on the left in (8) is irreducible. We shall assume the A'S are

distinct and treat this case only.

Suppose II. is inside C
3

for j = l,...,t , and II. is outside
J

C for j = t+l,...,w . Then we can cclmbine  (5), (7) and (8)) and sum

the residues of F(s,zs -')s -' at 7c
j

for j = l,...,t to find
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(9)

Hence, the singularities of FD(z) form a subset of the roots of the

equation

R(z)  = 'W<'>  ii (~j(')

j,k=l
-n,('>>  = ' ,

r
,I
i

and a lower bound for the radius of convergence of FD(z) is the

minimum modulus of all these roots. If it is known that

i

L
v

L

c

{f(n,n): n = O,l,...] is an increasing sequence of integers, a lower

bound for the radius of convergence of FD(z) is the smallest real

root of (10). Note that if the A'S are not all distinct, then the

product in (10) is 0 , and this test fails.

Finally, R(z) , the function defined by the left member of (lo),

is symmetric in n
1, w'. . ..n so R(z) can be expressed as a polynomial

in Po/Pwy l .
,p☺pwwl l

Consulting Uspensky [7, pages r/7-*91], we

see that R(z) is closely related to the descriminant of svP(s,z~~l)

regarded as a polynomial in s . Furthermore, the descriminan-t  of a

polynomial can be computed in terms of its coefficients by means of

Sylvester% determinant.. Applying the for?m.iLas given in Uspensky, we

find

0-a (R(z))~-*  R(z) = det M(z) ,

where M is a @w-1)x (2w-1) matrix whose first w-l rows consist

of cyclic shifts of (PwyPw,l~~~~~Po~~~~~~~~)  9 and the next w rows

consist of cyclic shifts of (wP~,(~-~)P~_~,  .o*,P~YOY l .*,O) l

Thus we are led to the following conclusion: If F(x,y) is a

rational function with the form given in (l), and if the diagonal

27



FD(z) of F(x,y) generates an increasing sequence of integers, then

an upper bound for rp defined in (3) is the largest real root of the

polynmnial equation

(12) de-t M(l/z) = 0 .

28



4. Computational Results

A sequence (kl,A2,h3,...) of upper bounds for Q were computed

corresponding to a sequence of increasingly larger minimal cut sets

L
cl+ l . . of H . The minimal cut Ci is defined to contain all

twigs having at most i dead cells. Thus, we clearly have Ci < Ci+l ,

i = 1,2, . . . .

c
The computation was performed on the PUP-10 at Stanford

University% Artificial Intelligence Center with a program written

I.

e

in SAIL, an AIGOL dialect. The results are smarized below. The

computation of h
10

required approximately one hour of computer time.

In addition, the largest real root of equation 12 of Section 3 for

Cl0 was found to be 7.005 . Since hlo must be smaller than A9 ,

however, we disregard this root as a spurious one introduced by

replacing FD(z) by R(z) , and select the smaller root 4.65 . Fran

the table we conclude that

L (1) lim (t(n))'ln = 8 < 4.65 .

L

L-

i

i I I'i 'i.

1 5 4.83

2 21 4.83

3 93 4.83

4 409 4.80

5 1803 4.77
6 7929 4.74

7 34928 4.72

8 1518~7 4.70

9 656363 4.67

10 2821227 4.65

L
Table 1
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