MATHEMAT ICAL PROGRAMMING LANGUAGE

An Appraisal Based on Practical Experiments

BY

PIERREE. BONZON

STAN-CS-72-267

MARCH 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

MPL

MATHENATI CAL PROGRAMM NG LANGUAGE

AN APPRAI SAL BASED ON PRACTI CAL EXPERI MENTS

by

Pierre E. Bonzon

Techni cal Report No. 72-6

February 1972

DEPARTMENT OF OPERATI ONS RESEARCH
Stanford University
Stanford, California

This work was perfornmed while the author was a visitor at

Stanford University, under a Gant fromthe Swiss National
Research Council.

Partial research and reproduction Of this report was supported
under the auspices of National Science Foundation G ant GJ 30408x

Reproduction in whole or in part is pernmitted for any purposes
of the United States Government, This document has been
approved for public release and sale; its distribution is
unlimted.

MATHEMATICAL PROGRAMMING LANGUAGE
AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

by

Pierre E. Bonzon

Abstract

The newly proposed Mathematical Programming Language is approached
from the user's point of view. To demonstrate its facility of use,

three programs are presented which solve large scale 1inear programming

problems with the generalized upper-bounding structure.

Key words:
Mathematical Programming Language
Large-scale systems

Generalized upper-bounding

| ntroduction

The purpose of the work reported here was to investigate
the applicability and usefulness of the newy proposed Mathematica
Programm ng Language, or MPL [1].
Ve were particularly interested in finding answers to such
questions as:
- - can MPL be regarded as a highly readabl e conmunication | anguage
for mathematical algorithms?
- are mathematical algorithns significantly easier to wite
and modify. in MPL than in any other currently available |anguage?
- what performance,in SOlving |arge scale systens, can be expected

|_ from MPL prograns?

L_ To date, only a subset of MPL, called MPL/71, has been
inplemented, using PL/1 as a translator [7]. |n particular, MPL/71
does not yet allow for partitioned data structures, thus preventing
us from dealing efficiently with block angular structures. Therefore,
our experinentation had to be limted in scope

From the half a dozen programs that we have been witing
and testing for a period of 3 nmonths, we have selected three, that
shoul d enable us to bring convincing answers to our questions

W shall first present the revised sinplex algorithmin its
sinplest form that is when an initial feasible basis is readily
available through the slack variables. This program shows clearly
how both pricing and col urm-generation can be acconplished sinply

by two matrix nmultiplications. This, we believe, is sufficient in

itself to make up for our first point.

Two different versions of the generalized upper-bounding

algorithm are then given. |t will be thus denonstrated how easily

speci alized al gorithns can be inplenented, and in particular how few

changes are required to nmodify an existing program (our second point).
These two prograns having been run with the data of a large

probl em that was at hand, this will help us giving sone el ements of

an answer for the third point also.

The Revised Sinplex Al gorithm [2].

Consider the following |inear progranming problem Fnpg

mnz = cx

such that x>0

Ax b, wthb>0

wher e c = (cj)
X = (xJ) i=1, , m
A= ((aij)) j =1, . N
b = (bi)

An initial feasible basis, as well as its inverse, are
readily available through the addition of slack variables.
Let (xj),j =n+l, . . ., n+tm be the slack variables, with

coefficients (cj) equal to zero and ((aij)) formng an mby midentity

mtrix for j =nt, . . ., nm

At the beginning of some iteration, assunme that the current

I's inver -l i i ' -
basis inverse, . the associated basic solution, Xg = B-1b = B, and

the data of the original problem A ¢, are available.

Onz step of the revised sinplex algorithm proceeds then as

foll ows:

| Pricing: By definition, the sinplex multipliers, or prices,

"= (nl') nm) = cB B-l
The relative costs are then given by
: 3
c, =c¢, - m, .y | =
LIRS R =1 ..., ot

Il Pivot colum selection: The pivot colum s is given by

| f ES > 0, the current basic solution is optinal

[11 Colum generation: | f Pj =(aij)’i =1, . . ., m represents

-the jth colum of the original matrix A then the entering

colum is given by

are

3
f

r—

IV Pivot row selection: The pivot row r s gi ven by

by . b,
—_ = mn —= =g
a a. a

rs is >0 a5

If all gis <0, the optimumis unbounded.

V Update the inverse: The updated inverse is given by pivoting
1

the first m colums of [B- :P] on 2
. s

rs'

VI Update the basic solution: 1pe pgated values of the basic

variables are

b "_b —ea 3 isl, ° s ,m’i#r

Now, it has been observed that by considering instead the

foll owing augnmented natrices and vectors

- A | _
A ;--- ¢ <— [c { 0]
¢y - L0]
B-'1 : 0
Bt -- == mo<— [r 3 1]
T ‘ T : 1
|

the pricing operation becomes equivalent to a matrix nultiplication, i.e.

c = —nAw
Furthernore, if
P
h|
Pj<—-— - R
-c.
h|
then, as before
P, =31p, and ¢, =-qp
J J 3 3

To conplete the algorithm the ypdated inverse will be given by pivoting

the first mt1 colums of g . _Ps] on Ers, and the mtlth row of the

updated inverse will contain the updated sinplex nultipliers for the

next iteration (initially they are all zero, except
L 1).

The ‘Program Revi sed- Si npl ex.

This MPL program reproduces exactly the 6 steps procedure described

in the previous section, jntroducing the augmented matrices and the
corresponding sinplifications in the pricing operation.
The following notation is used, due to the non-availability of

| ower-case and special characters:

B for the right-hand side b and b
1

I NVERSE for the augnented inverse B
COST for the augnmented c
Pl for the prices IT
AC for the augmented matrix A (to distinguish it fromthe

original A).

Sone of the interesting features-of the MPL are well illustrated
inthis program To be convinced of the advantage of MPL notations, as
a comunication tool, over other common |anguages, just conpare the

following Iines of instructions:

| Declaration:
MPL: DEFI NE | N\VERSE MATRI X M+1 BY M+l
ALGOL-W REAL ARRAY INVERSE (1 :: M+l, 1 :: M+l)

PL/1: DECLARE | NVERSE (M+1, Mtl) BI NARY FLOAT

[l Set Notation:

MPL: FOR 1 IN (1, o, M) 2 P(L) >0, [+e0];

ALGOL-W FOR'I @ = 1 UNTIL MDO IF P(1) > 0 THEN BEG N . ..END;
PL/1: DO I= 1 TOMWHLE (P(1) > 0);
END;

[11 Mtrix Operations:

MPL: COST = -Pl * AC,

ALGOL-W PL/1: several lines of iterated statements.

PROGRAM REVISFED_SIMPLEXS
"PROBLFM DISCRIPTION

FIND MIN Z=C*X SUCH THAY

X>=10

AxX<=RB, WHERE A MATRIX M BY N
IH IS ASSUM~-0 3>=awn

MCATAN
GIVEN (MyN) INTEGTF,
A MATRIX M 2Y N,
3 COLUMN W,
C ROW Nj
$LET 7ERN=1E-63
$SLET INFINITY=1F6;

WCONSTRUCT AUGMENTED MATRIX WITH SLACKS AND CCST ROW"

DEFINE AC "AUGMENTEDY MATRPIX M+1 BY M#N,(I,4) "SUBSCRIPTSY" INTEGERS
DOﬂCu

FUR T IN (1rooesM)Igl_FOGR J IN (lreeesN)sAC(I J)=A{1Jd)_1:

FOR I IN (Yyaeo3MY AC({TyN+I)=1 OSLACKS";

FIR J IN (lreosesNVyACIM+1,J)==C(J) WCOSTS™;

WINITIAL BASIS®
DEFINE RASIC INTEGER CPLUMN M "INNEX FOR BASIC VARIABLESY;

FAR T IN (Jyoee s™M)yBASIC(I)=N+] "INITIAL BASIC ARE SLACKS";

MINITIAL INVERSEM®
DeFINE INVERSE MATREIX M+l 3Y M+13
THVERSE =53FNR T IN (leoeoasMe1), INVERSE(I I)=1 "IDENTITY MATRIX";

WINITIAL VALUE FOP OBJECTIVE 2%
DEFINE Z=ue®;

"SIMPLEX TTFRATION®

FzCYCLE :WPRTICTINGY
DEFINE PI RCW M+] "PRICES OR SIMPLEX MULTIPLIERSY;
Pl=INVIRSE(M+], *)3
NEFINE COST POW MsN "RELATIVE CNSTS™;
COST==P1%AC;

WPIVOT COLUMN SELECTICN"

DEFINF S "PIVDT COLUMN® INTEGERDELTA=INFINITY;

FOR 3 IN (JyeeosM#N) o IF COSTUJ)ICDELTA, | _S=J;0ELTA=205T(J) {3
IF DELTA>=-ZERD, GO TC BCOUNDEDS

UCOLUMN GENERATICNY
DEFINF P "ENTERINGY COLUMN M+13
P=INVEPSE*AC(*,5)3

wpIVOT FOW SFLECTION®

JEFINF R "PIVOT FOW" INTEGFR,THETA=INFINITY;
FOR I IN (lreeosM):P(T)D>ZERD,

IF B(I)/P(1)KTHETA, | _R=I13THETA=B(1)/P(T1)_1I;
IF THETA=INFINITY, GO TO UNBOUNDED;

7

"OUPIATE INVERSEW

INVERSF (2%)=TNVEPSE (Ry *)/P(R);

FOR 1 IN (J1yeeeyMe1)3Ia=R,

INVERSE(T,%)=INVERSE(Iy #)=P(I)*INVERSE(R ¥} ;

WUPLCATF BASIC VAR TABLFS AND OBJECTI VE™®
BASICI{R)=S;B(R)=THETA:

FOR T IM (Yyreee yM)tI=a=R,B(I)=B(I)=P(I)*THETA;
L=7+P{ M+) THFT A

" RECYCLE"
0 TO RECYCLE;

WSOLUTIONY
BOUMDED::DFFINE X ®SOLUTICN" ROW N3
X=0C;FOR T 1IN (1'...yM).BASIC(I)<=N,X(BAS!C(1))—B(I).
PUT SKIP CATA(X,Z);60 TO OUT
UNBOUNDZD :PUT SKI® LIST(<KKUNRIUNDEDD>)
QUT L END

[t nust be noticed here that several nore features of ML, not

yet inplenmented in MpL/71, would stillenhancethe clarity of prograns by
introducing more standard notations for common operations. As an
exanple, the concatenation of matrices would readily produce the
augmented matrices.

in conclusion, the extensive use of standard mathenmatica
notation in a programmng |anguage allows the mathematician-programrer
to wite conpact statements, directly neaningful to him As sucQ MPL

programs could well serve as a comunication |anguage for mathematica

al gorithns. -

The- General i zed Upper-Bounding Al gorithm [3].

Consider the followi ng linear programrming problem Fing

mn z = cx

such that x >0

ax <b
rk+(1:l k=1, ..., 2
j::r XJ = dk’ ‘
k with rk < rk+1
wher e
c = (cj)
X (xj)
b= (,)
A= (@)
d = (dk)

Here, in addition to the usual matrix inequality constraint

the sums of disjoint sets of variables are fixed. Transportation problens,
for exanple, exhibit such a structure.
Problens of this kind can, of course, be solved by the sinplex
met hod by incorporationg the sums into the augmented matrix constraint.
Such an approach, however, would prove infeasible in large
probl ens, where the nunber of supplenentary rows thus introduced could
be too large to be dealt with efficiently.
The procedure about to be described here is a specialization
of the revised sinplex method, which solves such problens while main-
taining a "working" basis of dinension mtl by mtl.

Let us refer to the sets of variables defined by

as the successive gub sets k.

The technique is developed from the follow ng observation:
Meach set of basic variables for this problem nust include at |east
one variable fromeach gub set k",

As the result of this property, it is then possible to identify
in each basis a set of ¢ variables, called the key variables, repre-
sentative of each gub set. The renmining basic variables, after proper
elimnation of the key variables, formthe working basis. The method
then foll ows the usual steps of the revised sinplex as applied to this

reduced system Special attention must be given in nmaintaining a

10

i
|
{
t

conplete set of key variables, sjnce some of them may be candidates

for leaving the basis of the original system at each iteration.

At the beginning of sone iteration, assume that the current

working basis inverse, Bl aygmented as in the previous section,

k|

k
and the data of the original problem 4.0 available e step of

the generalized upper-bounding algorithm works then as follows:

| Pricing: The revised costs for the entire system 7 —; _ -

3
are given by
c, = -n(P, - P, i
3 (J Jk) , for g in gubset k
or
T Ty T
wher e m = ~mP. s the sinplex multiplier associated with the

sum constraint over gubset k.

"Il Pivot colum selection: The pjvot colum s is given by the

usual criterion

| f ES >0, the current solution is optimal.

I'11 Columm generation: The entering colum from the augmented matrix

A is given by

11

- -1
P =38 - '
(@ P) . for x_ in gubset o.

-]
o

The entering column fromthe matrix constraint defined by

sums is given by

QS - (qks)5 k = l’ e e 2y 2’
wher e

Qg — - Y a, if K

ks _ ixx, ingub set k is o

1:xi I n gubset k

IV Pivot row selection.

The pivot rowr s given by perforning

b d
6= min £k
a, >0 a o ‘
_1s 8is s
qks>0

If all a ,q, <0, the optimumis unbounded.

V Update the values of the basic variables (excluding the pivot).

The updated values are

b, « B, - 6a, ik #r

12

VI Swappi ng, in necessary.

In the case where 6 =d /g , . e, when the pivot variable

rs'
is a key variable, another variable fromthe same gub set o st be
made key. If a non-key basic variable, say the ith of working basis,
can be found in gub set p, then swapping occurs, i.e., r < i The

working inverse is then updated by the formla

BFJ']-‘ * Bi-jl iér
=1 -1 -1

B « B - B.

1] r] X, in gub set p 1

i

I'f there is no non-key basic variable in gub set p, ipen the
entering variable necessarily can be nade key for gub set p. No

pivoting is needed in this case.

VI1 Update working inverse and pivot variable.

The updated working inverse is given by pivoting the first

- m+l col ums of [B'1:|5] on a , and b = 8.
: s rs T

The Program COVPOSI TE- GUB.

A conplete inplementation of the generalized upper-bounding
algorithm just described nust deal explicitly with the problem of

finding an initial feasible working basis and its corresponding set of

13

key variables. The first method that we have considered is an extension

of the usual two-phase nethod, known as the conposite sinplex nethod [5].
In short, whereas the two-phase nethod introduces artificial
variables, the compositemethod al | ows the slack variables to take

negative values. In the two phase nmethod, feasibility and optimality

are dealt with in two separate phases. In the conposite nethod, feasibility

and optimality can be worked toward simultaneously by a pricing procedure
conbining, with appropriate weights, the objective function and the sum
of the negative slacks. However, the optimality criterion can be
attained before feasibility is achieved, in which case new weights

nust be assigned. It is possible to ensure a successful termnation

of the process after at mpst two weight conbinations, i.e., (1,0 and

(0,1). In this case the procedure becomes equivalent to the two-phase

method without artificial variables. This is the particular set-up
that we have actually programed in COWPCSI TE- GUB.
The initial working basis is given by theslacks variables, and

the key variables are selected with the smallest coefficient in each

_gub set. The corresponding basic solution will in general be infeasible,

i.e., some Si will be negative.

In the sinplex iterations, the pivot row selection criterion
nmust be extended to allow for negative slacks to becone positive.
Foll owi ng [5], we take 6 = min(el, 8,), wher e 0, is given by the

usual criterion restricted to positive Si, and

—

PROGRAM COMPOSITE_GUB;

YPROBLEM DESCRI PTION
FINDMINZ=C*X SUCH THAT

X>=0

A%X<=B, WHEREAMATRIXMB YN

SUM X{I)=D(K) FOR RANGE(K)<=I<RANGE(K+1)y K=lseeesl
IT IS ASSUMED RANGE(1)=1n

“DATA”
GIVEN(MyN, L)INTEGER,
“A MATRIXMBYNy THIS STATEMENT REPLACED BELOW®
B COLUMN M,
C RUW N,
D COLUMN Ly
PANGE INTEGER ROWN L+¢1;
$LET GUB_K={RANGE{(K)yeeosRANGE(K#+1)~1);
$LET ZERO=1F-4;
SLET INFINITY=1E6;

WINPUTS P AR S EAANDCONSTRUCT AUGMENTED MATRI XY

DEFINE AC "AUGMENTED"™ MATRIX M#1 BY M#N,{ I,4) "SUBSCRIPTS" INTEGER,A};
AC=D3IN:GET LIST(J)IF I>0,1_GET LIST(I,A);AC(I,J)=A360 YO IN _1{;
FORTIIN (lyeeeyM)yAC(IN+I)=1 "SLACKS*™;

FOR J IN (lyseeesN)JAC(M+L,4d)==C(J) "COSTS";

"INITIAL WORKING BASISY

DEFINE BASIC INTEGER COLUMN M "INDEXFORUON-KEYBASICVARIABLES";

F O RIIN{]ysaoerM) sBASIC(I)=N¢] "INITIAL NUN-KEY BASIC ARE SLACKS“;
DEFINE SET INTEGER COLUMNM®SET | N D E X F O RNON-KEY BASIC";

SET=0 "SLACKSNOTINA N YSET®;

"INITIAL KEY VARIABLES, CHOSENW | T HSMALLEST COEFFICIENTSY
DEFINEKEY INTEGER COLUMNL “INDEX FGOR KEY BASICH,K "SUBSCRIPT™ INTEGER;
FOR K IN (ljseeesl)y | _DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF CUJIKTEST, | _KEY(K)=J3TEST=ClJII_I_1I3;

MINITIAL INVERSE”
DEFINE INVERSE MATRIX M+1 BY M+l
INVERSE=0;3FORI INY{ l,...,M+1).xNv5RSE(1,1)=1 ®IDENTITY MATRIX*;

WINITIAL VALUES FOR NON~-KEY BASIC AND OBJECTIVE®

DEF INE Z=0. O ™UBJECTIVE%;

FOR K IN (Lyeeasldsl _FOR | I N (1recesM yBIII=B(I)=ACII,KEY(K))®D(K);
I=Z+C(KEY(K))%D(K)_}|3

“CHECK FEASIBILITY®"
DEFINEPHASE INTEGER “INDEX FORPHASE";
D EF I N EINFEASIBILITYROW M+1 "INDEX FOR INFEASIBLE BASICY;
CHECK:PHASE=2; INFEASIBILITY=)“ASSUMING FEASIBILITY";
FOP 1 IN {lveeesM):B(I)<~ZERDs|_PHASE=1;INFEASIBILITY(T)=1 '~
18

— r—

WSIMPLEX ITERATION®

ITERATF::"PRICING™

DEFINFPIR O WM#1“PRICESFORINEQUALITIESY;
I[f PHASE=1,PI=-INFEASIBILITY®INVERSE
IF PHASE=24PI=I NVERSE(M+]1,%);
DEFINECOST ROWMN“RELATIVECOSTS";
COST==PI*A(; -
DEFINEMU POW L “PR ICES FOR SUMS™:
FOR K IN (lyeeesl)y i _MUIK)==PI*AC(%,KEY(K));
FOR J IN GUB_KyCOSTEJ)=COST(J)=-MUIKI_I| 3

"PIVOT COLUMN SELECTION®
DEFINE S "PIVOT COLUMN"™ INTEGER, DELTA=INFINITY:
FOR J IN (lyseesM#N),IF COST(JIKDELTA,|_S=J;DELTA=COST(J)_I;
IF DELTA>~ZEROUy |_IF PHASE=1, GO T3 INFEASIBLE;
| FPHASE=2, GO TO BOUNDED _1;

"COLUMN GENERAT ION"

DEFINE SIGMA=0 "SET INDEXF O RENTERING VARIABLE";

FOR K IN (1 v-i'..eL)eIF RANGE (K)<=SANDS<RANGE{(K+1)sSIGMA=K;

DEFINEP"ENTERING" COLUMNM#1“ F R O MINEQUALITIESY;

P=INVERSE®*AC{%,S);

| fSIGMADD ¢P=P~INVERSE®AC(*,KEY(SIGMA

DEFINE Q “ENTER ING®CIOLUMNL “FROM SU

FOR K IN (loreee L)l _QI(K)=0;FORII N
Q(K)=Q(K)I=-P(I)_|

IF SIGMA>Q, QISIGMA)I=Q(SIGMA)+1;

))s
MS”:
(leeaesMITSET(I)=K,

“PI[VOT ROW SELECTION”

DEFINFR"™PIVOTROW ” INTEGERs THETA=INFINITY;

FOR | IN(lseeesM):PLI)>ZEROA NDB(I)>=ZERD,

| FBOI)/P(I)KTHETA,| _R=I3THETA=B{1)/P(1)_1I3

FOR K IN (1 v o « oL):QUK)IDZERQO,

IF DUK)/QUKIKTHETA, | _R=M+K;THETA=D(K) 7/Q(K)_1}3

IF PHASE=iy | _DEF INE R2 "ALTERNATE"™ INTEGER,THETA2==INFINITY;
FOR I IN (lseaesM)2P{I)<~-ZERO AND B(1)<~-ZERO,
I FBUL)/PUII>THETA | _R2=13THETA2=B(I)/P(I)_1|;
| FTHETA2-+=-INFINITY AND THETA2<THETA,
|_R=R23THETA=THETA2 _I_13

I THETA=INFINITY, GO TO UNBOUNDED ;

"UPDATERASICVARIABLES (EXCLUDINGPIVOT)AND UBJECTIVE®
FCR 1T IN (lseeesM)tl~a=RyB(I1)=BII)-P(I)IXTHETA;

FOR K IN (Loe..sL)iK~=R=M,D(K)=DI(K)=Q(K)*THETA;
I=74P{M+]1)*THETA:

“SWAPPING, IF NECESSARY”
IFR>DM“PIVOTISKEY”,
| _DEFINFE RHO=R-M ®SET INDEX FOR PIvOT"™;
FOUR T IN (lyeeosM)oIF SET(I)=RHO "NON-KEY IN SET RHO%,
| _R=13P(R)=Q(RHO) "PI VOT I S MADE NON=~KEY"™;
KEY(RHO)=BASIC(R) ;D(RHO)=B(R)"NON=-KEYMADEK E Y " ;

16

-

INVERSE(Ry*)==INVERSE(R,*);
FOR T IN (lyeeesM):SET(I)=RHO AND I-=R,
INVERSE(Ry*)=INVERSE(R+%)~INVERSE([+*)3G0 TO PIVOT _{ ;

"NO NON-KEY FROM SET RHOW™
D RHO)=THETA;KEY{(RHO)=S “ENTERING VARIABLE MADE KEY";
GO TO RECYCLE "PIVOTING NOT NEEDED"_|;

"UPDATE INVERSE™
PIVOT:INVERSE(Ry*)=INVERSE(Ry *)/P(R):
FOR I IN (lyeee sM+l):[~=R,
INVERSE(1y%)=INVERSE(Iy*)~P(I)*INVERSE(R,*)}
“uPDATE Pl VOl VvARIABLE®
B(R)=THETA;BASIC(R)=S;SET(R)=SIGMA;

WRECYCLE™"™
RECYCLE:IF PHASE=1, GO TO CHECK;
| F PHASE=2,GOTOITERATE;

"SOLUTION"® ~
BOUNDED:DEFINE X "SOLUTION"™ ROW N:;X=0;
FOR T IN (1yeeasM):BASICII)IC=NyX{BASICII))=B(]);

FOR K IN (1’0-0'L’,X(KEY(K’)"'D(K,;

PUT SKIP DATA(X,Z);G0 TO OUT;
INFEASIBLE:PUT SKIP LIST(CCINFEASIBLED>):60 TO OUT;
UNBOUNDED:PUT SKIP LIST(<KCUNBOUNDED>>);

DUT:END

17

V The program DUAL-GUB [6].

The initial basis defined by the variables with small est
coefficient in each gub set and conpleted with the slack variables is
dual feasible, i.e., all Ej > 0. Furthernore c; =0 for i basic
(conpl enentary slackness) and sone Ei <0 (primal feasibility relaxed).
This is the setting required for the dual sinplex nethod, which works
toward primal feasibility while maintaining dual feasibility. The
algorithmdiffers fromthe previous one essentially in the choice of
the pivot only. No phase | is needed.

The follow ng changes are required:

1) The pivot row r is given by perforning

8 = mn (Si,d
. <0
1

g <0

»

ol ol

If all Ei, c'lk > 0, the current solution is optinal.

2) Swapping, if necessary: If 6 = ?ir < 0, another basic variable is

necessarily to be found in the same gub set (because of d. > 0)

and swappi ng can always take place.

- 3) Row generation: The transformed row (Erj),j =1 . . ., ntm,isS
defined by
arj=nPj-uk for X in gub set k
wher e
Me T Py

18

4) Pivot colum selection: The pivot colum s is given by

CS - .

-a -
s Ay <0 2

if all El'j > 0, the primal is infeasible. W can then proceed

with the usual col um-generation, pivoting and updating.

VI Results and Concl usions.

It has been an easy matter to get the program DUAL- GUB by
just deleting and inserting a few lines in the previous program
COMPOSITE~GUB,

The two prograns have been first tested on small exanples
(e.g., m=2, n=28 2=5). By taking advantage of the availability
of a free dual feasible basis, the dual algorithm always needed a

few less iterations to provide the solution. But it was expected that,

-in larger problems, the extra conputation required by the row genera-

tion, which anounts to another pricing operation, would prove dis-
advant ageous.

This was confirmed by our last experiment. g run each program
for 5 mnutes on a problemwith m= 26, n = 527, ¢ = 100. COVPOSI TE- GUB
provided a solution after some 180 iterations were executed, at the
rate of 45 per minute. DUAL-GUB carried about 120 iterations, at the

rate of 30 per ninute, but primal feasibility was not achieved.

19

{
|
1

PROGRAM DUAL,GUB;

“PROBLEM DESCRIPTI ON
FIND MN Z=C%X SUCH THAT

X>=0
A¥X<=ByWHEREAMATRIXMB YN
SUM X{1)=D{(K) FOR RANGE (K)<=T<RANGE(K+1), K=ly.eayl

ITISASSUMED RANGE(1)=1n

"DATA®
GIVEN (MyNyL) INTEGER,
"AMATRIXMBYN, THIS STATEMENT REPLACED BELOW™
B COLUMN M,
C ROW N,
D COLUMN Ly
RANGE INTEGER ROW L+1;
$LET GUB_K=(RANGE(K)yoee o+ RANGE(K+1)=1);
$LET ZERO=1€-3;
$LET INFINITY=1E6;

“INPUT SPARSE A AND CONSTRUCT AUGMENTED MATRI]X®

DEFINEACTAUGMENTED" MATRIX M#1 B Y M#¥Ny(I1,J) “SUBSCRIPTS” INTEGER,A;
AC=03INGETLIST(JISIFIDO0. I _GET LIST(I,A)3AC(1,J)=A3G60 TO IN _{;
FOR | IN{lyeas 'M’QAC(I’NQ'I’-—.I"SLACKS";

FORJ I N (1yeeeyN)yACIM+1,4)==C(y) COSTS':

"INITIAL WORKING BASISH

DEFINEBASICINTEGERCILUMN M “INDEX FOR YON-KEY BASIC VARTIABLES*;
FORIIN(LlyeusrM) BASIC(I)=N+I I-I_-&b AL NON-KEY BASIC ARE SLACKS™;
DEFINE SET INTEGER COLUMN M “SET INDE X NON- KEY BASICw;

SET=0 "SLACKS NOT IN ANY SET™;

WINITIALKEYVARIABLES, CHOSEN W TH SMALLEST COEFFIC IENTS®
DEFINE KEYINTEGERCOLUMN L “INDEX FOR KEY BASIC",K*SUBSCRIPT® INTEGER;
FORK | Nf€lseosslL)o{ DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF CUJICTEST, | _KEY(K)=J; TEST=CEJI_I_I3

“INITIAL INVERSE™®
DEFINE- INVERSE MATRIX M+1BY M+1;
INVERSE=03FOR | | N (19eaesM#l) o INVERSE(IoI)=1 “IDENTITY MATRIX";

“INITIALVALUES FOR NON~-KEY BASIC AND OBJECTIVE®

DEFINE Z=0.0 “OBJECTIVE™:

F O RKIN(lyoeaobl) sl _FORII N(lyeoeosM)yBII)=B(I)=AC(I+KEY(K))I*D(K)
Z=Z+C(KEY(K))I*D(K)_1{3

20

- "SIMPLEX I[TERATION®

RECYCLE:"PRICING"

| DEFINE Pl ROW M+1 ‘@PRICES FOR INEQUALITIES"™;:

| PI=INVERSE(M+1y%);

OEFINE COST ROW M#N ‘@RELATIVE COSTS”,;

COST=-P I*AC;

DEFINE MU ROWL “PRICES FOR SUMS”;

FORKIN(lyeoosl o _MU(K)==PIRAC(%,KEY(K));
FORJINGUB_KyCOST(JII=COSTLII=MU(K)_13;

“PIVOTRUW SELECTION”
DEFINE R “PIVOT ROW® INTEGER, THETA=INFINITY;

FORI | NU(lyeessM)yIF BUIIKTHETA, | _R=1;THETA=B(I)_1{3
FOR K IN(lyeoasl)g IFO(KIKTHETA | _R=M+K3THETA=DIK) 1|3
IFTHETAD=-ZERGy G O T O FEASIBLE;

"SWAPPING, IF NECESSARY”
IFR>M "PIYOT IS KEY”,
| _DEFINERHO=R=-M “SET |INDEX FOR PIVOT";
FOR | IN (lyeeesMIsIF SET(I)=RHO “NON-KEY IN SET RHOw,
. $_R=I “PIVOT MADE NON-KEY";
KEY(RHO)=BASIC{R);D(RHO)=8(R) “NON-KEY MADE KEY®;
INVERSE(Ry*)=~INVERSE(Ry *);

FORI |IN (1lseeesMISISET(I)=RHO AND I~=R,
“ INVERSE(R y*)= INVERSE(R,*)=INVERSE(Iy*)_I_13
L YROW GENERATION®
DEFINE T "ENTERING® ROW M+N;
PI=INVERSE(R,*)
L, T=PI*AC;

FORKIN(Ivaoerol)o| _MU(K)=PI®AC(®,KEY (X))}
FORJ | N GUB_KyT(J)=T(JI=MUIK)_|};

“P|IVOTCOLUMNSELECTION"
. DEFINES “PIVOT COLUMN® INTEGER, DELTA=INFINITY;
- FOR J IN (1'00.,M+N) T‘J’(’lERDO
IF COST(J)/(=-T(J)ICDELTA,|_S=J3 SDELTA=COST(IN /(=T (I)_I;
IF DELTA=INFINITY, GO TO"INFEASIBLE:

“COLUMN GENERAT | ON”

DEFINE SIGMA=0 “SET INDEX FOR ENTERING VARIABLE™;

FOR K IN {lyeeesl)y IFRANGE(K)IC=S A N D SKRANGE(K+1),SIGMA=K;

DEFINE P “ENTERING” COLUMN M+#+1 “FROM INEQUALITIES*;

P=INVERSE*AC(*,S);

| FSIGHA)O,P=P-INVERSE*AC(*'KEY!SIGMAl);

DEFINEQ “ENTERING” COLUMN L “FROM SUMS™;

FORK |IN (1seeerl)sl_QIK)I=O;FORI|IN(lyooeoMISSET(I)=K,
Q(K)=Q(K)=P(I)_I3;

| FSIGMADO,Q(SIGMA)=Q(SIGMA)+1;

THETA=THETA/P(R);

“UPDATE BASIC VARIABLES AND OBJECTIVE"
B(R)=THETAIBASIC(R)=S;SET(R)=SIGMA;

31

FOR | IN (lyeoasM)ZI~=ReB(I)=B(T)=P([)*THETAS
FORKIN(Iyoaaol)yDIKIaD(KI=Q(K)I*THETAS
L=7+P(M+]1) *THETA;

“UPDATE INVERSE”

PIVOT:INVERSE (Ry*)=INVERSE(Ry*)/P(R) 3
FOR | IN{lyeoeosMtl)2I~=R,

INVERSE(I,%)=INVERSE(I,*)=P(])*INVERSE(Ry *) 3

“RECYCLE”
GO TO RECYCLE;

“SOLUTION*®
FEASIBLE:DEFINE X "SOLUTION® ROW N;
X=03FOR | IN{1l,eeeyMI:BASIC(I)<=N,XIBASIC(1))=B(I);

FORKIN(lye « 0 oL}y X(KEY(K))=D(K);
PUT SKIP DATA(X,2)3;G0 TO OUT;

INFEASIBLE:PUT SKIP LIST(KKINFEASIBLED>);

OUT: END

22

The performance of these programs, while not neasuring with

conmercial codes, is good enough to view the present inplenentation

as capable of supporting the kind of experinents usually attenpted

when testing mathematical algorithns.

The full credit that MPL deserves will of course be greatly
enhanced by the introduction of additional standard nathematical
notations, as announced in the specification manual. A pre
efficient compiler also Wi |l prove necesary before MPL will possibly

be used for production applications.

23

REFERENCES

[1] Mathematical Progranm ng Language Specification Mnual for
Comm ttee Review, Technical Report STAN-CS-70-187, Stanford

University, Novenber 1970.

[2] Dantzig, G. B., Linear Progranm ng and Extensions, Princeton

University Press, 1963.
[3] Dantzig, G: B. and Van Slyke, R M, Generalized Upper Bounding

Techniques, J. Conp. Syst. Sc., vol. 1, 1967 (213-226).

[4] Lasdon, L. S., Optimzation Theory for Large Systens, The

MacM | Ian Conpany, 1970.

[51 Wwilfe, P., The Conposite Sinplex A gorithm SIAM Review, vol. 7,
No. 1, 1965 (42-54).

(6] Gigoriadis, M D., A Dual Generalized Upper Bounding Techni que,

Managenent Science, Vol. 17, No. 5, 1971 (269-284).

[7] McGrath, M, Docunentation for MPL 71 Translator, Dept. of

Computer Science, Stanford University, OCctober 1971.

24

