
MATHEMATICAL PROGRAMMING LANGUAGE

An Appraisal Based on Practical Experiments

BY

PIERRE E. BONZON

STAN-(X-72-267

MARCH 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

. .

MPL

MATHEMATICAL PROGRAMMING LANGUAGE

AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

bY

Pierre E. Bonzon

Technical Report No. 72-6

February 1972

DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

This work was performed while the author was a visitor at
Stanford University,
Research Council.

under a Grant from the Swiss National

Partial research and reprqduction of this report was supported
under the auspices of National Science Foundation Grant GJ 30408x

Reproduction in whole or in part is permitted for any purposes
of the United States Government, This document has been
approved for public release and sale; its distribution is
unlimited.

MATHEMATICAL PROGRAMMING LANGUAGE

AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

. .

bY

Pierre E. Bonzon

Abstract

, ’
IL

L

L

The newly proposed Mathematical Programing Language is approached

from the user's point of view. To demonstrate its facility of use,

three programs ar; presented which solve large scale linear programming

problems with the generalized upper-bounding structure.

Key words:

Mathematical Programming Language

Large-scale systems

Generalized upper-bounding

L-

Introduction.

The purpose of the work reported here was to investigate

the applicability and usefulness of the newly proposed Mathematical

Programming Language, or MPL [l].

We were particularly interested in finding answers to such

questions as:

- can MPL be regarded as a highly readable communication language

for mathematical algorithms?

- are mathematical algorithms significantly easier to write

i

L

and modify. in MPL than in any other currently available language?

- what performance,in solving large scale systems, can be expected

from MPL programs?

To date, only a subset of MPL, called MPL/71, has been

implemented, using PL/l as a translator [7]. In particular, MPL/71

does not yet allow for partitioned data structures, thus preventing

, us from dealing efficiently with block angular structures. Therefore,
L our experimentation had to be limited in scope.

L
From the half a dozen programs that we have been writing

. and testing for a period of 3 months, we have selected three, that

I should enable us to bring convincing answers to our questions..

We shall first present the revised simplex algorithm in its

simplest form, that is when an initial feasible basis is readily

available through the slack variables. This program shows clearly

how both pricing and column-generation can be accomplished simply

by two matrix multiplications. This, we believe, is sufficient in

itself to make up for our first point.

1

c -

-

L

L

L

c-

Two different versions of the generalized upper-bounding

algorithm are then given. It will be thus demonstrated how easily

specialized algorithms can be implemented, and in particular how few

changes are required to modify an existing program (our second point).

These two programs having been run with the data of a large

problem that was at hand, this will help us giving some elements of

an answer for the third point also.

-=.

The Revised Simplex Algorithm [2].

Consider the following linear programming problem. Find

min 2 = cx

L
c

L

L.

c L

such that x ' 0-

Ax L b, with b ' 0

where C = ('j)

x = (x,) i
J

= 1, . . . , m

A = Uaij>) j = 1, . . . , n

b = (bi)

An initial feasible basis, as well as its inverse, are

readily available through the addition of slack variables.

Let (x,), j = n+l, . . . , n+m, be the slack variables, with

coefficients (cj) equal to zero and ((aij>) forming an m by m identity

matrix for j = n+l, . . . , n+m.

2

-

/ -

i

At the beginning of some iteration, assume that the current

basis inverse, B-1 , the associated basic solution, x
B = B-lb = L, and

the data of the original problem, A, c, are available.

On:? step of the revised simplex algorithm proceeds then as

follows:

I Pricing: By definition, the simplex multipliers, or prices, are

I
ii

L

Tf E (n rrn> = cB B-11' . . . , .

-=.
The relative costs are then given by

j = 1, . . .) n+m .

L

II Pivot column selection: The pivot column s is given by

C
S

= min C
j j

.

w If cs > 0,- the current basic solution is optimal.

III Column generation: If P
j

= (aij), i = 1, . . . , m, represents

-the jth column of the original matrix A, then the entering

column is given by

T; = B-l P = (ais>
S S 9 i--l, . . . ,m ,

r -

b

IL

t

L

IV Pivot row selection: The pivot row r is given by

-.

'r-= min
Gi
-=fj .

a ;rs is '02is

Ifall Zis < 0 , the optimum is unbounded.
. ,"d

V Update the inverse: The updated inverse is given by pivoting

the first m columns of [B-1 i PSI on G
rs*

VI Update the basic solution: The updated values of the basic

variables are

i = 1, . . . 9 m, i # r

Now, it has been observed that by considering instead the

following augmented matrices and vectors
a

A II I
;

A<--. '-----------d

WC

1
l l l WC

' I

I
] 0

n,

-1B <-

B-l f O

c <- [c i O]

Tr <- h 3 l]

4

\/

c

the pricing operation becomes equivalent to a matrix multiplication, i.e.,

Furthermore, if

k‘

then, as before
‘L-

L
Ii

C = -VA-' .

Pj <-

pj1 I---
-C

j

I

9

F =B-lP
j j

a n d 's:=-TP
j j l

To complete the algorithm, the updated inverse will be given by pivoting

the first m+l columns of [B
-1 . -

: PSI on grs, and the m+lth row of the

updated inverse will contain the updated simplex multipliers for the

next iteration (initially they are all zero, except
'm+l - 1).

The IProgram Revised-Simplex.

This MPL program reproduces exactly the 6 steps procedure described

in the previous section, introducing the augmented matrices and the

corresponding simplifications in the pricing operation.

The following notation is used, due to the non-availability of

lower-case and special characters:

5

L
II,

L

B for the right-hand side b and 6

INVERSE for the augmented inverse B-1

COST for the augmented g

PI for the prices IT

AC for the augmented matrix A (to distinguish it from the

original A).

Some of the interesting features-of the MPL are well illustrated

in this program. To be convinced of the advantage of MPL notations, as

a communication tool, over other common languages, just compare the
--.

following lines of instructions:

I Declaration:

MPL: DEFINE INVERSE MATRIX MS1 BY M+l

ALGOL-W: REAL ARRAY INVERSE (1 :: M+l, 1 :: M+l)

PL/l: DECLARE INVERSE (M+l, M+l) BINARY FLOAT

II Set Notation:

e MPL: FOR 1 IN (1, . . . , M) : P(I) > 0, [***I;

ALGOL-W: FOR I : = 1 UNTIL M DO IF P(1) ' 0 THEN BEGIN . ..END.

. PL/l: DO I=

. 1 TO M WHILE (P(1) > 0);

. . .

END;

III Matrix Operations:

MPL: COST = -PI * AC;

ALGOL-W, PL/l: several link of iterated statements.

6

F c r

A.

1
D
4

P
f

-

c “upC4TF E!4STC VAP IANFS AND OB3ECTI VE”
B4SIC(~)=S;o(a)=f~FTA;
F13R I Thl (Ireoo,M):I -(=R,B(I i=E3(I I-P(I[)*THETA;
Z=Z+P(M+! 1 *TPFT A; . .

c-

--__--____ ------ - _ -____ _ _ - _

L-

‘L

L
L

It must be noticed here that several more features of MPL, not

yet implemented in MPL/71, would stillenhancethe clarity of programs by
. .

introducing more standard notations for common operations. As an

example, the concatenation of matrices would readily produce the

augmented matrices.

in conclusion, the extensive use of standard mathematical

notation in a programming language allows the mathematician-programmer

to write compact statements, directly meaningful to him. As such MPL1

programs could well serve as a communication language for mathematical

algorithms. --.

The-Generalized Upper-Bounding Algorithm [3].

Consider the following linear programming problem. Find

min 2 = cx

such that x > 0

ax < b-

rk+l-l
r

xj = dk'

where

C = (Cj)

X = (xj>

b = b. >
3

A = (bij) >

d = (dk)

k = 1, a.. , R

with rk<r
k+l

9

c

eL-

t

Here, in addition to the usual matrix inequality constraint,

the sums of disjoint sets of variables are fixed. Transportation problems,
-.

for example, exhibit such a structure.

Problems of this kind can, of course, be solved by the simplex

method by incorporationg the sums into the augmented matrix constraint.

Such an approach, however, would prove infeasible in large

problems, where the number of supplementary rows thus introduced could

be too large to be dealt with efficiently.

The procedure about to be described here is a specialization

of the revised simplex method, which solves such problems while main-

taining a "working" basis of dimension m+l by m+l.

Let us refer to the sets of variables defined by

ixk :rk(k<‘k+l} 3

L

k--l, . . . , R

as the successive gub sets k.

The technique is developed from the following observation:

"each set of basic variables for this problem must include at leaste

one variable from each gub set k".

As the result of this property, it is then possible to identify

in each basis a set of 2 variables, called the key variables, repre-

sentative of each gub set. The remaining basic variables, after proper

elimination of the key variables, form the working basis. The method

then follows the usual steps of the revised simplex as .applied to this

reduced system. Special attention must be given in maintaining a

10

complete set of key variables, since some of them may be candidates

for leaving the basis of the original system at each iteration.

At the beginning of some iteration, assume that the current

working basis inverse, B-1 , augmented as in the previous section,

the set of key variables, x,
Jk'

the current solution, g
i and 2

k'
and the data of the original problem, are available. One step of

the generalized upper-bounding algorithm works then as follows:

I Pricing: The revised costs for the entire system, j = l,...,n+m 9

s

are given by

‘L

L -7T(P - p,
j Jk

1 ,

or

‘j = -nP j - ‘k

in gubset k

where
"k = -"'

'k
is the simplex multiplier associated with the

sum constraint over gubset k.

- II Pivot column selection: The pivot column s is given by the

usual criterion

c
S

= min c
3 3

If ss ' 0, the current solution is optimal.

III Column generation: The entering column from the augmented matrix

A is given by

11

c

P
L

I
L

t

.

Fs = B-l (Ps - pj 1 . .
0

for xs in gubset 0 .

The entering column from the matrix constraint defined by

sums is given by

where

ts = (6ks) 9

qks = - c
--_ i:xi in gub set k

i& = 1 - c
i:xi in gubset k

k = 1, . . . , R

ii
if3

if k#a

2
is '

IV Pivot row selection.

The pivot row r is given by performing

If all g
is' ksLo9

i the optimum is unbounded.

V Update the values of the basic variables (excluding the pivot).

The updated values are

12

,1
! i

VI Swapping, in necessary.

In the case where 8 = dr/i
rs' i.e., when the pivot variable

. .
is a key variable, another variable from the same gub set p must be

made key. If a non-key basic variable, say the ith of working basis,

can be found in gub set p, then swapping occurs, i.e., r + i . The

working inverse is then updated by the formula

c

B-l +B-1
ij ij i#r

L

#
L

I

L

--_ B--l -1
rj
+B -

rj r: B-l
i:xi in gub set p i j

If there is no non-key basic variable in gub set p, then the

entering variable necessarily can be made key for gub set p. No

pivoting is needed in this case.

L
VII Update working inverse and pivot variable.

L

The updated working inverse is given by pivoting the first

- m+l columns of [B-1 . -: P] on
S

z
rs' and c = 8.

r

The Program COMPOSITE-GUB.

A complete implementation of the generalized upper-bounding

algorithm just described must deal explicitly with the problem of

finding an initial feasible working basis and its corresponding set of
s

13

c-

L

b

L
I

c

key variables. The first method that we have considered is an extension

of the usual two-phase method, known as the composite simplex method 153.

In short, whereas the two-phase method introduces artificial

variables, the compositemethod allows the slack variables to take

negative values. In the two phase method, feasibility and optimality

are dealt with in two separate phases. In the composite method, feasibility

and optimality can be worked toward simultaneously by a pricing procedure

combining, with appropriate weights, the objective function and the sum

of the negative slacks. However, the optimality criterion can be

attained before feasibility is achieved, in which case new weights

must be assigned. It is possible to ensure a successful termination

of the process after at most two weight combinations, i.e., (1,O) and

(O,l). In this case the procedure becomes equivalent to the two-phase

method without artificial variables. This is the particular set-up

that we have actually programmed in COMPOSITE-GUB.

The initial working basis is given by theslacks variables, and

the key variables are selected with the smallest coefficient in each

gub set.m The corresponding basic solution will in general be infeasible,

i.e., some i
i will be negative.

In the simplex iterations, the pivot row selection criterion

must be extended to allow for negative slacks to become positive.

Following [5], we take 8 = min(81, e2), where 81 is given by the

usual criterion restr2cted to positive c i' and

e2 =

ci

min -
iii < 0 ais

aiS
< 0

14

P90GRAM COMPOSITE,GUB;

‘gPROBLEM DFSCRI PTIDN
FIND Nfv L=WX S U C H T H A T

x>=o
A*X<=til, L(HERE A M A T R I X M B Y N
SUM X(I)=DtK) FOR RANGE(K)<=I<RANGEtK+1), K=fv.a.eL

IT IS ASSUMED s4NGE(I1=I”

“ D A T A ”
G I V E N IM,N,U I N T E G E R ,

“ A M A T R I X M RY N I THIS STATEMENT REFLACED BELOW”
B COLtJY1\1 Y,
c ROW Iv,
0 COLUMN L,
PANGE INTEGER ROld C+l;

SLET GUR,K=tRANGE~K)~...~RANGE(Kt~~-~~;
bLET fERO=1!+4;
bLET INFIN?TY=LE6;

--_

“IWUT S P A R S E 4 Ah(D CONSTRUCT AUGMEYTED J’MTRIX”
D E F I N E A C “AUGIVIENTED” MATRIX M+1 BY M+N,(193) “SUBSCRIPTS” INTEC;ER,A;
dC=O;IhkGFT LIST(J);IF J>O,(,GET LIST(X,A);AC(I,J)=A;GO TO IN -1;
FOR I IN (1 r...,WrAC(I,N+I)=l “SLACKS”;
FQR J IN tI,...rN)IAC(M+113)=-CIJ) “COSTS”:

“INITIAL WlRKING 84SIS”
DEFINE 54SIC INTEGER COLUMV M “INOEX FOR U O N - K E Y BASIC VARIABCES’@;
F O R I I& (1 teem ~141 ,5ASIC(IJ=N+I “1r”lXTIAL \ION-KEY BASIC ARE SLACKS”;
DEFINE SET IM33zER COLLJMN M “SET I N D E X F O R NON-KEY BASIC”;
SET=0 “SLPCKS NOT IN A N Y SET”;

“INITI6C KEY VARIABLES, CHOSEN W I T H SMPLCEST COEFFICIENTS”
DEEINE K E Y I N T E G E R CCILUYN L “IIVDEX FOR KEY BASW’rK “SUBSCRIPT” INTEGER;
FOR K IN (1 ,...,Lb,I,OEFfNE TEST=ItiFINITY;FOR 3 IN GU8,K,

fF C(J)<TEST,I_KEY(K)=J;TESTIC(J),J,(;

“I Nf Ti kL I N V E R S E ”
DEFINE ‘INVERSE MATkIX M+f BY M+l;
INVERSF=O;FOR I I N t 1 t...rM+l)rlNVERSE(l,I~=l m’IOENfITY PIATRW’;

*‘IMT?AL V4LUES FOR VON-KEY BASIC AN!3 t18JECTfVEM
DEF TNE Z=Ca r) “OBJECTIVE”;
FOR K IN (1 ,.... Ltri-FOR I IN 41 t...rn),B(I)=StI)-AC(I,KEY(K))~D(K):

Z=Z+C(KEY(K))~D(K)_(;

“ C H E C K FMSIBILITY’w
.

DEFIM P H A S E I N T E G E R “ I N D E X FOR PHASE”;
D E F I N E INFEASIalLITY ROW M+l "IN\rDfx F$)R INFf4SIBLE BASIC"';
CHECK:f’HASE=2: INFEASIBILITY= “ A S S U M I N G FEAS15:LITY”;

f-w 1 IN ~~~...TM):B(I)<-LERO,~-P~AS~~~;INFEASIBILITY(~~=~ ‘-
15

“SINPLFX IVRATION”
I

ITFRATF :“PRICING”
Of-FINE PI R O W M+l “ P R I C E S FOR INEQUALiTIES”:
If PHASE=l,PI=- INFEASIBILITY*INVERSE;
Ik PHA$t=ZrPI=INVERSE(M+l,*J;

i
DEFIW C O S T R O W M+N “ R E L A T I V E COSTS”;

i C O S T = -P ISAC; . .
i DEfTNE M U P O W L “ P R I C E S F O R S U M S ” :

FO? K IN (1 r...,LJrt,YU(KJ =-PI*AC(*,KEYtKJJ;
L FOR J IN GUB,K,COST(J)=COST(J)-MU(K),(;

“+‘lVOT COLUMIU SELECTION”
DFFINf S “PIVOT COLUMN” INTEGER, DELTA=INFINITY;
FOR J IN (1 ,...rM+W,IF COSflJ)<DELTA,~_S=J;~E~TA=COST~J~~~;
IF DELTA>-ZERO, t-IF PHASE=lr GO T3 INFEASIBLE;

I F PHASE=& GO TO BC?UNQEO -1;

@CT)LUMN GENERAT ION”

L
DEWrUE SIGMA=0 “SET SNOEX F O R ENTERfYG VARIABLE”;
fC!P K IN (1 v - i ’ . . tLJ 9 I F R A N G E (KJ<=S AND S<RANGEIK+l) ,SIGMA=K;
DEFINE P “ENTERING” COLUMN M+l “ F R O M INEQUALITIES*‘;
P=!NVERSE*AC(*,SJ:
I f SIGwA>OtP=P-INVERSE*ACt*,KEYlSIGMAlJ:
D E F I N E Q “ E N T E R iNG” C3LUMN L “ F R O M S U M S ” ;
FCjR K IN (1 t... ,LJri,QfKJ=O;FOR 1 I N (l~...,M):SETlf)=Kr

Q(KJ=Q(KJ-P(J)-1;
IF SIGMA>O, Q(SIGMAJ=Q(SIGMAJ+t;

i

L
“ P I V O T R O W S E L E C T I O N ”
DFFTfvF R “PIVUT R O W ” INTEGER1 fHETA=INFINltY;
FOR I IN (1 ,...,M):P(IJ>tERO A N D B(I)>-ZERQp
I F R(~)/P(I)<THETA,I_R=I;T~ElA=B~I)_I;
FCfi. K IN (1 T. . . ,L):QWJ>ZERO,
IF DtK)/QtKJ<THETA,1-R=M+K;THETA=DfKJtQfKJ-1;

m IF PHASiZ=I, (,DEf INE R2 ‘*ALTERNATE” INTEGER,THETAZ=-INFINITY;
FOR I IN (1 r...,MW’tIJ<-ZERO AN0 B(I)<-ZERO,
I F BIIJ/P(I)>JHETAZr~,R2=I;THETA2=B(fJ/P(i~,~;
I F THETA21=:- INFINITY AND THETA2<THETA,
(,R=R2;THETA=THETA2 -1-1 ;

IF THfTA=?IVFIN1TYr GO TO UNBOUNOED ;

L “UPDATE HASIC V A R I A B L E S (E X C L U D I N G PfVOT) AND OBJECTIVE”
FCF I IN (~,..~~~):I~IR,B(IJ=B(~)-~(~~*T~ETA;
FllY K IN (1 ,. . . ,L):Kq=R-M,DlKJ=D(K)~QtKJ*THETA:
Z=Z+PtY+lJ*THETA:

“ S W A P P I N G , I F N E C E S S A R Y ”
IF R>M “ P I V O T IS K E Y ” ,

j-DEFINE RHO=R-M &SET INDEX FOR PIVOT”;
FUR I JN (l,...,MhIF SET(IJ=RHO “NON-KEY IN SET RHDMv
l,R=I;P(Rl=Q(RHO) “91 VOT I S MADE NON-KEY”‘;

KEY(RHOJ~BASIC(PJ:D(RHOJ=B(RJ “NON-KEY MADE K E Y ” ;

16

INVERSEIR,*) =-INVERSE(R,*);
FOR I IN (lr...,M):SET(I~=RHO AN0 I-R,
iNVERSE(Rr*~rfNVERSE(Rt*)-INVERSE(fqW;GO TO PIVOT ,(;

“NO NON-KEY FROM SET RHO”
OI: HHO)fTHETA;KEY(RHO)=S “ENTERING VARIABLE WWE KEY’@;
GO TO RECYCtE “PiVOTING NOT NEEOEO”,I;

. .
“WOATE INVERSE”

PIVOT:INVERSE(R,*~~INVERSE(R,~)~P(R);
FOR I IN (lr..,tM+l):l-r=R,
INVEQ.SE(I,~)=INVERSE(l,*)-P(I)LfNVERSE~R,~~;
“UPDATE PIVOT VARIABLE”
B(R~=THETA;BASIC(R~=S;SETOrSIGHA;

“RECYCLE’*
RECYCLE:IF PHASE=l, GO TO CHECK;

I F PHASE=29 GO TO ITERATE;

‘WN.lJfION” f.
RO~JNOEO:DEFINE X “SOLUTION” RDhi N;x=O;

Ft3 I IN (1 ,...tH):BASIC(I)<=N1~(BAS~C(I~)=~(~):
FO? K IN Ilr...,lt,X(KEY(K))=D(KI;
PUT SKIP DATA(X,Z);GO TO OUT;

1NFFASIBLF:PUT SKIP LIST(<<INFEASIBlE>>);GO TO OUT;
UNi3OUNDFD:PUT SKIP LISTI<<UNBOUNDEO>>~;

OUT:END

17

V The program DUAL-GUB [6].

i

i

L

The initial basis defined by the variables with smallest

coefficient in each gub set and completed with the slack variables is

dual feasible, i.e., all z > 0. Furthermore ci = 0 for i basic
j-

(complementary slackness) and some gi < 0 (primal feasibility relaxed).

This is the setting required for the dual simplex method, which works

toward primal feasibility while maintaining dual feasibility. The

algorithm differs from the previous one essentially in the choice of

the pivot only. No phase I is needed.

The following changes are required:

1) The pivot row r is given by performing

8 = min
iii < 0

('i, ',)

dk < 0

If all ii, Zk > 0, the current solution is optimal.-

2) Swapping, if necessary: If 0=4/o, another basic variable is

m necessarily to be found in the same gub set (because of dr 2 0)

and swapping can always take place.

: 3) Row generation: The transformed row (a,j), j = 1, . . . , nim, is

defined by

a
r j

=nP -p
j k

where

for x
j

in gub set k

18

4) Pivot column selection: The pivot column s is given by

C
S

-- c.
-= min - .
-a a

rs r j
< 0 -a

rj

ifall i >O,
rj - the primal is infeasible. We can then proceed

tiith the usual column-generation, pivoting and updating.

VI Results and Conclusions.

L
It has been an easy matter to get the program DUAL-GUB by

just deleting and inserting a few lines in the previous program

[COXPOSLTE-GUB,
i

The two programs have been first tested on small examples

(e.g,, m = 2, n = 8, II = 5). By taking advantage of the availability

of a free dual feasible basis, the dual algorithm always needed a

few less iterations to provide the solution. But it was expected that,

- in larger problems, the extra computation required by the row genera-

tion, which amounts to another pricing operation, would prove dis-

advantageous.

This was confirmed by our last experiment. We run each program

for 5 minutes on a problem with m = 26, n = 527, R = 100. COMPOSITE-GUB

provided a solution after some 180 iterations were executed, at the

rate of 45 per minute. DUAL-GUB carried about 120 iterations, at the

rate of 30 per minute, but primal feasibility was not achieved.

19

PROGRAM D U A L , G U B ;

“PROBLEM DESCRJ PTf ON
/ FfNO MIN L=C*X SUCH THAT

; X>=O

\.
A*X<=B, WHERE A M A T R I X H B Y N

-
i

SUM X(il=D(Kl FOR RANGE(K)<PI<RANGE(K+~), K=ll...gL

L IT IS A S S U M E D RANGEflkL” . .

i
.-

'* 0 A T A '*

I- GWEN (MrNtL) INTfGERr
MA M A T R I X M BY Nq T H I S S T A T E M E N T R E P L A C E D BECOWw

B COtUMN ‘4,
C R O W Mt

c-

D C O L U M N L,
R A N G E I N T E G E R R O W L+l;

$LET CUB,Kt(RANGE(K),...,RANGEo-11;
SLET ZfRO=lE-3;

L SLET TNFINITY=tEQ;

I

L
“ I N P U T S P A R S E A A N D C O N S T R U C T AUGMENTEO MAfRIX"
DEFINE AC “AUGMENTED” M A T R I X M+i B Y M+N, (f ,J) “ S U B S C R I P T S ” 1NTEGER.A;
AC=O;IN:GET LIST(J);lF J>O,(,GET LIST(I,A);AC(f,J)tA;GO TQ IN -1;
F O R I I N (1v.u tM)rAC(ftN+f)=l @‘SLACKS”;
FOR 3 IN (l,...,N~,AC~M+l,J)=-C(3) "COSTS";

I “INITIAL WORKING BASIS”
OEFINE BASIC INTEGER C3LUMN M “ I N D E X F O R Y O N - K E Y B A S I C VARfA8tES”;

r F O R I I N (L,...tM)1BASIC(I)=N+T “INITIAL NON-KEY BASiC ARE StACKSw;

L
DEFINE SET INTEGER COLUMN M “SET fNDEX FOR NON-KEY BASZtP't
SET=0 “SLACKS NQT IN ANY SET@;

i “INITIAL KEY VARIABLES, CHOSEN WITH SMALLEST COWffC tENTS"

I

D E F I N E KEY ?NTEGER COLUMN L “ I N D E X F O R K E Y BASIC’QK aSUBSCRIPT” I N T E G E R ;
FOR K I N (~,...~LIP~,DEFINE fESt=fNFINITY;FOR j fN GUB,K*

IF C(J)<TEST,I,K~Y(KIIJ:T~ST~~~J~-~-~:

“ I N I T I A L INVERSE”
DEFINE: I N V E R S E M A T R I X M+l t3Y H+l;
TNVERSE=O;FOR I IN (1 ~...tM+l)tINVERSE(I~f)rl "IOENTITY M A T R I X ” ;

“INITTAC V A L U E S F O R NCIN-KEY B A S I C A N D OEbJFCTIVE”
D E F I N E Z=O.O “ O B J E C T I V E ” :
F O R K IN (I,...,l&t,fOR I I N I1 r...rM)rB(f)=B(I)-AC(IrKEY(K~~*D(K);

Z=Z+C~KEY(K))*D(KI,IS

20

“SIMPLEX ITERATION”

RECYCLE:“PRICIMG”
D E F I N E P I ROW H+l ‘ @ P R I C E S F O R INEQUAtIffESm:
PI=INVERSEIM+l,+);
O E F I N E C O S T R O W H+N ‘ @ R E L A T I V E C O S T S ” , ;
C O S T = - P f*AC;
OEFINE M U R O W C “ P R I C E S F O R S U M S ” ;
F O R K I N (l,...,L),J,MU(K1=-P~*AC(*,KEVo);

F O R 3 I N GUB,K,COST(J)rCOST(J)-MU(K~-~;

wPIVOT ROW S E L E C T I O N ”
D E F I N E R “ P I V O T ROW” I N T E G E R , THETA=INFINIfY;
FOR I I N (I,...,M),IF B(I)<THETA,f_R=I;fHEtAtSII),f;
F O R K I N (Lr...,L),IF OIK)CTHETAt),RlM+KifHETAtb(K),I; .
IF THETA>-ZERO, G O T O FEASISLE;

t

L
t

L

“SWAPPI NGt I F N E C E S S A R Y ”
TF R>Y mPIVOT I S K E Y ” ,

I-DEFINE RHO--R-H “SET I N D E X FO3 P I V O T ” ;
FOR I IN (1 ,...d’&IF SEftIbRtiO “NON-KEY IN SET RHO@,
t-J=1 “ P I V O T M A D E N O N - K E Y ” ;

KfY(RHO)=SASICtR) iD~RHQ)d3(R~ “ N O N - K E Y M A D E KEY’@;
INVERSEIR,*) =-INVERSE(Rt*):
FOR I IN (h...dWSET(I)=RHQ AND I4=R,
INVERSE(R,*bINVERSE(R,+)-tNVERSEt Ir*,,t,~;

“ROW GENERATION@’
DEFINE T “ENTERINGn ROW H+N;
PI=IwERSEtR,*l ;
T=Pl*AC;
F O R K IN (Ir...,L~,(,MU(K~=PI*AC~*,KEYo);

FOR 3 IN GUB,K,T~J)PT(J)~MU~K)_(;

“ P I V O T COLUMN SELECTION”
DEFSNE S “ P I V O T COLUMN a INTEGERv 5ELTA~INFfNfTY;
FOR J IN (1 ~...~M+N):T~J)<-LEROI
IF CDST(J)/(-T(JI)<DELTA,l-S~J:DELTA=COS.T(J~~(-~(J~~-~;
I F DELTA=INFINITY, G O T O I N F E A S I B L E ;

“COLUMN GENERAT I ON”
DEFINE SIWM=O “ S E T I N D E X F O R E N T E R I N G VARIABtEq
FOR K IN 11 ,~...L~tIF RANGE(K)<4 A N D S<RANGE~U+X),SIGMAPK;
D E F I N E P “ E N T E R I N G ” C O L U M N M+l “ F R O M INEQUALITfES”;
P=INVERSE*AC(+rS);
I F SIGWA>O,P=P-INVERSE*ACt*,KEYtSIGMABI;
OEf INE Q “ E N T E R I N G ” C O L U M N L “ F R O M WMS”;
F O R K IN (1v.r. rLhl,Q(K1=O;FOR I IN (lr...d4~:SEflI~=K,

Q(K)=QtK)-PtI),(;
I F SIGMA>O,Q(SfGMA)=Q(SIGMA)+l;
THETA=THETA/P (R 1; ’

“ U P D A T E B A S I C V A R I A B L E S A N D 06JECTIVE”
B(R ~=THETA;BbSICtR)=S;SET(R)=SIGMA:

3 1

I
-.I

I
FOR I IN (lt...,M):I~=R~B(i~=6~T~-P(r)*THETA;
F O R K IN (l..oetL),D(K)oDfK)-Q(K~*lHETA;

, Z=Z+fW’4+1)*TfHETA;

“ U P D A T E I N V E R S E ”
PIVOT:INVERSE(R~*j=INVERS~(R~*)~P(R);

F O R I I N (I,. ..,H+l):I-.=R,
INVERSE(I.*)=iNVfRSE(I~*~~~~~~*~~VERSE(R~*);

i “ R E C Y C L E ”
G O T O R E C Y C L E ;

L-
“ S O L U T I O N “
FEASfI3LE:DEFINE X ‘5OLUTION” R O W N ;

X=O;FOR I IN (1 ,...,M):BASIC(f)CnN1XleASIC(T~)*B~f~;
FO? K I N (1,. l o rtidC(KEY(K))1DtK1;
P U T S K I P DATA(X,Z);GO T O O U T ;

INFEASIBLE=PUT S K I P LZST(<<TNFEASIBLE>>);
.
cL OUT: END

--_

L

22

L

e

L

The performance of these programs, while not measuring with

commercial codes, is good enough to view the present implementation

as capable of supporting the kind of experiments usually attempted

when testing mathematical algorithms.

The full credit that MPL deserves will of course be greatly

enhanced by the introduction of additional standard mathematical

notations, as announced in the specification manual. A more

efficient compil.er also will prove necesary before MPL will possibly

be used for production applications.

23

c-

i
L

I

L
t

REFERENCES

[l] Mathematical Programming Language Specification Manual for

Committee Review, Technical Report STAN-CS-70-187, Stanford

University, November 1970.

[2] Dantzig, G. B., Linear Programming and Extensions, Princeton

University Press, 1963.

[3] Dantzig, & B. and Van Slyke, R. M., Generalized Upper Bounding

Techniques, J. Comp. Syst. SC., vol. 1, 1967 (213-226),

[4] Lasdon, L. S., Optimization Theory for Large Systems, The

MacMillan Company, 1970.

[5] Wolfe, P., The Composite Simplex Algorithm, SIAM Review, vol. 7,

No. 1, 1965 (42-54).

[6] Grigoriadis, M. D., A Dual Generalized Upper Bounding Technique,

Management Science, Vol. 17, No. 5, 1971 (269-284).

e [7] McGrath, M., Documentation for MPL 71 Translator, Dept. of

Computer Science, Stanford University, October 1971.

i

c

24

