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Abst ract

Let n, b, d be positive integers. D. Hanson proposed to
eval uate f(n,b,d) , the largest possible number of edges in a
graph with n vertices having no vertex of degree greater than d
and no set of nore than b independent edges. Using the alternating
path nethod, he found partial results in this direction. W complete
Hanson's work; our proof technique has a linear programmng flavor

and uses Berge's matching fornul a.
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1. | ntroduction

Erdss and Rado [5] proved that given any positive integers n, k
there is always an integer a with the following property: if Fis
any famly of nore than a sets, each of cardinality n, then sone
k members of F have pairwise the same intersection. Let us denote
the smallest such a by eo(n,k) . Sonme results on ¢(n,k) can be
found in [5], [1] and [3]. Qbviously, e(2,k) is the maxi num nunber
of edges in a graph containing no vertex of degree greater than k-|
and no set of nmore than k-1 independent edges. The val ues of o(2,k)

have been determinea by N. Sauer (to appear):

k(k-1) if k is odd,
?(2,k) = (1)

(k-l)2 + =k -1 if k is even.

O} -

D. Hanson [6é] considered a little nore general problem By an
(n,b,d)-graph we shall nean a graph G such that

(i) G has n verti ces,

(ii) G contains no set of nore than b independent edges,

(iii) Gcontains no vertex of degree greater than d .

The largest possible number of edges of an (n,b,d)-graph will be
denoted by f(n,b,d) . In the Geek alphabet notation of [7],

f(n,b,d) is the maxi mum of g(G subject to the constraints
p(G) = n , By(@) <P, AG) <4d.
Coviously,  £(n,b, 4) = f(n,b,n-1) Whenever d > n-1 . Sinmilarly,

f(n,b, 4) = f(2b+1,b,d) whenever n < 2b+1 . Hence we can restrict

ourselves to the case n > #1, n > 2b+1 .



Apart fromthe nmost difficult case (d odd and < 2b , n smal 1) ,
the values of f(n,b,d) have already been obtained by Hanson [6].
H's proof technique is based on the alternating path nethod. \wa il
adopt a different approach, related to linear programming. This
technique sinplifies the proofs and enables us to conplete the
evaluation of f(n,b,d) wthout nuch additional effort. The result

L3

goes as fol | ows.

THEOREM. Let n,b , d be positive integers with n> op+1 .

b
A If d<2 and n< 2b+[ d+lJ then

(=]

min{[-néq] bd+ ['é_T;Dl 2 if dis odd,
f(n,b,d) =
gd if dis even.

B. If 4 <2b and n>2b+[

T ] t hen

— d
f(n,b,d) = bd+[ b ].[?]
[=5=]

c. |If d >=2b+t1 then
max{ (P51, (REER 1y if o<,

f(n,b,d) -
bd if n>b+d

In proving that f(n,b,d) cannot exceed the values given by our

Theorem we shall make use of Bergets matching fornula [2]

B1(6) = Min 3 (p(0) + [8] -k, (c-5)) . (2)
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Her e Bl(G) I's the maxi num number of independent edges in G,

P(G is the number of vertices of G, S runs through all the subsets
of the vertex-set of Gand finally, k,(G-8) is the nunber of odd
conponents (i.e., conponents with 6dd number of vertices) of the
S-deleted graph GS .

On the other hand, we shall construct (n,b,d)-graphs having
f(n,b,d) edges. Then we shall use the following sinple proposition:
given any nonnegative integers nys8,,d With 1 <d < n+n, and

172

(d-l)nl+ dn, even, there is a graph G with n,+n, vertices, ny of

them of degree d-1 and the remaining n, of degree d . Actually,

2
this statement is a corollary of a general existence theoremdue to
Erdss and Gallai []: Let 4 >d,>. . . >d be nonnegative integers.
A necessary and sufficient condition for the existence of a graph G

with n vertices Upslyy eeesll each ug of degree d; , is t hat

n
Y a. be even and
i=1 1

k n
Y oa; < k(k-1)+ ¥ minfa,x)
i=1 i=k+1

for each k = 1,2,...,n-1 .

W conclude this section with two observations nade by Hanson [é6].

‘Firstly, Sauer's formula (1) appears to be a corollary of the theorem

| ndeed, one has

®(2,k) = max f(n,k-1,k-1) = Lim £(n,k-1,k-1) = (k-1)°+ [_5_—_1_][___

n n-w [%]

Simlarly, the theoreminplies that a graph with n vertices and at

most b independent edges can have at nost



ThH L e+ (D))

f(n,b,n-1) = max{(

edges. This has been proved by Mon [8]. As noticed by 3. A Bondy,
Mon's result follows instantly from Berge's matching formula (2).

2. Upper Bounds

LEMMA 1.

£(n,b,q) s max(m' n{dno’[ig(i:‘ljg) } 12 “‘m{( ) [ D

where the maximumruns over all partitions

N=n_+0_+0_+. ..+
Ho TRy 1y M

into nonnegative integers with m= ntn,-2b and all n. (L<i<m)

1
odd.

Pr oof . Let G = (V,E) be an arbitrary (n,b,d)-graph. By Berge's
formula (2), there is a set Sc Vwith k(e-8) > n+ 8] - 2b gt

the odd conponents of Gbe g ,c G, - Then M>m=n+ |s| -2b .

2,-'-’ M

Let us denote |s| by =n, and the nunber of vertices of each G

(L<i<m) by ni,-let us al so set

n%:l

n. =n- n, .

m i 1

Then n has the parity of n-n-(m1l) = 2b-2n +1 and so all n,'s wth
1<i <mare odd. W denote by x the nunber of edges of G having

both endpoints in S | by y the nunber of edges of G naving exactly



one endpoint in S . For each i = 1,2,...,m-1 we denote by z. the
i

nunber of edges of ¢, and finally we denote by z the nunber of

the remaining edges in G. Cbviously, we have
Y s dng (3)

vy < no(n-no) (&)

ni dn.
z; < min (2),[—§EJ (1<i<m) . (5)

Sunming (3) and (4) and using the integrality of x+y we obtain

no(d+n— )
x+y < [:______2_0__ . (6)

Besides, (3) itself implies
wredn (")
Now, the desired conclusion follows from (5),(6),(7) and the fact

that G has exactly x+ y+z +z,+ ta. edges.

LEMMA 2.

b
£(n,b,a) < bd+[ . ] 21 . (8)

2]
(In particular, £(n,b,d) < bd whenever d > 2v+1 .) Besi des,

if dis odd then

2(n-b
£(n,b,d) < bd+ [7&%5—)-] L y . (9)

Proof:  Let n, b, dbe given. For each positive integer s , we

set
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(;) if s <a1,

g(s) = min{(J) , [-dzfi]} -

a .
[-é‘i] if s >a+1 .
To each partition
n = + +. ..+
ngtng nm ) (10)
Wthn >n,>. .. >N and all the n;'s (I = 1,2...,m) odd,

We assign a positive integer __ the smallest subscript k > 1 such
that n, =1 for all i >k . Anng all the partitions (10) which

maxi m ze

n.(d&+n-n_) 0
min{dno ,[ S0 3) + igl g(n,) , (11)

we choose one with mnimmk .
If k >1 then necessarily n, > a1 for all i wthic<ick.

Indeed, it is not difficult to check that

s < d =g(s) +g(t) < g(s+t-1)

< d then set n. * *
e S k=1, 0= n_1*tn. -1 and n, =ni
(i # k-1,x) . Then

m m *
i};l g(n) < Y e(n)

Now, i f n

i=1
L % %
and so the partition n = SIS ,.+n;1 maxi m zes (11). However,
we have
. . * .
Wi i >3, 0 =13 > fa: 0 > 1, n, = 1}]

contradicting the minimality of k .



Now, we shall distinguish three cases.

Gase 1. n, <a . Then necessarily k = 1 and so Ny =n-n;

2b-2n+1 . Since 1<n, <d, we have

(ml) =

d-1
b -5 < <b . (12)

o)

Lemma 1 yields

f(n,b,d) < dn + zl g(n )= dn +( ) (Eb-eno"'l)
2

. 2b 2n0+l . .
Si nce F(no) = dno+ IS a convex function Wth
2

F(b - %l) = F(b) = bd and n, satisfies the constraints (i), we
have f(n,b,d) < bd . Hence in this case both inequalities (8),(9)

are satisfied.

Case 2. n, >a&1, d even. Here Lenma 1 gives

1
f(n,ba)<dn+‘£g - f%-: o+%§nl=
i=1 i=1 i=1
=dn ¥ -g (n-ny=(m-k)) = bt k o $.
“Besides, we have k(a+l) < Z n., = n-n-(mk) = 2v+k-2n > 2brk

i=1

and so k < [22] .But then

£(n,b,d) < bd+ k .gs bd + [?.d‘l] '%

which is the desired inequality (8).
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Gase 3. n) >&1, d odd Again, Lemma 1 yields

f(n,b,d) < dn zm: ij dn; -1 4 &
n,b,d) < + g(n,) = dn_+ =dn +2
= 0,
i=1 1 0 i=1 2 0 2 i§l
d -
= dny + 5 (Ng-(m-k)) - 5 = bas k&2
Ve have n, > a1 whenever 1 <i <k . Moreover, each ni

i nequal i ties

2(n-
k < [—é%—b)—] 5 k< [d+l] s £(n,b,d) < bd+k . 7

yield the desired results (8), (9).

(1<ic<k)

1<ic<k.
k
. < ' = - - = - +
Besi des, we have k(a+2) < ¥ n. = n-n, (mk) = 2 eno K and so
i=1
" [2b-2n
0
kK < [Tﬁ*]
[ f n. >2b- n+2n2b t hen
0 a+%
2b-2n
k < O < 2n-2b .
- d+1 - a+3 3
i f - 2n-2b
n, < 2b-n+ P t hen
2n-2b
k_<_n+no-2b5[ Fre ]
' , 2b-2
Moreover, since n. > 0, we have k "o 2b
0 = < =1 < [Eﬁ] . The



LEMMA 3.

Y,

£(n,b,) < max{ (%Y | (2Encb) )y

Proof: Let n, b, a be given and let (10) be a partition which

maximzes (11). Then Lenma 1 yiel ds

f(n,b,d) < ﬁrzl-n_) ( ) O(d+n—n ) . (n-no-(m-]_))
2

This can be witten as f(n v,q) < H(n,) Where

_ ny(@&n-ng) 2b-2n +1
Hiny) = ———+
2
' ex fun of 3
IS a convex ctio ' = n- -
n Ny -Since n, = n iz_:ln.l L

we have 0 <n < Db . Therefore

£(n,b,d) < max{H(0),H(b) } = max {(21»1) , b(d;n-b)}

and the desired result follows by integrality of f(n,b,q) .

3. Constructions

LEMMA 4. |f dis odd, n > 2b and

[gé%l](d_l) > (n-2b)d (13)

then  f£(n,v, a) > [E= ]

10
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: — r2(n-b
Proof:  Set m = (D)) and n

= 2b-mm . As 20 < n, we have

1

1
ob(1 - —— —=_ _ _2_
-3 < n(l+ 31 - 73

and so

whi ch can be witten as

nod < Nn- nO

Besi des,, (13) yiel ds nd >m. Now let us set

if nis even ,

[
a=
dn,-1 if n isodd.

W have

8 = dnytn = ngtn = n4n-2b = M (nod 2) (1k)
and

n-n, > dno >a > d.no-l > m-1 . (15)
Set n, = a2 for i = 1,2,...,m1 and

m |
Ny = n-i);'o N, =2n-2b-m(&+3)+d+2 > d+2 .

By (14) and (15), a- M 15 an even nonnegative integer not exceeding
S

m
L (n;-1) . Let s be the greatest integer with a-m > ) (n;-1) 5
i=] .

i=1

then 0 <s < m. Set




(ni if I1<i<s,
S
ai=< a-m ) (ng-1)+1  if i =s+1,
i=1
Ll If stl1<i<m.

m
Qoviously, each a, is odd and ) a = a .Take disjoint graphs
i=1

Gy5Gyy+.. G Where each 6, has' exactly n  vertices, a.of them

of degree d-l1 and the remaining n;-a, of degree d . The a vertices

of GUGU. . . UG having degree d-1 will be enunerated as

N 19Vps sees j0OIN

each v, to all the vertices u Wi th (i-1)d < | <min(id,a) and

UpsUpyeeepl, Add a new set S of n_ vertices

call the resulting graph G.

If a =4dn (i.e., if nis even) then all the n vertices
of G have degree d ; if a = dn -1 (i.e., if nis odd) then n-I
vertices of Ghave degree d and the |ast one has degree d-1 . In
both cases, G has [*5] edges. Since k,(G-8) > m,

G contains at nost b independent edges.

ILEMMA 5. |If dis odd, n > 2b and

o(n-

(BB y(a-1) < (n-2b)d (16)
t hen

£(n,b,d) > bd+ [M] L F

a+3

: 2(n- :
Proof : Set m= [—(%%9)-] and Ny = 2b-n#tm . Then (16) yiel ds
nd <m . Set n, =a2for i = 1,2,...,n-1 and

12
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m |
nm=n—i§0 n.1 = 2n-2b-m(d+3)+d+2 > d+2

Take disjoint graphs Gl’GE”"’Gm“ where each G, has n,-1 vertices

of degree d and one vertex u, of degree d-1 . Add a new set S

of n, vertices VisVps..+s Join each v, to all the vertices y,
J
with (i-1)d <] <id and call the resulting graph G. Coviously,

all but m-na vertices of G have degree d ; the remaining mnad

0
0
vertices have degree d-1 . Hence G has exactly
2 (nd - (mnd)) = ba+m- 2

edges.  Since ky(6-8) = M= n -2v+|s|. G contains at nost b

I ndependent edges.
To make this paper self-contained, we need three nore | emmas; these

are due to Hanson [6].

LEMMA 6. If d <2 and n > 2b+[—£i_l_] t hen

["5-]

f(n,b,d) > bd[ —-b_-] LS

a+1
["é-]
Proof : Case 1, dodd. Set m= [d—i%] , noo= a2 for i = 1,2,...,m-1

and

N = 2b+m - (m-1)(d*2) = 2b-m(d+1) +d+2 > d+2 .

Take disjoint graphs Gy»Gps+-+»G ~ Where each G; has n.-1 vertices

of degree d and one of degree d-I . Add n-(2b+m) isol ated vertices
and call the resulting graph G. Cearly, G has

% ((2o+m)a-m) _ bd+m-9:2;£

13
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edges and at nost

i=1

o=

I ndependent edges.

2b .
Case 2, d even. Set m= [E-] » M= el for i = 1,2,...,m-1

and

Np=2b+m- (m-1)(d+1) = 2b-md+d+1 > d+1

Take disjoint graphs G, Gy, where each G has n, vertices,

o7+ es G
all of degree~da . Add n-(2b+m) isolated vertices and call the

resulting graph G. Cearly, G has

(2b+m)-d = bd+m o $

PO —

edges and at nost

i=1

I ndependent edges.

LEMMA 7. If 4 isewn,d< 2b gng n < 2b+ [%’] then £(n,b,d) > %@ ,
 Proof: Set m=n-2b ; then m(a+l) <n . For each i = 1,2,...,m-1
_— J

set N, = a1 ; set also N = n-(ml)(d+l) > a1  Let Gbe a disjoint
union of graphs By 0 B where each Gi has n, vertices, all of
degree d . Then G has exactly Eldn edges and at nost

n,-1

L)t e

i=1 1

I ndependent edges.

14



LEMVA 8.

2b+1

(i) If @a>2b, n >e2b+l then £(n,b,d) > ( 5)

(ii) If a>b, a+l <n <a+b then fOMMd)>[bQZ¢hh
(iii) If d>b, n >v+a then £(n,b,d) > bd

Proof :

(i) Take a conplete graph with 2v+1 vertices, add n-(2b+1) isol ated
vertices.

(ii) If b(d-n+b) is odd, take a graph Gy with b-1 vertices

of degree d-n+b and one of degree d-n+b-1 . If b(a-n+b) g eyen,

take a graph G, with b vertices of degree d-ntbh . Add n-b new

vertices, join each of themto all the vertices of G, and call the
resulting graph G . Cbviously, the degrees of vertices of G do not
exceed max{d,b} = d ; since each edge of G has at |east one endpoint

in G, , we conclude that G has at nost b independent edges. Finally,

¢ has exactly
[b(d-2n+b)] + b(n—b) - [b(n;d-b)]

edges.

(iii)  Take a conplete bipartite graph with b vertices in one part

and d in the other; add n-(b+d) isolated vertices.

15
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