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Let n , b , d be positive integers. D. Hanson proposed to

evaluate f(n;b,d) , the largest possible number of edges in a

graph with n vertices having no vertex of degree greater than d

and no set of more than b independent edges. Using the alternating

path method, he found partial results in this direction. We ccznplete

Hanson's work; our proof technique has a linear programming flavor

and uses Berge's matching formula.
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1. Introduction

Erdijs and Rado [5] proved that given any positive integers n, k

there is always an integer a with the following property: if F is

any family of more than a sets, each of cardinality n ) then some

k members of F have pairwise the same intersection. Let us denote

the smallest such a by cp(n,k) . Some results on cp(n,k) can be

found in [5], [I] and [3]. Obviously, (p(2,k) is the maximum number

of edges in a graph containing no vertex of degree greater than k-l

and no set of more than k-l independent edges. The values of cp(2,k)

have been detemined by N. Sauer (to appear):

cp(%k) =
k(k-1) if k is odd,

(k-l)2 + ; k -1 if k is even.

D. Hanson [6] considered a little more general problem. By an

(n,b,d)-graph we shall mean a graph G such that

( >i G has n vertices,

(ii) G contains no set of more than b independent edges,

(iii) G contains no vertex of degree greater than d .

The largest possible number of edges of an (n,b,d)-graph will be

denoted by f(n,b,d) . In the Greek alphabet notation of [7],

f(n,b,d) is the maximum of q(G) subject to the constraints

P(G) = n I Bl(G) ,<b P a(G) Ld l

(1)

Obviously, f(n,b, 4 = f(n,b,n-1) whenever d > n-l . Similarly,

f(n,b, 4 = f@b+l,b,d) whenever n < 2b+l . Hence we can restrict/
ourselves to the case n > d+l , nz2b+l.
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Apart from the most difficult case (d odd and < 2b , n small) Y

the values of f(n,b,d) have already been obtained by Hanson [6].

His proof technique is based on the alternating path method. We will

adopt a different approach, related to linear programming. This

technique simplifies the proofs and enables us to complete the

evaluation of f(n,b,d) without much additional effort. The result

goes as follows.
9%

THEOREN. Let n,b , d be positive integers with n > 2b+l .

A. If ds2b and n<2b+ b- C @I 3 then

c

L
i
I

i

c min([$], bd+ [w] &$} if d is odd,
f(n,b,d) =

nd
2 if d is even.

B. If' ds2b and n>2b+ b

- c
[d+l

3
then

21

f(n,b,d) = bd +

m
c. If d 2 2b+1 then

m=C( if n<b+d,

f(n,b,d) =

bd if n>b+d .
L

In proving that f(n,b,d) cannot exceed the values given by our

Theorem, we shall make use of Berge9 matching formula [2]

Bl(G) = min -; (I?@) + ISI -ko(G-S)) . (2)
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Here pi(G) is the maximum number of independent edges in G ,

P(G) is the number of vertices of G , S runs through all the subsets

of the vertex-set of G and finally, ko(G-s) is the number of odd
. .

components (i.e., components with odd number of vertices) of the

S-deleted graph G-S .

On the other hand, we shall construct (n,b,d)-graphs having

f(n,b,d) edges. Then we shall use the

given any nonnegative integers nl,n2,

(d-l)nl+dn 2 even, there is a graph G

them of degree d-l and the remaining

following simple proposition:

d with 1 < d < nl+n2 and

with nl+n2 vertices, nl of

n2 of degree d . Actually,

this statement is a corollary of a general existence theorem due to

Erdzs and Gallai 141: Let dl 2 d2 > . . . 2 dn be nonnegative integers.

A necessary and sufficient condition for the existence of a graph G

with n vertices u1,u2,...,un , each ui of degree di , is that
n
r: di be even and
i=l

k
L di < k(k-l)+ f
i=l - i=k+l

min(di,kj

for each k = 1,2,...,n-1  .

We conclude this section with two observations made by Hanson [6].

~Firstly, Sauer's formula (1) appears to be a corollary of the theorem.
.

Indeed, one has

TPY k) = max f(n,k-l,k-1) = 1i.m f(n,k-l,k-1) = (k-l)2+
n n+0J

Similarly, the theorem implies that a graph with n vertices and at

most b independent edges can have at most,
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f(n,b,n-1) = max{(2F1) , b(n-b)+ (:)I

edges. This has been proved by Moon [8]. As noticed by J. A. Bandy Y

Moon's result follows instantly from Berge's matching formula (2).

2. Upper Bounds

LE=MMA 1.

fhb,d) 5 max min dn( {
--.

0, [ n"'d~n‘no~  3) + ft min{[:),[>]})

where the maximum runs over all partitions

n = n +n +n +...+n012 m

into nonnegative integers with m = n+no-2b and all ni (l<i<m)- a
odd.

Proof. Let G = (V,E) be an arbitrary (n,b,d)-graph. By Berge's

formula (2), there is a set S c V with kO(G-S) 2 n+ ISI - 2b . Let

e the odd components of G be Gl,G2,...,G
M' Then M > m = n+ ISI -2b .

Let us denote PI by no and the number of vertices of each Gi
(l<i<m) by n_ - i 5 let us also set

m-l
n = n-
m c n. .

i=O l

Then nm has the parity of n-no-(m-1) = 2b-2n0+1 and so all nirs with

l,< i 5 m are odd. We denote by x the number of edges of G having

both endpoints in S , by y the number of edges of G .having exactly2
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one endpoint in S . For each i = 1,2,...,m-1 we denote by z i the
number of edges of Gi and finally we denote by zm the number of

the remaining edges in G . Obviously, we have

2x+y<dno

(l<i<m) .- -

Now, the desired conclusion follows from (5), (6), (7) and the fact

that G has exactly x+ y+ zl+ z2+ . . . + 2m edges.

LEMMA 2.

(3)

(4)

Swnming (3) and (4) and using the integrality of x+y we obtain

x + y  : [ no(d;n-nq  .

Besides, (3) itself implies

x+y < dn
- 0 l

f(n,b,d)  < bd+ [w] l y .

(5)

(7)

(8)f(n,b,d) 5 bd+ -k-c 1d-t1
I - -2]

(In particular, f(n,b,d) ,< bd whenever d ,> 2b+l .) Besides,

if d is odd then

Proof: Let n , b , d be given. For each positive integer s , we

set
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if s <d+l,

e;(s) = min(($ , [$J) =
I.

if s 2 d+l .

To each partition

n =n +n +...+n0 1 m ?-

with nl 2 n2 > . . . > nm and all the nils (i = 1,2,...,m) odd,

we assign a positive integer -- the smallest subscript k 2 1 such

that ni = 1 for all i > k . Among all the partitions (10) which
--.

maximize

min{dno y[no(din-no)  3) + I1 g(ni) ,

we choose one with minimum k l

(10)

If k >l then necessarily ni 2 d+l for all i with 1~ i_< k .

Indeed, it is not difficult to check that

s ,< d 3 g(s)+g(t) 5 g(s+t-1) .

d

Now, if nk L d then set nl =l, nil- = nkml+nk
(i # k-1,k) . Then

-1 and nl =ni

.
$fl (g ni )= ,< E @;(I$

i=l

and SO the partition n = n:+n*+ *
1 . ..+n

m maximizes (11). However,
we have

Ic i: i >l, nr = 131 > [[i: i > 1, ni = 131

contradicting the minimality- of k l

7



I Now, we shall distinguish three cases.

Case 1. npd. Then necessarily k = 1 and so n1 = n-no-(m-l) =

2b-2n0+1 . Since l,< n1 < d , we haveI.

b-y<nO<b .

Lemma 1 yields

(12)

fhb,d) 5 ho+ f g(n >
i=l

i = LO+(;) = bo+(2b-:ngil)  .

Since F(no) is a convex f'unction with

--

F(b - y) = F(b) = bd and no satisfies the constraints (12), we

L have f(n,b,d) L bd . Hence in this case both inequalities (8), (9)

are satisfied.

,
i

Case 2. nl > d+l , d even. Here Lemma 1 gives

f(n,b,d) < dno+ f g(ni) =
i=l

dk
dng+ZTilni =c

=

= dno + $ (n-nO-(m-k)) = bd+ k l $ l

Besides, we have k(d+l) < t n.
i=l IL

= n-no-(m-k) = 2b+k-2n0 > 2b+k

L
andso kl[,2'01 l But then

f(n,b,d) 5 bd+ k +bd+[$$$

which is the desired inequality (8).



Case 3. nl 2 d+l , d odd. Again,

f(n,b~d) 5 ho+ f g(n,) = ho+
i=l

Lemma 1 yields

= dno + 4 (n-nO-(m-k)) - g = bd+ k 99 .
-.

We have ni 2 d+l whenever 1 < i < k .> Moreover, each
- -. ni (l<i<k)- -

is odd while d+l is even. Hence we have ni 1 d+2 whenever

l<i<k.- -
k

Besides, we have k(d+2) < c n. = n-no-(m-k) = 2b-2n +k
i=l ' 0 and so--

k <-1 32b-2no

d+l .

2n-2bIf no >2b-n+-
d+3 then

if Ilo ,< 2b-n+w then

kln+nO-2bc[$$] .

.
'Moreover, since no 2 0 , we have k <-1 32b-2no

d+l ,< [-=Id+l . The

inequalities

k < I=] ,- k+l t f(n,b,d) s bd+k l 7

yield the desired results (8), (9).
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f(n,b,d) (ma~{(*b2+1), [v]] .

. .

Proof: Let n,b,d be given and let (10) be a partition which

maximizes (11). Then Lemma 1 yields

fhbd) 5
nO(d+n-nO)

2 +
ng(d+n-nO)*

This can be written as f(n,b,d) ,< H(nO) where

H(nJ =
r+,(d+n-no)

2 +

is a convex fknction of n
0 l Since no = n- jJ n. L n-m

i=l l = 2b-n0 '
we have 0 ,< no < b . Therefore

fhb,d) ,< m=EH(O),H(b) 3 =max (
2?3 ,b(d;n-b)

>
and the desired result follows by integrality of f(n,b,d) .

.

3; Constructions

LENMA 4. If d is odd, n > 2b and

[w](d-1) > (n-2b)d
03)

then fhb, d> 2 $1 9
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Proof: Set m = [w] and no = 2b-n+m . AS *b 5 n , we have

Wl - &I 5 n(l+&-+
. . d+3

and so

nO =2b-n+[ < n
- d+l

which can be written as

nod < n-n
0 .

Besides,, (13) yields nod ,> m . Now, let us set

f &O if n is even ,
a =

dng-1 if n is odd .

We have

a 3 dno+n E no+n z no+n-2b s m (mod 2)

and

e Set ni = d+2 for i = 1,2,...,m-1 and

m-l
nm

= n- c n. =
i=O 1

2n-2b-m(d+3)+d+2 > d+2 .

(14)

(15)

By (14) and (15), a-m l1s an even nonnegative integer not exceeding

f Cniml) .
i=l

Let s be the greatest integer with a-m 2 f (ni-1) ;
i=l

then 0 < s 5 m . Set

ll



if l<i<s ,- -

i

L

a. =1 a-m- $ (ni-l)tl if i
i=l

=s+l ,

I 1 if s+l<i<m .

Obviously, each ai is odd and f a '= a
i=l i l Take disjoint graphs

QG2'"- Gm where each Gi has' exactly ni vertices, a.
1 of them

of degree d-l and the remaining ni-ai of degree d . The a vertices

of Gl U G2 U . . . U Gm having degree d-l will be enumerated as--

y4p9*.,ua  l Add a new set S of no vertices vpv*, g*e, join

each vi to all the vertices u
3

with (i-1)d < j smin(id,a) and

call the resulting graph G .

If a = dno (i.e., if n is even) then all the n vertices

of G have degree d ; if a = dno-1 (i.e., if n is odd) then n-l

vertices of G have degree d and the last one has degree d-l . In

both cases, ndG has [F] edges. Since kO(G-S) > m ,

a G contains at most b independent edges.

L.l3mfA  5* If d is odd, n > 2b and

. [w](d-1) < (n-2b)d

then

f(n,b,d) > bd+ [w] l F .

(16)

Proof: Set m = [3&Q] and n0 = 'Lb-n+m . Then (16) yields

nod <m . Set ni = d+2 for i = 1,2,...,m-1 and

12



m-l
n =n-
m c n.1 = 2n-2b-m(d+3)+d+2 > d+2 .

i=O

Take disjoint graphs G1,G2,...,Gm- where each Gi has ni-1 vertices

of degree d and one vertex ui of degree d-l . Add a new set S

of n0 vertices Jy*’ l l �Y

join each 2

to all the vertices u
j

with (i-l)d < j 5 id and call the resulting graph G . Obviously,

all but m-nod vertices of G have degree d ; the remaining m-n d0
vertices have degree d-l . Hence G has exactly

$ (nd - (m-nod)) =bd+m* y

i

L
!

edges. Since kO(G-S) = m = n - 2b+ ISI , G contains at most b

independent edges.

To make this paper self-contained, we need three more lemmas; these

are due to Hanson [6].

LEMMA 6. If' dz2b and n>2b+ b

- c 3
then

f(n,b,d) > bd+ -
d - 1

b
d+l

k-21 3

Proof: Case 1, d odd. Set m = [-&I , ni = d+2 for i = 1,2,...,m-1

and

nm = 2b+m - (m=l)(d+2) = 2b-m(d+l)+d+2 > d+2 .

Take disjoint graphs Gl,G2,...,G
In where each Gi has ni-1 vertices

of degree d and one of degree d-l . Add n-(2b+m) isolated vertices

and call the resulting graph G . Clearly, G has

.

5 ((2b+m)d-m) d-l
= bd+m*-F-

13



edges and at most

. .

independent edges.

Case 2, d even. Set m =[?I, ni = d+l for i = 1,2,...,m-1

and . *

nm =2b+m - (m-l)(d+l) =2b-md+d+l > d+l .

Take disjoint graphs Gl,G2,...,G
m where each Gi has ni vertices,

c

all of degree--.d . Add n-(2b+m) isolated vertices and call the

resulting graph G . Clearly, G has

$ (2b+m)*d = bd+m l $

i edges and at most

f [2] = f y = $(f nimm) = b
i=l i=l i=l

independent edges.

t

e

I

LEMMA  7.H' d ism,d< 2b and n 5 *b+ [F] then f(n,b,d) 2 $ .

L

1

I Proof: Set m = n-2b ; then m(d+l) 5 n . For each i = 1,2,...,m-1
Y

set n
i = d+l ; set also n

m = n-(m-l)(d+l) > d+l . Let G be a disjoint

I

i

union of graphs GlA2, l ,G, where each Gi has ni vertices, all of

degree d . Then G has exactly 12 dn edges and at most

f [2] = f y = + (n-m> = b
i=l i=l

L
independent edges.

14



LEMMA 8.

( >i If dr2b, n 2 2b+l then f(n,b,d) ,> (*yl) .

(ii) If d>b, d+l<n <d+b then- - f(n,b,d) > [v] .

(iii) If d >b, n 2 b+d then f(n,b,d) 2 bd .

Proof:

(i) Take a complete graph with 2b+l vertices, add n-(*Ml) isolated

vertices.

i

L

i

L

L

(ii) If b(d-n+b) is odd, take a graph Go with b-l vertices
-.

of degree d-n+b and one of degree d-n+b-1 . If b(d-n+b) is even,

take a graph Go with b vertices of degree d-n+b . Add n-b new

vertices, join each of them to all the vertices of Go and call the

resulting graph G . Obviously, the degrees of vertices of G do not

exceed max{d,b] = d ; since each edge of G has at least one endpoint

in Go ' we conclude that G has at most b independent edges. Finally,

C has exactly

m [v] + b(n-b)  = [F]

edges.

(iii) Take a complete bipartite graph with b vertices in one part

and d in the other; add n-(b+d) isolated vertices.
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