DEGREES AND MATCHINGS

V. CHVATAL

STAN-CS-72-268
MARCH 1972

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UN IVERS ITY

DEGREES AND MATCHINGS

by . .
V. Chvátal
Computer Science Department
Stanford University

Abstract
Let $\mathrm{n}, \mathrm{b}, \mathrm{d}$ be positive integers. D. Hanson proposed to evaluate $f(n, \bar{b}, \bar{a})$, the largest possible number of edges in a graph with n vertices having no vertex of degree greater than d and no set of more than b independent edges. Using the alternating path method, he found partial results in this direction. We complete Hanson's work; our proof technique has a linear programming flavor and uses Berge's matching formula.

> AMS(MOS) subject classification numbers (1970): Primary 05035 Secondary 90C10

Keywords and phrases: Degrees, matchings, independent edges, Berge's matching formula.

This research was supported by the National Science Foundation under grant number GJ-992, and the Office of Naval Research under grant number N-00014-67-A-0112-0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government.

1. Introduction

Erdös and Rado [5] proved that given any positive integers n, k there is always an integer a with the following property: if F is any family of more than a sets, each of cardinality n, then some k members of F have pairwise the same intersection. Let us denote the smallest such a by $\varphi(n, k)$. Some results on $\varphi(n, k)$ can be found in [5], [1] and [3]. Obviously, $\varphi(2, \mathrm{k})$ is the maximum number of edges in a graph containing no vertex of degree greater than k-l and no set of more than $k-1$ independent edges. The values of $\varphi(2, k)$ have been determined by N. Sauer (to appear):

$$
\varphi(2, k)= \begin{cases}k(k-1) & \text { if } k \text { is odd } \tag{1}\\ (k-1)^{2}+\frac{1}{2} k-1 & \text { if } k \text { is even }\end{cases}
$$

D. Hanson [6] considered a little more general problem. By an $(\mathrm{n}, \mathrm{b}, \mathrm{d})$-graph we shall mean a graph G such that
(i) G has n vertices,
(ii) G contains no set of more than b independent edges,
(iii) G contains no vertex of degree greater than d.

The largest possible number of edges of an ($\mathrm{n}, \mathrm{b}, \mathrm{d}$) -graph will be denoted by $\mathrm{f}(\mathrm{n}, \mathrm{b}, \mathrm{d})$. In the Greek alphabet notation of [7], $\mathrm{f}(\mathrm{n}, \mathrm{b}, \mathrm{d})$ is the maximum of $\mathrm{q}(\mathrm{G})$ subject to the constraints

$$
\mathrm{p}(\mathrm{G})=\mathrm{n}, \mathrm{~B}_{1}(\mathrm{G}) \leq \mathrm{b}, \Delta(G) \leq \mathrm{d} .
$$

Obviously, $f(n, b, d)=f(n, b, n-1)$ whenever $d>n-1$. Similarly, $f(n, b, d)=f(2 b+1, b, d)$ whenever $n<2 b+1$. Hence we can restrict ourselves to the case $n>d+1, n \geq 2 b+1$.

Apart from the most difficult case (d odd and < $2 \mathrm{~b}, \mathrm{n}$ small), the values of $f(n, b, d)$ have already been obtained by Hanson [6]. His proof technique is based on the alternating path method. We will adopt a different approach, related to linear programming. This technique simplifies the proofs and enables us to complete the evaluation of $f(n, b, d)$ without much additional effort. The result goes as follows.

THEOREM. Let n, b, d be positive integers with $n>2 b+1$.
A. If $d \leq 2 b$ and $n_{-}<2 b-\left[\frac{b}{\left[\frac{d+1}{2}\right]}\right]$ then

$$
f(n, b, d)=\left\{\begin{array}{l}
\min \left\{\left[\frac{n d}{2}\right], b d+\left[\frac{2(n-b)}{d+3}\right] \cdot \frac{d-1}{2}\right\} \text { if } d \text { is odd } \\
n d \quad \text { if } d \text { is even. } \\
2 \quad \text { in }
\end{array}\right.
$$

B. If $d \leq 2 b$ and $n_{\rightarrow}>2 b+\left[\frac{b}{\left[\frac{d+1}{2}\right]}\right]$ then

$$
f(n, b, d)=b d+\left[\frac{b}{\left[\frac{d+1}{2}\right]}\right] \cdot\left[\frac{d}{2}\right]
$$

c. If $\mathrm{d} \geq 2 \mathrm{~b}+1$ then

$$
f(n, b, d)=\left\{\begin{array}{l}
\max \left\{\binom{2 b+1}{2},\left[\frac{b(n+d-b)}{2}\right]\right\} \text { if } n \leq b+d, \\
b d \quad \text { if } n>b+d .
\end{array}\right.
$$

In proving that $f(n, b, d)$ cannot exceed the values given by our Theorem, we shall make use of Berge's matching formula [2]

$$
\begin{equation*}
\beta_{1}(G)=\min \frac{1}{2}\left(p(G)+|S|-k_{0}(G-S)\right) . \tag{2}
\end{equation*}
$$

Here $\beta_{1}(G)$ is the maximum number of independent edges in G, $P(G)$ is the number of vertices of G, S runs through all the subsets of the vertex-set of G and finally, $k_{0}(G-S)$ is the number of odd components (i.e., components with odd number of vertices) of the S-deleted graph G-S .

On the other hand, we shall construct (n, b, d)-graphs having $f(n, b, d)$ edges. Then we shall use the following simple proposition: given any nonnegative integers n_{1}, n_{2}, d with $1<d<n_{1}+n_{2}$ and $(d-1) n_{1}+d n_{2}$ even, there is a graph G with $n_{1}+n_{2}$ vertices, n_{1} of them of degree $d-1$ and the remaining n_{2} of degree d. Actually, this statement is a corollary of a general existence theorem due to Erdös and Gallai [4]: Let $\alpha_{1} \geq d_{2}>. . \quad$. d_{n} be nonnegative integers. A necessary and sufficient condition for the existence of a graph G with n vertices $u_{1}, u_{2}, \ldots, u_{n}$, each u_{i} of degree d_{i}, is that $\sum_{i=1}^{n} d_{i}$ be even and

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left\{d_{i}, k\right\}
$$

- for each $k=1,2, \ldots, n-1$.

We conclude this section with two observations made by Hanson [6]. Firstly, Sauer's formula (1) appears to be a corollary of the theorem. Indeed, one has

$$
\varphi(2, k)=\max _{n} f(n, k-1, k-1)=\lim _{n \rightarrow \infty} f(n, k-1, k-1)=(k-1)^{2}+\left[\frac{k-1}{\left[\frac{k}{2}\right]}\right] \cdot\left[\frac{k-1}{2}\right]
$$

Similarly, the theorem implies that a graph with n vertices and at most b independent edges can have at most

$$
f(n, b, n-1)=\max \left\{\binom{2 b+1}{2}, b(n-b)+\binom{b}{2}\right\}
$$

edges. This has been proved by Moon [8]. As noticed by J. A. Bondy, Moon's result follows instantly from Berge's matching formula (2).

2. Upper Bounds

LEMMA 1.

$$
f(n, b, d) \leq \max \left(\min \left\{d n_{0},\left[\frac{n_{0}\left(d+n-n_{0}\right)}{2}\right]\right\}+\sum_{i=1}^{m} \min \left\{\binom{n_{i}}{2},\left[\frac{d n_{i}}{2}\right]\right\}\right)
$$

where the maximum runs over all partitions

$$
n=n_{0}+n_{11}+n_{2}+\ldots+n_{m}
$$

into nonnegative integers with $m=n+n_{0}-2 b$ and all $n_{i} \quad(1 \leq i \leq m)$ odd.

Proof. Let $G=(V, E)$ be an arbitrary (n, b, d)-graph. By Berge's formula (2), there is a set $S \subset V$ with $k_{0}(G-S) \geq n+|S|-2 b$. Let the odd components of G be $G_{1}, G_{2}, \ldots, G_{M}$. Then $M>m=n+|S|-2 b$. Let us denote $|S|$ by n_{0} and the number of vertices of each G_{i} ($1 \leq i<m$) by n_{i}; let us also set

$$
n_{m}=n-\sum_{i=0}^{m-l} n_{i}
$$

Then n_{m} has the parity of $n-n_{0}-(m-1)=2 b-2 n_{0}+1$ and so all n_{i} 's with $l \leq i \leq m$ are odd. We denote by x the number of edges of G having both endpoints in S, by y the number of edges of G having exactly
one endpoint in S. For each $i=1,2, \ldots, m-1$ we denote by z_{i} the number of edges of G_{i} and finally we denote by z_{m} the number of the remaining edges in G . Obviously, we have

$$
\begin{align*}
2 x+y & \leq d n_{0} \tag{3}\\
y & \leq n_{0}\left(n-n_{0}\right) \tag{4}\\
z_{i} & \leq \min \left\{\binom{n_{i}}{2},\left[\frac{d n_{i}}{2}\right]\right\} \quad(1 \leq i \leq m) . \tag{5}
\end{align*}
$$

Summing (3) and (4) and using the integrality of $x+y$ we obtain

$$
\begin{equation*}
x+y \leq\left[\frac{n_{0}\left(d+n-n_{0}\right)}{2}\right] \tag{6}
\end{equation*}
$$

Besides, (3) itself implies

$$
\begin{equation*}
x+y \leq d n \tag{7}
\end{equation*}
$$

Now, the desired conclusion follows from (5),(6),(7) and the fact that G has exactly $x+y+z_{1}+z_{2}+\ldots+z_{m}$ edges.

LEMMA 2.

$$
\begin{equation*}
f(n, b, d) \leq b d+\left[\frac{b}{d+1}\right] \cdot\left[\frac{d}{2}\right] \tag{8}
\end{equation*}
$$

(In particular, $f(n, b, d) \leq b d$ whenever $d \geq 2 b+1$.) Besides, if d is odd then

$$
\begin{equation*}
f(n, b, d)<b d+\left[\frac{2(n-b)}{d+3}\right] \quad \bigcirc \quad y . \tag{9}
\end{equation*}
$$

Proof: Let n , b , d be given. For each positive integer s, we set

$$
g(s)=\min \left\{\binom{s}{2},\left[\frac{d s}{2}\right]\right\}= \begin{cases}\binom{s}{2} & \text { if } s \leq d+1 \\ {\left[\frac{d s}{2}\right]} & \text { if } s \geq d+1\end{cases}
$$

To each partition

$$
\begin{equation*}
\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1}+\ldots+\mathrm{n}_{\mathrm{m}} \tag{10}
\end{equation*}
$$

with $n_{1} \geq n_{2}>\ldots>n_{m}$ and all the $n_{i} ' s(i=1,2, \ldots, m)$ odd, we assign a positive integer .- the smallest subscript $k \geq 1$ such that $n_{i}=1$ for all $i>k$. Among all the partitions (10) which maximize

$$
\begin{equation*}
\min \left\{d n_{0},\left[\frac{n_{0}\left(d+n-n_{0}\right)}{2} 3\right)+\sum_{i=1}^{m} g\left(n_{i}\right)\right. \tag{II}
\end{equation*}
$$

we choose one with minimum k.

$$
\text { If } k>l \text { then necessarily } n_{i} \geq d+l \text { for all } i \text { with } l \leq i \leq k
$$

Indeed, it is not difficult to check that

$$
s \leq d \Rightarrow g(s)+g(t) \leq g(s+t-1)
$$

Now, if $n_{k} \leq d$ then set $n_{k}^{*}=1, n_{k=1}^{*}=n_{k-1}+n_{k}-1$ and $n_{i}^{*}=n i$ ($\mathrm{i} \neq \mathrm{k}-1, \mathrm{k}$). Then

$$
\sum_{i=1}^{m} g\left(n_{i}\right) \leq \sum_{i=1}^{m} g\left(n_{i}^{*}\right)
$$

and so the partition $n=n_{0}^{*}+n_{1}^{*}+\ldots+n_{m}^{*}$ maximizes (11). However, we have

$$
\left|\left\{i: \quad i>1, n_{i}^{*}=I\right\}\right|>\left|\left\{i: i>1, n_{i}=I\right\}\right|
$$

contradicting the minimality of k.

Now, we shall distinguish three cases.

Case 1. $\quad n_{1} \leq d$. Then necessarily $k=1$ and so $n_{1}=n-n_{0}-(m-1)=$ $2 b-2 n_{0}+1$. Since $1 \leq n_{1}<d$, we have

$$
\begin{equation*}
\mathrm{b}-\frac{\mathrm{d}-1}{2} \leq \mathrm{n}_{0} \leq \mathrm{b} \tag{12}
\end{equation*}
$$

Lemma 1 yields

$$
f(n, b, d) \leq d n_{0}+\sum_{i=1}^{m} g\left(n_{i}\right)=d n_{0}+\binom{n_{1}}{2}=d n_{0}+\binom{2 b-2 n_{0}+1}{2}
$$

Since $F\left(n_{0}\right)=d n_{0}+\binom{2 b-2 n_{0}+1}{2}$ is a convex function with
$F\left(b-\frac{d-1}{2}\right)=F(b)=b d$ and n_{0} satisfies the constraints (12), we have $f(n, b, d) \leq b d$. Hence in this case both inequalities (8),(9) are satisfied.

Case 2. $\quad n_{1}>d+1, d$ even. Here Lemma 1 gives

$$
\begin{aligned}
f(n, b, d) & <d n_{0}+\sum_{i=1}^{m} g\left(n_{i}\right)=d n_{0}+\sum_{i=1}^{k} \frac{d n_{i}}{2}=d n_{0}+\frac{d}{2} \sum_{i=1}^{k} n_{i}= \\
& =d n_{0}+\frac{d}{2}\left(n-n_{0}-(m-k)\right)=b d+k \quad \$.
\end{aligned}
$$

Besides, we have $k(d+1)<\sum_{i=1}^{k} n_{I}=n-n_{0}-(m-k)=2 b+k-2 n_{0}>2 b+k$
and so $k \leq\left[\frac{2 b}{d}\right]$. But then

$$
f(n, b, d) \leq b d+k \cdot \frac{d}{2} \leq b d+\left[\frac{2 b}{d}\right] \cdot \frac{d}{2}
$$

which is the desired inequality (8).

Case 3. $n_{1} \geq d+1, d$ odd. Again, Lemma 1 yields

$$
\begin{aligned}
f(n, b, d) & \leq d n_{0}+\sum_{i=1}^{m} g\left(n_{i}\right)=d n_{0}+\sum_{i=1}^{k} \frac{d n_{i}-1}{2}=d n_{0}+\frac{d}{2} \sum_{i=1}^{k} n_{i}-\frac{k}{2}= \\
& =d n_{0}+\frac{d}{2}\left(n-n_{0}-(m-k)\right)-\frac{k}{2}=b d+k \cdot \frac{d-1}{2}
\end{aligned}
$$

We have $n_{i} \geq \mathrm{d}+1$ whenever $1<\underline{i}<\underline{k}$. Moreover, each $n i \quad(1 \leq i \leq k)$
is odd while $\mathrm{d}+1$ is even. Hence we have $n_{i} \geq \mathrm{d}+2$ whenever
$1 \leq i \leq k$.
Besides, we have $k(d+2)<\sum_{i=1}^{k} n_{I}=n-n_{0}-(m-k)=2 b-2 n+k$ and so

$$
k \leq\left[\frac{2 b-2 n_{0}}{d+1}\right]
$$

If $n_{0}>2 b-n+\frac{2 n-2 b}{d+3}$ then

$$
k \leq\left[\frac{2 b-2 n_{0}}{d+1}\right] \leq\left[\frac{2 n-2 b}{d+3}\right] ;
$$

if $\quad n_{0} \leq 2 b-n+\frac{2 n-2 b}{d+3}$ then

$$
k \leq n+n_{0}-2 b \leq\left[\frac{2 n-2 b}{d+3}\right]
$$

'Moreover, since $n_{0} \geq 0$, we have $k \leq\left[\frac{2 b-2 n_{0}}{d+1}\right] \leq\left[\frac{2 b}{d+1}\right]$. The inequalities

$$
k \leq\left[\frac{2(n-b)}{d+3}\right], \quad k \leq\left[\frac{2 b}{d+1}\right], \quad f(n, b, d) \leq b d+k
$$

yield the desired results (8), (9).

LEMMA 3.

$$
f(n, b, d) \leq \max \left\{\binom{2 b+1}{2},\left[\frac{b(d+n-b)}{2}\right]\right\}
$$

Proof: Let $\mathrm{n}, \mathrm{b}, \mathrm{d}$ be given and let (10) be a partition which maximizes (11). Then Lemma 1 yields

$$
f(n, b, d) \leq \frac{n_{0}\left(d+n-n_{0}\right)}{2}+\sum_{i=1}^{m}\binom{n_{i}}{2} \leq \frac{n_{0}\left(d+n-n_{0}\right)}{2}+\binom{n-n_{0}-(m-I)}{2}
$$

This can be written as $f(n, b, d) \leq H\left(n_{0}\right)$ where

$$
H\left(n_{0}\right)=\frac{n_{0}\left(d+n-n_{0}\right)}{2}+\binom{2 b-2 n_{0}+1}{2}
$$

is a convex function of n_{0}. Since $n_{0}=n-\sum_{i=1}^{m} n_{i} \leq n-m=2 b-n_{0}$, we have $0 \leq n_{0}<b$. Therefore

$$
f(n, b, d) \leq \max \{H(0), H(b)\}=\max \left\{\binom{2 b+1}{2}, \frac{b(d+n-b)}{2}\right\}
$$

and the desired result follows by integrality of $f(n, b, d)$.

3: Constructions

LEMMA 4. If d is odd, $\mathrm{n}>2 \mathrm{~b}$ and

$$
\begin{equation*}
\left[\frac{2(n-b)}{d+3}\right](d-1)>\quad(n-2 b) d \tag{13}
\end{equation*}
$$

then $f(n, b, d) \geq\left[\frac{n d}{2}\right]$.

Proof: Set $m=\left[\frac{2(n-b)}{d+3}\right]$ and $n_{0}=2 b-n+m$. As $2 b \leq n$, we have

$$
2 b\left(1-\frac{1}{d+3}\right) \leq n\left(1+\frac{1}{d+1}-\frac{2}{d+3}\right)
$$

and so

$$
n_{0}=2 b-n+\left[\frac{2(n-b)}{d+3}\right] \leq \frac{n}{d+1}
$$

which can be written as

$$
n_{0} \mathrm{~d}<\mathrm{n}-\mathrm{n}_{0}
$$

Besides, (13) yields $n_{0} d \geq m$. Now, let us set

$$
a= \begin{cases}d n_{0} & \text { if } n \text { is even } \\ d n_{0}-1 & \text { if } n \text { is odd }\end{cases}
$$

We have

$$
\begin{equation*}
a \equiv d n_{0}+n \equiv n_{0}+n \equiv n_{0}+n-2 b \equiv m \quad(\bmod 2) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
n-n_{0} \geq d n_{0} \geq a \geq d n_{0}-1 \geq m-1 \tag{15}
\end{equation*}
$$

Set $n_{i}=d+2$ for $i=1,2, \ldots, m-1$ and

$$
n_{m}=n-\sum_{i=0}^{m-1} n_{i}=2 n-2 b-m(d+3)+d+2>d+2 .
$$

By (14) and (15), $a-m$ is an even nonnegative integer not exceeding $\sum_{i=1}^{m}\left(n_{i}-1\right)$. Let s be the greatest integer with $a-m \geq \sum_{i=1}^{s}\left(n_{i}-1\right)$; then $0<s \leq m$. Set

$$
a_{i}= \begin{cases}n_{i} & \\ a-m-\sum_{i=1}^{s}\left(n_{i}-1\right)+1 \leq i \leq s \\ 1 & \text { if } i=s+l \\ & \text { if } s+1<i<m\end{cases}
$$

Obviously, each a_{i} is odd and $\sum_{i=1}^{m} a_{i}=a$. Take disjoint graphs $G_{1}, G_{2}, \ldots G_{m}$ where each G_{i} has' exactly n_{i} vertices, a_{i} of them of degree $d-1$ and the remaining $n_{i}-a_{i}$ of degree d. The a vertices of $G_{1} \cup G_{2} \cup \ldots \cdot U G_{m}$ having degree $d-1$ will be enumerated as $u_{1}, u_{2}, \ldots, u_{a}$. Add a new set S of n_{0} vertices v_{1}, v_{2}, \ldots, join each v_{i} to all the vertices u_{j} with (i-1)d $<j \leq \min (i d, a)$ and call the resulting graph G .

$$
\text { If } a=d n_{0} \text { (i.e., if } n \text { is even) then all the } n \text { vertices }
$$ of G have degree d; if $a=d n_{0}-1$ (i.e., if n is odd) then $n-1$ vertices of G have degree d and the last one has degree $d-1$. In both cases, G has $\left[\frac{10}{2}\right]$ edges. Since $k_{0}(G-S)>m$, G contains at most b independent edges.

LEMMA 5. If d is odd, $\mathrm{n}>2 \mathrm{~b}$ and

$$
\begin{equation*}
\left[\frac{2(n-b)}{d+3}\right](d-1)<(n-2 b) d \tag{16}
\end{equation*}
$$

then

$$
f(n, b, d)>b d+\left[\frac{2(n-b)}{d+3}\right] \quad \bigcirc \quad F
$$

Proof: Set $m=\left[\frac{2(n-b)}{d+3}\right]$ and $n_{0}=2 b-n+m$. Then (16) yields $n_{0} d<m$. Set $n_{i}=d+2$ for $i=1,2, \ldots, m-1$ and

$$
n_{m}=n-\sum_{i=0}^{m-1} n_{1}=2 n-2 b-m(d+3)+d+2>d+2
$$

Take disjoint graphs $G_{1}, G_{2}, \ldots, G_{m}$. where each G_{i} has $n_{i}-1$ vertices of degree d and one vertex u_{i} of degree $d-1$. Add a new set S of n_{0} vertices v_{1}, v_{2}, \ldots, join each v_{i} to all the vertices u_{j} with $(i-1) d<j \leq i d$ and call the resulting graph G. Obviously, all but $m-n_{0} d$ vertices of G have degree d; the remaining $m-n_{0} d$ vertices have degree $d-1$. Hence G has exactly

$$
\frac{1}{2}\left(n d-\left(m-n_{0} d\right)\right)=b d+m \cdot \frac{d-1}{2}
$$

edges. Since $k_{0}(G-S)=m=n-2 b+|s|, \quad G$ contains at most b independent edges.

To make this paper self-contained, we need three more lemmas; these are due to Hanson [6].

LEMMA 6. If $d \leq 2 b$ and $n_{\sim}>2 b+\left[\frac{b}{\left[\frac{d+1}{2}\right]}\right]$ then
$f(n, b, d)_{-}>b d\left[\frac{b}{\left[\frac{d+1}{2}\right]}\right] \cdot\left[\frac{d}{2}\right]$.
Proof: Case 1, d odd. Set $m=\left[\frac{2 b}{d+1}\right], n_{i}=d+2$ for $i=1,2, \ldots, m-1$ and

$$
n_{m}=2 b+m-(m-1)(d+2)=2 b-m(d+1)+d+2>d+2
$$

Take disjoint graphs $G_{I}, G_{2}, \ldots, G_{\text {In }}$ where each G_{i} has $n_{i}-1$ vertices of degree d and one of degree $d-1$. Add $n-(2 b+m)$ isolated vertices and call the resulting graph G . Clearly, G has

$$
\frac{1}{2}((2 b+m) d-m)=b d+m \cdot \frac{d-1}{2}
$$

edges and at most

$$
\sum_{i=1}^{m}\left[\frac{n_{i}}{2}\right]=\sum_{i=1}^{m} \frac{n_{i}-1}{2}=\frac{1}{2}\left(\sum_{i=1}^{m} n_{i}-m\right)=b
$$

independent edges.

Case 2, d even. Set $m=\left[\frac{2 b}{d}\right], n_{i}=d+1$ for $i=1,2, \ldots, m-1$ and

$$
n_{m}=2 b+m-(m-1)(d+1)=2 b-m d+d+1>d+1 .
$$

Take disjoint graphs $G_{1}, G_{2}, \ldots, G_{m}$ where each G_{i} has n_{i} vertices, all of degree \cdots. . Add $n-(2 b+m)$ isolated vertices and call the resulting graph G . Clearly, G has

$$
\frac{1}{2}(a b+m) \cdot d=b d+m
$$

edges and at most

$$
\sum_{i=1}^{m}\left[\frac{n_{i}}{2}\right]=\sum_{i=1}^{m} \frac{n_{i}-1}{2}=\frac{1}{2}\left(\sum_{i=1}^{m} n_{i}-m\right)=b
$$

independent edges.

LEMMA 7. If d is even, $d \leq 2 b$ and $n \leq 2 b+\left[\frac{2 b}{d}\right]$ then $f(n, b, d) \geq \frac{n d}{2}$.
Proof: Set $m=n-2 b$; then $m(d+1) \leq n$. For each $i=1,2, \ldots, m-1$, set $n_{i}=d+1$; set also $n_{m}=n-(m-1)(d+1)>d+1$. Let G be a disjoint union of graphs $G_{1}, G_{2}, \mathcal{D}$ where each G_{i} has n_{i} vertices, all of degree d. Then G has exactly $\frac{1}{2} d n$ edges and at most

$$
\sum_{i=1}^{m}\left[\frac{n_{i}}{2}\right]=\sum_{i=1}^{m} \frac{n_{i}-1}{2}=\frac{1}{2}(n-m)=b
$$

independent edges.

LEMMA 8.
(i) If $d \geq 2 b, n \geq 2 b+1$ then $f(n, b, d) \geq\binom{ 2 b+1}{2}$.
(ii) If $d>b, d+1<n<d+b$ then $f(n, b, d)>\left[\frac{b(n+d-b)}{2}\right]$.
(iii) If $d>b, n \geq b+d$ then $f(n, b, a) \geq b d$.

Proof:

(i) Take a complete graph with $2 b+1$ vertices, add $n-(2 b+1)$ isolated vertices.
(ii) If $b(d-n+b)$ is odd, take a graph G_{0} with $b-l$ vertices of degree $d-n+b$ and one of degree $d-n+b-1$. If $b(d-n+b)$ is even, take a graph G_{0} with b vertices of degree $d-n+b$. Add $n-b$ new vertices, join each of them to all the vertices of G_{0} and call the resulting graph G . Obviously, the degrees of vertices of G do not exceed $\max \{a, b\}=d$; since each edge of G has at least one endpoint in G_{O}, we conclude that G has at most b independent edges. Finally, G has exactly

$$
\left[\frac{b(d-n+b)}{2}\right]+b(n-b)=\left[\frac{b(n+d-b)}{2}\right]
$$

edges.
(iii) Take a complete bipartite graph with b vertices in one part and d in the other; add $n-(b+d)$ isolated vertices.

References

[1] H. L. Abbott, "Some remarks on a combinatorial theorem of Erdös and Rado," Canad. Math. Bull. 9 (1966), 155-160.
[2] C. Berge, "Sur le couplage maximum d'un graphe," C. R. Acad. Sci. Paris 247 (1958),258-259.
[3] V. Chvátal, "On finite delta-systems of Erdös and Rado," Acta Math. Acad. Sci. Hungar. 21 (1970), 341-355.
[4] P. Erdös and T. Gallai, "Graphs with prescribed degrees of vertices," (Hungarian), Mas. Lápok 11 (1960), 264-274 (see also [7], Chapter 6).
[5] P. Erdös and R. Rado, "Intersection theorems for systems of sets," J. London Math. Soc. 35 (1960), 85-90.
[6] D. Hanson, "An extremal problem in graph theory," to appear in J. Combinatorial Theory.
[7] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. 1969.

- [8] J. W. Moon, "On independent complete subgraphs in a graph," Canad. J. Math. 20 (1968), 95-102.

