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ARl THVETI C PROPERTI ES OF CERTAIN

RECURSIVELY DEFINED SETS

by
D. A, Klarner and R Rado

1. Introduction

W begin with a rough description of the kind of problemtreated
inthis paper. This will be followed with a review of certain notions
from uni versal al gebra which are going to be used in the precise
formilation of our problems. W would like to point out at the outset
that only the Ianguage and very little of the theory of universal algebra
seemto enter our work.

Consider a set R of finitary operations defined on a set X,
and suppose A is a subset of X . It can be shown that there is a
"smallest" Set (R:A) wWith Ac (R:A) ¢ X such that (r:A) is closed
under all operations in R. This is a rough version of the "definition
from above" of the set (rR:A) . However, there is an alternative
"definition from bel ow' which involves iteration of the operations in R .
V¢ define a sequence of sets Boshys e recursively so that

A=A chc...and s, usu. . . = (RA

0="1

Even though we have a constructive definition of (RA) it is often
very difficult to decide whether a given element x of X is an el enent
of (r:A). Such a situation may lead to a search for a sinple character-
i zation of the elements of (r:A) which avoids the recursive construction.

For exanple, it will be shown later on that the subset (ex+3y:1) of the



natural nunbers consists precisely of all positive integers congruent
to 1 or 5 nodulo 12 . This case is typical of the class of problems
which will be considered. |In general, we seek an arithnetic characteri-
zation of sets (R A) of natural nunbers where Ris a finite set of
finitary linear operations defined on the set of natural nunbers, and
Ais a finite set of natural nunbers.

Let us introduce some notation from universal algebra and give a
precise formulation to our problem Henceforth, X denotes a set.
Let x*, for every natural nunber r , denote the set of all r-tuples
of elements of X . A mapping o which sends x" into Xis called

an r-ary operation on X . For every Y cX we put

(1) o(¥) = {p(3): yex'} .

In particular, po(f) =9 . Afinitary operation on Xis an r-ary

operation on X for some unspecified natural nunber r . Henceforth,

R denotes a set of finitary operations on X. For Y ¢ X, let

(2) RIY) = u ()

peR

Henceforth, A denotes a fixed subset of X . Let (R:a) denote the
set of all subsets of X which contain A and are closed under all

operations in R. In other words,
(3) JR:A) = {Y:A c Y c X ;R(Y) ¢ Y}
Finally, for 1< (R:A), 7 # ¢ , we define the neet of 1 by

(%) AT=nr,
TeT -

and if =90, then we define AT = X .
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The join of 7 is defined by

(5) VI=AHR:UT)
TeT

It is easy to check that ATe #R:A) . Tearly, VTes(R:a) for all
T c #(R:A). Because of its inportance, We have a special notation for

the set A(R:s) , namely,
(6) (R:AY =/\ AR:A) .

This brings us to the first noteworthy result in the theory of universal

al gebra (see Kurosh [1, pp. 93-99)).

THEOREM 1. The set J/(R:A) , ordered by set inclusion, forms a conplete
lattice with neets and joins defined by (4) and (5) respectively. The
greatest elenent of »(R:A)is X, and the least element is (RA) as

defined in (6).
The next result provides a construction for (r:A) .

THEOREM 2. Let Ay = A, and A,

put A=A UAU. . . . Then

1 =AU R(Al) for i=0,1,..., and

(7) (R:4) = A,

Proof. By definition, A= a,cA c X. Next, let p be an r-ary

0

operation in R, and select elements Xj,....x, of A Then there

exists a nunber k > 0 such that x,...,x eA . Hence, in view of

1"
Ay = A& URA) , we have p(xp,...5%) €A, c A . This proves
A, eo/(R:4) .



An easy proof by induction on k establishes that A cY for
kK = 0,1,... whenever Y e(R:A) . Hence Y e(R:A) inplies 4, c Y .
In particular, A c (r:A). But (RA) is the least elenent of

S(R:A) . Therefore A = (RA) and the proof is conplete.
THEOREM 3. Let Yeo/(R:A) . Then A u R(Y) eo(R:A) and

(8) (RA = AUR(RA) .

Proof. Since AURY) c Y we have R(A UR(Y)) c RY) which inplies
the first assertion. Put S = (R:A) and, for every x'c X,

eX* = Ay R(X'). Then S is the intersection of all Xx*c Xwth

Xt o ¢x' . Consider one such x*. By definitionof S, Scx',
which inplies ¢S c 9x* ¢ x* . Therefore, by definition of S ,98 cs
and so epsc @S . Again, by definition of S, we have S c ¢8 so
that, finally, S =95, which is (8).

W introduce the follow ng notation:

P ={1,2,3. ..}; N={,L2,. ..] ; J ={0,1,-1,2,-2,...} ;

a;p] = {x: xeJ ;8 <x <Db} for a,bed .

Henceforth, X is assuned to be the set P . W shall also severely
limt the scope of the set R. An r-ary operation p on P is said

to be linear if there exist nunbers a,m com, such t hat

1"

(9) p(Xp e esX) = a¥mx+ ® +mrxr

for all x;,...,x.eP . If a =0 then o is said to be homogeneous.
Henceforth, unless the contrary is stated, Ris assumed to be a finite

set of finitary linear operations on P . Usually, the elenents of R



will be listed explicitly, say in the formR = {pi: ielL,x]} , and

in this case we wite (p; ( iel1,k]) :A) instead of (RA) . Asinlar
convention is adopted when the elements of A are listed. For exanple,
we shal |l consider sets such as -{2x+l,3x+l:l} and (2x+3y:1) . An

r-ary operation p is called strictly increasing if

p(xys. . 09% ) > x5 e0ox, for all %

of Theorem 3 can be derived for sets R consisting of operations of this

ki nd.

-+sx €P . An inportant corollary

Corol lary of Theorem3. Let R be a set of strictly increasing operations

on P, and Ac? . Then the equation Y = Au R(Y) holds if and only
if Y=(RA).

Proof. In view of (8), we only have to showthat Y = Ay R(Y) inplies
Y = (R:A) . Cur assunption inplies Yes(R:A) , so that (RA) c VY.

If (RA) # Y then there is a least element x of W(RA) . Then
xfA , since otherwise we would have xe (RA) . But the relations
Y=AU RY) and x£A inply the existence of an r-ary operation pin

R together with elenents x X of Y such that p(xl,...,xr) =X .

1

By hypothesis, o is strictly increasing, so that x > x nX

et

Hence x X € (RA , and x = p(xl,...,xr) e (R:A) , which is the

1
required contradiction. This conpletes the proof.

Anot her notational convenience we shall enploy concerns the addition
and multiplication of sets of numbers. For nes and 4,8 ¢ J we define
n+tA = {n+a: aeA} ,

A+B = {at+b: aeA; beB} ,

nA = {na: aeA} ; AB = {ab: aeA; beB} .



For exanple, the set {a+dn: neN} , which forms an arithmetic

progression, may be witten as a+dy .

Sets expressible as a finite union of arithmetic progressions enter
our investigations in a natural way. For exanple, consider the set
S = x+ p(xl,...,xr):a,> where a,reP , and p iS an r-ary operation
on P such that, with d = p(aya,...,a) , We have p(Xl,. . .,xr) =
o(yy5...»¥,) (mod d) whenever X., =y (moa d) for ief1,r] . Under
these circunstances all elenents of S are congruent to a nodulo d

so that

(10) T Sca+dn .
On the other hand, a sinple induction on k establishes that a+kdes
for all ke , in view of at(k+1)a = a+kd+ p(e,...,a) . Hence there is
equality in (10). Furthernmore, one can show under various conditions
that if (R:a) contains an infinite arithmetic progression, then (R:A)
is expressible as a finite union of arithmetic progressions. For exanple,
see Theorem Lk below. Before proving Theorem & we nust discuss some general
properties possessed by sets expressible as finite unions of arithnetic
progressi ons.

Aset AcPis called a per-set if A is expressible as a finite

wnion of infinite arithmetic progressions. This neans that A has the

form
k
(11) A= igl (a;+a.m) ,
where kexn and a;,d; eP for ie[1,k] . It is easy to see that a set

Ac Pis aper-set if and only if A= r+ay where Fis a finite subset
of P and deP . The name "per-set? is used to renind us of the

periodicity property of such sets which is expressed in the follow ng

| emma.



Lemma 1. A set Ac Pis a per-set if and only if there exists dep

such that a+taAca .

Proof .

(i) Let A be a per-set defined by (11) with k >0 . Let d be the
| east common multiple of dyeeend, Si nce ?L +(1. n+d =
a;+dy(n+ (d/di)) for iel1,x] and nelN it follows that d+A c A .

(ii) Suppose that A c P and d+A c A for sone 6P . For xeA put
f(x) = mn(AnN (xdg)) . Then the set F = {f(x): xea} has at
nmost d elements, and if F = {al. .. .a) then

A=U (ie[l,k])(ai+dN) = F+dN . This conpletes the proof.

W conclude from (ii)that per-sets are the sets of the form r+ady
with Ffinite and dep .

W note that the relations a+ac A and a+Ac A inply
(a+a*)+a = d+( a+a) c dtA c A .

Let o denote the set of all per-sets. Qur next result shows that

® has a nice structure.

Lemma 2. Let A,Bep . Then AUB,ANBeP . Aso, for every finite

set Fc A, we have A\FeP

Proof. By Lemma 1, there are numbers d,a'ep such that d+A c A and

d4Bc B. Then a'+ (AUB) cAuB, aa'+(AnB cAnB, and the
sets AyBand AnBarein® by Lenma 1. There exists neP such
that F c [1,nd] . Then nd+(AF) cA\F, and A\FeP by Lemm 1.

This conpletes the proof.



For any sets X,Y we say that X is alnmost contained in Y,

and we wite

XeyY ,

iIf X\Y is finite. W say that X and Y are al nost equal, and we
wite

X=y ,
if Xevyex . Oearly, the relation « is reflexive and transitive,
and = is an equivalence relation. The set Ac P is called a near
per-set if Ais alnost equal to a perset. Thus, a near per-set is a
set which is expressible as a finite union of arithmetic progressions,
each progression being allowed to be finite or infinite. The set of all
near per-sets has a structure simlar to that of P as given in Lemma 2.
It is easy to see that a set Ac, Pis a near per-set if and only if there
IS deP such that dtA e A. W are now ready to state and prove a

result which shows how per-sets enter our theory.

THEOREM 4. Let A be a per-set and R a set of operations of the form
atmx + . ..tmx wher e 8, TyMyyeeesl €P such that the highest

conmon factor (m

'R .,mr) has the value 1 . Then (R A) is a per-set.

Proof. Assune &R #¢ . There is deP with dtAc A. Pit S = (RA) ;
s =(RA) ;
£(x) = min(S n (x+aJ))  (xe8) ;
st = {f(x): xes} .

Then s* is finite and

SC U (x+dN) =sr+an .
XES



W can wite 8t in the forms® = {sl.. . ..sk} , such that kep ,
and there is me[0,k] such that (i) 8.5 +0es8) €AFAT (ii) for
each Ae[m1,k] there is an operation p(xl,‘,.,xr)eR and indi ces

Y

ook, € [1,A-1] such that IEN "."S)‘r) e s,+d7. Then

1
s;*d « A ¢ S for re[Lm] . Now assune, using an inductive argument,
t hat oe[mt1,k] and s5,#dV @ S for all Ae[1,0-1] . W\ shall deduce

st @ S There are indices k€ [1,0-1] and an operation

l’ o XX
- M
p(xl,...,xr) = atmx + . ..+mX €R such that p(skll ) ﬁwr) € s +aJ .
Then 84 ea+mls)\1+ +mrs)‘.r +4aJ ; sAi +dN @ S(ie[1l,r]) . There are

indices Aj...,h e [1,0-1] and an operation p(xpseeesx ) =

atmx+. .. +mx cR such that p(S}\ll,...,SKr) e s;+dJ . Then
scea+mls}\l+ . ..+mrskr+dJ 3 s}‘“+idN§S(ie[l,r]) . There are nunbers

D;€P such that s, + dp,+ ¥ c S for ie[l,r] . Then
i

aty, ns,. +d£mipi+ dzmiN c S. There is qeP such that g+N c zmiN :
|

This is a well known consequence of (ml,...,mr) =1 . There is teJ such

t hat a.+zmis>\i = s +td . Now we have

s, +td+ dzmipi+ d(g+N) ¢ s +td+ dEmipi+ dZmiN

=a+ Z nP}"i +dzmipi+ dZmiN c.

This inplies s+ an e S. Thus we have proved, by induction, that

s,+ dv « S for each Ne[1,k] . Therefore s*+df « S, and there is a

A
finite set F c s* +dN satisfying (s*+dN)\F ¢ S c s*+an . Then
S = (sr+an) \F* for some r* c F . Since st+daNeP it follows from

Lemma 2 that s, and Theoremk is proved.



It IS worth noting that if the set (r':A') contains an infinite

arithnetic progression, and R' contains a non-enpty set R satisfying
the hypothesis of Theorem k&, then (R':A') contains a non-enpty per-set

but possibly may not be equal to a per-set.

Before going on to special cases of sets of the form (RA) we

prove one nore fairly general result concerning the nultiplicative

structure of sets (r:A) . For the nonent we drop the requirenment that

the elements of R be linear operations. An r-ary operation p on R

I's now said to be honogeneous i f

(3-2) p(m{l,axe,u'o,axr) = ap(xl,-..,xr)

for all 8Xyy+.5x  €P . \\ shall show that under certain conditions

the set (RA) is closed under nultiplication.

THEOREM 5. Let Ac P, and let R be a set of hombgeneous operations
on P. Put s=(r:A) . Then ASc Sinplies SSc¢ S. In particular,
if A={1}, then SS = S .

Proof. Let AS ¢ S and tess . Then there is aes such that

teaS = a(R:A) = (R:ad)c (RSA) ¢ (RS) ¢ S,

which proves sscs . If, in addition, A={1} then S=1¢ SS,

and the theorem fol | ows.

I n subsequent sections we shall focus attention on a very restricted
class of sets (r:a) where R denotes a finite set of finitary |inear
operations on P, and Ac P. Section 2 deals mainly with sets of the

form
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(13) (mx + ni(ie[l,k]):a) ,

wher e &, k,myn., . . 4o €P . These are sets generated by unary |inear
operations on P. In Section 3 we study the sets (mx+ny:1) with
m,neP . The cases (m,n) = 1 and (myn) > 1 differ significantly and

are treated separately; nmost of our results relate to the case (mn) =1 .

2. Sets generated by unary linear operations

A unary linear operation on Pis a function of the form

p(x) = nx+n With meP and neN . Throughout this section we deal
exclusively with sets (RA) where Ac Pand Ris a set of unary
linear operations on P, finite except possibly in Theorem 8. & may
suppose, without |oss of generality, that R does not contain the
identity operation. If R contains an elenment x+d with dep then
(R:A) s a per-set. W note that for unary operations
(1) (R:A) = U (R a)

achA
Hence, it is natural to focus attention on the case when A contains
exactly one element. The problemtreated in this sectionis to find a
satisfactory arithmetic characterization of the elements of a set of the

form

(2) (mix+ni(ie[l,k]):a) ,



wher e ky8,m, -1 ¢P and n, N for ie[1,x] . The case k = 1 in (2)
Is particularly easy. W have to consider the set (mx+n:a) With

m-1eP ; neN ; aeP . Using the construction given in Theorem 2 we find
(mx+n:a) = {a,am+ n,am2+n(nrl-l),.‘..}
= {am’ + n(n®-1)/(m-1): teN} .

Thus, t he set (mx+n:a)has the form G 1, where g i S a geometric
progression with positive rational terms, and 7 is a positive rational
nunber. This procedure can be carried out for arbitrary k in (2) and

shows that--the elements of (2) are precisely the nunbers of the form

vy ¥ p.l(\,2+ p.g(. .o+ ut-l(\’t+ uta,) )

(3)

= \)l..'. ul\)2+ ulu2v3+ ..o+ulo-out-l\)t+ ul...uta )

where teN ; ui = my(g) 5 Vi T Pa(y) 3 A1)y eeasn(t) €[1,k]. Thi s
characterization, though not very satisfactory initself, is often a

step towards something better. For exanple, the next theoremis an

i medi ate consequence of (3).
THECREM 6. Let a,d,k,meP and beN . Then

( (mx + b+ id(ie[0,k-1]):a)

(%) k-l .
=y (b(mo+ . ..+mt‘l)+amt+d t m'[0,k-1]) .
teN i=0

Proof. The set corresponding to t = 0 on the right of (4) is to be

interpreted as {a} . Let teP . In (3) put By . . Sl =M. Ve



note that each vi

ranges over the set b+d[0,k-1] .

Thus, inour
case all the nunbers of the form (3) comprise the set

ttl

am’+ ) m Y (v+af0,x-1])
i=0

=b(nP+ . ..

tl)+azn + d )8 m [O,k-l] N

for each tew . This establishes (L).

% can derive an interesting corollary fromthis theoremwith the

help of the following | enma which deal s with representation of nunbers
in the mary nunber system

Lemma 3. Let k,m,tep and k >m . Then

t-1
(5) ZO ml[O,k—l] = [O’ (k_l)(m0+ --.+mt—l)]
| =

Proof. Let je[1,(k-1)(m’+ . ..+m"1)] and suppose that

-l anmo' . at_lmt'l )
wher e By . . 8y e [0,k-1] . Then there is a nunber s = min{i: a. < k-1} ,
and we have

. _ 0 -1 8 t-1

-l = (k- +

j-1 (k-1)(m”+ . .. s )+a,sm+ "+at 1 s

wher e a, < k-1 Then

j = ((k-l)"'(l—m))(mo-i— : --+ms_l)+ (as +1)n° + Z

s<i<t
Since k-ma+tle[0,k-1] this proves py induction, that the lest hand

a. ml

side of (5) is contained in the right hand side. The opposite inclusion
holds trivially.
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(e

Corollary of Theorem 6. If k > m>2in Theorem6, then

(mx+ b+ id(ie[0,k-1]): Q)

(6)

t i t
_ -1 -1
= th (ar% +b(“:n_l )+ a[o, (k-1) “:n_l D .

Proof. Use Lemma 3 to re-write the sum X (iel0,t-1]) in (¥), and (6) iS the

result. For a future application we note that (6) remains true if a =10 .

Cur next result shows that if in Theorem 6 the number k is
sufficiently large with respect to given values of a,b,dm , then the

set (6) is a near per-set, and under certain conditions even a per-set.

THEOREM 7. Let a,d,m-1e¢P and beN . Then there exists a nunber

Kk = k(a,b,d,m) such that whenever k >« then the Set
S = (mx+b+id(ie[0,k-1]): a)

IS a near per-set. Furthernore, if d divides the nunber

(amtb -a)(mt-l)/ (ml) for some teP then Sis a per-set. Finally,

(7) k(ayb,d,m) <2+ (am+Db -a) (md"l) /a .

Proof. Define, for ten,

(8) a(t) = b(nP + ... +mtL) + an®
It follows that

(9) a(t+l) = ma(t)+b

for tew . Since the sequence (a(t): teN) satisfies a linear recurrence

14



relation it is eventually periodic modulo d : npreover, if d divides
a(t)-a(o) for sonme teP , the sequence is periodic modulo d . Mre

preci sely, there are nunbers g,r such that qeN ; re[1,d] ,
(10) a(t+r) = a(t)(mod d)
for all t>q, and if d divides t_hemnunber

a(t) -(0) = (am+b -a)(u’-1) / (m1)

for some tePp , then q = 0 .
Now let--us suppose k > mand use the Corollary of Theorem 6.we

find that

g-1
S = U (at)+a[0, (k-1)(m"-1)/ (m-1)]

£=0
(11) grr-1

U u U(t+rd) +alo, (k-1) (@™ 791y / (me1) )
t=q JeN

Now choose a fixed telq,q+tr-1] and consider the set

(12) juN<oc<t+1»;;>+ a[0, (x-1) (@™ Td-1) / (m1)])
€

which, as we know, is a subset of a(t)+daN . |n fact, the set corresponding

toafixed j in (1) is a block of consecutive elenments of the arithnetic

‘progression Q(t)+dN . W want to show that the set (12) is al nost equal

to a(t)+avw , i.e., that neighboring blocks in (12) abut or overlap for
all large values of j . To achieve this it suffices to make k so large

t hat

(13) a(t+ry) + ak-1) @ 3-1) / (m1) > aft+ri+r) -a

15



for all large j . But (13) is equivalent to a condition of the form

(1) K >1+(an+b-a)(m'-1)/d+8,

wher e sj -0as j -»w» . Thus, if j is sufficiently large, the

right hand side of (14) is less than
2+(am+b-a.)(md-l)/d = K,

say. Hence, if k >«' and telq,qtr-1] then the set (12) is contained in,

and alnost equal to, a(t) av. By combining this result with (1) we

obtain
gt+r-1

(15) S= U (ot) + dan)
t=q

If d divides a(t) -a(0) for sane teP , so that q = 0, then S is
actually contained in the set on the right of (15), because in this case
the set uy (te[0,q-1]) on the right of (Il) is the empty set. Hence we
conclude that Sis a near per-set provided k > «*, and a per-set if
k >t and if d divides ot) -a(0) for some tep . This conpletes
the proof, except that we still have to show that k >« inplies the

condition k >mwhich we inposed just before (17). In fact we have,

si nce rﬂ > 2d2 a+l |

k' = 2+ (a(m-1)+b) (n?-1)a"t

> 2+ (1(n-1)+0) ((8+1)-1)a™! = m1 > n

whi ch conpl etes the proof of Theorem 7.
By using (1) and (6) one can obtain results simlar to Theorem?

concerning sets of the form

16



(mx + bi(ie[l,k]): Al

with A and {bl,..., b} finite arithnetic progressions. So far, we

have not found any other class of sets of the form

(mx+n, (ie[1,k]): A)

which have a sinple or interesting arithnetic structure. pg, exanpl e

we have studied the set
S = (2x+1,3x+1:1)

whi ch seens {o be fairly conplicated.

P. Erd8s has kindly commnicated to US the essentials of a result
whi ch shows that for certain sets R of unary linear operations and
certain sets A the set (R:A) has density zero and is therefore neither
a per-set nor a near per-set. This applies, for instance, to

<2]C+l’ 5x+l:l> .

THEOREM 8. Let pcA,I ¢ P ; meP ; n, N for ieI. Let o be a

positive real nunber such that }:(ieI)mJEGr < 1. Then, if

S = (m,x+n (ieT):n) , We have, for all ten,
oL 1

Ll ns | <@ -y Llaclz, ) n 4)(t/e)°

Corollary of Theorem8. If, in addition, o <1 and if either the set A
o

is finite, or Ais infinite and the series Z(aeA)a' converges, then
the set S has density zero and is neither a per-set nor a
near per-set. This applies, for instance, to the set (2x+1,3x+1:4)

whenever ¥ (aeA)a™ < = for some < 1.
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e

Proofd t (ieI)m;LG = 1-8, so that 0 <& <1 . For tex denote
by L(t) the set of all mappings A:[1,r] - | with sonme unspecified

rel , such that @)™ (2) ) <t.We now prove that, for all teN ,
(16) lL(t) | <t%/8

Cearly, (16) holds for t = 0 . Let tep and use induction with respect

tot . Then, by noting that L(t) has exactly one element withr =0,

and by giving to a(1) in turn each of the possible values, we find that

L(e) | = 1+ T lns/m D) | < 2+ Lo t/m, 17

1

7 - (t7-1) < &7%

< 1+87%%(1-8) = &~ 7,

where [x] denotes the greatest integer not exceeding x .This proves

(16) for all tew . Let aeA and teN and put
Sa(t) = [1,t] n (mix+ ni(ieI):a)

Let yes (t) . Then we can choose reN and a mapping a:[Lr] - |

such that
2V IR T @) TP@ G T (1) P TR ()R <))
=M @M@ ()
Hence aeL([t/a]) . Put o(y) . A . Then@:S (t)-L( [t/a]) is

an injection, and therefore

,(6) | < [u(lt/a]) |

Now, using (16) we find that, with A = [LEIn A,

18



Hi,t1ns| < Z(aeAt) s, (t) |

< Lleeay) [1(0t/a1)] < L (act, )87 t/a )"

<57 (ae,) (t/a)°

which was to be proved.
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3, Sets Cenerated by One Linear Qperation

If linear operations p and « are related, then one m ght expect
the sets {p:a) and (1:b) to -be arithnetically related. The first
results proved in this section are of this type. W show in Theorem g
under fairly general conditions that the set (m o FIgE, + otmx ca)
is an affine transformation of the set n1ﬁ+ eetmx ol) Usi ng
Theorem 9, we show in Theorem 10 that if p and tare ||near operations
and {p(x):1) is a per-set, then (p(x)++(y):1) is also a per-set.

Al of the results proved in this section were notivated by attenpts to

prove the following conjecture.

Conjecture 1.  Suppose r-l,m myyeeesm €P and (ml,...,mr) =1.

Then (mx + . ..+mx :1) is a per-set.

— r—

If r~2,m;;...,m P , (ml,...,mr l) =1, and (m X, + . .M

Is a per-set, then it follows from Theorem 10 that (mx + . .otmx 1)

—

is also a per-set. Thus, to test Conjecture 1it is only necessary to
> consider r-sets (r > 2) of relatively prime nunbers having no proper

subset of relatively prime nunbers. The foll owing conjecture is weaker

-

than Conjecture 1.

~Conjecture la. Suppose r-Lm, O mePuith (mys.

+...+ny :a) is a per-set for all

')mr) l °

LR P .,nSeN and acP .

Mst of our efforts to prove Conjecture 1 have been concentrated on
trying to show that (mx+ny:1) iS a per-set whenever (mmn) = 1 . For
exanpl e, we have succeeded in showi ng (Theorem 11) that (2x+ny:1) is

a per-set for all odd nunbers n .

20
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It would be interesting to know whether the set {(mx+ny:1)
contains an infinite arithmetic progression for all mmnep . In fact,

a proof along the lines of the proof of Theoremk can be given that if

e,d,7-1my .. ..M eP wth (a,d) = (ml,...,mr) =1, and
at+dl @ (mx + . cotmx 1) =s, then Sis a per-set. This notivates

a second conjecture.

@

Conj ecture 2. The set (mx+ny:1) contains an infinite arithnetic

progression for all mnep .

The truth of Conjecture 2 is not enough to prove Conjecture 1.
In fact, R --Gaham has shown that (3x+3y:1) is not a near per-set,
but it is easy to prove that 36+45N is contained in this set.
Evidence in favor of Conjecture 2 is given in Theorem12 in which it
s shown that (mx+ny:1) contains arbitrarily long arithnetic
progressions for all mnep . This is an interesting result because it
can be shown in a way simlar to that used in the proof of Theorem 7 that
if (myn) =1, and (m+ny:1) contains a sufficiently long arithmetic
progression, then (mx+ny:l) iS a per-set. The sufficiency of the
length of the progression depends on m, n, the size of the initial
term and the comon difference of the terms of the progression. Now
Wwe present our results.

In order to exhibit the essentially very sinple idea behind our
next result we tenporarily abandon our restriction to linear operations
on P and readmt general operations on J . Ve also introduce the
convention that if x denotes a vector of any dimension, with conponents

x;eJ , then x-t denotes the vector with conponents x,-t . In what

21



foll ows vectors x , y, z , ware assumed to have the appropriate

di mensi ons.

Theorem9. Let | be a set and let, for each ieI , pi(}_c) and.
Ui(>_c) be T, -ary operations on J . Let a,BeJ\ {0} ; a',p'eJ ;
A,BcJd . Then

(1) a{p, (x) (LeI):A) + & = B(o, (x) (ieI):B)+p"

provi ded that

(2) CA+Q' = BB+pB!

and, for each iex and each w over J ,

(3) ap, (5 (w=a) + " = po (& (w-)) +p"

Proof. Put
S = (oi(J_g)(ieI) :B) .
On account of symetry it suffices to prove that the left hand side of (1)

is contained in the right hand side of (1), that is, that
oy (%) (1eI) M) SR

where
R = g S + E'_—O!'_

o

First of all we have, by (2),

g ot
RECXB'*'% = A .

Next, if z is a vector over Rthen oz |ies over gs+g' -a' and
-;-(ozgﬂx: -gt) lies over S . Hence, for every ieI , ci(é-(ocg+o;: -Bt)es
so t hat

22
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— r r—

§oi(Flazrar-pny) + B

Pur az+a' = W . Then

1 - t

5 (B, (5(w-p))+pr) - G e R,
By (3), this yields

% (api(al(v_f-a')) +Qr) - %— €R,

that is, p;(z)er . Thus, R® contains A and is closed under each oy 7

which inplies (1).

Corollary 1 of Theoremg. Let =,m,,. soom eP With m=m+ 0 =0 51,

and a,beJ . Then

(5) (m-l)<b+mlx1+ ® a)th = (b+am- a.)(mx toootm X l)

It is easily verified that the conditions (2) and (3) hold in the case

presented by (5).

Corollary 2 of Theorem 9.

(6) (m-1) (L+mx +. setmx :0)+1 = (m, %, teeetm X 1)

Thi si sthecase a=0Q, b =1 of (5).

- Corollary 3 of Theorem9. The set ( 1*-tmx 1) is closed

under multiplication fOr all Tomy, ..-,mreP-

Proof.  This result already follows from Theorem 5; however, if we

put b =0 in (1), we get
(nl)&+ . ..+mrxr;a_) = a(mlxx+ ...+mrXr:J_>

which is a key elenment in the proof of Theorem s.
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Theorem 10. | f My eeesm €P with (ml,...,mr) =1, and

S = wx+. . . +mx:1)is a per-set, then

T = Tooeetmx gy 4 ® o 7nsys+b:a) is a per-set for all

mlxl
a,,n;, O nseN.

Pr oof . First, note that if an affine transformation maps a per-set
into a set of integers then this set is also a per-set, Hence, it

follows that the set

Q = (mliﬁ:, MR +mrxr+ (nl+ C +ns)a,+b:&.)
(which is an affine transformation of S according to Theoremg)is a
per-set. Furthernore, aeq and QcT, SO

(m, % + ® nrxrml yl+...+nsys+h:Q =T .

But, since q is a per-set, and (ml,, , ,,mr) - (ml""’mr’nl"”’ns) =1,
Theorem 4 applies, and we can conclude that Tis a per-set. This

conpl etes the proof.

A sinple special case of the next result is crucial for the proof
of Theorem 11. However, the reader is referred to [1] for a proof of a

nore general result.

-Lemma 4. Suppose m,m,eP With (m,m)) =1  and |et Uy 5 vy sy 5V,
denote integers such that v,-u >m,-1 and vy-u, >m-1 .  Then
(7 [mlul+m2u2+ (ml-l) (me-l) MV v, - (ml-l) (mg—l)]

- ml[ul’vl] +m2[u2:V2] .

Theorem 11.  If n is odd and neP . then (2x+ny:1) IS a per-set.

Al so,
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(8) (&x+ny:1) 2 J..LJ=O(2in+2i -n+ (n2+n)N) ’

where r denotes the order of 2 modulo n , and the synbol = was

defined in Section 1.

Proof.  Using the First Corollary of Theorem9, we have
(9) (x+ny:l) = 1 +(n+1)(2x+ny+1:0) .

From now on we work with the set T = (2&x+ny+ 1:0) ; also, let
r-| i
S= U (27 -1+nN) ,
i=0
where r denotes the order of 2 nodulo n . Note that

2(2u~l+n.N)+n(2v-l+nN)+l c 2u+l-1+nN

for all uve {0,...,r-1} . It follows that S g (osed under the

operation 2x +ny+1 ; furthermore, 0es , so
(10) (2X+ny+1:0) =T 8

Now we show that T =S  Since o,1er , we have

(er+1)u(emn+1)u{o}c T ; hence,

(11) R = (2x+1,2xtnt1:0) ¢ T

The Corollary of Theoremé with a = 0 implies

© r-1 o

R= U (2%-1+nf0,2%-17) = Tt
t=0

rt+i
(""" -1+ nlo,2

i=0 t=0
Since RcT, We have

2r-1

(12) Tol+2(2 -;+n[o,22r'l-1])+rm

r-|

2r » rt+i - i
=27 -1+4n( U U (271 142[0,2%"1 L 1]+ n[o, o7t
£=0 1=0

25
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2r-1

But n divides 2"-1, so |[0,2™"-1] > n ; also, (2,m) =1  Thys
Letme 4 applies to the linear conbination of intervals which appears on

the right in (12), so we can concl ude that

r-|

5 ) .
(13) To2¥-1+n(uy u (2rb+1-l+[n-l,22r+n2rt+l-2n-l]))
teN i=0
r-|
2r
=27 -1+n y y I[a 1
tell i=0 tl, tl
Tt . i
where a, =2 t+n-2; by = (m+1)2" 14227 o0 5 Let t be

fixed, teN . The union of the r intervals [ati,bti] will form a
single interval of integers '

g gers provided that B se1 S Dygtl for every
ie[0,r-2] .  Now we have for ieN , since 2%-1 > n ,

+i .
(1%) by, + 1- = (1) 4 2 o ipag L pTtHINL

‘t i+1 -n+2

rh+i
(n-1)2" 42T L3ne1 > (n-1) +(@1)2-3n+1 =n2+1 >0 .

Thus (13) vyields

T 22" .1+n U [a 800y p 1]
teN

Again, this last union constitutes a single interval Since we have

rt+

rttra-
Tl o ooyt Lo

(15) erd+l'&HLo=(mim
= (n-1)2""7 140 T-3n +1 > (n-1)2%" 1422 3n4
1
> (n-1) '3 (n+l)+(n+l) 3n+l-2 (n-—-)2 L‘>o :

Thus, finally,

(16) T 5 2% - 1+n(ay +N)
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so that

(17) nWaeT .
Now we show
i
(18) 2" -1l+nNc T
for i = 0,...,r-1 by induction oni ; in fact, we have the case

i =0 in (27). Suppose (18) holds for SOMe i > 0 . Then

T Dl +2(2i - 1+ nN) + n(nN)

i+l

. .
Bl den(ewemm) 2 2™ o1ey

=2

Here we have inplicitly used Lenma 5 which we will state and prove at

the conclusion of this proof. Hence, (18) holds also for i+1, and this

means (18) holds for i = 0y.cs,r-1 . It follows that
r-| i

(19) S= Uy (27-1+mN) =T ,
i=0

and this together with (10) inplies S =T . This result together with

(9) implies (8) . It remains to prove the following |emm.

$emm Suppose my, my:, k-leP With (m,, samy) = 1, let
S=(my+.+mx-:1) , and let a,..,a denote per-sets such that

tAigSfOI‘ i = 1,...,k . Then

(20) m A, + ceetmA & S .

Proof. It is enough to prove this for per-sets Bsyeoeshy having the
speci al form A, = astdl W th a, , deP for 1 =1,...,k . Suppose
N, is maximal with N; C N such that a, +dN, ¢ S . then since

A, @8 we have N, N. Because S is closed under the operation

i 1
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mx,+ . ..+mx , and a,+d¥, c S, we have

171
k

(21) i}=:1 m, (a; +aN,) < 8

Now, using the fact that Na N, for i =1,...,k, note that
. k

o wiliemel e

Hence,

5 F oA § £
23 A = .a, +d N
i=1 A i=1 1% i=1 1

{ k
mN, = ig my (e, +av,)

k
c Z miai+ d
=l i=l

and this together with (11) inplies (20). The proof is complete.

Theorem 12. | f T-1mys e ee,m €P then (mx, + . ..+mrxr:1> cont ai ns

an arithnetic progression with k terns for all kep .

Proof.  The set (mx +.-e +m x :1) contains the set

(g oKy +ge +m :1) which is an affine transformation of the
set (mpxy+myx,:1) . Thus, if ¢mx, +myx,:1) contains an arithnetic
progression of length k for all keP = then this is also true for the

set  (mX +. ..+mx:1) . However, it is easy to show by induction that
(2k) (mn) "V 4 (wra-1)m%n "o, ("1 ¢ (me+ny:1)

for all wveN , so the proof is conplete.
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