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ABSTRACT

The probl em of conputing the eigensystem of Ax = ABx when A and
B are symmetric and B is positive definite is considered. A general-
i zation of the Lanczos algorithm for reducing the problemto a symetric
tridi agonal Eigenproblem is given. A numerically stable variant of the

al gorithm is described. The new al gorithm depends heavily upon the com

putation of elenentary Hermitian matrices. An AIGOL W procedure and a

nunerical exanple are also given.




The Lanczos Al gorithm for the Symmetric AX = ABx Problem

by

G. H. Glub, R Underwood, and J. H WIkinson

1. Theoreti cal Background

In many fields of work the solution of the eigenproblem
AX = ABx (1)

is required. where A and B are symetric and B is positive definite.
This problem can be reduced to the standard symetric ei genprobl em by

maki ng use of the Cholesky factorization of B defined by

Equation (1) is then equivalent to

L tan Tty = atx) (3)

and L'AUT is a rea symetric matrix.

When A and B are narrow symmetric band natrices of high order

: : : -1.0-T .
this reduction has the disadvantage that L AL is, in general, a

full mtrix. However, L itself is of band form and hence we can certainly

T

multiply an arbitrary vector by 17 tan in an econonical manner. In fact,

if we wite

z = 17 tan Tx ()



then z can be determned in the steps

LTy=x, Ay =w , Lz=w (5)

and in this way we can take full advantage of the band forms of L

C and A . The total nunber of nultiplications in the determnation of z
is only marginally greater than in the determnation of both Ax and
Bx taki ng advantage of the band forms of A and B .

¢ Now in the Lanczos algorithmfor a synmetric matrix C, the only
way in which C is used is in the pre-nultiplication of vectors. The

algorithm may be described as follows. Let x. be an arbitrary unit

1
L. vect or (Hxi‘]}z = 1) ; then deternine sequences of vectors Yy and X,
defined by
0 y2 = Cxl - Oflxl s 72X2 = y2 3 |P<2H2 =1 , Y2 >0 (6)
- Vpep = 0%y = 0% = B¥rg 0 Ypu1¥pe = Yy
— (7)
PL ”Xr-i-lHQ = 1,7, >0
i where the sequence is continued until V1 = @ The @, and B
are determ ned so that Yppp 1S orthogonal to xr and X and ay
g . so that ¥, 1s orthogonal to Xqo These relations ensure that
7, =B, and Y1 is automatically orthogonal to S SEEICIRTE S
- Notice that when V.7 has been deternined, Equations (6)and (7)
i mply that
b
C[xl’XQ""’xr] = [Xl’XQ""’Xr]Tr+ (0,0, ""O’yrrl] (8)
~



wher e Tr Is the tridiagonal matrix with diagonal elements equal to the

ay superdi agonal elements equal to the B, and subdi agonal el enents

equal to the 75 - This is true even if a; and 5_1 are chosen

arbitrarily! 1f Vo1 = 95 then (8)gi ves

~
Clxysxys o vesx, ] = [xppx, O xln (9)
and provided only the X; are independent, T_ gives r of the
¢ ei genval ues of C and enables us to conmpute the correspondi ng ei genvectors.
In the Lanczos algorithm the orthonormality of the x. ensures their
I ndependence and al so the symmetry of T, -
| Si nce &r+l is orthogonal to the r orthogonal vectors XprXps e s X
1 the process nust termnate with y .. if it has not done so before.

In fact, we may regard the Lanczos algorithmas a nethod of ensuring

-~

— o -

that the x, are independent and that the process does termnate. \pep

the Lanczos al gorithm terminates before Vot then we have

ll
0% Yoy =05, =8 ¥ =B, (10)

If we choose x to be any unit vector orthogonal to x

+1 X

l,--- I"

then Equation (10) gives

r—

Cx, -ox - ByX,.| =90 =0 "Xy - (11)

Y

r+l "’

‘ Hence we nay take 7+1 - 0 and continue the algorithmwith x
This again ensures that subsequent X, are orthogonal to all earlier .

J
W may restart as often as necessary until we finally reach the null Vo1 -
If the termnation takes place after
p rl,rl+r2,rl+r2+r5,...,rl+r2+...+rk

steps then we have
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C[Xl’xeﬂ . ® "Xn] = [Xl’sz . @@%% (12)

where T is the direct sumof k symetric tridiagonal matrices of
orders e 0 &ﬂﬂ&j « The eigensystem of T gives the eigensystem
of ¢ . Premature termnation of the sequence should not be regarded
as a breakdown; in fact it leads to a sinplification since it is easier
to find the eigenval ues and eigenvectors of several smaller tridiagona
matrices than of one large one. The only disadvantage i s the necessity
for determning the restarting vectors.

At first sight the Lanczos algorithmis very attractive whenever
1

Cis sparse (including, in particular, the case when C = L'AL'T).

Except when restarting, we need only the two vectors X, and X,
to determine y ., and x_,. and hence requirenents on the hi gh-speed
store appear to be very nodest. Unfortunately, if the algorithmis
carried out as described, the later X may be very far from orthogonal
to the earlier ones. Wen this is true, we have no guarantee that Vel
will be null to working accuracy. Noreover, we may get near |inear
dependency of Xp5 %59 s
This departure from orthogonality is sonetines said to be the

corX for some r < ntl

result of accumulation of rounding errors, but this is very misleading.

I't occurs when there is a good deal of cancellation when conputing Vi1

: froanxr -0 x -Brxr 1 This cancel [ ati on can occur even in the

rr

determnation of y, when C s of order 2 (say), and in this case one

could scarcely speak of accumulation of rounding errors. PpBefore

di scussing how to obtain a conplete set of orthonornal X, e consi der
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the inplication of Equation (8) when rounding errors are taken into

account. W now have

C[Xl,xg,...,xr] = [xl,XZ,.._,,Xr ]TI'+ [O’O"°"yl‘+l] - [El)Eg,oo.,Er]

wher e o is defined by the relation

Yier¥ie1 T Xy cOFs Byt e (14)

t he Xie1 denoting the conputed %41 If Aand z are an eigenval ue

and ei genvect or of Tr we have

Tz =M (15)
and hence
C[xl,x2 seees xr]z = K[xl,xg,...,xr]z+zr Vo™ [El, Ens v Er]z (16)
where the z, are the conponents of z . Now z may be taken to be
a unit vector and [51,62,...,Er]z is therefore of the order of
machepsx|/c|| where macheps is the machine precision. Hence if 21
is also of the order of machepsx|c| we have
CW = A\w +e (17)

where W = [X;,%;...,% ]z and llell is of order machepsx|f] .
This shows that if we reach a V1 which is negligible to working
accuracy, eigenvalues and eigenvectors of T give good approximations

to eigenvalues and eigenvectors of C. (The latter nust be interp-eted

in terms of exact eigenvalues of sone CtE where E is small.) Al so,



provi ded the XiseeesX have not yet departed too far from orthogonality,

we shall indeed get good approximations tO I' gjgenval ues and r
ei genvectors of C .

However, even if is not itself negligible it may happen

Ype1
that for sone eigenval ues M of Tr’ the corresponding z nmay have

a noderately small . Then 2. Yy MRY be negligible even if Y1

is not sufficiently small in itself. This situation may be induced to
- sone extent by starting with an initial vector Xy whi ch consists
mainly of a linear conbination of a few dom nant eigenvectors; gych an
initial vector is obtained if an arbitrary vector x, is premultiplied
several times'with C . |t cannot be too strongly enphasized that the
size of the vectors e is not in any way affected by cancellation or
by the normalization of Vipp LO gi ve Xi1 ,the vector €, consi sts
entirely of the rounding errors made in actually multiplying the

conput ed Xy by C and subtracting nultiples of X, and Xi |

—_— o

Even the accuracy of the o, and B, is quite irrelevant in so far as
it effects the size of the ¢, though if they were chosen at randomit

is unlikely that a small woul d emerge. These considerations show

T+l
- why the Lanczos al gorithmoften gives renarkably accurate approxi mations

to doninant eigenvalues and eigenvectors after quite a few steps.

| In order to be certain of obtaining the full set of eigenval ues and

ei genvectors it is necessary to ensure that the conputed X, are

orthogonal to working accuracy. The conventional way of doing this is

as follows. After computing Vi1 via Equations (7), it is reorthogonalized

wWith respect to X 0% (N.B. Since the lack of orthogonality

r-_l e ;_‘hxl .
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I's caused by cancellation and not by the accumulation of rounding errors,
it is just as necessary to reorthogonalize with respect to x and

r
X1 (although Y1 has just be orthogonalized with respect to

these vectors) as to the earlier vectors.) W may wite
Vb1 = Yppn © M¥p “T%p T oeee - X (18)

where the n; are chosen so as to give orthogonality. |f cancellation
t akes place when deriving the g’r+1 , then §'r+1 nmust be reorthogonalized

yet again with respect to all earlier vectors. Mreover, if or

Yre1
vanishes, then a technique is needed for restarting. A though a

Y1
perfectly satisfactory procedure nmay be constructed on these lines, it
is not aesthetically pleasing. W now describe an alternative procedure
for ensuring the orthogonality of the conputed X, to working accuracy.
Suppose XpsXpyeesX have al ready been determ ned and are

orthogonal to working accuracy, and that the matrix xr = [xl’xe’ o 0% ]
" r

has been reduced to upper-triangular form by premultiplication with r

elementary Hermtian matrices Pl’Pe" P, Her e

P, =1 - 2wwr |, [[wl, =1
and the first i-1 conponents of W. are zero. From the orthonormality
of the X, this reduced form must consist of the first r colums of I .
The vector Y1 Is then determned from Equation (7)and the vector Z,1

is determned fromthe relation

Z =P

w1 T BoP¥pgq (20)




Now wi th exact computation y_.. would be orthogonal to X{seeesX

r

and hence
le woul d be orthogonal to the r vectors Pr. "P:in’

(i =1,...,r) . But these vectors are €2€0 e euse and hence with

exact conputations z woul d have zero components in elenents 1

r+l

to r . W now deternmne P so that
r+l Prt1%p1

in elements r+2,...,n . Wth exact conputation PI_H_erFl woul d be

has zero component s

amltiple of e . . Now define x., by the relation

X = PP....P

r+1 172 k1%l (21)

so that X1 is automatically a unit vector. |f g| the conput ati on
had been exact X471 Would nerely be a nultiple of Y41 , the multiple
being chosen so as to make Xppq @ unit vector. Notice that this
technique gives us a method of continuing when Vel =0 . W nerely

define x by the relation

r+1
- 0
X1 “PPe Prer+l (22)
whi ch corresponds to having taken | in place of Pl in Equation (21).
From the derivation of the Pi , the vector X1 is automatically
orthogonal to X, x, ...X since
1' "2 r
X; = PjPye..Pie, = PlPE"'PiPi+1"'Prei (i<r) (23)
giving
T _ T T :.r-I:. = €& e, = 0.
X1%s er+lPr"'P2PlPlP2"'Prei r+171 (2k)



Notice that with this technique, when determ ning Yy W need only
X, and Xeo o To determne an X1 accurately orthogonal to

x SRS need only Pl"“’Pr and these may be stored via the

N
cor respondi ng LA Since the first i-l1 conponents of w, are
zero, approxinately §1n2 registers are needed to store full information
on the Pi as agai nst n® if we store the Xs The full set of

Equations (21) shows that

[x x ] = PP -+P (25)

12 ¥p2 e %y 12

so that in retaining information on the P, via the W, owe effectively
have full information on the X

The quantity y, nmay be derived via the relation

7i = |ly~11£ . (26)

W can take B; to be equal to the 73 derived in this way or we
can determne it by making Vie1 orthogonal to Xi.| that is, via

the relation
B, = X, X, . (27)

Even after the reorthogonalization 73 and By determined in this way
will agree to within a small nultiple of machepstCH2 . In practice,
it is instructive to conpare the B; and 75 obtai ned from Equations

(26) and (27). W have finally

Ol ] = i, @ FoXIE B (28)



Y

to working accuracy, where the X; are orthogonal to working

accuracy and T is a symetric tridiagonal matrix. If

Tz, = %'izi . (29)
t hen
Clxysxg - oo % 12, = A [xp,x, 0 HEIORH (30)
giving
C(PPyevnP )z, = M(R «oP )2, or  CQz, = Mz, (31)

so that the "PJ. give sufficient information to enable us to deternine

ei genvectors of C. \Wen C = L'lAL'T , we have

-1, -T _ -7 -7
L “AL in = xini or A(L in) = ?\iB(L Qz) (32)
and hence eigenvectors of A-AB may be determined using the matrix L .

i -T
If the z, are a set of orthonormal eigenvectors of T , then p; =1 az

gives a set of eigenvectors for the problem Ap = ABp such that

|
N
I
=~

T _ IT-1.T-T _ T
-piBPi = ziQ L ]‘LL L in 2.2, (33)

1
N
N
n
o

~~
)
e~
C.
~

I. _ T.T -1 _T -T
PyBp; = 2;Q° L Ty Qz; (3k)

10




b

2. Applicability

reducb may be used to reduce the eigenproblem Ax = ABx to the
standard symmetric ei genproblem Ty = Ay where T is tridiagonal.

Wi le reducb may be used whenever A and B are symetric
and positive definite, it is best used in problenms in which the band w dth
of A and B are small in conparison to their order

The derived tridiagonal system may be solved by a variety of
met hods [4]. The eigenvalues of the derived standard problem are
those of the original problem but the vectors are related as indicated

by Equations (31) and (32).

11



3. Formal Paraneter List

Input to procedure reduch.

n order of matrices A and B .
. ma number of |ower diagonals of A .
m nunber of |ower diagonals of B .
a elements of the lower triangle of the symretric matrix A
C stored as an nx (ma+l) array.
b el ements of the symetric matrix B stored as an
nx (mb+l) array.
.
Qutput of procedure reduch.
- al pha diagonal elenents of the symmetric tridiagonalmatrix T
b sinmlar to TrALT.
beta codiagonal elenments of T .
- b the lower triangle of L such that LLT:B, stored as an
} nx (mb+l) array (overwiting the original inb ).
B y information on the mtrices p = | _gwiwﬁ_l? (Thi's may be stored
g as an nxn array, but for econony it can be stored as a |inear
array of order %n (n+1) .)
. cfail exit used if B, possibly as the result of rounding errors, is

not positive definite.

- — r—



.

4. ALGOL W [3, 5] Procedures

comment

procedure reducb (integer value n, ma, mb:

long real array a, b(w, #);

long real array alpha, beta(=);
long real array u(w=,+);
procedure fail);

Reduction of the symmetric eligenvalue problem
Ax = | ambda*Bx

with symmetric band matrix A and symmetric positive
definite band matrix B, to symmetric tridiagonal form
by the Lanczos method.

The lower triangles of A and B are stored in the
arrays a(l::n,0::ma) and b(1l::n,0::mb), where ma
and mb are the number of subdiagonals in A and B,
respectively. L, the Cholesky factor of B, is
computed and overwritten on B in b. y is used to
store details of the transformat lon. The diagonal
of the result is stored in the array alpha(l::n)
and the subdiagonal in the last n-1 stores of the
array sub(l::n).

The actual parameter corresponding to fail will
be executed if B, perhaps on account of rounding
errors, Is not positive definite. :

beglin Integer p.q,r.s;
long real yO0,y1,z;
long real array v,x0,x1,y(1l::n);

gcomment Compute the Cholesky factor of B;
for i:=1 step 1 unti] n do
begin p:=(if 1>mb then 0 else mb-i+1);
r:=i-mb+p;
for i :=p step 1 unti] mb do
bggln s:=j=1;

q:=mb=-j+p;

2:=b(i,j);

for k:=p step 1 unt {] s do

_ggln z:=z-b(1,k)*b(r,q);
ogq+1.

begin if 2z<0 then fail;
b(i,j):=longsqrt(z);

end

else b(i,j ):=z/b(r,mb);

r-=r+1;

end
end forml,

13



comment Compute tridiagonal form;
beta(l):=01; y(1l):=11;

for i:=2 stepluntil n do y(i):=01;
fork:=1gstep1until n do

begin
2:=01;
for j:=1 step 1 until n do
begin x0(j ):=x1(j);
x1(j):=y(j);
d2°=z+y(j)*y(j):

yOogyll yl -gz.

ggmmgn; Multiply xby inv(L)*A*xinv(L");
s:=mb-1;
for i:=n step - 1 untill do
begin p:=(if | <=n-mb then 0 else mb+i=-n);
q:=i;
z:=x1(1);
for je:=s step ~l until pdo
q:=q+l;
z:=2-b(q,j)*v(q);
end;
v(i):=z/b(i,mb);
end | v e,
for it=1stepluntil n do
begin p:=(If i>ma then O glse ma=1+1);
q:=i-ma+p;
z:=01;
for i:=pstepl until ma do
begin z:=z+a(i,j)*v(q):
qQ:=q+l;

end;
p:=(if i<=n-ma then 0 else ma+i-n);
f_ or j:=ma-1 step -1 untilp do
begin z:=z+a(q,j )*v(q);
q:=q+l;
end;
y(1):=2z;
end av;
for i:=1lstepluntil n do
begin p:=(if i>mb then 0 else mb-i+l);
qQ:=i;
z:=y(1);
for j:=s step -1 until p do
bggin q:=q-1;
z:=z=-b(i,j)*v(q);
end;
v(ii):=z/b(i,mb);
end solve;

1k



comment Compute alpha(k) andbeta(k);

z2:=01;
for j:=lstepluntil n do
z:=z+x1(j)*v(j);
alpha(k):=z:=z/y1;
for j:=lstepluntiln do
v(i)e=v(j)=z*x1(;);
if k™=1 ;hgn
begin z:=01;
for j:=lstepluntil n do
Zz:=z+x0(j)*y(j);
beta(k):s=z:=2/y0;
if k=n then g0 to 11;
for j:=lstepl until n do
y(i)=y(j)=-z#=x0(j);
end:

comment Normal ize and reorthogonal ize y with
respect to previous eol umns of X;

fori:=2stepluntil k do

begln ;
for j:=lstep luntil n do zi=z+u(j,i)*y(j);
z:=z/u(l,l);
for je=j §ng1 until n do y(j)e=y(jl=z*ulj,i);
end;

2:=01;
for fe=k+l1 step l until n do ze=z+y(i)*y(i);

|fz=01tf1en
@ggin,l)'=ll,
foris=k+l stepl until n dou(i,k+1):=01;
b di
z:=if y(k+1)>=01 then. longsqrt(z) else -longsqrt(z);

u(k+1, k+l):=y(k+l)+z; u(k+l e1)i=ulk+l, kel)*z;
or J:=k+2 stepluntil n do ulj,k+l):=y(j);

for

end;
for j:=lstepluntil n do
y(j):=if j=k+l then 11 else 0 1 ;

for i:=k+1 step -1luntil 2 do
begin z:=01

for ji=istepl until n doz:=z+u(j,id)ry(;):
z=z/ul1,1); J y(i);
for j:=i step 1 until n do y(j):=y(j)-zeu(j,i);
end;
.e.n_c'i.k:
reducb;

15



5. Oganizational and Notational Details

The lower triangle of A is stored in such a manner that array
el ement a(i, ma-i+j) contains the value of matrix element A(i,j)
i=1,, ..n , and j=max(i-ma,1),...i . Thus, colums of a correspond
to diagonals of A. Bis stored simlarly. L, the Chol esky factor
of B, is lower triangular with the sane nunber of diagonals as the
lower triangle of B. L is stored as .Bis, overwiting Binb .

The initial vector x, is chosen to be e . The details of the

1 1

el enentary Hermitian matrices P.l are contained in the vectors U and

the scal ars Ki , Wwhere

If it shoul d happen that zi:e, cf. (20) , then Ui=e,and K., =1, so

that the corresponding P, is the identity matrix. Also, since x, is e

is chosen to be the identity matrix, and information on 1>1 is not

1
B
stored. Qtherwi se, U is stored in the ith colum of u, and Ki
is stored in u(i, 1), i=2,...,n .

The diagonal of the reduced synmetric tridiagonal matrix is stored in
the array alpha, and the off-diagonal in the |ast n-1 elements of the

array beta. Beta (1) is set to zero.

16
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and Br ensur es that yf_,r

6. Discussion of Nunerical Properties

The behaviour of the reorthogonalization process is far from obvious.
A detailed error analysis tends to obscure the essential sinplicity of
t he underlying mechani smand we content ourselves wth an exposition of
the latter. For convenience it will be assumed that [c[l, =1 .

Ve proceed by induction. Let us assume that on a computer Wth

t-digit nmantissa X)5Xps e esX have been determ ned and satisfy

_ -t . .
V3% = Oxy -Qx, -Byx, t o(27") i = 1yceu,r-1 (i)
and
T -t .. .
X':LX';) = 613+O<2 ) . i,j<r . (i)

In other words we assune that the x;, produced by the reorthogonalization
technique are orthogonal to working accuracy.
In the next step Vp+1 Is first determned and the conputed vector

satisfies the relation

cx_-ax -Bx . +0(2° ) (i)

Ypt1 = rr  Priy-l

If a great deal of cancellation takes place Yoy Will not be

accurately orthogonal to X. and x_ . but the deternination of o,

T
1%y 2 Ypr1¥p1

i mply accurate orthogonality if Hyﬁlﬂ2 were of order unity; if

= o(2% (N.B. This will only

: T - _ .
vqlly, is small, Ype1%, Can be of order 2 ® i thout Y.pq DEiNG
orthogonal to X, to working accuracy.) Ve now show that
T -1 i
Vpe1 %y = o(2 ") for all earlier x, . In fact we have

17



T
X3 (er - ax

d
[
I

-gx, )+ 0(2™®) (iv)

1}

T -t
erxi +0(2 )

T
X (Xipn e %% 4 Bi%; 1) + o(2™%)

I

o(e't)

The essential point is that the inner-products of Vpeq Wi th respect
to Xp2-ee0x, are all negligible. |f in particular ”yr*-l”E‘ is of
the order of unity y .. will already be accurately orthogonal to

X 0 i anc‘im reorthogonalization wll be unnecessary. In any case

we nmay wite

yr-i—_]_ = aZ+T]le+ TI2X2+ . --+Tlrxr ’ IT]iI = O(e"t) (V)

and

@ =y I+ 0% =y +o®) | (vi)

re1l

~+1 1S now multiplied by P,

the resulting vector is used to deternine Pr+1  From the derivation

The vector ¥ Py -+.,P, successively and

of the previous P. it is evident that

-t
. . .. 0(2
Pr+lPr 1rey * Yy &7 T 25
. -t (vii)
B 7,.'C“F_‘Le;rﬂ-l’{-0(2 )
wher e €, denotes the i-th colum of | nNotice on the ri ght-hand side

of (vii), may not necessarily be much larger than the term

741841

18
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denoted by O(E't) . If a great deal of cancellation took place when

Vppp WS conputed then Y1 will be correspondingly small. However,

i ndependent of the size of Yy V€ have
Y on = 7 BP..P e +0(27)
™1~ T2t Fre1®re (viit)

and substituting this in (iii) we have

7ourPPp 0 PEOEED B ow -y - onrp 02™ (i)

Hence taking Xy = PlPQ...PNleNl , Equation (ix) becomes

_ -t
TreaXpry T CXp X, T BpXp gt o2 ") (x)

and since earlier Xy have been determined via the relation

X; = PyP,...P.e, (xi)
it is clear that Xppp 18 orthogonal to all earlier X; to wor ki ng
accuracy. If there had been exact conputation throughout, X4 woul d
have been 'y ../ ”yri-l”g = z,, (say). If cancellation has taken place
and [y, .|l = 2% (say), then (vii) shows that we can expect the computed
%, 1 -2/l to be of the order of ' Hence as k becomes | arger
and approaches t , X ,q increasi ngly diverges from Zpapp -+ Hovever,

- i — -k i
since y ., =2 the repl acenent of Yprp 0 1€ Vg% BV

Yt 1¥psy  ON the left of Equation (iii) is nerely a change of order -t

19
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Havi ng established these relations, we are nowin a position to

conpare the conputed g, and 7:-+ Ve have

_,T -t T -t
Bs = X3 _Cx, + o(™") = xi(0x1_1)+o(2 )

T -t -t
=% (O g% FBygxg ot 7%+ 0(27)) +0(27)

-t
7;t0(27) .

(Wthout the normalization of C we have g, =7 + 0(243 HCHZ) ) Since
| .

B; and y.  are floating point nunmbers, the nunber of figures agreeing

in the mantissa depends on the degree of cancellation. gyt it is clear

that if we replace B by 7; e still have, as before,

= - - -t .
Taer¥aay T C%g X Y% T 0(2) (xiii)

and hence we can take the derived tridiagonal matrix to be symretric,.

In the case when Ypt1 is zero (or is considered to be negligible) we

can clearly take X1 to be P12, R and we have

. -t
0°x Cx, -ax =-Bx .+ o(2 ")

1 =9 TV T rXp-1

I‘n this case Bryy Wil also turn out to be negligible to working
accuracy.
An error analysis of the symetric Lanczos process with Schm dt

reorthogonal i zati on has been given by Paige [2].
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7. Test

Resul ts

To test reduch, the matrices

———.

10 2 3 1 1
2 12 12 1
A= 3 1 11 1 -1
1 2 1 9 1
1 1 -1 1 15
were used.

A and B are of full w dth,

12

-1 2 1
1 -1 1
6 -1 1
-1 12 -1
1 -1 11

SOWB-=mb -'-")-l-. O]an

| BM System 360 model 67 conputer using floating point arithmetic wth

a 14 hexadecimal digit fraction, the followng results were obtained

(Al though not necessary, the elenents of wu were initially zeroed.):

o 8
0.85355333335355310+OO O.OOOOOOOOOOOOOOOlO+OO
0.72687763359536810+oo -o;2885h3h05757058lo+oo
o.11623725591711510+01 -0-21783715hh6759910+00
0. 10569299252376910+01 0.30292572765570hlo+00
o.862h33u873006holo+oo 0.2196697066586h910+00

U
O‘Ooooooooooooooolo+oo o.ooooooooooooooolo+oo o.ooooooooooooooolo+oo
0 . 109506814617572)1400  0.378822780886040, 1 +00  0.000000000000000, #00
0. 177357463219h2k, J-01  0.271519129954777, 1+00 0.222348416368022, ,+00

671791653895, ,+00
0. 965095600469936, -01

-0.334541705878002, -01
-0.163232422022066, ~01

O.OOOOOOOOOOOOOOOlO+OO

O.OOOOOOOOOOOOOOOlO+OO
O.OOOOOOOOOOOOOOOlO+OO
—0.58652319192319210+OO

-o.106h6186h7u048510400

21

o.ooOoooooooooooolO+oo
o.ooooooooooooooolo+oo
0. 000000000000000 o+00

1

O.OOOOOOOOOOOOOOOlO+OO

-0-459339h1331729710+00

-0.10850531367022910+oo
0.18883777510100410+oo



The resulting tridiagonal system was solved using the procedure
tq12 After the vectors of the tridiagonal systemwere transformed according
to equations (31) and (32), the final results were essentially the same as those

reported in (1] for the above matrices.
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