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ABSTRACT /

The problem of computing the eigensystem of Ax = XBx when A and

B are symmetric and B is positive definite is considered. A general-

ization of the Lanczos algorithm for reducing the problem to a symmetric

tridiagonal eigenproblem is given. A numerically stable variant of the

algorithm is described. The new algorithm depends heavily upon the com-

putation of elementary Hermitian matrices. An ALGOL W procedure and a

numerical example are also given.
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1. Theoretical Background

In many fields of work the solution of the eigenproblem

is required where A and B are symmetric and B is positive definite.--

This problem can be reduced to the standard symmetric eigenproblem by

making use of the Cholesky factorization of B defined by

B = LLT . (2)

Equation (1) is then equivalent to

L-lAL-T(LTx) = h(LTx) (3)

-1 -T
and L AL is a real symmetric matrix.

When A and B are narrow symmetric band matrices of high order

this reduction has the disadvantage that L
-1 4-J
AL is, in general, a

full matrix. However, L itself is of band form and hence we can certainly

multiply an arbitrary vector by L%L
-T in an economical manner. In fact,

if we write

Z = L-1&-Tx (4)
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then z can be determined in the steps
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TL y = x ,  Ay=w, L z = w (5)

. .
and in this way we can take full advantage of the band forms of L

and A . The total number of multiplications in the determination of z

is only marginally greater than in the determination of both Ax and

Bx taking advantage of the band forms of A and B .

Now in the Lanczos algorithm for a symmetric matrix C , the only

way in which C is used is in the pre-multiplication of vectors. The

algorithm may be described as follows. Let x1 be an arbitrary unit

vector (llx;ll, = 1) ; then determine sequences of vectors yr and xr

defined by

y2 = cxl - al"1 9 Y2x2 = Y2 > II IIx22=1  9 Y2 > 0 (6)

yr+l = cxr - arxr - BrXr-l J YrUxr+l= Yr+l'

ll5+lll2 = 1 ’ Y,l > O
(7)

e where the sequence is continued until ytil = 0 . The ar and B,

are determined so that yHl is orthogonal to x and xr r-l and Q!
1

- so that y2 is orthogonal to x
1 ' These relations ensure that

'r = B, and y
331 is automatically orthogonal to x1.Yx22  l l .�Xr l

Notice that when ytil has been determined, Equations (6) and (7)

imply that

C[X1'x2,...,xr1  = [x1,x2,...,xr]Tr+ [O,O, 0'*=T >Yr+l 1 (8)
‘L
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where T
r is the tridiagonal matrix with diagonal elements equal to the

a.1
, superdiagonal elements equal to the B, and subdiagonal elements

equal to the yi . This is true even if CX~ and @. are chosen
. . 1

arbitrarily! If Yr+1= @ Y then (8) gives

cby2, l .*,x,1 = Lxl,x2, l ,xr1Tr (9)

and provided only the x
i are independent, Tr gives r of the

eigenvalues of C and enables us to compute the corresponding eigenvectors.

In the Lanczos algorithm, the orthonormality  of the xi ensures their

independence and also the symmetry of Tr .

Since ytil is orthogonal to the r orthogonal vectors y5,“-‘Xr Y

the process must terminate with yn+l if it has not done so before.

In fact, we may regard the Lanczos algorithm as a method of ensuring

that the xi are independent and that the process does terminate. When

the Lanczos algorithm terminates before yn+l , then we have

0 = ytil = cxr - a x - p x
r r r r-l l

(W

If we choose xtil to be any unit vector orthogonal to xl,...,xr ,

a
then Equation (10) gives

cxr rr-Bx-CXX
r r-l =Q =o*xfil . (11)

Hence we may take ywl = 0 and continue the algorithm with xtil ,

This again ensures that subsequent xi are orthogonal to all earlier x
j l

We may restart as often as necessary until we finally reach the null yn+l .

If the termination takes place after r1,rl+r2,rl+r2+r3,...,rl+r2+...+rk

steps then we have
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ccx1,x2, l 0 .,Xnl = [x1sx2~ l l ,⌧,]T (12)

where T is the direct sum of k symmetric tridiagonalmatrices of

orders rlyr2Y  l *dk � The eigensystem of T gives the eigensystem

of c . Premature termination of the sequence should not be regarded

as a breakdown; in fact it leads to a simplification since it is easier

to find the eigenvalues and eigenvectors of several smaller tridiagonal

matrices than of one large one. The only disadvantage is the necessity

for determining the restarting vectors.

At first sight the Lanczos algorithm is very attractive whenever

C is sparse (including, in particular, the case when C = L-1AL-T) .

Except when restarting, we need only the two vectors xr and xr-l
to determine yHl and xrtl and hence requirements on the high-speed

store appear to be very modest. Unfortunately, if the algorithm is

carried out as described, the later x
r

may be very far from orthogonal

to the earlier ones. When this is true, we have no guarantee that yn+l

will be null to working accuracy. Moreover, we may get near linear

dependency of x,,x,,...,xr  for some r < n+l .
A L

This departure from orthogonality is sometimes said to be the

rounding errors, but this is very misleading.

good deal of cancellation when computing yHl

This cancellation can occur even in the

result of accumulation of

It occurs when there is a

: from Cxr -CXrxr -&xr 1 .

determination of y2 when C is of order 2 (say), and in this case one

could scarcely speak of accumulation of rounding errors. Before

discussing how to obtain a complete set of orthonormal xi we consider

I
4



the implication of Equation

account. We now have

when rounding errors are taken into

C[xl,x2,...,xr]  = [x ,x ,....,x1 2 ]T + [O,O,...,yr r till - rEl,E2,““Erl 03)

c where s
i is defined by the relation

‘i+lxi+l = cxi-a.x.  -Bi l+Ei11 - ,
? (14)

c
the xi+1 denoting the computed xi+1 . If X and z are an eigenvalue

and eigenvector of T
r we have

c-
--. Trz = AZ 05)

and hence

t
L

C[Xl,X2 ,..., xr]z = h[x1 2’*“’,x xr]z+z y - [Er y'tl l+2, . . ., ErlZ (16)

i
L where the z

i are the components of z . Now z may be taken to be

1

L
a unit vector and [e~,E2'".'ErlZ is therefore of the order of

machepsxllC\l  where macheps is the machine precision. Hence if z y
r r+l

L a is also of the order of machepsXIICI\  we have

,
1.

cw = hw +e

L
I

where w = [x x ,...,x ]z1' 2 r and IHI is of order machepsx

This shows that if we reach a ytil which is negligible to

accuracy, eigenvalues and eigenvectors of Tr give good ap

07)

I Ic/ .
working

roximations

r
I
L

to eigenvalues and eigenvectors of C . (The latter must be interp-eted

in terms of exact eigenvalues of some C+E where E is small.) Also,

i 5
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provided the xl,...,x r have not yet departed too far from orthogonality,

we shall indeed get good a;pproximations to r eigenvalues and r

eigenvectors of C .

However, even if y
r+l is not itself negligible it may happen

that for some eigenvalues X of T , the corresponding z may have
r

a moderately small z
r . Then zryHl may be negligible even if yr+l

is not sufficiently small in itself. This situation may be induced to

some extent by starting with an initial vector x
1

which consists

mainly of a linear combination of a few dominant eigenvectors; such an

initial vector is obtained if an arbitrary vector
xO

is premultiplied

several timeswith C . It cannot be too strongly emphasized that the

size of the vectors E
i is not in any way affected by cancellation or

by the normalization of yi+l to give x
i+l '

l the vector ei consists

entirely of the rounding errors made in actually multiplying the

computed xi by C and subtracting multiples of xi and xi-l l

Even the accuracy of the ai and @.
1 is quite irrelevant in so far as

it effects the size of the ei though if they were chosen at random it

is unlikely that a small ye1 would emerge. These considerations show

M why the Lanczos algorithm often gives remarkably accurate approximations

to dominant eigenvalues and eigenvectors after quite a few steps.

. In order to be certain of obtaining the full set of eigenvalues and

eigenvectors it is necessary to ensure that the computed x
i

are

orthogonal to working accuracy. The conventional way of doing this is

as follows. After computing yfil via Equations (7), it is reorthogonalized

with respect to x ,x
r r-lY l **,xl ' (N.B. Since the lack of orthogonality

6
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is caused by cancellation and not by the accumulation of rounding errors,

it is just as necessary to reorthogonalize with respect to x and
r

Xrwl (althowh Y*1 has just be orthogonalized with respect to

these vectors) as to the earlier vectors.) We may write

y-tl = Yr+l - qp1 - 772x2 - 0.0 - qrxr

where the qi are chosen so as to give orthogonality. If cancellation

takes place when deriving the & , then & must be reorthogonalized

yet again with respect to all earlier vectors. Moreover, if y
r-i-1 Or

yr+l vanis&s, then a technique is needed for restarting. Although a

perfectly satisfactory procedure may be constructed on these lines, it

is not aesthetically pleasing. We now describe an alternative procedure

for ensuring the orthogonality of the computed xi to working accuracy.

Suppose x1,x2,...,xr have already been determined and are

orthogonal to working accuracy, and that the matrix Xr '= xpp l l l Y Xrl
has been reduced to upper-triangular foMn by premultiplication with r

elementary Hermitian matrices Pl,P2, . . ., Pr . Here

'i
= I - 2wiw; , wi 2II II =l

and the first i-l components of w
i are zero. From the orthonormality

of the x
i
, this reduced form must consist of the first r columns of I .

The vector ytil is then determined from Equation (7) and the vector
zra

is determined from the relation

zrctl = Pr . . . p2Plyr+l  l

7



Now with exact computation y,l would be orthogonal to x ,...,x
1 r

and hence z
23-l would be orthogonal to the r vectors P

r
(i = l,...,r)

l �Pl⌧i )

. But these vectors are el,e2,...,er  , and hence with
. .

exact computations
zl?+l would have zero ccxnponents in elements 1

to r . We now determine PHl so that Pfilzr+l has zero components

in elements *2,...,n . With exact computation Ptilzrtl would be

a multiple of e
X-+1* Now define xHl by the relation

t--

xH-l = PlP2.  l .P,le,+l (21)

I-

I

L

so that x
r-+1 is automatically a unit vector. If all the computation

--.
had been exact xHl would merely be a multiple of ye1 , the multiple

being chosen so as to make x
r+l a unit vector. Notice that this

technique gives us a method of continuing when yHl =Q. We merely

define xr+l
by the relation

xr+l = PlP2. l l PreHl (22)

which corresponds to having taken I in place of PHl in Equation (21).

From the derivation of the Pi , the vector xHl is automatically
e

orthogonal to x x1' 2' . . .,x
r since

X.
1

= PlP2...Piei = PlP2~"*PiPi+l*o~Prei

giving

(i 5 4 (23)

T T T TT TXtilXi = ertlPr...P2P~PlP2***prei  = e,+lei = O '
(24)
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Notice that with this technique, when determining ytil we need only

X and x To determine anr r-l ' xHl accurately orthogonal to

x1y xr. . ., we need only Pl,...,Pr and these may be stored via the

corresponding wi . Since the first i-l components of wi are-.
1 2zero, approximately 2 n registers are needed to store full information

on the P
i

as against n2 if we store the x
i' The full set of

Equations (21) shows that

[xl,X2,...,Xn] = P1P2.*.Pn  9 (25)

so that in retaining information on the Pi via the wi we effectively

have full information on the xi .

The quantity yG may be derived via the relation

Yi =

We can take pi to

can determine it by

the relation

Bi =

I

II IIY*12 l
(26)

be equal to the yi derived in this way or we

making yi+l orthogonal to xi-l ' that is, via

XT
i-l⌧-i  l (27)

Even after the reorthogonalization yi and pi determined in this way

.
will agree to within a small multiple of rnachepa\I~(l~  . In practice,

it is instructive to compare the pi and yi obtained from Equations

(26) and (27) l We have finally

C[xl,x2,...,xn1  = [x1,x2, l ,⌧,]T (28)

L

9



to working accuracy, where the x
i are orthogonal to working

accuracy and T is a symmetric tridiagonalmatrix. If

Tzi = hiZi ._ (29)

then

C[Xl,X2’  . ..) xn]z. =1 L[x1,x 29  l l l T⌧nlzi (30)

c giving

C(PlP2...Pn)Zi = h.(P . ..P )z
11 ni' Or CQZi = LQzi (31)

-=.
so that the P

3
give sufficient information to enable us to determine

eigenvectors of C . When C = L%.LoT , we have

-1L AL-TQzi = LQzi or A(LWTQzi) = hiB(L-TQz)I;
i

(32)

i

,i

L

L

L
L

i

and hence eigenvectors of A-hB may be determined using the matrix L .

If the zi are a set of orthonormal eigenvectors of T , then p
i
= LmTQz

i
gives a set of eigenvectors for the problem Ap = hBp such that

PTBPi
T T -  T - T

= ziQ L +LL L Qzi = z& =l (33)

(34)
TpiBpj = z~QTL-LLLTL-'Qz = zTz

j ij=
0 (i + j> .

i

10
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2. Applicability

reducb may be used to reduce the eigenproblem Ax = h33x to the

standard syrrmetric eigenproblem Ty = hy where T is tridiagonal.

While reducb may be used whenever A and B are symmetric

and positive definite, it is best used in problems in which the band width

of A and B are small in comparison to their order.

The derived tridiagonal system may be solved by a variety al?

methods [43. The eigenvalues of the derived standard problem are

those of the original problem, but the vectors are related as indicated

by Equations 1.31) and (32).

11
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3. Formal Parameter List

Input to procedure reducb.

n order of matrices A and B .

ma number of lower diagonals of A .

mb number of lower diagonals of B .

a elements of the lower triangle of the symmetric matrix A

stored as an nx (ma+l) array.

b elements of the symmetric matrix B stored as an

nx (mb+l) array.

C-.
Output of procedure reducb.

L
I,

L
I

L
L
t

t
1

alpha diagonal elements of the symmetric tridiagonalmatrix T

-1 -Tsimilar to L AL .

beta codiagonal elements of T .

b the lower triangle of L such that LLT = B , stored as an

nx (mb+l) array (overwriting the original in b ).

U information on the matrices P
i = I -2wiw; (This may be stored

as an nxn array, but for economy it can be stored as a linear

array of order $n (n+l) .)

I fail exit used if B , possibly as the result of rounding errors, is

not positive definite.

i

I

12
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4. ALGOL W [3, 51 Procedures

Procedure  reducb  (iwer  yaluq n, ma, mb;
long ra art-u a, b(*,+);
lortg real array alpha, beta(*);
long real_ Brrav  u(*,+);
procedure fail );

$2amsl& Reduction of the symmetrfc  eigenvalue  problem

Ax * 1 ambda*Rx

with symmetric  band matrix A and symmetric  positive
definite  band matrix B, to symmetric  trldiagonal  form
by the tanctos method.

The lower triangles of A and B are stored in the
arrays a(l::n,O::ma)  and b(l::n,O::mb),  where ma
and mb are the number of subdiagonals  in A and B,
respectively. L, the Cholesky  factor of 8, is
computed  and overwr i t ten  on B in  b,
store details  of the transformat ion.

u is used to
The diagonal

of the result is stored in the array alpha(l::n)
and the subdiagonal  in the last n-1 stores of the
array sub(l::n).

The actual parameter  corresponding  to fail will
be executed  if 8, perhaps on account  of rounding
e r r o r s , is not posttive  definite.  ;

belr in- ww,s;
.&al&  real YO,YLG
,Jmg _reat array v,xO,xl,y(l::n);

ent Compute the Cholesky factor of B;
:cl aeD I yntil  n &

&&I p:=(lf i>mb _then  0 ~1st. mb-i+l);
r:=i-mb+p;
for j := P staa 1 until  mb &
begfQ  S:rj-I;

9 :vnb-j  +p;
Z=Pb(f,j  1;
for k:=p stee 1 unt IL s do
be zr=z-b(i,k)*b(r,q);r

4:“q+l;

fi jtmb J~PQ
bedq u z<O ,theq

bU,j):=longsqr
fail;
t(r);

HE!
else bU,j ):=z/b(r,mb);
r:=r+l;

and j;
d forml;

-

13
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Cornmu Compute t r i d i a g o n a l  f o r m ;
beta(l):=Ol;  y(l):=+ll;
f o r  i :=2 steD 1 u n t i l  n  & y(i):-01;
f o r  k:=l s 1 pntil  n &
bentn

x=01; . .
,fot, j :=l s t e p  1 u n t i l  n  &
benin xO(j ):mxI(j 1;

Xl(j):~Y(j);
Z:V+Y(j  )*Y(j 1;

find,;
yO:=yl; yl:=z;

cm M u l t i p l y  x by inv(L)*A*inv(L’);
s:=mb-1;
for i r-n Ster, - 1  mtil 1 &
begin p&if i <=n-mb  thu 0 else mb+i-n);

9. 1;.P
z:=xl(i  1;

--. f o r  j :-s s_t -1 u n t i l  0 &
benia q:=q+I;

z:=z-b(q,j)*V(q);
end;
v(i):=z/b(i,mb)f

ends o l v e ;
f o r  i :=I st,eo 1 u n t i l  n  &
begin p:=(lf  i>ma then 0 ~1s~ ma-i*I);

Q :=i-ma+p;
z:=Ol;
f o r  j :=p st- 1 u n t i l  m a  &
lij&Z :=z+a(i,j )*v(q):

q:=q+l;

p:=(lf i<=n-ma theQ 0 slse ma+i-n);
f o r  j terna- steD -1 until  P do
benin  z:=z+a(q,j  )+v(q);

q:=q+l;
gS$;
y(i ):=z;

75 Y:=l steD 1 u n t i l  n  &
Gin p:=(iJ  i>mb $ha 0  e l s e  mb-i+l);

q:=i;z:=yii 1;
f o r  j :=s ,steP-1+untll,pdo
benlQ 979’1;

z:sz-b(i,j  h(q);
,SQll.;
v(i ):=z/b(i,mb);

end solve;
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comment Compute alpha(k) and beta(k);
z:=Ol;
f o r  j:= 1 Ster, 1 u n t i l  n  &
iTZ+Xl(j )*V(j 1;
alpha(k):=z:=z/yi;.
f o r  j :=l steD 1 u n t  11 n &
y(j):V(j  bZ+Xl(j 1;
if k-=1 then
benin  z:aOl;

f o r  j :=l sten 1 u n t i l  n  &
iFZ+XO(j  )+y(j  1;
beta(k):=z:=z/yO;
ff k=n then m & 11;
f o r  j 71 steD 1 u n t i l  n  &
y(j)PY(j  I-Z*XO(j 1;

HE!;

commeu Normal ire and reorthogonal ize y with
respect to previous co1 umns of X;

f o r  i:=2 stee 1 u n t i l  k  &
~~01;begin

f o r  j:= f Stc?D  1 Until n & Z:=Z+U(j,i)*y(j);
E=z/u(i,l);
f o r  j:-

SAT
i steD 1 u n t i l  n  & y(j ):=y(j  I-Z*u(j,i  1;

z:=Ol;
f o r  i:=k+l s t e p  1 u n t i l  n  & z:=z+y(i  )*y(i I;
i f  z=Ol  t h e n
u(k+l,l):=li;beEiQ

f o r  f:=k+I  u 1 u n t i l  n  & u(i,k+l):=OI;
_endlelsr
begfn

L
L

i
L

z:=lf y(k+l)>~Ol  t h e n .  longsqrt(z)  e l s e  -longsqrt(z);
u(k+l,k+l):=y(k+l)+z; uUc+l,l):=u(k+l,k+l~*z;

k+2 St- 1 u n t i l  n  & u(j,k+l):=y(j);

‘~1 stee 1 until n  d o
y(j1bJ-f jzk+l then 11 SEe 0 1 ;

f o r  i  :=k+l  step -1 until  2 &
;bed~rz:=Ol

iFz;u(i,l);
‘:=i stee 1 u n t i l  n  & Z:=Z+U(j,i)*y(j);

f o r  j:=
sd-

i ster, 1 until n & YCj>:=Y(j)-Z*uCj,i>;

11:
es@ k;

d reducb;



5. Organizational and Notational Details

The lower triangle of A is stored in such a manner that array

element a(i, ma-i+j) contains the value of matrix element A(U) ,

id Y l **, n , and j=max(i-ma,l),...i  . Thus, columns of a correspond

to diagonals of A . B is stored similarly. L , the Cholesky factor

of B, is lower triangular with the same number of diagonals as the

lower triangle of B . L is stored as .,B is, overwriting B in b .

The initial vector x, is chosen to be
el l

The details of the

elementary Hermitian matrices P.
1

are contained in the vectors Ui and

the scalars Ki , where
+

UiUi"
Pi=I-K

-- i

If it should happen that zi = 8 , cf. (20) , then Ui = 0 y and Ki = 1 , so

that the corresponding Pi is the identity matrix. Also, since x, is e, ,

P, is chosen to be the identity matrix, and information on P
1

is not

stored. Otherwise, Ui is stored in the ith column of u , and K
i

is stored in u(i, 1) , i=2,...,n .

The diagonal of the reduced symmetric tridiagonal matrix is stored in

the array alpha, and the off-diagonal in the last n-l elements of the

array beta. Beta (1) is set to zero.

16
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6. Discussion of Numerical Properties

The behaviour of the reorthogonalization process is far from obvious.

A detailed error analysis tends to obscure the essential simplicity of

the underlying mechanism and we content ourselves with an exposition of

the latter. For convenience it will be assumed that ilCI12 = 1 .

We proceed by induction. Let us assume that on a ccxnputer with

t-digit mantissa x1,x2,...,x r have been determined and satisfy

yixi+l  = cxi -a.x.11 -Bixi-1+0(2-t) i = l,...,r-1

and

T
X.X.
=J

= sij+o(2-t) , i,j <r .

( 1i

( )ii

In other words we assume that the xi produced by the reorthogonalization

technique are orthogonal to working accuracy.

In the next step ytil is first determined and the computed vector

satisfies the relation

Y,l = cxr - arxr - Brxr-l+ o(2
- t

) l (iii)

e
If a great deal of cancellation takes place yHl will not be

accurately orthogonal to x
r and xr 1 but the determination of ar

:and B, ensures that yT T
r+lxr ' yr+lxr-l = O(2't) (N.B. This will only

imply accurate orthogonality if IIytill12 were of order unity; if

llyr+Jl2 is small, T
yrztlxr can be of order 2 -t without ytil being

orthogonal to xr to working accuracy.) We now show that

T
yr+lxi = O(2

-t
) for all earlier xi . In fact we have

17
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T
Yr+lxi = XT(CXr -ax -p

rr pr..l) + wt>

= x;cxi + o(2-t)

= x;CXi+l + aixi + Bixi_l) + o(2nt>

= o(2-t) .

The essential point is that the inner-products of yHl with respect

to xl,...,x
r are all negligible. If in particular lly 11

r+l 2 is Of
the order of unity yHl will already be accurately orthogonal to

⌧1, l YXr and reorthogonalization will be unnecessary.--, In any case

we may write

L
yY+1 = az+?-j1x1+q2x2+ . ..+q.x, ,

1 and

a = llYrtlll + c&q = ytil+ op> .

( 1iv

l?il = o(2mt)

The vector  y-t1 is now multiplied by Pl,P2,...,P
r successively and

e the resulting vector is used to determine P
r+l . From the derivation

of the previous P
i it is evident that

P P
r+lr

. . �plyrtl  = ae,+l + 7jlel+  g l . + yr + OWt>

=Yfiler+1 + wt)
(vii)

where e
i denotes the i-th column of I . Notice on the right-hand side

of (vii),
YY+ler+l may not necessarily be much larger than the term

18



denoted by O(2-t) . If a great deal of cancellation took place when

yHl was computed then ytil will be correspondingly small. However,

independent of the size of y
rtl we have

yI?+l = ytilPlP2.~.P,+letil+  O(2'5

and substituting this in (iii) we have

c‘
Y,lP P1 2’  l l P,p,+1 = c⌧r - ar⌧r - Br⌧r-l* 0

Hence taking xrtl = P,P,...P
r+ler+l' Equation (ix) becomes

L-
‘p+Jx*l = cxr -a;-xr - prxr-l+ OC2 -t 1

2-7 .

and since earlier xi have been determined via the relation
/
I
L

t
i

t

L
1
i

(viii)

( >ix

( >X

X.
1
= PlP2**.Piei ( >xi

it is clear that x
r+1 is orthogonal to all earlier xi to working

accuracy. If there had been exact computation throughout, xtil would

have been y*J lIyr+~ll2 = Zfil (say). If cancellation has taken place

arid llY,tlll = Fk (say), then (vii) shows that we can expect the computed

II~xr+l-zr+l II
to be of the order of 2k-t . Hence as k becomes larger

and approaches t ,
xr+l increasingly diverges from z r-+1 ' However,

- since
%+1= 2-k. the replacement of ytil , i.e.,

G+lZr+l by

yr+lxr+l on the left of Equation (iii) is merely a change of order 2 0-t .
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L
t

Having established these relations, we are now in a position to

compare the computed pi and y.-.
1 We have

Bi = xT_1CXi+ 0(2't> = x~(CXi-l)+0(2-t)

Tz xi Cai-lxiLl *dBi-lxi-2 +YiXi+0(2-t))+0(2-t)

= Yi+0(2-t) .

(Without the normalization of C we have pi = y
i
+ O(2-t IIcII )

2 l

) Since

%

and y.
1 are floating point numbers, the number of figures agreeing

in the mantissa depends on the degree of cancellation. But it is clear

that if we replace ~3~ by yi we still have, as beforeY

Y.i+lxi+l = cxi -~ixi  -y xi i-l+ o(2't> (xiii)

and hence we can take the derived tridiagonal matrix to be symmetric.

In the case when ytil is zero (or is considered to be negligible) we

can clearly take ~~1 to be P P
1 2 . ..PreHl and we have

a
o*xtil=e=y

r+l = cxr Oarxr d-3r⌧r-l+  o(2�t)  l

(xii)

In this case &
.

will also turn out to be negligible to working

accuracy.

An error analysis of the symmetric Lanczos process with Schmidt

reorthogonalization has been given by Paige [2].

. 20



7. Test Results

To test reducb, the matrices

10 2 311 12 1 -1. . 2 1

212 12 1 1 14 1 -1 1

A = 3 1 11 1 -1 B = -1 1 16 -1 1

12191 2 -1 -1a 12 -1

1 1 -1 1 15 1 1 1 -1 11

c
were used. A and B are of fill width, so ma =mb =4, On an

IBM System 360 model 67 computer using floating point arithmetic with

a 14 hexadecimal digit fraction, the following results were obtained

(Although not necessary, the elements of .u .were initially zeroed.):

t

L
L

i

cy 8

o~83333333333333310+o0
o.72687?633595368,,+00

o.ooooooooooooooolo+oo

o. u62372~5g17u510+01
-o.2885434037~05810+oo

o. 1056g2ggq2~76ylo+01
-o.21783715446739ylo+o0

o.8624334~30064010+O0
o.3029237~65$70410+oo
o.21g66g0665864glo+oo

U

e o.ooooooooooooooolo+oo

o . 1og30681461757210+oo
o.ooooooooooooooolo+oo

o.37882~8088604010+o
o.ooooooooooooooolo+oo

0.48435746321g4~410--ol
o.ooooooooooooooolo+oo
0,0.. 177

67
0.~~519~9954777,,+00

17 91653 8g5,,+oo
o. y65oyy6oo46yg36,,-ol

-0.334341703&78002,-01
22234841636802210+oo

-o.163232422022066,,-ol.-ol
-o.lo850331367022910+oo
0.188837775101004,,+00

21
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The resulting tridiagonal system was solved using the procedure

141.tq12 After the vectors of the tridiagonal system were transformed according

to equations (31) and (32), the final results were essentially the same as those

reported in [l] for the above mattices.
. .

c
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