STANFORD ARTIFICIAL INTELLIGENCE PROJECT
IMEMO AIM-164

STAN-CS-72-2712

-

FIXPOINT APPROACH TO THE'THEORY OF COMPUTATION

BY

ZOHAR MANNA

JEAN VUILLEMIN

SUPPORTED BY
NATIONALAERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457
MARCH 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

Stanford Artificial Intelligence Project April 1972
Memo AIM-164

FIXPOINTAPPROACHTO THETHEORYOFCOMPUTATION

by

Zohar Manna and Jean Vuillemin
Conput er Science Departnent

.
Stanford University
_ Abst ract
L . .
Fol I owi ng the fixpoint theory of Scott, we propose to define the
{
— semantics of conputer programs in terms of the |east fixpoints of

recursive programs. This allows one not only to justify all existing

verification techniques, but also to extend themto handl e various

— I—

properties of conmputer programs, including correctness, ternination

and equival ence, in a uniform nanner.

e

Keywords and Phrases: Verification techniques, semantics of programmng

‘ | anguages, |east fixpoints, recursive prograns,

conput ational induction

CR categories: 5.23, 5.24

The research reported here was supported in part by the Advanced Research
Projects Agency of the Ofice of the Secretary of Defense under Contract
SD-183 and in part by NASA Contract 2rcz 713.

The views and concl usions contained in this docunent are those of the
authors and shoul d not be interpreted as necessarily representing the
official policies, either expressed or inplied, of the Advanced Research
Project Agency or the U S. Covernnent.

Reproduced in the USA Available fromthe d earinghouse for Federal
Scientific and Technical Information. Springfield, virginia mm1cn

r—

r— r— r—

| ntroducti on

Substantial progress has recently been made in understanding the
mat henatical semantics of programmng | anguages as a result of Scott's
fixpoint theory. Qur main purpose in this paper is to introduce the
reader to sonme applications of this theory as a practical tool for
proving properties of prograns.

The paper consists of two parts.

In Part 1 we first introduce the notion of a recursive program and
its (unique) least fixpoint. W describe the conputational induction
method, a powerful tool for proving properties of the |east fixpoint of
a recursive p;‘ogram W then illustrate how one coul d describe the
semantics of an Algol-like program P by "translating" it into a
recursive program P' such that the partial function conmputed by P is
identical to the |east fixpoint of P'. \Wrks in this area include those
of McCarthy [1963a, 1963b], Landin [1964], Strachey [1966], Morris [19681,
Bekic [1969], Park [1969], deBakker and Scott [1969], Scott [1970],

Scott and Strachey [1971], Manna, Ness and Vuillemin [1972], M| ner [1972],
Weyhrauch and M ner [1972].
In Part 2 of the paper we illustrate some of the advantages of the

fixpoint approach to program semantics. First, we justify the

;inductive assertion nethods of Floyd [1967] and Hoare [1969, 1971].

Gt her verification methods such as recursion induction (MCarthy [1963a],
[1963b]), structural induction (Burstall [1969]), fixpoint induction
(Park [1969], Cooper [1971]), and the predicate cal cul us approach

(Manna [1969], Manna and Pnueli [1970]) can be justified in nuch the

same way. Secondly, we enphasize that the fixpoint approach suggests

a natural nethod for proving properties of programs: gjven a

foc

program P , we can translate it into the corresponding recursive
program P' , and then prove the desired properties for the |east
fixpoint of P' by conputational induction. In contrast to other
exi sting nethods, this approach gives a uniformway of expressing
and proving different properties, including correctness, termnation

and equivalence. This makes it very convenient for machine inplenenta-

tion (Mlner [1972]).

Vér ni ng: The reader should be aware that some of the results
presented in this paper hold only under certain restrictions which are

ignored in this informal presentation.

- R r

r——

PART 1. THE FIXPOINT APPRCACH TO PROGRAM SEMANTI CS

1.1 Recursive Prograns

A recursive programis a LISP-1ike definition of the form

F(x) <= 1[F1(x) ,
where t[F](x) is a conposition of base'functions and the function
variable F, applied to the individual variables x = (x,y,z,...)
The following, for exanple, is a recursive program over the integers
Py: F(x,y) <= if x = y then y+1 el se F(x,F(x-1,y+1))

W al |l owour base functions to be partial, i.e., they may be
undefined for sone argunents. This is quite natural, since they
represent the result of someconputation which nmay in general give
results for some inputs and run indefinitely for others. ws include
as limting cases the partial functions defined for all arguments,
called total functions, as well as the partial function undefined for

all arguments

Let us consider now the followi ng partial functions:

fl(x,y) : x+l

f2(x,y): if°x >y then x+1 else y-I , and

fB(X’y): if (x >y) A (x-y even) then x+1 el se undefined .

These functions have an interesting comon property: For each i

(1<i< 3) , if we replace all occurrences of F in the program B,

by L t he lefthand side and the righthand side of the synbol <=

yield identical partial functions, i.e.,f/
~ = is an extension of the regular = relation for handl i ng undefi ned
values. a =b is true if both a and b are undefined, bUt 1T 15

false if only one of themis undefined.

3

%

f‘i(x,y) = if X =y then y+1 el se fi(x,fi(x~1,y+l))-

Wesay that the functions fl 1, and f3 are fixpoints
of the recursive program P, -
Among the three functions, £, has one inportant special property:
for any (x,y) such that f,(x,y) is defined, i.e., (x > ¥) A (x-y even)
- = = >
bot h fl(X,y) and fz(x,y) are al so defined and pave the same val ue as

fB(x’y) .\ say that 1‘3 is "less defined than or equal to" £, and

f,» and denote this by f,cf) and f3 - f2. It can be shown that

has this property not only with respect to fl and f. but with

3
2
respect to aI‘I fixpoints of the recursive program Fy - Nbr eover

f

f5(x,y) is the only function having this property; f5 is therefore

said to be the least (defined) fixpoint of Po .

One of the nost inportant results related to this topic is due to

Kleene [1952], who showed that every recursive program P has a unique

| east fixpoint (denoted by fP).

In discussing our recursive prograns, the key problemis:

What is the partial function f defined by a recursive programP ?

There are two viewpoints.

. (a) Fixpoint approach: Let it be the unique |east fixpoint £, .

(b) Computational approach: et it be the conputed function cp for

H > 1" "
sone given computation rule C (such as "call by neme or "call

by val ue").

V¢ now come to an interesting point: 4| the theory for proving

properties of recursive programs is based on the assunption that the

function defined by a recursive programis exactly the |east fixpoint fP .

That is, the fixpoint approach is adopted. Unfortunately, many programmi ng
| anguages use inplenentations of recursion (such as "call by val ue" t)

whi ch do not necessarily lead to the | east fixpoint (Morris [l968]).f/

Let us consider, for exanple, the follow ng recursive program over

the integers

P

) : F(x,y) <= if x = 0 .then 1 el se F(x-1,F(x,y))

The | east fixpoint fP can be shown to be
1

fp (%y) @ if x>0 then 1 else undefined .
1

However, the conputed function CP , Where Cis "call by value", turns
1
out to be

CP (x,y) : if x =0 then 1 else undefined .
1

Thus, CPl Is properly less defined than 1‘Pl -- e.g., CPl(l,o) is

undefined while fP (1,0) = 1.
1
There are two alternative ways to view this problem (a) Existing
conput er | anguages shoul d be nodified, and | anguage designers and
i npl ementors should seek conputation rules which always lead to the |east
fixpoint. '"Call by name" is one such conputation rule, but unfortunately
it often leads to very inefficient computations. An efficient conputation

rul e which always leads to the |east fixpoint can be obtained by nodifying

Y It can be shown in general that for every recursive programP and

any conputation rule C, CP must be less defined than or eque’ to

fP’ i.e., Cp & fp (Cadiou [1972]).

"call by value" so that the evaluation of the arguments of a procedure

is delayed as long as possible (Villemin [1972]). (b) Theoreticians
are wasting their tine by devel opi ng fixpoint methods for proving
properties of prograns which do nbt conpute fixpoints. They should
instead concentrate their efforts on devel oping direct nethods for
proving properties of programs as they are actually executed.

VW shall indicate in Part 2 of this paper how the apparent conflict
between these views can be resolved by a suitable choice of the semantic

definition of the programmng |anguage.

1.2 The Conputational |nduction Method

The main practical reason for suggesting the fixpoint approach is
the existence of a very powerful tool, the computational induction nethod,
for proving properties of recursive prograns. The idea of the method is
essentially to prove properties of the | east fixpoint fP of a given

recursive program P by induction on the |evel of recursion.

Let us consider, for exanple, the recursive program

P,: F(x) < if x = 0 then 1 else x-F(x-1),

over the natural nunbers. The |east fixpoint fP (x) of this recursive
2
programis the factorial function x!
Let us denote by fI(x) the partial function indicating the

"information" we have after the i-th level of recursion. That is,

£9(x) is undefined (for all x);

f1x) isif x =0then 1 else x-£2(x-1) ,
C
i.e., if x =0 then 1 else undefined ;
) . : _ 1
f°(x) is if x =0 _then 1 elsex-f(x-1),
i.e., 1f x =0 then 1 else x-(if x-I1 = 0 then 1 else undefined) ,
- or inshort, if x=0vx=1"then 1 else undefined ;
etc.
- . .
In general, for everyi , i>1,
- i s s - i-1
f7(x) is if x = 0 x-fn 1 else (x-1) ,
which is
k‘ -
if x <i then x! else undefined
- This sequence of functions has a limt which is exactly the |east fixpoint
« of the recursive program that is,
Lin{r*(x)} = x!
i —e
- This will in fact be the case for any recursive programP : if P
< - - i, -
is a recursive program of the form F(x) <= «[F](x) , and (%) is
defined by
Op= . . -
« f(x)is © (undefined for all x), and
fi(i) is T[fi'l](i) for i >1 ,f/
t hen
¢ Lt (@)} = 46
1l -—®
< */

T[fi'l] is the result of replacing all occurrences of F in 7[F]
'-I '
byf ''.

This suggests an induction rule for proving properties of fP . To

show that some property ¢ holds for fP ,i.e., (p(fP) . we show t hat
o(£) holds for all i >0, and that o remains true in the linit;

therefore we may conclude that (lim{f'}), i.e., q>(fP) ~ hol ds.
i
Note that it is not true in general that ¢ remains true in the
limt. For exanple, for the recursive programP, introduced above,

fl(x) is the non-total function i_f_x < i then x! else undefined ,

while Lim{f'},i.e., fp

-0 2

is the total function x!' . Thus for

o(f) being " f is not total", we have that cp(fl) hol ds for all

i>0, wil e\.(p(lim {fi}) does not hold. However, the linmt property

1-e
hol ds of a rather large class of ¢ (called "adnissible predicates" --

see Manna, Ness and Willenin [1972])5 in particular, all the predicates

that we shall use later have this property.

There are two wel |l -known ways to prove that o(£*) holds for all

i1 >0, the rules for sinple and conplete induction on the |evel of

I ecursion.

(a) Sinple induction:

if (%) holds and vilp(s}) = o(£**%) 1 holds,

t hen q>(fP) hol ds .

(b) Conplete induction:

if vi{lvj such that | < i)(p(fj)] = cp(fi)} hol ds ,if/

t hen (p(fP) hol ds .

Y Note that this includes inplicitly the need to prove q:(fo)

. h . . : , since
for i =0 there is noj such that j < i

8

The sinple induction rule is essentially the "y-rule" suggested by

Kk>, deBakker and Scott [1969], while the conplete induction rule is the
"truncation induction rule" of Mrris [1971]. Scott actually suggested

the nore elegant rule

if Q) holds and Vf[e(f) = @(r[f])]holds,

t hen @(fP) hol ds

whi ch does not assume any know edge of the integers in its formulation
These rul es generalize easily to systems of nutually recursive

| definitions.
Exanpl e: Consi der the recursive prograns

P F(x,y,2) <= if x =0 then y else F(x-1,y+z,z)

3 :

L and

W would like to prove, using conputational induction, that

P, : G(x,y) <= if x = 0_then y_else G(x-1,y+2x-1) .

‘ ﬁPE(X,O,X) = 8Ph(x,0) for any natural nunber x .

* (Both functions compute the square of x .)
For this purpose, we shall prove a stronger result than the desired
one by sinple conputational induction. Proving a stronger result often
sinplifies proofs by induction, since it allows the use of a stronger

induction hypothesis. So using

o(£,8) : Vx¥y[£(y,x(x-y),x) = &(¥,x°-y°) 1 ,

we try to show that

m.ﬁ|): m =_2 & 1

-

—

holds. The desired result then follows by choosing x =y . The

i nduction proceeds in two steps

() o(°, &) ,i.e, Vvl x(x-y),x) = (yx-y") 1.

Trivial, since ¥x¥y[undefined = undefi ned]

(b) vile(sh,eh) = o™ 1.

W& assume
i i 2 2
Yyl £ (v, x(x-y),%) =g (y,x"-y") 1
and prove

i+ i+1 2 2
vxyy[£ l(y,X(x-y),X)Egl (y,x7-y7)]

.+l . i

£ (v,x(x~y),x) = 1T Y - 0 then x(x-0) else fl(y-l,x(x-y)+x,x)
= if ¥ = 0 then x2 else fi(y—l,x(x—(y-l)),x)
=if y = 0 then x2 else gi(y-l,xz-(y—l)g)

by the induction hypothesis
=if y = 0 then x*-0° el se gi(y-l,(xe—y2)+2y-1)

_ i+l 2 2
=g (y,x7-y9)

1.3 Semantics of A gal-like Prograns

Qur purpose in this sectionis to illustrate how one can describe

the semantics of an Algol-like program P by translating it into a

recursive program P' gych that the partial function conmputed by P is

identical to the |east fixpoint of P! . The features of Algol we consider

are very sinple indeed, but there is no theoretical difficulty in

extendi ng them

10

The translation is defined bl ockwi se: to each block B (or

el ementary statenent) we associate a partial function fB descri bi ng
the effect of the block (or statenment) on the values of the variables.
For exanpl e,

begin x := xt1;y := y+tl end ,
will be represented by the function

(X Y) = (x+1,5+1) .

Functions are then conbined to represent the whol e program using the

rul e:

i
b
—
Hy
—~
&l
~
~

T, o & (x) =
Bl' 1.2 B

This definition is unanbiguous since conposition of partial functions

is associative, i.e.,

fBB(fBl;BE(}E)) = fBl;Be;B5(i) = fBz’.Dﬁ(fEl (x) .

Al that remains to be done is to describe the partial function
associated with each elenentary statenent of the language. o,
sinplicity, we shall first consider only a "flowchartable" subset of a
| anguage, with no goto Sstatements or procedure calls. W shall also

ignore the problem of declarations.

1) Assignnent statenents

if Bis X; 1= E(x) where E is an expression,

fB(x) is (xl, .. "xi—l’E(i)’xjﬁl’ .. .,xn) .

2) Conditional statenents

if Bis ilpr(;c)then B,

£.(%) is if p(Q then fBl(;c) else %,

11

and

if Bis if p(x) then B, else B

~ oS T I S

fB(}'c) is if p(x) then £, (x) else f, (x) .
1 "2

3) lterative statenents

if B is while p(x) 40 B, - -

fB(;E) is the least fixpoint Of the recursive program
F(x) <= if p(x) t(x)) F(felse X
EE— B
1
Exanpl e: Let us consider the follow ng program for conputing in x

the greatest natural nunber smaller than or equal to va,i.e.,

2 : :
X <acx< (X+l)2 , where a is any natural nunmber. (The conputation

nethod is based on the fact that 1+ 3+ 5+ (en-1) = n° for every
n>0.)

P5 : begin integer x,y,z;

X =03y =2 := 1;

while y < a do
Rg'giﬂx = xt+l;
z 1= z2t2;
Y = ¥Vtz;
gﬂi;
Eﬂfi;

The partial function conputed by P; is identical to the least fixpoint
of P. . where

5

P'S: Fo(a) <= F(a,0,1,1)

F(a,x,y,2) <= if y < a then F(a,x+1,y+z+2,2+2)

glse (a,x,y, z)

12

—

r—

L) got0 statenents

There has been much discussion (see, for exanple, Dijkstra [1968],
Knuth and Floyd [1971], Asheroft and Manna [1971]) about the useful ness
of gotO statements: they tend to make programs difficult to understand
and debug, and one mght prefer to use while or for statements instead.

OIS NS

Wthout entering further into this controversy, we shall see that the
semantics of gg[&statenents is quite complex. |n particular, it may
lead to systems of nutually recursive definitions, and (not too surprisingly)
it is indeed harder to prove properties of programs with goto Statements.
V¢ consider two sinple cases.
If we have a block of the form
EEQLQ,' .. L By Bi-l;ggff,L5Bi+15“‘5BnEIi%’

then we define

fgoto LiB. .:...:B (x) to be the | east fixpoint of the recursive program
RA~S TPTi410 770

Fr(x) < fBl;...;. (kg
[f we have a block of the form
|n
beg , goto L Bl I, Bi-l . L: Bi R Bi+l [Bn end

then we define

f x) to be the | east fixpoint of the recursive program
goto L;Bl;...;Bn() P

FL(i) <= fp 3B (x)
n

Note that we have revised our rule of conposition, gjnce

et e "]

fB,B,(;E) = fB,(fB(;c)) is not valid when B is a goto statenent.
s

Simlarly, if we wish to allow goto's which junp out of

(a2 e %4

13

statenents, then we

iterative statenents or branches of conditional

must change their semantic definition accordingly.

Exanpl e: ' ' '
np Let us consider anotherversion of P5 , using only the
operations successor and predecessor .

P6: begi n integer x,y,z;
X t=0; y:= 2 := 13
Lo if y < a then

begin integer t;

X 1= xtl;
z 1=zt
t 1= 2+l

M if t >0 then

begin y := y+1l;

U o:=1t-1;

%o, s
Eﬂﬂ;}
2 1= z+l; ,Q,Q,LQ,L;
%
Eﬂi

The partial function conputed by P. s identical to the |east

fixpoint oOf P} wher e

FL(a,x,y,z) <= if y < a then FM(a,x+l,y,z+l,z+2)

€lse x, ¥, z)

FM(a,x,y,z,t) <= if t > 0 then FM(E;X,Y"'I,Z,t-l)

el se FL(a.,x,y,z+1)

14

Let us now define the semantics of sinple procedures w thout

paraneters. W shall not discuss problenms such as "side effects”

parameter passing or the procedure copy-rule for call by nane.

5) procedures

(a) For the non-recursive procedure

-

procedure P;B

(where pis the procedure nane and B is its body), we
define

fcalJ. 1;,(x) to be fB(x) .

(b) For the recursive procedure

procedure P; B[P],

we define

fcall P(x) to be the | east fixpoint of the recursive

program F(x) <= fE[P](i)

where occurrences of call Pwll be replaced by F in

N

the semantic definition of f
B[P]

6) An answer to the probl emof "call by value"

Cur semantic definition of recursive procedures assunes that the

i npl enentation of recursion in the language always leads to the |gast

fixpoint. If this is not the case, we nmust change our semantic gefinition:

to every program P we associate a recursive program P! such t hat

the |east fixpoint Of P' will always be identical to the partia

function conputed by P . Consider, for exanple, the program

integer procedure P(integer X,y);

P:=if X = 0 then 1 else P(x-1,P(x,y));

15

[f the inplenentation is "call by name"

, Its semantics will be

e fcall P(x,y) Is the | east fixpoint Of

L e e ¥

F(x,y) <= if X = 0 then 1 el se F(x-1,F(x,y)) -

However, if the inplementation is "call by value" its semantics wll be
)

<
feall P(x,y) is the |east fixpoint Of
¢ F(x,y) <= if (X =0) adef(y) then 1 el se F(x-1,F(x,y)) ,

where the (conputable) predicate def(y) is true whenever y is

defined, and undefined otherw se.

! -
b

16

PART 2. apprcATTION TO THE VERI FI CATI ON PROBLEM

Qur purpose jn the second part of the paper is to illustrate some
of the advantages or the fixpoint approach to program semantics.

2.1 Justification of the Inductive Assertions Method

. e ———
The oSt widely used method for proving properties of "flowchart

Programs® w15 presently the inductive assertions nethod, suggested by
Fl oyd [1967] and Naur [1966]. & shalT ilTTustrate the nethod on the

sinple program
PLe Prog Pr above. To clarify our discussion we shall describe
the program as a flowchart:

j_Y - y+z

VW wish to show that this flowhart program whenever it term nates,

conputes the greatest natural number sneller than or equal to /a , i.e.,

2 2
t hat a < (x+
X < (x1) , for any natural nunber a .

17

To do this we associate a predicate Q(a,x,y,z) , called an

i nductive assertion, with the point labelled o in the program and

show that Q nust be true for the values of the variables (a,x,y, z)
whenever execution of the program reaches point o . Thus, we nust

show: (a) that if we start execution with a > 0 , then the assertion
hol ds when point o is first reached, i.e., that Q(a,0,1,1) hol ds;

and (b) that the assertion remains true when one goes around the

| oop from @ to @, i.e., that (y < a) AQ(a,x,y,z) inplies
Q(a,x+1,y+z+2,2+2) . To prove the desired result we finally show

(c) that X2 < ac< (x+l)2 follows fromthe assertion Q(a,x,y,z)

when the program terminates, i.e., that (y > a) A Q(a,x,y,z) inplies
X2 <a< (x+l)2 .

To verify the program we take

Q(a,%,y,2) to be (x° < a) A(y = (D)7 a(z = ex+l) .

One can then verify easily that conditions (a), (b) and (c) above,

called the verification conditions, hold.

Hoare's inductive assertion nmethod is actually a generalization of
Fl oyd' s nethod; Hoare [1969, 1971] realized that if we wish to apply the
met hod of inductive assertions to prove properties of a large program we
shal | undoubtedly have to break the program into smaller parts, prove
what we need about the parts, and then combine everything together. W
will clearly break the programinto pieces in the most conveni ent way
for the proof, and, since conposition of statenents is associative, the
way in which we group the statenents of the programis irrelevant. For
exanple, if the given programis of the form

P: 315325 B55’B1+ 5

18

-

we can associate the statements in several different ways, e.g.,

((By3 By)s By)s By
(B)5 (Bys Bs)) 5B, »
(B3 By)s (Bss B
or
Bys (Bps (Bgs By))
Al though the progranms do not |ook the same, all of themyield the same
least fixpoint, and therefore they are equivalent. |f we express other
verification techniques using this notation, we find that Floyd and
Naur consider only the first possibility, i.e., grouping statements to
the left, while MCarthy [1963b] and Manna and Pnueli [1970] only
consider the last possibility, i.e., grouping statements to the right.
Fol | owi ng Hoare, we express this idea by witing {R}B{T} ¥ to
mean that if R(x) holds before executing the piece of program B and
if Btermnates, then T(x) will hold after executing B .

Ve first apply verification rules to each statement of the

program Exanples of such rules are:

(a) assignnent statenment rule:

};E(iz inplies (R} x, := E(x) {8}
1

wher e Si(x) stands for the result of replacing all occurrences

of x, in S by E(x) ;

Y ve prefer this notation to Hoare's R{B}T .

19

(b) conditional statenent rule:

{Rl}Bl{T} and {R2}B2{T} implies

. - - *
{if (%) then R el se Ry} if p(%) then B, else B, (1} , ¥/

1

(c) iterative statenent rule:

{R A p(x)} B {R} implies (R} while p(x) do B {RA~ p(¥)} .

V& then conpose pieces of the programuntil we get the entire

program using the fol |l ow ng

(a) conposition rule:

-

{R}Bl{s} and {s}Be[T} implies {R}Bl;BE{T} s

(e) consequence rules:

R> S and {S}B{T} inplies {rR}B{T} , and

{R}B{S} and S oT inplies {R}B{T} .

Exanpl e. A proof of the correctness of the program p5 , given above,
could be sketched as follows.

First, we establish, using the assignment statenment rule, the
followng results:

Since a > 0 o R(a,0,1,1) , where R(a,x,y,z) i S

(x <a)A(y = (x+1)?) A (z = 2x+1) , we get

(1) (a>0}x:=0; y:=2z:=1{R(axy,2)}.

W The reader should be aware of the difference between
(if p then Ry el se RE) in the mathematical |anguage, which stands

for (P D Rl) A(~p > R2) » and (in t hen Bl else B2) in the
progranmm ng | anguage.

20

Since R(a,X,y,z) Ay < a D R(a,x+l,y+z+2,z+2) , We get

(2) {R(a,xyy,2) Ay S8} X i= x415 2 1= 242y := yrz (R(e,%,7,2)] .

By using the iterative statement-rule, we get from (2)

(3) {R(a,x,y,2)} while ¥y < & do begin X .= x+1;

L := z+2; y := y+z end {R(a,x,y,2z) Ay > a} .

V¢ now conbine the results of (1) and (3) using the conposition rule

to obtain
() {a > 0} P5 {R(a':X)Y) z) A > 8.} .

Since [R(a,%,y,z)AYy >a] 2 x° <ac< (x+l)2 , We apply the consequence

rule and finally get

(5) {2 > 0} x° < a < (x+1)%)

It is quite inmportant that all of Hoarets verification rules can in
fact be proved fromthe semantics we gave, just by using computational
induction. W shall illustrate this point by justifying two of the nost
poverful verification rules: the rule for while statenents, and the rule
for call of recursive procedures. For this purpose, we need to relate
the notation {R} B {T} to our fB(i) , the partial function indicating
the change of the values of the variables during the execution of B .

{R} B {T} sinply neans that whenever R(z) js true, T(£,(2)) s either

true (if B termnates) or undefined. s can express this by the relation

R(x) = T(£5(x)) »

21

adopting here the convention that a = b is true whenever a or b

i s undefined.

W are ready now to prove the following rules:

(a) rule for while statenents

The verification rule for while statements indicates that if the

execution of the body of the while statement |eaves the assertion R

PN

invariant, R should hold upon termnation of the while statement. Mre

Fanar e T

preci sely,

R(x)Ap(x) } B{R(X) } inplies {R(X)} while p(x) do B {R(X) A~ p(X)]} .

V% therefore-have to prove the follow ng theorem

¥x[R(x) A p(X) = R(£4(x))]
implies

vx[R(x) = R(fp(i)) A ~ p(fP(fc))] wher e

P: F(x) <= if p(x) then F(fB(:'c)) else x .

The proof is by conputational induction.

L ¥x[R(Z) » R(P(X)A~p(2E)] is clearly true according to our

convention, since R(£°(x)) and ~ p(£°(%)) are undefined.

2. W assune ¥x[R(X) = R(fi(ii)) A~ p(fi(i))] and show
VR[R(X) = RFIENA ~p(e™X3)] LBy definition of £l
we have

R(£7HE)) -~ 12 p(B) then R(F(£()) el se RE) | ang

P(fi‘“l(i)) = if p(x) then P(fi(fB(i))) el se p(x)

22

r r——

Y

W distinguish between two cases:f/

Case 2A. p(x) is false. Then, R(fi+l(i)) = R(X) and

p(£*1(x)) = p(x) , so that R(X) = R(£HR)) A ~p(e¥ (%)) is veLid.

Case 28 p(x) is true. Then R(£™™N®) = R(£'(£5(%))) and

p(£7 (%)) = P(fi(fé(i))) . By the assunption R(x) A p(x) = R(f5(X))
hol ds, and since by the induction hypothesis

R((8)) = R(E (@) A ~ 2 (7)) 5 ve e

R(X) = R(£ (£5(X))) A ~ (£ (£5(%))) . Hence,

R(x) = R(fi+l(>'<))/\ ~p(fi+l(§c)) as desired.

(b) Rule for recursive calls

Let us consider a recursive procedure

procedure P; B[P],

where P is the name of the proeedure and B[P] represents its body.
The verification rule for proving properties of Pis quite sinilar to

conputational induction, although jts formlation m ght |ook rather

paradoxical: in order to prove a property of the recursive procedure P,

one is permtted to assune that the desired property holds for the

body B[P] of the procedure! This can be stated as foll ows:

vg [R} g {r3 inplies {R} Blgl {T}] inplies {R} call P {T} .

As Hoare [1971, p. 109] puts it, "this assunption of what we want to
prove before enbarking on the proof explains well the aura of magic which

attends a programmer's first introduction to recursive programming".

* , ; , ;
Y A more rigorous treatment would require checking also the case in
whi ch p(x) i s undefined.

23

The rilenoweveris easy To Justify. VW have to prove the

Tollowing theorem:

-

VELTK(R(X) = T(g(%))] inplies VRIR() = T(f_ . (2)1]

1
4

[N —

LUNpLles
VX(R{x) = T(£(X)) . where

P F(i) <= fB[F](i)) §

e ———

T=e proof is again by conputational induction.
« ¥x[R(X) » T(£2(x))] is true,. since T(fo(i)) i s undefined.

Ve assume Yx[R(X) » T(£3(%))] and show VZ[R(Z) » T(£X"1(%)) 1 .
3y the induction hypothesis, gr(z) s T(£2(X)), therefore, by the

assunption of the theoremR(x) = T(f (X)) . Thus, fromthe
B[£'] ’

definition of £ we get R(%) = T(fi"'l(i)) , as desired.

2.2 Translation to Recursive Programs

In the present state of the art of verifying programs, Hoare's metnoc
.= resumably the nost convenient for proving the correctness of prograzs.

“hwsco, wts main drawback is that it can handie only "partial correctness”

Suwis L.s., we can oxly show that the final results of the DTG
L. wellUely s Sze given input-output relation. The nethod, dces wot
ST Ll as Gny means foOfr previcg vermination, and seems rat her ill-Fiited

ior groviag equivalence between Prograns.
This 1s another case where our senantic definition Of the programm:ug

“anguage pays off: properties like termination and equival ence can be

2k

handl ed in exactly the sanme way as partial correctness. The idea is

quite sinple: To prove some property of a given program P , translate
it to the corresponding recursive program P', and then prove the
desired property for fP' , by conputational induction. In this method
we actually still benefit fromall the advantages of Hoare's approach
since we may associate the bl ocks of the program arbitrarily at our
conveni ence.

To show, for exanple, that the partial function defined by the

given program P is nonotonic increasing, we prove

Wyl (x <) = (£, (%) < £, ()] .

Note that it is rather hard to express such a property as an input-out put

rel ation.

(A) Termnation

To show t hat fP is total, or in general that g c fP for sone
function g which is total on the desired domain, we cannot sinply use
conmput ati onal induction choosing @(F) to be g = F, as then cp(fo)
will always be false. However, we can overcone this difficulty by
considering the domain over which our data range as defined by a recursive
program

For exanple, the natural nunmbers can be charact erizeX/ by the
| east fixpoint num(x) of the recursive program

N(x) <= if x =0 then true el se N(x-1) .

W can now translate any program P over the natural nunbers into the
corresponding recursive program P* and show that P* term nates by

sinply proving the relation

* i . .
Wi Gven that 0 ,1,-, +, = have their usual neaning.

25

vx[mum(x) = mum(£y, (x))]

In other words, f£_,(x) is defined and its value is a natural nunber,

whenever x s a natural number.

(B) Equival ence
It should be quite clear at this point that equival ence of two
recursive programs is no nore difficult to prove than the other
properties. Consider, for exanple, the two recursive progranms over the
natural nunbers
B, F(x) <= if x = Othen 1 else x-F(x-1) ,
and

Pg ! G(x,y,2) <= if x y then z_else G(x,y+1,(y+1)-z) .

W want to show t hat

VX[fP7(X) = gPS(x’O’l) 1.

Note that both £, (x) and gP(x,o,l) conputes x! , but quite

differently: f_ (x) is 'going down' fromx to 0 , while g (x,0,1)
P7 8

is 'going up' fromO to x . This explains why a "direct"computational
induction fails in this case.

However, if we consider the predicate x >y over the natural
numbers to be characterized by the |east fixpoint ge(x,y) of the
recursive program

M(x,y) <= if x =y then true else M(x,y+1)) ,
we can show by conputational induction that

VX:V[EE(X:Y) C [fP7(X) = 8P8(X:Y: fP7 (y)) 1]
Then, in particular, for y = 0 we get

26

Pleel0) £ 15, () = g (0,111

- i.e., for every natural nunber x , either both ¢
p (X} and gPS(x,O,l)

are defined and equal, or both are undefined. 7

The proof is by conputational induction with

.
Q)(F) : VX,Y[F(X,:Y) E [fP (X) = gp (X,y,fP (y))J]
T - 8 T
. 0 i
It is clear that (f") holds. g, we assume that o(¢h) hol ds and
¢ show t hat cp(fiﬂ) holds, i.e.,
i+l
Vx,y[f (x,5) © [fP'?(x) = %B(X:y)fPY(Y))]])
L} or in other words
vx,y[[if X = y then true elge fi(x,y+1) [=¥ =
L [P, gPB(x,y,fPY(y)) 11.
The proof proceeds easily by distinguishing between the two cases where
L X=y and x £y .
E () 1T X =y we get ¥xltgue exf .) =z (x)] , which clearly hol ds.
7 T
b) If i
(b) x#£ v weget vyx,y[f (x,y+1) © [fp7(x) = 8%(X:Y:fP7(y))]] .
_ Using the definitions of fP7 and ng we get

i
VX, y[£7(x,y+1) & [f'PB(X) = gPB(X;y*l:fP7(y+l))]] » which hol ds

by the induction hypothesis.

27

Ref erences

ASHCROFT and MANNA [1971]. E. Ashcroft and Z. Manna, "The Transl ation
of 'Goto' Prograns to 'While' Prograns", Proceedings of IFIP
Congress 1971.

BEKIC; [1969]. H Bekié, *'Defi nz;ble Qperations in General Al gebra and
the Theory of Automata and Fl owcharts' % Unpublished meno, |BM
Vi enna (Decenber 1969).

BURSTALL [1969]. R M Burstall, "Proving Properties of Progranms by
Structural Induction", Conputer Journal, Vol. 12, No. 1 (February
1969), pp. 41-48.

CADIOU [1972]. J. M Cadi ou, "Recursive Definitions of Partial Functions
and their Conputations", Ph.D. Thesis, Conputer Science Dept.,
Stanford University (to appear).

COOPER [1971]. D. C. Cooper, "Prograns for Mechanical Program Verification",

in Machine Intelligence 6(B. Meltzer and D. Mchie, Eds.), Edinburgh
University Press, pp. 4¥3-59.

DEBAKKER and SCOTT [1969]. J. W deBakker and D. Scott, "A Theory of
Progranms", unpublished meno (August 1969).

DI JKSTRA [1968]. E. Dijkstra, "Goto Statements Considered Harmful",
CACM, Vol . 11, No. 3 (March 1968), pp. 147-148.

FLOYD [1967]. R W Floyd, "Assigning Meanings to Programs', in
Proceedi ngs of a Synposiumin Applied Muthematics, Vol. 19,
Mat hematical Aspects of Conputer Science (Ed. J. T. Schwartz),
pp. 19-32.

HOARE [1969]. C. A. R Hoare, "An Axiomatic Approach to Conputer
Programming", CACM, Vol. 12, No. 10 (Cctober 1969), pp. 576-580, 583.

HOARE [1971]. C. A R Hoare, "Procedures and Paraneters: an Axiomatic
Approach”, in Synposiumon Semantics of A gorithm ¢ Languages,
Lecture notes Mathematics, Vol. 188 (E Engeler, Ed.), Berlin,
Springer-Verlag, pp. 102-116

KLEENE [1952] . S. C. Kleene, |ntroduction to Meta-mathematics,
Van Nostrand, Princeton, New Jersey.

KNUTH and FLOYD [1971]. D. E. Knuth and R W Floyd, "Notes on

Avoi di ng 'Goto' Statements", Infornmation Processing Letters 1
(January 1971), pp. 23-31.

LANDIN [1964]. P, J. Landin, "The Mechani cal Eval uation of Expressions",
Computer Journal, Vol. 6,No. % (January 1964), pp. 308-320.

28

—

r_r__f"

MANNA [1969]. Z. Manna, "The Correctness of Prograns", _Jcss, Vol. 3,
No. 2 (May 1969), pp. 119-127.

MANNA, NESS, and WLLEM N {[1972]. Z. Manna, S. Ness, and J. Vuillemnin,
"I'nductive Methods for Proving Properties of Programs", in
Proceedi ngs of ACM Conference on Proving Assertions about Prograns,
ACM New York (January 1972).

MANNA and PNUELI [1970]. z. Manna and A Pnueli, "Fornmalization of
Properties of Functional Programs", JACM, Vol. 17, No. 3 (July 1970),

pp. 555-569.

MCARTHY [1963a]. J. McCarthy, "A Basis for a Mathematical Theory of
Conputation". In Conputer Programming and Formal Systens,
(P. Braffort and D. Hirschberg, Eds.), pp. 33-70.

MCARTHY [1963b]. J. McCarthy, "Towards a Mathematical Science of
Computation", in Information Processing: Proceedings of |IFIP 62
(C. M Popplewell, Ed.), Ansterdam North Holland, pp. 21-28.

M LNER [1972]. R Milner, "Inplenentation and Applications of Scott%
Logic for Conputable Functions", in Proceedings of ACM Conference
on Proving Assertions about Programs, ACM New York (January 1972).

MORRI S [1968]. J. H Morris, "Lanmbda-Calculus Mdels of Programming
Languages", Ph.D. Thesis, Project MAC, MI.T., MAC-TR-57 (Decenber 1968).

MORRI' S [1971]. J. H. Morris, "Another Recursion Induction Principle",
CACM, Vol . 1L, No. 5(May 1971), pp. 351-35k.

NAUR [1966]. P. Naur, "Proof of Algorithns by General Snaptshots",
BI T, vol. 6(1966), pp. 310-316.

PARK [1969]. D. Park, "Fixpoint Induction and Proofs of Program Properties",
in Machine Intelligence 5(B. Mltzer and D. Mchie, Eds.), Edinburgh
University Press, pp. 59-78.

SCOIT [1970]. D. Scott, "Qutline of a Mathematical Theory of Conputation”,
Oxford University Conputing Lab., Programm ng Research G oup,
Techni cal Mnograph PRG 2 (Novenber 1970).

SCOTT and STRACHEY [1971]. D. Scott and C. Strachey, "Towards a Mathemati cal
Semantics for Conputer Languages", Technical Mnograph PRC 6,
Oxford University (August 1971).

STRACHEY [1966]. C. Strachey, "Towards a Fornmal Semantics", in Fornal
Languages Description Languages, (T. B. Steel, Ed.), Proc. |FIP
Worki ng Conf. 196k, Amsterdam North-Hol | and, pp. 198-220.

WLLEM N [1972]. J. Wuillenin, "Proof Techniques for Recursive Programs",
Ph.D. Thesis, Conputer Science Dept., Stanford University (to appear).

VEYHRAUCH and MILNER [1972]. R. Weyhrauch and R Milner, "Program

Semantics and Correctness in a Meechanized Logic", The USA-Japan
Conput er Conference, Tokyo (Cctober 1972).

29

