LINEAR COMB INAT IONS OF SETS OF CONSECUT IVEdNIEGERS

BY

D. A. KLARNER AND R. RADO

STAN-CS-72-274
MARCH 1972

COMPUTER SC IENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERS ITY

LINEAR COMBINATIONS OF SETS OF CONSECUTIVE INTEGERS

D. A. Klarner
Computer Science Department Stanford University Stanford, California 94305

R. Rado */

Department of Mathematics
University of Reading
Reading, England

Abstract

Abstract

Let $k-1, m_{1}, \ldots, m_{k}$ denote non-negative integers, and suppose the greatest common divisor of m_{1}, \ldots, m_{k} is 1 . We show that if S_{1}, \ldots, S_{k} are sufficiently long blocks of consecutive integers, then the set $m_{1} S_{1}+\ldots+m_{k} S_{k}$ contains a sizable block of consecutive integers. For example; if m and n are relatively prime natural numbers, and u, U, V, V are integers with $U-u \geq n-l, V-v \geq m-l$, then the set $m\{u, u+1, . . ., U\}+n\{v, v+1, \ldots, V\}$ contains the set $\{m u+n v-\sigma(m, n), \ldots, m U+n V-\sigma(m, n)\}$ where $\sigma(m, n)=(m-1)(n-1)$ is the largest number such that $\sigma(m, n)-1$ cannot be expressed in the form $m x+n y$ with x and y non-negative integers.

This research was supported in part by the Office of Naval Research under contract number $\mathbb{N}-00014-67-A-0112-0057$ NR 044-402, and by the National Science Foundation under grant number GJ-992. Reproduction in whole or in part is permitted for any purpose of the United States Government.
*)
Currently Visiting Professor, Faculty of Mathematics, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.

by D. A. Klarner and R. Rado

Let $k-1, m_{1}, \ldots, m_{k}$ denote positive integers such that m_{1}, \ldots, m_{k} have greatest common divisor 1 , and let t denote an integer. A well-known result in the elementary theory of numbers is that the equation

$$
\begin{equation*}
m_{1} x_{1}+\ldots+m_{k} x_{k}=t \tag{1}
\end{equation*}
$$

has infinitely many solutions in integers x_{1}, \ldots, x_{k}. Furthermore, there exists an integer $\sigma(\bar{m})$ which depends on $\bar{m}=\left(m_{1}, m_{k}\right)$ such that (1) has a solution in non-negative integers $x_{1}, ~ \| B O H$ for all $t \geq \sigma(\bar{m})$, but no solution of this kind exists when $t=\sigma(\bar{m})-1$. In this note we prove a refinement of this result by showing that a set of consecutive integers can be obtained by allowing the x_{i} in (1) to range over suitable sets of consecutive integers. For example, every number t with $6<t<11$ can be expressed in the form $3 x+4 y$ with $0 \leq x<3,0<\underline{y}<\underline{2}$. Later on we express facts like this by writing

$$
\begin{equation*}
[6,11] \subseteq 3[0,3]+4[0,2] \tag{2}
\end{equation*}
$$

The following notation is used: I , N , and P denote the set of all integers, the set of all non-negative integers, and the set of all positive integers respectively. Also, for any pair of elements $i, j \in I$, define $[i, j]=\{x: x \in I, i \leq x \leq j\}$; furthermore, given sets I_{1} • $I_{k} \subseteq I$ together with elements $m_{1}, \ldots, m_{k} \in I$, define

$$
m_{1} I_{1}+\ldots+m_{k} I_{k}=\left\{m_{1} x_{1}+\ldots+m_{k} x_{k}: x_{i} \in I_{i}(i=I, \ldots, k)\right\} .
$$

For each $k \in P$ and $J \subset I$, let J^{k} denote the set of all k-dimensional vectors over J; next, for elements $\bar{x}, \bar{y} \in I^{k}$ with $\overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$, $\bar{y}=\left(y_{1}, . ., y_{k}\right)$ define the usual dot product $\bar{x} \cdot \bar{y}=x_{1} y_{1}+\ldots+x_{k} y_{k}$; finally, define $\bar{x}<\bar{y}$ whenever $x_{i}<y_{i}$ for $i=1, \ldots, k$, and define $\bar{x} \leq \bar{y}$ whenever $x_{i} \leq y_{i}$ for . $i=1, \ldots, k$.

Our main result may be succinctly stated in this notation as follows.

THEOREM 1: Suppose $k-1, m_{1}, \ldots,,_{m k} \in P$ and m_{1}, \ldots, m_{k} have greatest common divisor 1 ; let $\bar{m}=\left(m_{I}, 1888 m_{k}\right)$ and $m_{\text {a }} \max \left\{m_{I}, 0.0, m_{k}\right\}$; suppose $\bar{u}, \bar{v} \in I^{k}$ satisfy
(4) V-ii $\geq(m-1, \ldots, m-1)$

$$
\begin{equation*}
\overline{\mathrm{m}} \cdot(\overline{\mathrm{v}}-\overline{\mathrm{u}})>2(\mathrm{~m}-1)\left(m_{I}+\cdots+m_{k}\right) \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
[\overline{\mathrm{m}} \cdot \overline{\mathrm{u}}+\sigma(\overline{\mathrm{m}}), \overline{\mathrm{m}} \cdot \overline{\mathrm{v}}-\sigma(\overline{\mathrm{m}})] \subseteq m_{1}\left[\mathrm{u}_{1}, \mathrm{v}_{1}\right]+\ldots+m_{k}\left[u_{k}, v_{k}\right], \tag{6}
\end{equation*}
$$

where $\bar{u}=\left(u_{1}, \ldots, u_{k}\right), \bar{v}=\left(v_{1}, \ldots, v_{k}\right)$, and $\sigma(\bar{m})$ is the function defined after (1).

Before proving Theorem 1, we shall state and prove a result dealing with the 2 -dimensional situation which is sharper than the result provided by taking $k=2$ in Theorem 1. Furthermore, the proof of Theorem 2 gives some insight for the proof of Theorem 1 .

THEO\& 2: Suppose $m_{1}, m_{2} \in \mathbf{P}$ such that m_{1} and m_{2} are relatively prime; also, suppose $u_{1}, u_{2}, v_{1}, v_{2} \in I$ such that $v_{1}-u_{1} \geq m_{2}-1$, $v_{2}-u_{2} \geq m_{1}-1$. Then

$$
\begin{gather*}
{\left[m_{1} u_{1}+m_{2} u_{2}+\left(m_{1}-1\right)\left(m_{2}-1\right), m_{1} v_{1}+m_{2} v_{2}-\left(m_{1}-1\right)\left(m_{2}-1\right) 1\right.} \tag{7}\\
\subseteq m_{1}\left[u_{1}, v_{1} 1+m_{2}\left[u_{2}, v_{2}\right]\right.
\end{gather*}
$$

Proof: It is well-known that $\sigma\left(m_{ᄀ}, m_{\perp}\right)=\left(m_{\perp}-1\right)\left(m_{\perp}-1\right)$, where $\sigma\left(m_{1}, m_{2}\right)-1$ denotes the largest integer not expressible in the form $m_{1} x+m_{2} y$ with $x, y \in N$. Let $\bar{m}=\left(m_{1}, m_{2}\right), \bar{u}=\left(u_{1}, u_{2}\right)$, and $v=\left(v_{1}, v_{2}\right)$, then it follows from the definition of $\sigma(\bar{m})$ that

$$
\begin{align*}
& \bar{m} \cdot \bar{u}+\sigma(\bar{m})+\mathbb{N} \subseteq m_{1}\left(u_{1}+N\right)+m_{2}\left(u_{2}+N\right) \tag{8}\\
& \bar{m} \cdot \bar{v}-\sigma(\bar{m})-N \subseteq m_{1}\left(v_{1}-N\right)+m_{2}\left(v_{2}-N\right)
\end{align*}
$$

Hence, the intersection of the sets on the left in (8) and (9) is contained in the intersection of the sets on the right in (8) and (9). That is,

$$
\begin{align*}
& {[\bar{m} \cdot \bar{u}+\sigma(\bar{m}), \bar{m} \cdot \overline{\mathrm{v}}-\sigma(\bar{m})] \subseteq} \tag{10}\\
& \quad\left(m_{1}\left(u_{1}+N\right)+m_{2}\left(u_{2}+\mathbb{N}\right)\right) \cap\left(m_{1}\left(v_{1}-N\right) m_{2}\left(v_{2}-N\right)\right)
\end{align*}
$$

Now we prove a remarkable identity which gives a valid instance of - intersection distributing over addition.

$$
\begin{align*}
& \left(m_{1}\left(u_{1}+N\right)+m_{2}\left(u_{2}+\mathbb{N}\right)\right) \cap\left(m_{1}\left(v_{1}-N\right)+m_{2}\left(v_{2}-N\right)\right)= \tag{II}\\
& m_{1}\left(\left(u_{1}+N\right) \cap\left(v_{1}-N\right)\right)+m_{2}\left(\left(u_{2}+N\right) \cap\left(v_{2}-N\right)\right)
\end{align*}
$$

Of course, the set on the right in (11) is just

$$
\begin{equation*}
m_{1}\left[u_{1}, v_{1}\right]+m_{2}\left[u_{2}, v_{2}\right] \tag{12}
\end{equation*}
$$

so (10), (11), and (12) combine to imply (7). It remains to prove (11).
Consider the set of points 1 x 1 in the Cartesian plane. The subsets $\left(u_{1}+\mathbb{N}\right) \times\left(u_{2}+\mathbb{N}\right)$ and $\left(v_{1}-\mathbb{N}\right) \times\left(v_{2}-N\right)$ of $I \times I$ lie in upper and lower quadrants of the plane whose intersection contains the set $\left[u_{1}, v_{1}\right] x\left[u_{2}, v_{2}\right]$. This situation is illustrated in Figure 1. We want to study the linear form $m_{1} x+m_{2} y$ evaluated over all points $(x, y) \in I \times I$; in particular, we are interested in points which have equal evaluations. Given an element $h \in I$, the set I_{h} of all points $\left(x_{1} y\right) \in I \times I$ such that $m_{1} x+m_{2} y=h$ is situated on a unique line having slope $-m_{1} / m_{2}$. Also, it is easy to see that if $\left(x^{\prime}, y^{\prime}\right) \in(I \times I) \cap I_{h}$, then $I_{h}=\left\{\left(x^{\prime}+j m_{2}, y^{\prime}-j m_{I}\right): j \in I\right\}$.

To prove (11), note that the set on the right is contained in the set on the left; suppose the reverse is not true. From this assumption we shall deduce a contradiction. Under this assumption it follows that there exists an $h \in I$ such that I_{h} has points in common with both

$$
U=\left(\left(u_{1}+N\right) \times\left(u_{2}+N\right)\right) \backslash\left(\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]\right)
$$

and

$$
V=\left(\left(v_{1}-N\right) \times\left(v_{2}-N\right)\right) \backslash\left(\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]\right)
$$

but I_{h} has no point in common with

$$
B=\left[u_{1}, v_{1}\right] \times\left[u_{2}, v_{2}\right]
$$

Figure 1. The set of points $\left(u_{1}+N\right) \times\left(u_{2}+N\right)$ lies in the quadrant above and to the right of the point $\left(u_{1}, u_{2}\right)$, the set of points $\left(v_{1}-N\right) \times\left(v_{2}-N\right)$ lies in the quadrant below and to the left of the point $\left(v_{1}, v_{2}\right)$, and the set of points the box.

Suppose $\left(x^{\prime}, y^{\prime}\right) \in I_{h} \cap U$ and $\left(x^{\prime \prime}, y^{\prime \prime}\right) \in I_{h} \cap v ;$ since $\left(x^{\prime}, y^{\prime}\right) \notin B$, either $x^{\prime}<u_{1}$ or $y^{\prime}>v_{2}$. If $x^{\prime}<u_{1}$, then $x^{\prime \prime}>v_{1}$ because $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in L_{h}$ and $\left(x^{\prime \prime}, y^{\prime \prime}\right) \not \equiv B$. In this case we suppose ($\left.x^{\prime}, y^{\prime}\right)$ has been selected from $I_{h} \cap U$ "so that x^{\prime} is maximal, and ($x^{\prime \prime}, y^{\prime \prime}$) has been selected from $I_{h} \cap V$ so that $x^{\prime \prime}$ is minimal. Since $\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in I_{h}$, and $I_{h} \cap B=\varnothing$, we must have $x^{\prime \prime}-x^{\prime}=m 2$. But, $x^{\prime} . \cdot_{1}$ and $x^{\prime \prime}>v_{1}$ implies $x^{r}+1<u_{1}$ and $x^{\prime \prime}-1 \geq v_{1}$; hence, $m_{2}-2=x^{\prime \prime}-x^{\mathbf{r}}-2 \geq v_{1} \bar{u}_{1}$, contradicting the hypothesis $v_{1}-u_{1} \geq m_{2}-1$. In the case $\mathrm{y}^{\prime}>\mathrm{v}_{2}$, it follows that $\mathrm{y}^{\prime \prime}<\mathrm{u}_{2}$. This time the points (x^{\prime}, y^{\prime}) and ($x^{\prime \prime}, y^{\prime \prime}$) are selected so that y^{\prime} is minimal and $y^{\prime \prime}$ is_maximal. The argument goes just as before; we must have $y^{\prime}-y^{\prime \prime}=m_{1}$ which leads to the contradiction $v_{2}-u_{2} \leq m_{1}-2$. This completes the proof of Theorem 2 .

Now we prove Theorem 1. To do this, we prove an identity having the form of (11), but subject to the conditions (4) and (5).

LEMMA. If k -dimensional vectors $\overline{\mathrm{m}}, \overline{\mathrm{u}}$, and $\overline{\mathrm{v}}$ satisfy the hypothesis of Theorem 1, then

$$
\begin{equation*}
\sum_{i=1}^{k} m_{i}\left(u_{i}+N\right) \cap \sum_{i=1}^{k} m_{i} \cdot\left(v_{i}-N\right)=\sum_{i=1}^{k} m_{i}\left(\left(u_{i}+N\right) \cap\left(v_{i}-N\right)\right) \tag{13}
\end{equation*}
$$

Theorem 1 is an immediate consequence of the Lemma; its application : is the justification of the penultimate equality in the following string of formulas.
(14)

$$
\begin{aligned}
& {[\bar{m} \cdot \bar{u}+\sigma(\bar{m}), \bar{m} \cdot \bar{v}-\sigma(\bar{m})]=} \\
& \quad(\bar{m} \cdot \bar{u}+\sigma(\bar{m})+N) \cap(\bar{m} \cdot \bar{v}-\sigma(\bar{m})-N) \subset \\
& \quad \sum_{i=1}^{k} m_{i}\left(u_{i}+N\right) \cap \sum_{i=1}^{k} m_{i}\left(v_{i}-N\right)= \\
& \left.\sum_{i=1}^{k} m_{i}\left(u_{i}+N\right) n\left(v_{i}-N\right)\right)=\sum_{i=1}^{k} m_{i}\left[u_{i}, v_{i}\right] .
\end{aligned}
$$

To prove Theorem 1 completely, it remains to prove the Lemma. For each $i \in I$, let $L_{i}=\left\{i i: \bar{x} \in I^{k} ; \bar{m} \cdot \bar{x}=i\right\}$, and suppose the Lemma is false. Then there exists $h \in I$ such that $I_{h} \cap U, I_{h} \cap V \neq \varnothing$, but $L_{h} n B=\varnothing$ where

$$
\begin{aligned}
& U=\left\{\bar{x}: \bar{x} \in I^{k}, \bar{x} \geq \bar{u}\right\} \backslash B \\
& V=\left\{\bar{x}: \bar{x} \in I^{k}, \bar{x} \leq \bar{v}\right\} \backslash B \\
& B=\left[u_{1}, v_{l}\right] \times \cdots \times\left[u_{k}, v_{k}\right]
\end{aligned}
$$

Suppose $\bar{x}^{\prime} \in U$ is selected so that
(15) $\sum_{i=1}^{k} \max \left\{v_{i}, x_{i}^{\prime}\right\}$
is minimal, where $\bar{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$. Since $\bar{x}^{\prime} \notin B$, there exists $r \in[I, k]$ such that $X_{r}^{\prime}>V_{r}$. Furthermore, there exists $s \in[I, k]$ such 'that $\mathrm{x}_{\mathrm{s}}^{\prime} \leq \mathrm{v}_{\mathrm{s}}$ since otherwise $\overline{\mathrm{x}}^{\prime}>\overline{\mathrm{v}}$, which implies $\mathrm{h}=\overline{\mathrm{m}} \cdot \overline{\mathrm{x}}{ }^{\prime}>\overline{\mathrm{m}} \cdot \mathrm{x}$ for all $\overline{\mathrm{x}}<\overline{\mathrm{v}}$, contradicting the assumption $\mathrm{I}_{\mathrm{h}} \cap \mathrm{V} \neq \varnothing$. Of course, $r \neq s$, sowehave

$$
\begin{equation*}
h=\sum_{\substack{i=1 \\ i \neq r, s}}^{k} m_{i} x_{i}^{\prime}+m_{r}\left(x_{r}^{\prime}-m_{s}\right)+m_{s}\left(x_{s}^{\prime}+m_{r}\right) ; \tag{16}
\end{equation*}
$$

$$
\begin{align*}
x_{r}^{\prime}-m_{s}-u_{r} \geq & \left(v_{r}+1\right)-\frac{m}{s}-u_{r}=\left(v_{r}-u_{r}\right)-m_{s}+1> \tag{17}\\
& \left(v_{r}-u_{r}\right)-m+1>0 .
\end{align*}
$$

Hence, by the minimality assumption made in (15),

$$
\begin{equation*}
\max \left\{v_{r}, x_{r}^{\prime}-m_{S}\right\}+\max \left\{v_{S}, x_{S}^{\prime}+m_{r}\right\} \geq \max \left\{v_{r}, x_{r}^{\prime}\right\}+\max \left\{v_{S}, x_{s}^{\prime}\right\} \tag{18}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
\max \left\{v_{s}, x_{s}^{\prime}+m_{r}\right\}>\max \left\{v_{s}, x_{s}^{\prime}\right\}=v_{s} ; \tag{19}\\
x_{s}^{\prime}+m_{r}>v_{s} ; \\
x_{s}^{:}>v_{s}-m_{r} \geq v_{s}-m .
\end{gather*}
$$

This implies
(20)

$$
\bar{x}^{\prime}>\overline{\mathrm{v}}-(\mathrm{m}, \ldots, \mathrm{~m})
$$

Suppose $x^{\prime \prime} \in V$ is selected so that

$$
\begin{equation*}
\sum_{i=1}^{k} \min \left\{u_{i}, x_{i}^{\prime \prime}\right\} \tag{21}
\end{equation*}
$$

is maximal where $\bar{x}^{\prime \prime}=\left(x_{1}^{\prime}, 0 x_{k}^{\prime}\right)$. Now an argument running parallel
to (15)-(21) can be given to show that

$$
\begin{equation*}
\bar{x}^{\prime \prime}<\bar{u}+(m, \ldots, m) \tag{22}
\end{equation*}
$$

Together (20) and (22) imply

$$
\begin{gather*}
0=\bar{m} \cdot \overline{x^{\prime}}-\bar{m} \cdot \bar{x} \prime \prime \geq \sum_{i=1}^{k} m_{i}\left(\left(v_{i}-m+1\right)-\left(u_{i}+m-1\right)\right) \tag{23}\\
=\bar{m} \cdot(\bar{v}-\bar{u})-2(m-1) \sum_{i=1}^{k} m_{i}
\end{gather*}
$$

But (5) implies

$$
\begin{equation*}
\bar{m} \cdot(\bar{v}-\bar{u})-2(m-1) \sum_{i=1}^{k} m_{i}>0 \tag{24}
\end{equation*}
$$

so (23) provides the required contradiction, and we conclude that the Lemma is true.

The results proved in this paper arose in connection with our investigation $[I]$ of the smallest $\operatorname{set}\langle\overline{\mathrm{m}} \cdot \overline{\mathrm{x}}: I\rangle \subset \mathbf{P}$ containing 1 which is closed under the operation $\bar{m} \cdot \bar{x}$ where $\bar{m}=\left(m_{I}, m_{k}\right)$ is a given k-tuple of relatively prime positive integers.

References

[I] D. A. Klarner and R. Rado, "Arithmetic Properties of Certain Recursively Defined Sets," to appear.

