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Abstract

Let k-l,ml,..~+k denote non-negative integers, and suppose the

greatest common divisor of ml,...,mk is 1 . We show that if

'1, "',sk are sufficiently long blocks of consecutive integers, then

the set mlSl+ . ..+mkSk contains a sizable block of consecutive integers.

For example; if m and n are relatively prime natural numbers, and

U, U ? Vt V are integers with U-u 2 n-l , V-v 2 m-l 1 then the set

m{u,u+l, . . ..U)+n[v.v+l,...,V] contains the set

cmu+nv- a(m,n), . . . ,mU+nV-rr(m,n)]  where o(m,n) = (m-l)(n-1) is the

largest number such that a(m,n)-1 cannot be expressed in the form

mx+ny with x and y non-negative integers.
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LINEAR COMBINATIONS OF SETS OF CONSECUTIVE INTEGERS

by D. A. Klarner and R. Rado

Let k-l,ml,.*.,m k denote positive integers such that ml,..*,mk

have greatest common divisor 1 , and let t denote an integer.

A well-known result in the elementary theory of numbers is that the

equation

(1) mlxl+ . ..+mkxk = t

has infinitely many solutions in integers x1, . . .,x
--. k' Furthermore,

there exists an integer a($ which depends on

G = (m
1> l *=9

TLC)
such that (1) has a solution in non-negative integers

⌧1> � l *☺Xk for all t 2 cT(I;;) , but no solution of this kind exists when

t = a(&1 . In this note we prove a refinement of this result by

showing that a set of consecutive integers can be obtained by allowing

the xi in (1) to range over suitable sets of consecutive integers.

For example, every number t with 6 <t <ll can be expressed in

the form 3x+4y with 0 5x <3, 0 <y <2 . Later onwe express- -

facts like this by writing

(2) [6,111 5 3[0,3]+4[0,21 .

The following notation is used: I , N , and P denote the set

of all integers, the set of all non-negative integers, and the set of

all positive integers respectively. Also, for any pair of elements

i,jeI , define [i,j] = {x: XEI, i 5 x 5 j} ; furthermore, given sets

II☺ l **2 Ik 5 I together with elements ml,...,mkeI , define
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(3) mlIl+ . ..+mkIk = (mlxl+ . ..+mkxk. xieI. (i = l,...,k)] .
3

For each keP and J cz I , let Jk denote the set of all k-dimensional

vectors over J ; next, for elements Z&Ik
with $ = (x ,...,x )

7 = (Y,.,
1 k '

l * �fyk
) define the usual dot product 2.7 = xlyl+

finally, define z <f whenever xi < yi
" ' + xkyk '

for i = l,...,k , and

define g 5 7 whenever xi I yi for .i = l,...,k .

Our main result may be succinctly stated in this notation as

follows.

THEOREM 1: Suppose k-l,ml,...,
mk EP and m1� � l 9% have greatest

common divisor 1 ; let 1;; = (m
13 l **>

?k) and m = ma⌧Cml☺
. . ., ;

suppose ii,%1k
T☺

satisfy

(4) V-ii 2 (m-l,...,m-1)

(5)

Then

1;;+-G) > 2(m-l)(ml+ . ..+mk) .

(63 + mkr”k’ vkl 9

-e
where c = (u ,...,u )

1 k > v=(vl' .*ajv >k' and a(r;l) is the function

defined af'ter (1).

Before proving Theorem 1, we shall state and prove a result

ydealing with the 2-dimensional situation which is sharper than the

result provided by taking k = 2 in Theorem 1. Furthermore, the proof

of Theorem 2 gives some insight for the proof of Theorem 1.

2



I
L

L
L
L
L

THEO& 2: Suppose ml,m2eP such that m
1 and m

2 are relatively

prime; also, suppose upp VIY 5 E 1 such that vl-u1 ,> m2-1 ,

v2-u2 zml-l ' Then

. .
(7) [mlU1+m2U2+ (ml-l)(m2-1) , mlvl+ m2v2 - b-y-1) b2-l)  1

5 mlEy vl 1 + m2b2, v2 3 .

Y .

Proof: It is well-known that ~(m,,m,) = (m,-l)(m,-1)  , where
L L I c

(J(ml,m2)-1 denotes the largest integer not expressible in

mlx+m2y with x,yeN . Let G = (m,,m,) , C = (ul,u2) ,

v = ( vlyv2) , then it follows from the definition of a(G)
-e.

(8) I?P~+~(I$+N E ml(ul+N)+m2(u2+N) ,

(9) I%~~(I$ -N 5 ml(vl-N)+m2(v2-N) .

Hence, the intersection of the sets on the left in (8) and

the form

and

that

(9) is

contained in the intersection of the sets on the right in (8) and (9).

That is,

[iKi+ a($ , IL? - a(l;;) ] 5

blbl+N> + m2b2+N)  > n (y(y-N)  + m2(v2-N>)
l

Now we prove a remarkable identity which gives a valid instance of

* intersection distributing over addition.

(11) (m,(y+N)  + m2(u2+N)) n blbl-N) + m2b2-N>)  =

ml((ul+~) n ( vl-N> > + m2( b2+N) n (~~4’0)
l

Of course, the set on the right in (11) is just

(12) qJyll +m2h2,v21 ,

3
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so (1~)’ WY and (12) combine to imply (7). It remains to prove (11).

Consider the set of points 1x1 in the Cartesian plane. The

subsets (ul+N) x(u2+N) and (vl-N) x(v2-N) of I XI lie in upper

and lower quadrants of the plane whose intersection contains the set

hyll x h,Yv,l l This situation is illustrated in Figure 1. We want

to study the linear form mlx+m2y evaluated over all points

(XYY> EIXI ; in particular, we are interested in points which have

equal evaluations. Given an element he1 , the set Lh of all points

(x,y) ~1 x1 such that mlx+m2y = h is situated on a unique line

having slope -ml/m2 . Also, it is easy to see that if

(x'YY') ~(1~h> n I$ , then \ = {(xr+jm2,yf  -jml): jsI] .

L
L
Iii

P

i

To prove (11)' note that the set on the right is contained in the

set on the left; suppose the reverse is not true. From this assumption

we shall deduce a contradiction. Under this assumption it follows that

there exists an heI such that Lh has points in common with both

u = UU1+N)  x b2+N) \(hlYvll x bJ,,v,l)

and

v = Uvp) x byN) 1 \ ([u,, “11 x h,, v,]) ,

but Lh has no point in common with

B = [u,,v,l x[u2,v2] .
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Figure 1. The set of points (ul+N) X(U +N)
2 1'

above and to the right of the point
zes in the quadrant

(y) x (v2-N)

(ul,u2) , the set of points

1'les in the quadrant below and to the lef't of the

point (y2) , a,.rd the set of points

the box.
[Up11 x h2’“2] lies in
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Suppose (xr,yt) eLh n u and (~~~,y~~)  eLh n v ; since (x'YY') kB Y

either xr < u
1 or yr > v2 . If x' < ul , then x" > v1 because

(x*,y*),(x",y")  sLh and (x",y")~B . In this case we suppose (xl yr)Y

has been selected from I$ n U so that x' is maximal, and (xtf yfr)Y

has been selected from I$ n V so that xft is minimal. Since

(~~,y~),(x'~,y~)  sLh , and Lh n B = # , we must have x"-xt = m
2 l

But, ⌧� < u

1 and x" > v
1 implies x*+1 <u

- 1 and ~"-1 > v_ 1 ; hence,

m2-2 = x”-p-2  > v -u
- 1 1 ' contradicting the hypothesis vl-ul 2 m2-1 .

In the case y' > v2 , it follows that y" < u2 . This time the

points (xr,yr) and (x",y") are selected so that yr is minimal

and y" is maximal.-=. The argument goes just as before; we must have

yr-y" = ml
which leads to the contradiction v2-u2 5 ml-2 . This

completes the proof of Theorem 2.

Now we prove Theorem 1. To do this, we prove an identity having

the form of (ll), but subject to the conditions (4) and (5).

LEz4MA. If k-dimensional vectors g , c , and G satisfy the hypothesis

of Theorem 1, then

(13)e f mi(ui+N) n f m.(v.-N) = fl mi((u +N) f? (v -N))
i=l i=l 1 IL i i .

=

Theorem 1 is an immediate consequence of the Lemma; its application

: is the justification of the penultimate equality in the following string

of formulas.
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G*C+ qm> , m.;; - d(r;;)  ] =

it1 mi(Ui+N) n f mi(vi-N> =
= i=l

f m.((u.+N) n (vi-N))
i=l ' IL

= f m.[u.,v.] .
i=l ' IL IL

To prove Theorem 1 completely, it remains to prove the Lemma. For

each ic1 , let L {ii: GE1ki= ; i&x = li] , and suppose the Lemma is

false. Then there

Lh n B = jb where

exists he1 such that I$ fl U ,
\nv##,bd

B = byl] x mm.
⌧ryr�vkl  l

Suppose &U is selected so that

k
05) C maxEviYxi)

i=l

is minimal, where 2' = (Xr
1,***y �;I l Since xrkB , there exists

re[l,k] such that x; > v
r . Furthermore, there exists

'that XL 5 vs since otherwise 2' > F, which implies h

for all 2 < C , contradicting the assumption Lh n V # fi

r#s, sowehave

s&,k] such

= 1;;m;;' > 6.x

. Of course,

06)
k

h = 1 mixj+m,(XG
i=l

-ms) +ms(x; +mr> ;

i#r,s
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(17) x;-m -u
s r 2 (v,+l) -m -u =

s r
(vr-Ur> -ms+l >

( VroUr) -m+l > 0 .

Hence, by the minimality assumption made in (15)’

(L8) max{v+x;-m ]+max(v
S S d$+m )r 2 ma+-,,x;]+max{vs,x;]  .

0 .
Hence,

(19) mMVs~xi+mr] > max{v,,x;] = v
s ;

Xi + mr ' vs ;--.

!

i-

L
t

i
L

Xi > v -m
s r-> vs-m .

This implies

(20) 2' > C-(m,...,m) .

Suppose X"EV is selected so that

(21) f min{ui,x;]
i=l

is maximal where 2" = (x1
1�

. . l ,
q l Now an argument running parallel

to (15)-(a) can be given to show that

(22) X-ff < ii+ (m,...,m) .

Together (20) and (22) iq?lY

(23) 0 = m.x- -t +.&;;tt
' i! mi((vi-

i=l
-m+l)-(ui+m-1))

k
= 6*(-V-C)  -2(m-1) C mi .

i=l
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But (5) tiplies

(24) ii+Gi) -2(m-1) f mi > 0 ,
i=l ._

so (23) provides the required contradiction, and we conclude that the

Lemma is true.

The results proved in this paper arose in connection with our

investigation [l] of the smallest set (I&X :l> c 2? containing 1 which

is closed under the operation I&Z where 6 = (m
19 l *=>

?k)
is a given

k-tuple of relatively prime positive integers.

-=.
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