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Abst r act
Let k-l,ml,...,mk denote non-negative integers, and suppose the

greatest common divisor of LIPRERY N is 1. W showthat if

S .5, are sufficiently long blocks of consecutive integers, then

%k

t he set mlsl+ . ..*m 8 contains a si zable block of consecutive integers.

For exanmple; if mand n are relatively prine natural nunbers, and

u, U, v, Vare integers with Ubu >n-1 ,  V.v >ml , then the set
m{u,wtl, . . .,U}+n{v,wl,...,v} contains the set
{mu+nv-o(mn),. . . ,mU+nv-o(mn)} where o(mn) = (Mml)(n-1) s the

| argest nunber such that o(m,n)-1 cannot be expressed in thke form

mx+ny Wth x and y non-negative integers.
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LI NEAR COMVBI NATI ONS OF SETS OF CONSECUTI VE | NTEGERS

by D. A Klarner and R Rado

Let k=1ymy;5 00 0,my denote positive integers such that Ty e oMy

have greatest conmon divisor 1 , and let t denote an integer.

A wel |l -known result in the elenentary theory of nunbers is that the

equation
(1) mE t L eedmx =t
has infinitely many solutions in integers TR Furt her nor e,

t here exi st s an integer o(m) which depends on

m = (ml,. ;ﬂlgmk) such that (1) has a solution in non-negative integers
G {04 for all t > o(m) , but no solution of this kind exists when
t =o(m)-1 . Inthis note we prove a refinement of this result by
showing that a set of consecutive integers can be obtained by allowng
t he X in (1) to range over suitable sets of consecutive integers.

For exanple, every nunber t with 6 <t <11 can be expressed in
the form3x+4y With 0 <x <3, 0 <y<2. Later on we express

facts like this by witing
(2) [6,11] < 3[0,3]+ 4[0,2] .

The follow ng notation is used: | , N, and P denote the set
of all integers, the set of all non-negative integers, and the set of
all positive integers respectively. Aso, for any pair of elements
i,jer , define [i,5] = {x:xel,i <x < j}; furthernore, given sets

Ipewn D, © | together with elenents myseeesmel define

k



(3) mlIl+ . ..+mk;[k = {mlxl+ . "+mkxk: xieli(i = 1...,k)} .

k
For each keP and J < | , let I denote the set of all k-dinensional
vectors over J ; next for elenients i,&ezk with x = (xl,...,xk),
y = (yl,, .,yk) define the usual dot product x.y = Xyt ., S

finally, define x <y whenever x. <y, for j =1,...,x, and
define x < y whenever x; <V¥. rfor i=1,...,k .
Qur main result may be succinctly stated in this notation as

follows.

THECREM 1: Suppose k'l’ml""’nk eP and My e eom have great est
common divisor 1 ; let m = (ml" Zzgmk) and m ] ma.x{ml, .11.,%} R

suppose ﬁ,%ezk satisfy

(%) V-ii > (m-1,...,m-1)

(5) me (¥-a) > 2(m-1) (my+ .+ cetm)

Then

(6) [meq + o‘(r}-l) s fﬁ.\}-c(xﬁ)] c ml[ul,vl]+ ces +mk[uk’vk] ’

where u = (U1’°--:uk) s Vo= (vl,...,vk) >, and o(m) i s the function
defined after (1).
Before proving Theorem 1, we shall state and prove a result

‘dealing Wi th the 2-dinensional situation which is sharper than the

result provided by taking k = 2 in Theorem1. fEyrthermore. the pr oof

of Theorem 2 gives sonme insight for the proof of Theorem 1.
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THECS 2. Suppose m, ,m,€P such that m and m, are relatively

prime; also, suppose u v, € I such that vi-u, >m-1,

17U V0 Vp 1™
Vp~u, >my-1 . Then

(7 [mlul *mou,+ (ml-l) (mg-l) , MVt MV, - (ml-l) (mz-l) 1

C ml[ul, vy 1+ me[ue, V2]

-

Proof : It is well-known that o(m,,m.) = (m,-1)(m.-1) , where
L [ AL [=4

o(ml,mg)-l denotes the largest integer not expressible in the form
mx+my Wth x,yeN . Let m = (my,my) u = (u,w) . and

vV = (vy5v,) , then it follows fromthe definition of o(m) that

(8) m-u+0o(m) +N C ml(ul+N)+m2(u2+N) ,

=7

(9) -v-o(m) -N < ml(vl-N)+m2(V2-N) .

Hence, the intersection of the sets on the left in (8) and (9) is

contained in the intersection of the sets on the right in (8) and (9).

That is,

(10) [meu+ o(m),m.v-0o(m)]c

(ml(ul+N) + mE(u2+N) )N (ml(vl~l\r) , mE(VE—N))

Now we prove a renarkable identity which gives a valid instance of

ntersection distributing over addition.

(11) (ml(ulﬂ\r) + mg(u2+1\r)) N (ml(vl-N) + mg(vg-N)) =

my ((up#) 0 (v M) ) + my( (ughh) 0 (v W)
O course, the set on the right in (11) is just

(12) ml{ul’vl] +m2[u2,V2] ]




—

Y

so (10), (11), and (12) conbine to inply (7). It remins to prove (11).

Consider the set of points 1x1 in the Cartesian plane. The
subset's (ul+N) x(u2+N) and (yl-N) x(ve-N) of | xI lie in upper
and |ower quadrants of the plane whose intersection contains the set
[ul,vl] X [u2,v2]. This situation is illustrated in Figure 1. \% want

to study the linear formm X+myy eval uated over all points

1
(x,y) eIxI ;s in particular, we are interested in points which have
equal evaluations. G ven an element hel , the set L, of all points

(xly) €I xI such that miX+myy = h is situated on a unique line
havi ng sl ope —ml/m2 . Also, it is easy to see that if
(xty') e (IxI) N L, then L = {(x'+jm,,y' - jmy): JeI} .

To prove (11), note that the set on the right is contained in the
set on the left; suppose the reverse is not true. Fromthis assunption

we shall deduce a contradiction. Under this assunption it follows that

there exists an hel such that L, has points in comon with both
U = ((upr) x (ugtm) \ ([ug, vy 1 X Lug, v, 1)

and
V= ((vl-N) x(vg-N)) \ ([ul, v 1 X [ue,vg]) ,

but L, has no point in comon with

B = [ul)vl} X[HE,VEJ .
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Figure 1. The set of points +
E— P (u1+N) x(uz‘N) lies in the quadrant
ight of th int :
above and to the right of the po (ul,u2)1 the set of points
(Vi-N) X (VQ'N) lies in the quadrant below and to the left of the
point (v ,v.) , ' : i
12 V,) and the set of points [y, v, ] x[uy,v,] lies in

t he box.
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Suppose (x!',y') eL NUand (x",y") €L, NV ; since (x',y') £B,

ei t her X'<U1 or y'>v2. [f x' <ul, t hen X">Vl because

(x',y"), (x",y") €Ly and (x",y") ¢B . In this case we suppose (x*' y*)
has been selected fromzL N U-so that x'is maximl, and (xn ym)
has been selected from L N V so that x" s ninimal. Since

(x1,y1), (x",y") el , and L N B = ¢ , we nust have x"-x' = m2

But, x'. ., and x">v, inmplies x*+1 <u, and x"-1 > v. ; hence,

13

> m2-l .

1
m,-2 =x"-x'-2 > vy« contradicting the hypothesis v Uy
In the case y* > v, , it follows that y" <wu, . This time the
points (x*,y*) and (x",y") are selected so that y' is nininal
and y" is_maximal. The argunent goes just as before; we nust have

y'-y" _ m, which leads to the contradiction v,-u, <m=-2. This

conpl etes the proof of Theorem 2.
Now we prove Theorem 1. To do this, we prove an identity having

the formof (11), but subject to the conditions (4) and (5).

LEMMA. |f k-dinmensional vectors m, u, and v satisfy the hypothesis
of Theorem 1, then
k

k k
(13) Z mi(u.+N) N Z m gv. -N) = Z mi((u +N) N (v _-N))
i=1 * ot =1 ¢t i=1 | |

Theorem 1 is an inmedi ate consequence of the Lenma; its application

-is the justification of the penultimate equality in the follow ng string

of fornul as.



(28) [m-uto(@),n.v-o@m)) =

(meu+o(m) +N) n (mv-o(m) -N) c

k k
z m, (u,+N) n E V. - =
sy ) _ m, (v,-N) =

i=1
k k
ig_lm ((utN Nn(vi-N) = i};l m [u.,v,]

To prove Theorem 1 conpletely, it remains to prove the Lemma. For

k

each 1T, let L. - {ii: x1; #.x =1} , and suppose the Lemma is

1
false.  Then there exists her such that L nu, L NVEAR, but
s bu

L nB=4g where

U= {%: %I, % >4} \3B

v

i

{X: xer® » X < ¥}\B
B = [ul’vl] X eoe X [Uk’vk]

Suppose x!cyU is selected so that

k
(15) Z max{vi,xji]

i=1

is miniml, where x' = <Xi”"’x1::) . Since x'¢B  there exists
re[1,k] such that x! > V_ . Furthermore, there exists se[1,%] such
‘that x{ < vy since otherwise %' > ¥, which inplies h _ FEUS mex
for all x <V, contradicting the assunption LOVEAS cour se,

r £#s , sowehave

k
16 = ? t
(16) " igl myxst mr(xr B ms) Tmg (Xé * mr) 5
ifr, s
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1 'on - “m oeu = (v
e i I L S
(Vp-u)-m+1 >0

Hence, by the mnimality assunption made in (15),

18 max ' _ +

(28) {Vr’xr ms} max{vs,xé+mr} 2 max{vr,x;}+max{vs’xé}
Hence,

(19) max{vs,xé+mr} > max{vs,xé} = vS ;

x!'+ .
x? - -
s > VS mr 2 vV -m
This inplies

(20) x' > W_f-(m,...,m)

Suppose x"ev is selected so that

k
21 i "
(21) L min {ui, x}

i 1 " = .
i's maximal where x" = (Xi, covaxt) . Now an argument running parallel

to (15)-(21) can be given to show that

(22) x" < u+ (my...,m)

Together (20) and (22) imply

"m+1) - (u, +m-1))

- - - k
(25) (0] = m.x' 'm‘X" 2 iz=l mi((vi

k
= m*(¥-u) -2(m-1) lZ=l m, -
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But (5) implies

k
(2k) me (V-0) -2(m-1) 3. m, > 0,
i=1

S0 (23) provides the required contradiction, and we conclude that the
Lemma is true.

The results proved in this paper arose in connection with our
investigation [1] of the smallest set (mx :1) c P containing 1 which
is closed under the operation m-x where m = (ml“ wm) s a given

k-tuple of relatively prine positive integers.
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