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Abstract

These notes are based on a course of lectures given at Stanford,

and cover three major topics relevant to optimization theory. First

an introduction is given to those results in mathematical programming

which appear to be most important for the development and analysis of

practical algorithms. Next unconstrained optimization problems are

considered. The main emphasis is on that subclass of descent methods

which (a) requires the evaluation of first derivatives of the objective

function, and (b) has a family connection with the conjugate direction

methods. Numerical results obtained using a program based on this

material are discussed in an Appendix. In the third section, penalty

and barrier f?unction methods for mathematical programming problems are

studied in some detail, and possible methods for accelerating their

convergence indicated.

This research was supported in part by the National Science Foundation
under grant number 29988X, and the Office of Naval Research under contract
number N-OOOlk-67-A-0112-00029 NI? 044-211 . Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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Introduction

These notes were prepared for a course on optimization given in

the Computer Science Department at Stanford University during the fall

quarter of 1971. In part they are based on lectures given during the

year of study in numerical analysis funded by the United Kingdon Science

Research Council at the University of Dundee, and on courses given at the

Australian National University.

The choice of material has been regulated by limitations of time as

well as by personal preference. Also, much material appropriate to the

development of algorithms for linearly constrained optimization problems

was covered in the parallel course on numerical linear algebra given by

Professor Golub. Thus, despite same ambition to cover a larger range,

the course eventually consisted of three main sections. These notes

cover these sections and have been supplemented by brief additional

comments and a list of references. A more extensive bibliography is

also included. This is an amended version of a bibliography prepared

by my former student Dr. D. M. Ryan.

-

The first section is intended to provide a solid introduction to

the main results in mathematical programming (or at least to those results

which appear to be the most important for the development and analysis

of practical algorithms). The main aim has been to characterize local

extrema, so that convexity and duality theory are not treated in any

great detail. However, the material given is more than adequate for the

purposes of the remaining sections. Opportunity has been taken to

prevent the recent results of Gould and Tolle which provide an accessible

and rather complete description of the first order conditions for an

extremum. The second order conditions are also considered in detail.
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The second section on unconstrained optimization is lar{r,cly  restricted

to that subclass of descent methotl.c which (a) requires the evaluation

of first derivatives of the ob;jective Ifunction, and (b) has some

family connection with the so-called conjugate direction methods. This

is an area in which there has been considerable recent activity, and

here an attempt is made both to summarize significant recent developments

and to indicate their algorithmic possibilities. An appendix (prepared

with the help of M. A. Saunders) summarizes numerical results obtained

with a program based on this material. One significant omission fram

this section is any detailed discussion of convergence. However, the

convergence of certain algorithms (those that reset the Hessian est-imnte

periodically or according to appropriate criteria) is an easy consequence

of the material given.

In the third section , penalty and barrier function methods for non-

linear programming are considered. This turns out to be a very nice

application, in particular, of the results of the first section. These

methods have advantages of robustness and simplicity but carry a definite

cost penalty. However, attetnpts to remedy this situation show some

prornisc. The material presented in this section has important connections

with other areas: for example, with the method of regularization for

the approximate solution of improperly posed problems.
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I. Introduction to Mathematical Programming

5





1. Minimum of a constrained function.

IL

i

c

Consider a function f(x)
8-0

point set.

Definition: x* is the global
d

f(x*) _< f(x) 'dxes  l

N & cu

*

on S c En 3 El where S is a given-

minimum of f on S if

(14

Remark: x exists, for example, if S is finite, or if S is
N

compact and f(x) continuous on S .
H

Definition: x* is a local minimum of f on S if 3 8 > 0 such that

f(x*) _< f(x) Vx cN(x*,b) (14N H

where

If strict inequality holds in either (1.1) or (1.2) whenever x f- x*N N

then the minimum is said to be isolated.

Definition: S is convex if 9x2 ES 3 WC+ (1-0)x2 ES for C 5 Q 5 1 .

Example: If S is convex all finite combinations of points in S is
m m

again in S . That is c hixi& where cicS :,
i=l M

Ehi = 1 ,
i=l

hi >o,- lLm<a.

Definition: f(x) is a convex function on the convex set S if

f(Q”l+  (l-Q)~2)  < Qf(Eq+ (l-Q>f(f,) , 0 < 0 <l .- - - wo

, the euclidean vector norm of t .



If strict inequality holds when 0 < 0 < 1 then f is strictly convex.

say id4 is concave (strictly concave) if -g is convex (strictly

convex).

Lemma 1.1: If f(x) is a convex function on the convex set S then

a local minimum of f is the global minimum. If f is strictly convex

then the minimum is unique.

Proof: It is necessary to consider only the case f bounded below.

If x* is a local minimum but not the global minimum 3 x
**

such that

f(x*") < f(x*) . Now, by assumption, 3 6 > 0 such that" f(x) > f(x*)
N- d

for x cN(x*,B) . Choose 0 > 0 sufficiently small for

**
0 X + (1-0)x" cN(x*,S) then

(i) f(x*) < f(0x**+ (14)x*) as x* is a local minimum, and-

(ii) f(Qx** + (14)x*) _< Qf(x*) + (1-Q)f(x*) by convexity

< f(x*) unless f(x*) = f(xH) .

Now assume x* , x
**

both are global minima and that f is strictly

convex. Then

f(OxX + (1-0)x+)(-) < Of(xXj + (1-0)r(x++"> , O<Q<l

which gives a contradiction. a

Definition: A set C is a cone with vertex at the origin if

XEC *hxEC , h>O.- C is a cone with vertex at p if
N

-[x-p ;xcc} is a cone with vertex at the origin.h)cI



Definition: x is in the tangent cone
.-4

T(S,zo) to S at 2co if

3 sequences {hn] ,> 0 , (:J -+zo , tzn3 c ' such that

Lim pn(“n -x0> -xl\ = 0 .
nda0

(1 -i\*)I

EZ!?9&: W S = CX ; \\X-WI\ = r] , T(S,xo) = {X ;xT(zo -w) = 01 .N N

(ii) S = {x ; \\x - W& r; .-

H

- N 4(%X0) = En if :. in interior of S 1

otherwise 'IO = {x ; XT(fo -w) ,< o] .w u N

Lemma 1.2: Us@ is closed.

Proof: Consider a sequence [t] cJ'(S,tf0) such that iizi-t\i -+ 0 , i 3 to .

It is required to show that te?'(S,zo) . Now t_i~y(S,~O)  3 3

{A;} > 0 , {$ c S such that Prescribe- lim I@":-jSO) -t\\ ="o .
j 400 N

{E,]  4 0 l Select -ti such that \\t_i-t\\ < ~~/2 , and j = i(j) such

that @xi -x0) -t\\ < si/2 . Then ik$xij -zo) -tl\ < Ei
CI

3 t ES(S,Xo)  .
H c1

cl

Lemma 1.3: (Necessary condition for a local minimum.) If f(x) EC? y

and if x
-0

is a local minimum of f on S then vf(Eo)x 10 ,w

v�⌧ c ☺(S,⌧o)  l

Proof: Let x be defined by sequences {An] , {z,] . As 3fo is a local

minimum 3 6 > 0 such *hat f(x*) 2 f(Eo) V'X*EN(:~,B) . Consider now
CI

the restriction of the sequences ($1 9 bn] such that 5n d~o,ffd .

+
-I fEC1 at x

-0
if f(x) =

f(zo) + V�(Eo)  (⌧ - �o) + �(\I� - ~,\I)  l
Higher

H

order continuity classes are defined similarly. For example, fd2

if the 4 1 term can be estimated in the form

l

8



We have

O < fbn) - f(j5,)-

whence (note it is sufficient to consider x such that x = 1 )h) II cy II

0 L wp)pn - “0) + O@,ii~, - ~,ll)

_< Vf(xo)x+ O(1) as n 3 03 .
0

l~:xrwrlp:Lc  : ( 5.) Ii' Jc() c so (the j.nterior of S ) then T(S,:o) = E .n
Thus x can be chosen arbitrarily- so that Vf(zo) = 0 .

(ii) If S = {x;l\x -WI\ = r} then IT(S,zo) = (x ;xT(jso -w) = O} .- d N ru CII
In particular if XET(S,X~) then -⌧ ET(S,XO) l Thus we must have

Vf(zo)x = 0 Vx such that xT(zo -w) = 0 . Thus vf(zo) = a(:o -w>

for some a .

(iii) If S = {X ; \Ix -w\l < r] and 11,x0 -w\\ = r then- - -

T(S,Jg = {x ; XT(Fo -w) < o] .- - - - In this case we have Vf(Xo>X 10
CII

Vx such that xT(x -w) -F 0 .
,.a CI -0 - -‘ thus Vf(Eo) = a(w -x0) for some

rionnc~~;ativc  (x .

Let A be a set in En .

Definition: The polar cone to A is the set A* = {x;xTy <O VycA] .
- HN-- N

A" has the following properties.

( >i A" is a closed convex cone.

(ii) If AlEA then AEsAF.

(iii) A** = A if and only if A is a closed convex cone.

9
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(iv) A* = (A')* -- the polar cone of the closure of the convex hull

of A . The convex hull of a set is the smallest convex set

containing it. Thus AC=nX, AcX, X convex.

(v) If A is a subspace then A' = A* .

Remark: Lemma 1.3 can be restated:
*

r if x is a local minimum of fN

on S then -of(x*) ET(s,⌧*)*  � l

N

Lemma 1.4: If Y E i(s,$" then -y is the gradient of a function&

having a local minimum on S at ~0 .

Remark: It is sufficient to consider the case \lyl\ = 1 , x, = 0 .

Proof: Let

for each e ,

not the case.

such that

The sequence

II IIX

Ce=Cx;xTy <*] e = 1,2,... . We first show that

3 c(e; >-0" such that N(O,e(e)) c Ce . For assume this is

Then 3 {:p] c En-Ce with ~p~N(O,l/p) , p = 1,2,...

XT
-p z

II IIZP

> e p = 1,2,... (14

is bounded and therefore contains a convergent

By-definition z eS(S,O) , but, by (1.6),N

which contradicts yey(S,O)* l

10



Now let ^Ez, = sup{E,N(O,&) c C,7} . We define

'k = min($ Ek-l'ik) > k>l,

p(z) = q/ z \I I

'\I ' iI
k-l;_

II - II' - 'k+l 21’ II, '
+

'k - 'k-t1 k-

0, z = o .II _ II

and

'k - II I“I

It is clear that Ek > 0 and &k monotonically decreasing. Further

p(z) 2 0 Y P(z) is an increasing function of II - IIZ , and

211 z II
II_ IIZ ,< Ek 3 P(z) 5 ;Il'! .

Thus P(Z) = o(ll z I\) so that VP(O) = 0 .

'k - 'k+l
f \I ,z it E ’ Ek+l’  ‘J.$ ’

Now let z = x - (x’y) y . We show that, under appropriate conditions,
- m N

xTy <P(z) . It is sufficient to consider T
x y > 0 , and in this case- - w m m

i\x” -xTy
N” rn- L /l,zll 5 lig+xTY  l (197)- m

Ii” \I
If XECe then xTy <e .

NW- Using (1.7) we haveCI

-Now assume x E N(0, E) , E<E
3

l Then 11 X 11 E ☯ &k+lt  &k] for SOme k 2 3

whence xcc
N k' This gives

11



xTy < II IIX II - \IZ

mm - i 5 k-1 ’

However, zII - II k-l
lk-- EM1 > Ek+2 whence

p(z) 1
41 z II
k+"l

so that, combining (1.9) and (1.10)

XTYmN s&

Thus the function

rp
f(x) = -“lx+ p(x - (X'Y>Y>h) H m m

(1.10)

has a local minimum on S at :. = 0 . Further f& at 0 , and

W(O)  = -y l cl

01

2. Some properties of linear inequalities.

Definition: The set H(u,v) = {x ;uTx = v) is ahyperplane. Note that

the hyperplane

R+ = {x ;uTx >
N m m -

@ H dN

separates En into two disjoint half spaces

4 9 R- = ~ - -{x ; uTx < v) .

Lemma 2.1: (lemma of separating hyperplane). Let S be a closed convex set

in En , and let zogfS A Then -3 a hyperplane separating z. and S .

Proof: Let x-1 be any Point in S l Then min \\x -zo\l ,< \\yzo\\ = r .
XES -
CI

The function \\yo\\ is continuous on the closed set S n {x; \\yo\\ 5 r)
?-d

and hence the minimum is attained. Let this point be x* . From
N

Figure 2.1 it is suggested that

( *T *z-x ) (x Go) = 0
H N (24

12



Figure 2.1

is an appropriate hyperplane. To verify this, note that z. ER so

that it remains to show that S c R+ . Let x&3 then for 0 ,< 0 5 1 ,c1

so that

Q211 z -*ii2+ 20(x -x*)T(x* -zo) ,> 0
- c1

and, letting 0 -+ 0 ,

( " -x*)T(x* Go) 2 0-

whence x~R+o c]

Definition: C is finitely generated if

P
C = [X;X =

m N c
hi C. , Xi 2 0 , i = 1,2,...,p] . It is clear that C

1=1 -IL

is a cone. It can be shown that C is closed.

Lemma 2.2: (Farkas Lemma). Let A be a pxn matrix. If for every

solution y of the system of linear inequalities
.-.I

13



it is true that

T
aY20,-d &

(2.3)

then 3 x > 0 such that ATx = a .
m- N

Proof: Let C be the cone generated by pi(A) , i = 1,2,...,p .

Then the result of Farkas lemma is that if (2.2) =+ (2.3) then EEC .

We assume a/c and seek a contradiction. By Lemma 2.1there exists

a separating hyperplane. To construct it let x* be the closest pointN

. in C to a. Then \\ti* - alI2 has a minimum at h = 1 . Differentiating
d Cu

and setting h = 1 gives

(
* T *
x - a).x = 0 .

m m

By (2.1) the equation of the separating hyperplane is

(x-x*)~(x*-a)
T *

=x (x -a) = 0
c1 H N N w

which shows that it passes through the origin.

By Lemma 2.1 C CR+ whence

d~(x* - a) 1 0
-

for arbitrary v 2 0 so thatN

A(x* - a)zO', -
w

but aeR whence

T *a (x - a) < 0
c1 c N

(24

(2.5)

(24

(2.7)

which gives the desired contradiction. 0
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Remark: Another way of looking at this result is that at most one of

the following pair of systems can have a solution.

c-i> Ax=b, x>o .-

( >ii ATy >0 , bTy<O .
u- C1N

This is an example of a 'theorem of the alternativer.

3. Multiplier relations.

We consider now the mathematical programming problem (MPP)

min f(x) subject to

t:,(x) 2 0 ’ i(I1 '

hi(x) = 0 , ic12 .

We assume that f , gi , ic I1 , and hi , ic I2 , are

the constraints on the problem are not contradictory.

to the problem discussed in Section 1 with S given by

S = {x ; gi(x) 2 0 , ie I1 , hi(x) = 0 , i.eI,J .

At any point :. ES let B. be the index

satisfying gi(xo) = 0 . If icBo we say

Definition: S is Lagrange regular at z. iff for every f such that

in C
2 and that

This corresponds

(3.1)

set for the constraints

that gi is active at x
NO l

(i) f has a minimum on s at Eo ' and (ii) f&I at z. (i.e.,

fcFo) 3 u , v such that

( 1i of&J = 1 uivgi(zO> + C "iVhi(zO)
ieB0 ic1,L

(3.2)

( 1ii Ui>O ' ieB
0 l

14



This can also be written

( )i Vf(3fo) = 1 "i'Jgi(sO)+ C "ivhi(zO) y
ic11 ie1

2

( 1ii and

(iii) u. >o
m-

where zero multipliers are introduced corresponding to the inactive

constraints.

c

Remark: If (3.2) holds for feFo ' then f satisfies the Kuhn-Tucker

conditions.

Example: It is important to realize that (3.2) need not hold. Consider

the MPP

c
min f = -x

1'

subjectto gl=xllO, g2 =x2->0, g3 = (l-x1) 3 -x2 _>o .

From Figure 3.1 it is clear that the minimum is attained at x1 = 1 ,

x2 =o, and here g1 and g3 are active. We have

vgl = -vg3 = ,e2

while
c

Vf = 'El .

so that a relation of the form (3.2) is impossible.

t
x1 Figure 3.1

15



Let

Ho = {X ; Vhi(~o)X = 0 y iE12] ,

GO = CX ; "gi(~o)X 10 y iEBo) .

Lemma 3.1: S is Lagrange regular at 2. iff -Vf

for all fEFo .

Proof: If -vf(zo> E (Go i-7 Ho)* then

-Vfbo)Y 2 0

Wibo)Y _> 0 ' icB
0 l

) dGO nHo >
*

Thus, by Farkas Lemma, Vf(:o) is a linear combination with nonnegative

Weights Of Vgi(~o) Y i cBo y and vhi(xo) 7 -Ohi , iE12 . Thus

(3.2) holds. On the other hand, if (3.2) holds then Vf(zo)y > 0 forN--

all yrGo n HG l 3

Remark: Lemma 3.1 shows the difficulty with the above example. Here

4 = {x = -oely a > O} ,' Go r\ Ho = [x = CXzl, a unconstrained] . We have-

Y3* = right half plane , (Go n Ho)* the x2 axis. By Lemma 1.4 for

*
every XCT there is a function with a minimum at (1'0) and such that

--Vf = x . Thus the conditions of Lemma 3.1 are not met in this case.

16
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Lemma 3.2: (Go n HO)* & T(SY~~)*  l

Proof: This result follows if we show that r(S,xo) sHo n Go . If-

xm%XO) 3 cg 4x ' ,n{x ) c S , {X ) > 0 such that
- n-

CA (n :n -Ed)) 3 x . We have

0 = hi(:n> = hi(xO>+vhi(~O)(~l;-~O>  +O(

and

O ,< gi<zn) = gi(:O> + vgi(xg) ("S-J - ZO) + ' (

Multiplying by hn and repeating the argument used in Lemma 1.3 we have

Vhi(zo)X = 0 y ifI2 y Vgi(~O)X 2 0 y ieB ,&

SO that xeGo n Ho . 0
h)

Theorem 3 .l: The set S is Lagrange regular at ,x0 iff

4(s’~o) * = (Go (7 HO)* .

Proof: If 4(s,~o) * = (Go n Ho)* -then -vf(zo) E (Go n Ho)* FTfeFo by

Lemma 1.3. Thus (3.2) holds by Lemma 3.1. If S is Lagrange regular at

to thenbyLemma3.1 -vf(~~) E (Go n Ho)* YfEFo  l 1, , by Lemma 1.4,

0 -0)
S'X

* & (Go n Ho)* l Thus T(S,iso)*  = (Go n Ho)* by Lemma 3.2. 0

Remark: Conditions which ensure that S is Lagrange regular at :.

are called restraint conditions. Theorem 3.1 gives a necessary and

sufficient restraint condition.

Corollary 3.1: (Kuhn Tucker restraint condition). If Vgi(xo)t > 0 ,CI-

ieBo , and Vhi(:o)t = 0 , &I2 3 t is tangent at z. to a onceN N

17



differentiable arc x = x(Q) , x(0) = x
-0

contained in N(xO,$) for

some d > 0 then S is La[';range regular at :. .

Proof: It is clear that t tJ(S,zO) for consider a sequence I'il ' O

and define cq = W,) 3 ' {A,) = {$-I then
n

fw)
CA ( Xn -n-:0)3 A * = t E7(S'XO) .

Thus the Kuhn Tucker restraint condition implies Go n Ho) ,C 7(sy~o) .

The result now follows from Lemma 3.2 and Theorem 3.1. IJ

Lemma j.3: Let k(x) <-C2 , ki(x*) = 0 , and oki( = 0 ,

i l,Z,...,s < n . We assume 2 E > 0 such that the Vki(x) ,

.i -I-, ; I' . . .,z arc linearly independent for /ix- - :*I1 < E . Then 3

a mooI;li arc x = x(e) ' x(0) = x-E ' such that ki(x(0)) - 0 ,

i. : l,Z, . . ..s , for lip> - fii < & d-40)
and L =t .

dQ -

Proof: Let P(x) = KT(K KT)-' K where pi(K) = vki(x) , i = 1,2,...,s .
Iy

Then x(8) can be found by integrating the differential equation

dx
do = (I -p(x))t (3.3)N N

subject to the initial condition x(0) = x* l 0

Remark: Let the ki be as given in the statement of Lemma 3.3. Then

the linear independence of the vki in a region containing x* is a
-

consequence of the linear independence at x* . For consider the matrix

KKT . At x = x" this matrix is positive definite as K has rank s .

18



Thus the smallest eigenvalue is positive. Clearly it is a continuous

function of x so that it remains positive in a small enough neighborhood

*
of x , and in this neighborhood the Vki(x) are linearly independent.

Lemma 3.4: (Restraint condition A). S is Lagrange regular at z.

if the set of vectors Vgi(xo) , IEB , Vhi(xo) , ie12 are linearly
-0

independent.

Proof: This is a consequence of Corollary 3.1 and Lemma 3.3. For

let -teGO n Ho , and let B(t) be the index set such that

vgi(:o)t = 0 , ieB(t) . Then by Lemma 3.3 a smooth arc can be constructed

such that x = x(Q)) ,
H N

gi(x(8)) = 0 y ieB(t) , hi(x(G)) , ie12 ,

dm
gi($3)) 2 0 , icIl-B(t) , x(e) eN(x,B) for some 8 > 0 , and -$-- = t . 0N N

Lemma 3.5: (Restraint condition B). If Vhi(xo) , ie12 are linearly

independent, and if 9 t such that Vgi(xo)t > 0 , ieB
- 0' Vhi(~O)t = 0 ,-

ic12 , then S is Lagrange regular at co .

Proof: Assume w eGo n Ho but w{~(S,E~) . PrescribeCI {&,I 4 0 and

set w,k=T+Ez. Then vgi(xo)wk  > 0 y ieB0 ' Vhi(zO>wk = O YN
ie12.

Now construct zk = xk(@) such that z&O) = ZO '
%k(‘)

d@ = w,k '

hi(~(e>) = O Y i~12 Y for ~~(0) is some neighborhood of z. . By

continuity there will be a subneighborhood (say N(zo,bk) for some

Ek(@>
Bk > 0) such that (5) vgi(~k(e)) d@ 20' ieB0 ' and

cii> gi(Xk(B)I 2 0 t i E rlmBo for Ek(e) cN(~o,8k)  . The argument

Of Corollary 3.1 now gives ykE ~@�~o)  l
But, by construction,

-
c 3:k ":* Thus WET(S,:~) as 7 is closed. 0w
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4. Second order conditions.

In certain cases it is possible to further characterize local minima

of f on S by looking at second derviative information.

Lemma 4.1: Let w(x) eC2 , w have

and vw(xo) = 0 . Then tTv2w(co)t >c1 N-

T 2
t V W("o>t > 0 Vt E7(S,~o) then 38

W(X) > who) + "ll'i - zoli' ,- x E N(xo,S)H

a local minimum on s at E. '

0 v-t ET(S,~,) l I f-

>o Y m>O such that

.

Proof: Let {x ] ,-n {A )n be defining sequences for te~(S,~o) . Then
N

for n large enough we have, as m(20) = 0 ,

*.* O 5 '~!w(iSn) -w(Xo)) = $ tTV2W(:o)t+o(l)Y
as zn 3 :. .

Now assume >o and 3 no m>O such that

wb> ’ who> + “II? - Toll2m -
for x in any neighborhood of z. . This

N

implies that for any integer q , 4I zq E S such that (i) cq eN(xo,l/q) ,

(ii) w(tfq) -w(xo) <i l~~q-~o/~2 . Select a subsequence of the "q such

that
-X
-0{ )lP-7:q -9

-) t EIT(S,⌧o)  l

‘N

gives a contradiction. a

Then (ii) * tTv2w(Eo)t < 0 which

Definition: The Lagrangian function associated with the MIT is given by

x(x,u,v)  = f(x) -
-mm H

C �igiCz>  - C vihi(⌧) l

ie11 ie12 N
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It will frequently be convenient to suppress the dependence of e on uN

and v in the case where these are implied by the Kuhn Tucker conditions.
d

In this case (3.2) becomes

Lemma 4.2: Let S be Lagrange reti&l&r at z. , f(x) have a local
N

minimum on S at z. , and Sl = {x ;x&, gi(x) = 0, ieBo] then- N N

c

c

t

tTv2e(%)t > 0 , vt E T(Sl�XO) l
m- N

(4.3)

Proof: Note that X = f on sl
so that 1: has a minimum on sl

at

the

:o l

A l s o ,  a s S is Lagrange regular at :. , ve(zo) = 0 . Thus

result follows from Lemma 4.1. 0

Remark: If s1 is Lagrange regular at z. then tTv2g(f50)t ,> 0 vtCI #Nl

such that vgi(xo)t = 0 , ieBo and Ohi( = 0 , ie12 .- N

Example: Consider

gl= 1
x2+ (x2+1)2 -1 >o ' g2 =1-x;-(x2-Q2>o .-

S is illustrated diagramatically  in Figure 4.1. At x1 = x2 = 0 ,

vgl = vg2 = (0,2) . However S

for example, ,e2 satisfies

vty2 > 0 ' vg2_e2 > 0 so

- that restraint condition B

applies. In this case Sl is

the single point x = 8 so that
-

is Lagrange regular at the origin --

-
S(SlYQ) is null.

Figure 4.1
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Lcmmrt 11 .j : If tj"V'X(co)t  > 0 Vt E~(S,E~) such that v&(xo)t = 0

7l.i c I),
0

such t1m.t II i > 0 then 3 ,m 8 > 0 such that

f(x) > f(Q + m\\x,_ - if-J2 9 -⌧ E N(c0,8) l

N -

W-4)

Proof: Assume 3 no m , 8 > 0 such that (4.4) holds. Then for each

integer q 3 x such that
-9 (i-1 zq E N(lf0'l/d j (ii> f(xq) - f(Jo)

2 'x -
I2

- IIq XII l-q -0
Select a subsequence of the x such that

4

xq - “0
li⌧, + t c-7(S,Xo)  l Set C; = ig uigi(X) l Then G 2 O On s 7

0

“(tfo) = 0 , and f=$+G. For the subsequence defining t we have
6.4

- ~ol12
+

IIzq \I
<$ ,.

Thus

(4.5)

tTv2e(xo)t  + lim sup
G(xq)

< 0 (44d
cl 4m II xq - "oil2 -

A: r;(cq) > 0 ,the second term is bounded and nonnegative. Therefore-

Thus

0 = lim
q-tao & = LB "ivgi(CO)t,  l

(4.7)
0

vgi(xO)t = 0 , ViEBo such that uI > 0 (44

so that (4.6) states that 3 t E s@,xo) such that t satisfies (4.8) and
H

that
T 2
t v l(to)t ,< 0 . This gives a contradiction. 0
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c

Consider now the system

uigi(x) = 0 , i = 1,2,...,m 9N

hi(x) = 0 , i = 1,2,...,pN (4.9)

where explicit enumerations of
5 "anti I2 are assumed.

Definition: J(zo) is the Jacobi= of the system (4.9) with respect to

t
02e(zo) -vgl(⌧o)T � l  l  -vgm(⌧o)Th) c1

-vhl(xo)T  . . . -vhp(xo)T'
CI rd

"pgl(xo> g&)Y

. .. . . 0
Jbo) = umkJ >:0 %(EO)

VqQN

..

. 0 0
vhp(xo)

C

(4.10)

Lemma 4.4: If J(zo) is nonsin,&ar, then z. is an isolated local

minimum of f on S .

Remark: Note that the condition J(zo) nonsingular imposes strong

conditions on the problem. For example,

(i) the active constraint gradients must be linearly independent, and
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(ii) if gi(x3) = 0 then u. > 0 (this condition is called strictN\ 1

complementarity)  .

In particular Sl is Lagrange regular at
:o '

Proof: If J is singular there is a vector satisfying

(4.11)

This relation gives

( >i Vhi(~O)Y = O Y i = 1,2,...,p ,

( >ii uiVgi(~O)Y'aigi(~O)  = 0 > i = 1,2,...,m , andN

(iii> V2x(Xo)Y- f aiVgi(XO)T - fbiVhi(~o)T  = 0 .
cI) i=l i=l

From (ii) we see that ui > 0 ';$ Vgi(xo)y = 0 while u. = 0 j a. = 0 .
1 1

Now consider the problem

T 2
min Y v L(Xo)Y<"

to vgi(xo)y = 0 , icBO , vh&,)y = 0 , ie12 , and 11 y II2 = 1 .
m

sub,ject

Clearly

2: = v(

the constraint ‘gradients are linearly independent as

is in the orthogonal complement of the set spanned by the

other constraint gradients. Thus the set of feasible y is Lagrange
N

regular at eve-q point by restraint condition A. Let To minimize the

objective function (the minimum exists as the constraint set is compact),

then the Lagrange regularity ensures that 3 multipliers X , ai , it-B
0'

b
i' ie12 such ,that
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m2e(x3)YoN - 2~~0 - 1 aiVgi(zO)T-  1
ieB

biVhi(~O)T = 0

0 ie12
(4.12)

whence

h T 2
= 3y "(tfo>Yo = min yTv2s( zo)y > 0N N-

Now if h = 0 , (4.l.2) shows that conditions (i) -(iii) above are

satisfied and hence J(xo) singula;. Thus if J(zo) nonsingular,

then h > 0 . In this case Lemma 4.3 shows that the minimum of the MPP

is isolated. a

59 Convex programming problems.

If gi(x) concave, KC1 , then the set S = {x;gi(x) > 0 , ie12]
H N -

is convex. The problem of minimizing a convex function on S is called

a convex programming problem. In this section certain properties of this

problem are studied. We require the following characterization of convex

functions.

Lemma 5.1: If f(x) EC1 then f(x) is convex on S iff
N &

f(x) +vf(x)(y-x) ,< f(y) 9 x,y esN N N..9 - N

Proof: If f convex'then, for 0 5 h ,< 1 ,

ax+ (l-u (Y-4) 5 f(x) + (1-h) (f(Y) - f(x))se c1 e N ?.I

whence, if h < 1 ,

(54

f(x+ (1-h)(y-x)) -f(x)
N

1-i N - < f(y) -f(x) .- c1 N
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The necessity follows on letting h -+ 1 . Now if (5.1) holds then

fo=+ (l-QY) + wyh+ (l-QY) (y-x) < f(y)
NmN-  CI

, (5.2)

f(hx+ (1-h)y) - (1-h)vf(AX+  (1-h)y)(y-x) < f(x) . (5.3)CII N-N- N

Multiplying (5.2) by (l-h) , (5.3) by h and adding gives (1.4) which

demonstrates sufficiency. [z1

Lemma 5.2: If S = {x;gi(x) > 0 , g. concave, ieIl] has an interiorH - 1

point x* , then every point of S is Lagrange regular.

Proof: Consider :o~S . Let iEBb then Lemma 5.1 gives

'gi(zO) Cx* - "0) 2 giCxK) > O (5.4)N

as gi(xo) = 0 , ieBo . Thus restraint condition B is satisfied. c3

Lemma 5.3: If f convex satisfies the Kuhn Tucker conditions at z.

then f has a minimum on S at x
-0 l

P r o o f : In this case (3.2) gives

vf(~O> = C “i’gi(~O) , uTg(~O)  = 0 ) u;>o .
k1, H -

Let x be any other point of S , then

f(x) > f(x) - c uigi(x) = I#.a-- N ie1
1 N N

-where g(x) is convex on S as the gi(x) ,
ICI

(595)

ie11' are concave. Thus

f(x) > ax,> + vs(~o) (2 - x&)CI -

= f(Xo) l a
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Remark: If f has an interior the Kuhn Tucker conditions are both

necessary and sufficient for a minimum of the convex programming problem.

Definition: The primal function for the convex programming problem is

(54

Note that if cl-> z2 then Sz
1
c Sz ' so that a(~~) 2 (J.)(E~) and that

2
if S has an interior then Sz nonempty for _z > 0 and small enough.

Lemma 5.3: 44 is convex.

Proof: If y sz Y z2 c sz then, by concavity of gi , ieIl ,
1 2

g(h"l+  W)~g) 1 hzl+ (l-h)~2  , O<h<l._ _

Thus AXC+ (1-h)x2 EShzl+(l-h)z2  '
We have

w(~~l+ Wb2) 5 inf
x ES
-1 z;X2tSZ2

fv=l+ 04~2)

< inf-
x ES ,x ES

(hf$)+ (1-h)f(z2)) by convexity

,l Zl -2 z2

<h inf-
?FSzl

f$)+ (l-h) inf f(c2)
x ES
-2 z2

-

Definition: The dual function is

P(z+? = inf f(x) - g'(x)z* , z* > 0_
xc:R @ - - - CI

where Q is the region on which f , -gi , ieIl , are convex.

(5.7)
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Lemma 5.4: @b*l is concave.

* *
Proof: Let O<h<l, and ~l,z2->0,then- - N

= inf {f(x) - gT(x)(htI+ (l-I@]
x ---

= inf {h(f - gTzJ+ (1-h)(f - gTz&
X
N

1 h inf (f-ET;;)+ (l-h) inf (f - ~~~22)
X X
N H

l u

Lemma 5.5: Let f = {z ; 3 xtz:s?N N
such that g(x) 2 E} . Then

NN

= inf (o(z) - zTz*) .
ZE:T N - -
c

Proof:

acz*1 = inf (f(x) -g(x)Tz*) ,
x c --
H

,< inf (f(x) - zTz*) ,
XGS N - -M z

T*= w(z) -z z
N NN

.
. . @(z*) ,< inf ((U(Z) -zTz*) .

w zcr - - -
d

(5.8)

(5*9)

NOW let g$) = sss . ThenN
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‘L

fbl) -gT(+* > inf (f(x) ~22 z*)-w xcs-

2 inf (W(Z) - zTz*)

zcr - - cy
e

.
. . inf (f(fSl) -gT(jfl)z*) 2 inf (W(Z) -zTz*) .

c
X7

d zcr - - -

c
The result follows from the inequalities (5.9) and (5.10). 0

rq,

e

Theorem 5.1: (Duality theorem). -(i) sup $(z*) < inf f(x) .-
z*>o - x& -
N - H

(5.10)

(ii) If S has an interior, and 3 z. such that the Kuhn Tucker

conditions are satisfied, then 3 z* maximizing $(z*) and equalitye-4 N

holds in (i).

Proof: From Lemma 5.5 we have that

@(z") 5 ~(2) = inf f(x)
xcs -
.--I

holds for each z.' > 0 . Thus
N -

sup $(z*) 5 inf f(x) .

z*>o
XES cy
CI

N -

(5J-Q

If 3x-0
such that the Kuhn Tucker conditions are satisfied then x

-0

minimizes f on S . Defining z* = [ul,
T

. . l ,um3c1)
where the ui > 0

are the multipliers in the Kuhn Tucker conditions we see that

c
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Corollary 5.1: (Wolfe's form of the duality theorem). Consider the

primal problem minimize the convex function f(x) subject to the concave
H

constraints gi(x) 2 0 , i = 1,2,...,m , and the dual problem maximize

~(x'~ > subject to V,g = 0 , u>o. If a solution to the primal exists
- N N--

then the dual problem has a solution and the objective function values are

equal.

Remark: (i) The linear programming problem

Tmin a x subject to Ax-b>0 (5*=9H - CI n.-

is a special case of a convex programming

the special property of being both convex

immediate consequence of Lemma 5.1. This

problem as linear functions have

and concave -- this is an

property of linear constraints

permits the previous discussion to be extended to permit linear equality

constraints. Note that if the linear equality constraints are not to be

contradictory, then their gradients must be linearly independent.

(ii) If the restraint condition B is satisfied at z. , and f(x) has

a minimum on S at x
-0 then 350

also solves the linear programming

problem

mill fbo) + Vf( zo) (x - x0)N

subject to

( )i gi(~~)+Vgi(~~)(X-~o) ,> 0 y ieIl , andN

(ii) hi(zO)+Vhi(zO)(x-ZO) L 0 ,

-hi(cO) -Vhi(:O) (x -zo) > 0 , ic12 ,-

as the Kuhn Tucker conditims are both necessary and sufficient for a
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c

L

i

(L

c

c

L

L

solution to the linear programming problem. That the converse need not

be true is readily seen from the example min -x subject to

l-x2 -y2 2 0 which has a minimum at x=l,y=O. The associated

linear programming problem is min -x subject to l-x > 0 which-

has the solution OYY) for my Y l
Thus additional conditions are

required if the converse is to hold (for example, Lemmas 4.3 or 4.4

could be used).

Example: (i) (Duality in linear programming). Consider the primal

problem

T
minimize a x subject to Ax-b>0 .

h) h) N N-

The corresponding dual is

maximize

If the primal has a

function values are

(ii) (The cutting

(a) Consider

bTu subject to ATu-a =o , u>o l

N N CI N CI)

solution then so does the dual and the objective

equal.

plane algorithm).

the set S = {x;gi(x) ,> 0 and g. concave, ieIl] .& 1

If x*@ then gi(x*) < 0 for at least one i . Let a satisfy

ii
g& ) ,< gi(x*) , ie1

ii

1 . Consider the half space

u = cx ; ga(x ) + vs,(xxz(x -x*) _> O} . Then x*{U . Now if g,(x) 2 0
c1 H N ,-d M

then, as ga concave,

Thus g,(x) 2 0 3 x&J so thatH

31
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We have S E Sa cU . Thus the hyperplane g,(x*)+ og,(x*)(x -x*) = 0
CI N. N N

separates x* and S.

(b) The convex programming problem minimize f(x) subject to XES is
N N

equivalent to the problem minimize x
Il+l

subject to x63 ,
m xn+1- f(x) 2 0

where x
n+l

is a new independent variable (note th::t the new constraint

is concave). This equivalence follows from the Kuhn Tucker conditions

by noting that the new constraint must be active. Thus a convex programming

problem can be replaced by the problem of minimizing a linear objective

function subject to an enlarged constraint set.

T(c) Consider the problem of minimizing c x subject to x& and SN H H

bounded. In particular we assume that S 5 R. = {x ;Ax -b > 0) . We
N d N-

can now state the cutting plane algorithm

(0) i = O .

( >i Let zi
Tminimize c x subject to xeR. .
Nd -1

(ii) Determine a such that gol(xi) 5 gj(xi) , jeIl .

(iii) If ga(xi) > 0 go to (v).-

(iv) Set Ri+l = Re.j- n {X ; ga(xi> + Vga(Xi> (X - zi> ,> O] YN N H M

i := i+l I go to (i>

( 1V stop. -- .-

Note that step (i) requires the solution of a linear programming problem.

(d) The cutting plane algorithm generates a sequence of points x. with
-1

the property that

as R. 2 R+ goo 2 S . Thus the sequence
T{c x] is increasing and

N
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bounded above and therefore convergent. Let
*

X be a limit point of

the [xi] . Then X*ES and therefore solves the convex prograznming
-I

problem. To prove this, assume x*{S . Then
N

min gi(x*) = g,(x*) = -h < 0 .
i -

Let a subsequence {:,3 -,x* , then, 3 k such thatd

(ii) g,(q < - -g

where C > I/Vgi(X)I/  , ⌧~RO Y �~11 l
-

d

Let

min gi(%> = g,(⌧,)  l

i

Then gs(\)

particular,

_ x
Now x" a limit point of [x,.3 3 x*<-2.

*
: ERk+l

%
(x )+vgmk 8

But

so that

I
h

< 2c
hc <2

E: f7R Ini*

g,(x,> + vg&\) (x* - “k) <M - $- + /Iv@\) cx* - 3fk)II
< 0

which gives a contradiction.
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Notes

1.

2.

3.

4.

59

For properties of tangent cones, see Hestenes. Luenberger discusses

polar cones (which he calls negative conjugate cones) on pp. 157-159.

Lemma 1.4 is due to Gould and Tolle. The proof is due to Nashed

et al.

Hestenes is a good general reference for this section and includes

a proof that a finitely generated cone is closed. The proof given

here of Farkas Lemma is standard (see for example Vajda's paper).

An extensive list of alternative theorems is given in Mangasarian.

The main result is due to Gould and Tolle. The treatment of the

other restraint conditions follows Fiacco and McCormick.

The treatment of second order conditions is based on Hestenes.

Similar material is given in Fiacco and McCormick.

The treatment of duality is based on Luenberger. A related treat-

ment is given by Whittle who is good value on applications. Vajda

is a good reference for the mathematical programming application.

Wolfe's papers in both the Abadie books discuss various aspects of

the cutting plane method.
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1. General properties of descent methods.

The class of descent methods for minimizing an unconstrained

function F(x) solve the problem iteratively by means of a sequence

of one dimensional minimizations. The main idea is illustrated in

Figure 1.1. At the current point "i a direction ti is provided, and

the closest minimum to ffi of the function

Gi(k) = F(ICC+ ht_t)

sought. At L+~ we have

Gk(hi) = vF("i+l)ti = 0 (14

where x
,i.+l

= lcc+h.t. .
Ll

Figure 1.1

- Definition: A step in which ICC+~ is determined by satisfying the above

conditions is said to satisfy the descent condition. We consider t,i

a profitable search direction if F(Icc+%) decreases initially as h

increases from zero. This condition is formalized as follows.
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Definition: (i) The vector t is downhill for minimizing F at x
W N

if vF(x)t < 0 . (ii) The sequence of unit vectors Ct 3. is downhill
NN

for minimizing F at the sequence of points {x) if als > 0 ,

independent of i , such that vF(“~):~ 5 -6I\vF(~)l/ .

Example: The sequence of vectors {-"(xi) / j/vF(~i)/j}  satisfies the

downhill condition with 6 = 1 . In this case we say that ti is in the

direction of steepest descent.

An estimate of the value of h minimizing Gi is readily given.

We have

0 = vF(xi+l)tiw
= vF(x)ti+ hi-$ v2F&)t,

where G =x +i;t
A. A iA

is an appropriate mean

hi =
-vF(xi)t.

-1

t'i v2 F(z~)~_~ '

’ IlvF(“i) II
IlvilF (zi) II

Theorem 1.1: (OstrowskPs descent theorem).

T 3

Let R = {x; F(X) < F*] ,N H -
A

and assume that F bounded below and t'v-F(x)t 5 Kilt I\' , xeR .c1 N N H &

Define

value. Thus

( 1.2)

sllvF(jfi) II
X =x +
,i+l ,i K

t
,i ' and

VF(X*)t.  < -‘llVF(xi)//  , Ilt_ill = 1 ,-1 -1 -

for i = 1,2,... where Q > 0 . Then (F(L)) converges, and the limit

points of (x,) are stationary values of F .
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Proof: As [t) downhill then {x] c R . Expanding by the mean

value theorem we obtain

F(ci+l> = F(Xi) ’
“llvF(“i) II

K vF(“i)t_i  + 2l(a’lvF;i)“~ $v2F(zi)ti

where 2
,i

is a mean value. We have
.

t F(xi+l) < F(xi) - K-

,< F(zi) - s211vF(xi)  /I2 -
K

. (1.3)

Thus the sequence (F(%)] is decreasing and bounded below and therefore

convergent. Further, from (1.3)'

c

Thus

ilvF(x-)  II ,< gj-1 K(F(xi) - F(xi+l>) (1.4)

vF(x*) =o if is a limit point of c 3X.
-1

cl

Remark: By (1.2) the step taken in the direction :i underestimates

the step to the minimum of Gi-. Thus (1.3) holds if the descent

condition is satisfied so that the conclusions of the theorem are valid

also in this case.

Theorem 1.2: (Goldstein's descent theorem). Let R = {x ;F(x) < F*)-m e-4
1

be bounded, and assume FeC and bounded below on R . Define
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A(xi, 1)

+(Xi") = - 'hVF(x
,i ,i

where {t,] downhill, and the {x2] are generated by the algorithm
NJ-

( >i

( >ii

(iii)

X = x
,i+l ,i if A(xi,h) = 0 .

If 44x-iyl) <o where 0 <a <l/2

then choose hi such that 0 5 +(r,L) ,< l-o ,

else choose hi=l.

X
,i.+l

= :i+h.t. .
l-1

Then the limit points of [L] are stationary points of F .

Proof: A(yh) = -hvF("i)t,i+  o(h) .

Thus A(z,h) = 0 * IIvF(x)I/ = 0 as {zj] downhill so that zi is a

stationary point. Otherwise vF(Icc)-!J~ < 0 so that +(~,h) = l+ o(l)

whence $(x., = 1 .
-1 O)

Also the boundedness of R implies that

A(z=~,h) < 0 for some h large enough so that, as @(~,h) is continuous,

'i
can be found to satisfy condition (ii) of the algorithm. Note that

{ICC) c R . We have

,> hp�llvF(~i)(I  l O-5)

Thus {F(L)] decreasing and bounded below and therefore convergent. To

show that the limit points of {CL] are stationary values of F consider
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L

L

the subsequence {x, ] -+ x* and assume /IvF(x*)// > E > 0 . Then
.

\\oS(x+ )/I > E for t > iom. This implies that inf h = ho > 0 as
i i IJ'i

otherwise sup q(x
i

mc1 ,A ) = 1 contradicting $(xi,hi) ,< l-a . Thus
i Vi

The right hand side -3 0 as i da0 which establishes a contradiction. 0

Remark: There are two aspects of this theorem which are of particular

interest. (i) It is necessary to assume only that fEC1 in R .

However, the boundedness of R is used explicitly. (ii) The algorithm

for determining the step length hi is readily implemented. A value of

h satisfying condition (ii) of the algorithm will be said to satisfy

the Goldstein condition.

Theorem 1.3: (i) Let the vector sequence in the Goldstein algorithm

be defined by

5 =
-AivF(“i)T , ti = fi / llfill Cl*71

where Ai
is positive definite, bounded, and X(Ai) =

i = 1,2,... . Then ,iCt I is downhill with constant 6 = w .

(ii) Assume that {zi) -$ x* , and that 11~~-'-v2F(xi)\\ = o(l) , then

‘i = ll~iil satisfies the Goldstein condition for i large enough.

(iii) The ultimate rate of convergence of the algorithm is superlinear

for this choice of hi .
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Proof: (i)

vF(_x+. = -
vF("i)Aiv"("i)T

- 1 llVF(“i)Ai\\

‘minCAi) IJvF(Xi) II
< - h-

max (A)

( 1ii

< - wllVF(fi) 11 ’-

WF&& + A2
2 t;V2F("i)"i

=
~‘vF(&

where 2
,i

is a mean value dependent on h . Now, writing

V2F(%) = -'Ai +Ei

and noting that I(EJI 4 0 as i 3 QO , we have

x
2 c 1

II IIS.-1
+

t_‘i Ei zi
VF(“i>t_i >

so that

I$( "iYh) - (l - )I

(W
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In particular

(iii) Another application of the mean value theorems gives

3
= - AiOF(iSi)T = - Ai(vF(~i) - vF(x*) >TNc ,

= - Ai(v2F(xi)(Xi -X*) + O(IIXi -X*11))Y

= - ( ⌧, - ⌧�>  +  o (  I☺X -⌧*\\,
i

l

Thus

*
X -X
,i+l -

= jfc+y.s. -x*
1,l .-4

= (l-Ti)(xi-x*)+  o(llxi-x*ll)  .w

(1.10)

(1.11)

From (l.ll) the choice yi = 1 (hi = ll~ill) gives superlinear

convergence. Cl

Remark: Theorem 1.3 shows that if v*F is positive definite in the

neighbourhood of an unconstrained minimum, then it is possible to have

algorithms with superlinear convergence without the necessity of satisfying

the descent condition.. It is not generally considered economic to compute

the second partial derivatives of F , and considerable emphasis has

been placed on developing approximations to the inverse Hessian using

only first derivative information. Although the steepest descent

direction is initially in the direction of most rapid decrease of the

function it gives in general only linear convergence.
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2. Methods based on conjugate  directions.

The problem of minimizing a positive definite quadratic form is

an important special case of the general unconstrained optimization

problem. In particular it is frequently used as a model problem for the

development of new algorithms. It is argued that in a neighborhood of

the minimum, a general function having a positive definite Hessian at

the minimum will be well represented by a quadratic form so that methods

which work well in this particular case should work well in general.

Let F be given by

1T
F(x) = a+bTx + 2 x Cx -

m II H H Gw

where C is a positive definite, necessarily symmetric matrix. We have

vF(x) = bT+xTC .
OI (24

Consider now a descent step from zi in the direction ti . The

descent condition gives

O = VF(zi+l)ti  = tT(C(:i+ hzi) + b)M

whence

tT g.
h = _ ,= ,1

+ti
(2.3)

T
where g. = vF(x) . To calculate the change in the value of F in

1

a descent step we have
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= ~i9';ti+ 2 i i
N CI

IL 2tTCti

Example: (Linear convergence of the method of steepest descent).

1T
Let F = 2 x Cx . Then (2.4) gives

H

T2 2
<"ic ?J)

xTC3x
,i ,i

= 1- -
2

where w
A

= c2ci .

We have F(zi) = $wFC-~WA
so that

‘(Xi+11 = I;l- 1
-5

(TT ",i>
2

wT c w wT c
,i 3-i

-lW
A>

The Kantorovich inequality gives

(wT w)
2 401 'n

wT c
11 cI

w wT c w
>
- @I+ q

2
UH M

F (Xi)

where o;_ and on are the smallest and largest eigenvalues of C

respectively, whence

W)
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F(;tSi+l) F(x.)W1

which shows that the rate of convergence of steepest descent is at least

linear.

To shuw that it is exactly linear consider the particular case in

which
. i

X.
Ml

= a; zl+an TTn

where
3

and v
2

are the normalized eigenvectors associated with al

and on respectively. We have _

.
X
,i+l

=ai+l i+l
1
v+a v
,l n ,n

= (l-hi*l)a: vl+ ('-~i~n)~~ vn
CI N

with (from (2.3))

so that

i+l
5

and

ai+l
n

In particular

= -
.

a1 .
n

i+l o* ai i-l
3 n n 5- -
ai+l=- 2 l = ,i.-1
n 5 P n
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t

so that the ratios
.a+; assume just two values for all i (depending

on i even or odd). Now

1 i+l
,i 2 .

a1 I L ( IL a;.-
on

1 (a;)*: ( 1
(o!;)2

I4 I 9

and

so that

where Y

.at,i
= min

I

n
. .

atl+ 7
a1
n

i+l
5
-Gia
n

i+l
ail+ -
ai+l
n

'< 1, and. Y is independent

of i . This inequality shows-that the rate of convergence of steepest

descent is linear.

Definition: Directions t,l't,* are conjugate with respect to C if

$ct =o .
2

In what follows it will frequently be convenient to speak about a

(**5)
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'direction of search* without intending to imply that its norm is

unity. However, the null vector is excluded from any set of mutually

conjugate directions. It is clear that any set of mutually conjugate

directions are linearly independent.

Example: The eigenvectors of C are conjugate. The property of being

both conjugate and orthogonal specializes the eigenvectors.

Lemma 2.1: Let -tl,..&n be a set of mutually conjugate directions

(with respect to C ). Starting from zl let ~~,z~,...,z~+~  be points

. produced by descent steps applied to (2.1). Then

g: t, =o , j - l,*,...,i-1  . (2 4
--L -J

Proof:
T

The descent condition gives 5i t.-1-l
= 0 so it is necessary

only to verify the result for j < i-l . We have

i-l
= CC5+1

+b+ c
- k=s+l hkC:k)T t,s

i-l

= g+1 t_s+ c
T

k=s+l
'k t_k't_s ' S = l,*,...,i-2

Corollary 2.1: The minimum of a positive definite quadratic form can

- be found by making at most one descent step along each of n mutually

conjugate directions.
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c

Proof: From Lemxna 2.1we have fiSti1 ,i = J i*t 0 = 1,2,;..,n .

Thus -G+~ is orthogonal to n linearly independent directions and

therefore vanishes identically. 0

Remark: A method which minimizes a

of steps is said to have a auadratic

Example: The sequence of vectors

II \I
263.

t - -,gi+ -= t,i - ll~i-lll2 ,i-l-

quadratic form in a finite number

termination property.

) i = 2,...,n (2.7)

are conjugate. The algorithm based on this choice is called the method

of conjugate gradients.

We now consider the generation of sequences of conjugate directions

to provide a basis for a descent calculation. To do this we note that

the minimum of (2.1) is at x = -C -1 b so that if we minimize in the
N CI

direction t -1
w
= -C (Cg+b) = -C -1vF(5) then the minimum is found in a

single step. @ -1In general C is not known in advance, so that we are

lead to consider processes in which each step consists of two parts

( )i a descent calculation in the direction

t =
,i - Hi_gi (24

where Hi is the current estimate of C -1 , and (ii) the calculation

of a correction to Hi which serves both the purposes of making the

t,i conjugate and m&king Hi amroach C -1 l It is convenient in what

follows to assume that the Hi are symmetric. This seems a natural

condition given the symmetry of C but is in fact not necessary.
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If we assume that t
,s '

s<i, are mutually conjugate then the

condition that each be conjugate to t
A

is

~~HiCt, = 0 , s<i,

and, by Lemma 2.1, this is certainly satisfied if

HiCt_s = Psts Y s < i .
w

We write this equation in the equivalent form (multiplying both sides

bY h,)

HiYs = psds 9 s<i, e-91CI

where

d
,i

= x -x > y. = g.A+1 ,i -1 ,1+1-!i.  l

(2.10)

Consider the symmetric updating formula

H
T T

i+l = Hi+ 5ididi+~HiyiyiHi-Si(_diy~Hi+Hiyidi) w-u- N N - N - H

where F,.19 \ 9 Ci are to be determined (or prescribed). We have

H
i+l53 cI= HiYs = ps ds ) s < i , provided (2.9) holds as

N

hih&ts  = 0 )
T

N and ~~HiYsN = hs YiHiC t,s = ps hs ye ds =N N w

T
psh,hidiCds =O l Thus (2.9) is satisfied for i := i+l if

and

pi = 'i(tT yi) -Si(~~HiYi) .h)

(2.12)

(2.13)

If 5, and qi are expressed in terms of pi and ci from (2.12) and

(2.13) we have
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and

= - 1
6i

'i
=

so that equation (2.ll) becomes

where

Hi+l = Hi+ pi

and

+

' T
xi Hi Yi&

TZZ D(Pi,Hi) + si ~ivi vie -

V .
..41

= di - 1 Hi pi Y

i

‘t.
1

Hi Yi

(2.14)

(2.15)

(2.16)

Example: Theparticularcase pi=l, &=O, i=l,2,... gives

the variable metric or DFP formula which is the most frequently used

member opthe family.

The class of formulae described by (2.14) generate recu.rsively a set

of conjugate directions so that the first of our aims is satisfied. It

still remains to show the relationship between the Hi and C
-1

. To do
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this note that (2.9) can be written (introducing the symmetric square

root Cl/* of the positive definite matrix C ).

$/*H $/*C’/*t =
i

cl/* t
#.OS ,s '

s = l,*,...,i-1 ,

or, more briefly,

;I& = pszs ’ s = l,*,...,i-1 .

Defining the matrix bY K(G) = ;S

(t_', c ty '
i = 1,2,...,n , and the

-. -_- ._ ~.--

diagonal matrix P by Pii = pi , i = l,&...,n , we can write (*$a)

in the case i = n+l in the form

Now '? is an orthogonal matrix so that

'n+l ==?PTT ’

whence

Hn+l =
C -42 ~P~Tc-l/*

In particular, if P = pI ,

H
-1

n+l = PC l

. (2.17)

(2.18)

Remark: Remember the motivation for developing the recursion (2.14) is

the search for efficient descent directions. Specifically we are looking

not only for conjugate directions but also for good esttiates of the

inverse Hessian. This indicates that p = 1 is the natural choice (or

at least p = constant ), and almost all published methods use p=l.

However, from (2.17)' the choice of p variable may well have scaling

advantages in the initial phases of a computation with a general objective

function. Presumably the strategy for choosing p should make

p 4 constant to ensure a fast rate of ultimate convergence.
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Lemma 2.2: Provided the descent condition is satisfied,

H II V
i+l,Gi+l ,i

or null.

Remark: In what follows it is convenient to drop the i subscripts.

Quantities subscripted i+l will be starred. In what follows we assume

P is constant.
s.

Proof: We have (using the descent condition, the definition of t ,

and d = At )
N

ddT
D(p,H)g* = (H+ p = -

HYY~H-- *

dTY
) g

YTHY u
L

HwTH(y+  d= Hy+Hg - --T - -
3;' H y

1cm--
'

Cd = Hy)
-yTHy -

Whence

T*
H*g*  = - (i + c-TV&V .

Md m

.

cl

Remark: (i) The condition that H*g* = 0 when v f 0 gives ad

condition which determines 5 . We have

c T* 1Yr 1scT *vg =-g Hy=-zg HgCI c1 N N N

so that (from (2.19))

(**19)

(2.20)
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*
Provided this value of 5 is excluded from consideration.then  x is

independent of 5 . Note that this result is true for a general

function as no properties specific to a quadratic form have been used

in its derivation.

(ii) We can only have v = 0 with d and g* nonnull if H isc1 CI N
*

singular, and in this case H is also singular and the null space of

H" is at least as large as that of H . This follows from (2.15) which

can vanish only if (a) Hg* = o 1and l+ - = 0 , or
N ILT

(b) Hg and
rr)

Hg* are parallel. Now if H is singular 3 w , wTH = 0 . ThusIc) c

wTd = 0 T*, and hence w H = 0 . _

Clearly it is important that Hi positive definite j Hi+l positive

definite, i = 1,2,... in order that premature termination should be

avoided (H*g* =0 and H* positive definite 3 g* = 0 whence x* is
N w

a stationary point). Conditions which ensure this are given in the

following lemma (due to Powell).

Lemma 2.3: If 0 <p,z <my H positive semidefinite, and

HH+v = v (where H' is the generalized inverse of H ), then H* is
CI c1

positive semidefinite, and the null space of H* is equal to that of H

provided

- yTd
c> . i--

(dTH+ d)(y Hy) - (dTy)* l

(2.21)

Proof: We first note the identity

D(p,H) = (I+uyT)H(I+yu')
dN NN

(2.22)

where
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and

det(I+uyT) = l+yTu =GIN -cU

so that, by the assumptions, l+uyT is nonsingular. Now yTv = 0
&SW. NW

so that H* can be written

H* = (I+uyT)(H+ c7wT)(I+yuT)  .
NN -- --

(2.24)

(*.*5)

Thus the problem reduces to considering H+ 5~v-v~ . We have
NN

H+c7wT= H(I+csH+vvT) l

-N .u-

The null spaces of H and H* will agree provided
T

I+~TH+vv isNH

nonsingular. The condition for singularity is

0 = det(I+~aH+vvT)--

=l+<~~H+v .

Noting that HH+H = H , and HH'v = v=,HH+d = d we have
N N

dLY Y" HY
l+~~vTH+v=l+~~(dTH+d-2~+=

Ic) N N T2
)

= l+ cT(dTH+d -
N CI

(aTYj2

r" )
Y HYM d

and this vanishes provided

- yTd
5 =

(dTH+ d)(y Hy) - (yTd)*
; '

H - MN
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The stated result is a consequence of this and the observation that

decreasing 5 below this value will make H* indefinite. 0

Remark: (i) The condition on z is automatically satisfied if

H is positive definite and the descent condition is satisfied for then

dTy = -gTd = hgTHg . However the lemma does not require that the
.-a- NCI) m

descent condition be satisfied and remains valid even though the exact

minimum in the direction t is not found. In this case the condition
N

on z is necessary.

Corolary 2.2: If Hl positive definite, and Hi+l = D(p,Hi) ,

i = l,*,... then provided the descent condition is satisfied for

i = l,*,... then H;,, is positive definite.

Proof: This is a consequence of (2.22)

that if H is positive definite, and if

satisfied, then I+ uyT is nonsingular.

and the above remark which shows

the descent condition is

cl

Theorem 2.1: (Dixon's equivalence theorem). If (i) the formula (2.14)

is used to generate descent directions, Cii> Ci satisfies (2.21) for

i = l,*,... and Hl is positive definite, and (iii) the descent

condition is satisfied in each descent step, then the sequence of points

generated by the algorithm depends only on F , Hl , p , and :l and

is independent of ci , i = 1,2,... .

Remark: It is important to note that F is not restricted to be a

quadratic form in this result.
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Proof: Let Dl = Hl , Di = D(p,Di l) , i = 2,3,... . . We show that

if I-f
i = Di+cMid; , then Hi+l = Di+l+B_d,,d:+l  . By Lemma 2.2 weN

have He' = D(p,H)+~d*d~ . NowN N

ddT (D+a!ddT)yyT(D+addT)
D(p,H) = D+ys + - UN ..+N N-

+addT
dY yT(D+addT)y N-
UN NNIc *,

ddT DyyTD+ a(yTd)(DydT+dyTD)+a2(dTy)*ddT
= D+P Lz2L- UN N N UN UN UN UN

dTY yTDy+a(yTd)*
+addT

NH
N N N N

(YTd) *
-DyyTDa -- + a(yTd)(DydT+dyTD) -a(yTDy)ddTUN

YTDY -- -- --
N UN

= D -
yTDy+a(yTd)*

NYT D Y> YTd
T

z-D*+
yd

- - (d - = Dy)(d - =
yTDy+a(yTd)* - T

DYjT l

Y~DY -
(2.26)

YDY - -u N N N N

By Lemma 2.2,
BY (2.26) D(p,H)g*  )I D*g* l ThusN N

dil~Dj~j , j = 1,2,...,i rj d+l/lDi+l_ei+l . But the case j = 1
- c.

is a consequence of Lemma 2.2 so the result follows by induction. 0

Example: Equivalence results for a wide class of conjugate direction

algorithms applied to a given positive definite quadratic form can be

demonstrated by noting that at the i-th stage we find the minimum in the

translation to x,1 of the subspace spanned by t,ly...,t,i , and that this

subspace is also spanned by Hlgl,...,H2i . Thus x+1 depends only on
H
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3 ,i
. . .'X and not on the particular updating formula for the inverse

.

Hessian estimate. If H, = I this equivalence extends to the conjugate
-L

gradient algorithm (2.7).

bmna 2.4: If the descent condition is

Tthe sequence ,giDigi , i = 1,2,... isN

is positive definite.

Proof: We have (as qd=O)g
c N

satisfied at each stage then

strictly decreasing provided Dl

JCT
Q Dg* -

(g”rD g*)*
W- -T

Q U*++ DgN CI N N

i3t-T -Y -T - .
U +g Dg

’

(2.27)

Thus

1 1 1
WTD*g* = w

D g"
+T '

Q t5 g JUN N N

By Corollary 2.2, the Di are positive definite so that the desired

result follows from (2.27). 0

Remark: This result indicates a potential defect of the DFP algorithm.

For if the choice of Dl is poor in the sense that it leads to too

Tsmall a value of _glDl_gl then the algorithm has no mechanism to correct

this, and must initially generate a sequence of directions which are

nearly orthogonal to the gradient. This must also happen if, for any
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reason, an

A possible

abnormally small value of

cause of such behaviour is

Tg Dg is generated
N N

poor scaling of the

Lemma 2.5: Corresponding to the formula

is a similar formula for updating H-1 .

at scme stage.

problem.

*-'H = D(p,H)-l+7pJ'Jw*

where

(2.14) for updating H there

Specifically we have

(2.28)

Y-Y*
D(p,H)-’ = I++ ($ + p,) @+ - +- (ydTH-l+H-ldyT) ,

dy dy mm NII
UN -NN

d*H d-1

= -TN’
dYmLI

W &H= Y- ~ -ld ’
H m Y

and 7 is related to 5 by

Y
gTu,= - Tl+czv H-lv l

Proof: From (2.22) we have

D(~YH)-~  = (1 - yu*) H-l(I -N -

and (2.29) follows from this by an elementary

*-1H =(I- Mm

P-29)

(2.30)

(2.31)

(2.32)

calculation. From (2.25)

T -1 CT
= %z'J )(H - - T -1 H-%v*H'~)(I -

c 1+t/v H v NCI

(2.33)
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=&I- (++ T
N

-1=H d-byN ICI

=-
VW ’N

so that (2.28) is a direct consequence of (2.33) and (2.34). 0

Remark: 1If we take y = - T in (2.28) then
ydN N

where

T

G(p,H-l) = H-l+ 1 E
H-ldd* I!?-

- - -T
p Yd

dT;-ld

= (I+ zdT)H'+I+d z*)

H-'d - 1 uT y)yH
irp-c - --

we obtain

We have

D(p,H-l)-l = G(p,H-l) + -+wwT
yd--NN

= (I+ z dT)(H-l+ +- w wT)(I+dTz)UN
Yd"" ---1I

(2.34)

(2.35)

(2.36)

(**37)

as d*w = 0 .
-CI
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i

L

c

L

( >i

( )ii

To summarize these results we have the following:

D(p,H) = (I+ wT>H(I + yu’> YNW GIN

G(p,H-l) = (I+ zdT)H'l(I+dzT) .-II NY

D(p,H)  -’ = G(p,H-') + +- ww* ,
yd&-
- - .>

G(p,H-l)-l = D(p,H) + + vvT .
yd--NCI

update formula update formula for inverse

dd* T
HYY H

DC P'H) H+P ZzL- -w
dTy *Y HYUN N N

T
YY

H-l+ (3 + cl) c - d- (yd*&-+H-'dy*)
d*y dTy -" -N
Ned NN

T

G(p,H-l) lU8-+ ; T -
YdNN

H-'ddT H-l
NII

dT H-l d
m N

dd*
H+(p+~)s -

d*y 1 (dy*H+Hyd*)d*y N N cI m

NP’H) ’ G(F>,H-1) have been called dual formulae by Fletcher.

Lemma 2.6~ Let A be a symmetric matrix, A = TATT where A d$agonal

(Aii
= xi , i = 1,2,...,n) , and T orthogonal. Let &I , i = 1,2,...,n

be the eigenvalues of TA+aaa , then either CJ > 0 andUN

- Xi 5 A: ,< hi+1 1, i = 1,2,...,n , or 0 < 0 and hi-l5 ~1 f hi .
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Proof: We have

det{A+caaT-AI]NN
= *(hi-h) det{I+c(I\-hI)-l(TTa)(TTa)T)

i=l M N

= ~(~i-~)(l+~(TTa)T(~-hI)-l(TTa))
i=l rc) N

2

=ir(hi-AIIl+o & + ) )
i=l . Vi = PiCTTla >ry

and the desired result is an easy consequence of this expression. 0

In the following theorem we consider specifically the minimization

of a positive definite quadratic form. We assume that the initial

estimate of the Hessian Hl is positive definite,

the following sequences of updates for the current.

(a) Hi+l = D(o,Hi) ) i = 1,2,..*, and

(b) fi,, = c(p,H;')-' > i = 1,2,... l

and we make use of

Hessian estimates

Further we do not assume that the descent condition is satisfied.

Theorem 2.2: (i) Let Ki = CV2HiC1/" , and let the eigenvalues of

Ki ordered in increasing magnitude be h.i , j( >
J

= 1,2,...,n . Then

if X(1) (1)2 p then h. >A. - 2 . . .(2) (1)
- 3 J J

>P, while if A.
J

<p then

A(1) (2)
3

IA.
J

5 . . . ,< p for j = 1,2,...,n  . (ii) Let Ki = CV2&iCV2 ,

( 1- and let the eigenvalues of ki be fi.i , j
J

= 1,2,...,n . If i(1)
3 LP

then i (1) (2) (1)
3

>i
3 Lemg

2 p , while if i
3

5 p then

i(1) li(2)
3 j ,< . . . 5 p for j = 1,2,...,n .
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Remark: This result is important because it shows that we have a

tweakt convergence result for these Hessian estimates when minimizing a

positive definite quadratic form even when the descent conditions is

not satisfied at each step.

Proof: Noting that C1/2d = cm1/2y = a , we can write the formula for
- cv N

updating K as
T T

K"
aa KaaK

=K+p+-- -$" .
aa a Ka
NN N #e

We can break this into the two operations

TKaaK
J =K- "r" 9 and

a KaN N

T

K"
aa

=J+pT .
aah)H

Note that J has a zero eigenvalue, and that a is the correspondingH

eigenvector. By Lemma 2.6 we have Al(J) = 0 , and XjBl-<hj(J) sXj

for j =2,3, . . ., n. The rank one modification which takes J into

K" changes the zero eigenvalue to p and leaves the other eigenvalues

of J unchanged. Assume that Aj(J) 5 p ,< hj+l(J) then reordering the

eigenvalues in increasing order of magnitude we have < = hk+l(J) ,

k = l$',...,j-1, A; = p , AL = t(J) , k = j+l,...,n . This

establishes the first part of the theorem. The second is demonstrated

- in similar fashion by noting that
K-1 satisfies a formally similar

This establishes the result for the eigenvalues of K'1update relation.

and hence for their reciprocals. 0
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Remark: Note that both Hi and fIi are positive definite i = 2,3,...

if Hl is positive definite. In this case the result does not depend

on the descent conditions being satisfied.

Theorem 2.3: Let H be positive definite, and consider a step d inN
-1 -1

the direction -Hg . Let H* = D(p,H) , i = G(p,H ) =

D(p,H) + + vvT, and HQ = &+ (1=0)H* = D(p,H) + $ vvT . Let
Tr id NN
Y u
WN

K = C112 HA2 , and define K* > k

of K,K*
* -A

) k J s be h. , h. , h.
J J 3

j = 1,2,...,n . Let 0 5 0 ,< 1 . If

s similarly. Let the eigenvalues

Q, and h.
J

respectively,

hj ,> p then hj 2 ij 2 $ 2 $ 2 p

while if hj ,< p then hj ,<

need not lie in the interval

Proof: It follows from the

0Lemma 2.6that k: -<hj <i.
- J

The first part of the result

0

A; L hj 5 i, 5 p l If 0{[0,1] then $

defined by h. and p l
J

definition of H* , 6 , and HQ and

.
t 3 = 1,2,...,n , provided 0 5 0 5 1 .

is now a consequence of Theorem 2.2. To

8show that A.
J

need not lie in the interval defined by h.
J and P J

consider the example

H=I, p=l, a = .

We have hl = r\, h2 = 1+2e -r\ where r\ = 2' (l+ 2~ -4/G) . Thus

- v is positive and O(E2) . In this case we have

aTKa WE
K=C , z = 7 zE, $I2 1

V =a- .
eaa N ;Ka=-- 1 10MCI
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It is readily verified that K* = 0" "1
1 3

, so that K

'eKl+E = ["02' y] . In both cases eigenvalues lie outside the

prescribed interval. In the first case we have 0 < r\ , and in the

second 1+2e > 1+2e -T\ .

Remark: This result shows that fi' gives the best improvement in the

eigenvalues < p , while H* has a similar property for those > p .

This suggests an algorithm in which a choice is made between updating

H to 8 or H* depending on some appropriate criterion. Fletcher

suggests that if 't > 1 (that is,
T T -1yHy>yC y)then H* should
N H N M

be used, while if 't <l then fi is chosen. He has used this criterion

in an implementation of Goldsteints algorithm, and has reported satisfactory

results.
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Notes

1. For Ostrowski's  theorem see his book 'Solution of Equations'

(2nd edition) or Kowalik and Osborne. Goldstein's theorem is from

his paper 'On steepest descent' in SIAM Control, 1965. Theorem 1.3

is abstracted from Goldstein and Price, 'An Effective Algorithm

for Minimization', Num. Math. 1967.

2. For background material see Kowalik and Osborne. The form of the

update for the inverse Hessian is due to Powell tRecent Advances in

Unconstrained Optimizationt  to appear in Math. Prog. It is a

specialization of a form derived in Huang, tUnified amroach to

quadratically terminating algorithms for function minimizationt,

JOTA, 1970. The form (2.14) and the result of Lemma 2.2 are

probably due (in the case p = 1 ) to Fletcher 'A new approach to

variable metric algorithmsty Comp. J., 1970, and Broyden, 'Convergence

of a class of double rank minimization algorithmsty JIMA, 1970.

Lemma 2.3 is due to Powell (to be published). The product update

form (2.22) is due to Greenstadt (to be published). Dixon9 paper

containing Theorem 2.1 is to appear in Math. Prog. The significance

of (2.27) for the successful performance of the DFP algorithm was

noted in Powell's survey paper already cited. Attention was drawn

to the dual updating formulae by Fletcher. This material together

with Theorems 2.2 and 2.3 are included in his paper already cited.
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APPENDIX Numerical Questions Relating to Fletcher's Algorithm

1. Implementation

In this section we consider two questions relating to the implemen-

tation of Fletcher's algorithm. These are

( 1i an appropriate strategy for determining A to satisfy the

Goldstein condition, and

(ii) the use of the product updating formulae for the inverse Hessian

estimate.

In his program Fletcher uses a cubic line search to determine h . Here

we use a somewhat simpler procedure which has the advantage of requiring

only additional function values. Also we work with the Choleski decompo-

sition of the inverse Hessian estimate. This has certain numerical

advantages which have been outlined by Gill and Murray* .-I In particular,

it is possible to ensure the positive definiteness of Hi , and this can

be lost through the effect of accumulated rounding error when direct

evaluation of the updating formulae is used. Another possible advantage

of the Choleski decomposition is that we can work with an estimate of

the Hessian (that is H-l ) rather than with H as division by a triangular

matrix does not differ greatly in cost to multiplication. We felt this

could well be an advantage in problems with singular or near singular

Hessians, in which case H would be likely to contain large numbers.

To implement the line search we note that by Theorem 1.2 we should

test first if ~(x,ti,i~~i~~)  = *(x,Es, 1) satisfies the Goldstein condition.

This requires the evaluation of F("i+~i) , and this, together with the

Y NPL Mathematics Division, Report 97, 1970.

-
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known values F(L) and F*(K) = VF(3fi)fi , gives sufficient information

to determine a quadratic interpolating polynomial to I? . We write this
c

as

p(h) = F(jfi)+F'(++fi2 (A4

ii,
where A is to be determined by setting P(1) = F(x, +s,) . This gives

&*)= F’ (5-i) (~(~i’“i”)  - ‘) .

The minimum of P(h) is given by

A=-
Ft (4i) 1

2A
= 2(1-~(~i'~s'l)) l

(A.3)

To test if this is an appropriate value we compute $(_xi,_si,h) . This

gives

; F"&+ jk)

A (A4

where x is a mean value. Thus, if F is quadratic and

$(“i’?JJ 1) < o then h given by equation (A.3) satisfies the Goldstein

condition for any allowable o (n0~aJ-U CT is chosen small --

say 10m4 ): For nonquadratic F the test is satisfied if the relative

error in estimating
l-
2 F"(x~+ k) by A is

This analysis provides the basis for our

Algorithm

( 1i Calculate llsii\ , set w = min(l,II#

(ii) Evaluate J, = +(~,ss,X) .

not too large.

method which is given below.

) h=l.



(iii) If h <o then begin ph = h ,

go to (ii), end.

(iv) If h<l-o got0 EXIT .-

If h 21 then begin if h >l/w go to EXIT,-

h = 2h , end.

else h = .5(h+ph) .

go to (ii).

Remark

(i) Numerical experience has shown that the value of h predicted in

(iii) can be too small, and that an additional instruction

If X < s-h then h = sqh

should be included. A value for s of about .l has proved

satisfactory (148 was used in the numerical experiments reported

in the next section).

(ii) It is readily verified that 1i.m q("i,fi,h> = 1 . Thus the
J-30

algorithm can be expected to return a value of h satisfying the

Goldstein condition unless q exhibits rather pathological

behavior.

We write the Choleski decomposition of H as

H = RTR (A* 5)

where R is an upper triangular matrix. Thus we require to find R*

such that

RqR* = H*

*
where H is given by either

(A4
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(i) H* = (I+uyT)RTR(I+wT)  y or
NN -cI

Ii

i

c

i

c

(ii) H* = (I+uyT)(RTR+[7wT}(I+yuT)  .NC1 NM -Ic)

The second case can be reduced to the first if we write

T
gTfi =RTR+c7v-v .

NW

To calculate 6 note that

RTR+r,~vvT = [RT I@v]HI1

= [RI Idb
T

VI& Q

(A.71

(A4

where Q is orthogonal. Thus we seek an orthogonal matrix Q such

that

Q (A*59

Let W(i,j,{p,q])  be the plane rotation such that W(i,j&q])A

combines the i-th and j-th rows of A , and reduces A to zero. It
Pq

is necessary that p be either i or j . Then Q is given explicitly

bY
1

Q = 'n W(i,n+l,{n+l,i]) . (A.10)
i=n

- It is readily verified that the zero introduced by each transformation

is preserved by the subsequent transformations provided they are carried

out in the order indicated.



Consider now the problem of constructing the Choleski decomposition

T
of STS where S = T+ab , and T is upper triangular. This corresponds

to our problem with the identifications T = R or fi ,

a = Ry ,and b=u. In this case the decomposition is done in

two stages. Our method uses ideas due independently to Steer, Golub,

and Gill and Murray.

an orthogonal matrix Ql such that(i) We determine

Q~J = lb\

If we set

In-

(A.ll)

Ql = 1 I W(i,n, {i,*]> (A.12)
i=l

where the * indicates that the rotation is defined by being applied

to zero an element of a vector, then QIS = QIT+ //al(enbT differs from

an upper triangular matrix only in having possible nonzero elements in

the last row.

(ii) To complete the determination of R* we sweep out the elements

in the first (n-l) places in the last row of QIS by plane rotations.

Thus R* is given by

R* = &2(QlT' II&lIenbT) (A.13)

where

1
Q2 = l-r W-,n, In, iI) l

i=n-1
(A.14)

It will be seen that the updating of the Choleski factorization can

be carried out very cheaply. Depending on the update formula used, the

major cost is either 2n or 3n plane rotations. It should be noted that
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yTHy = IIRY~~
2

= 11 a \I
2

(A.151N

is required in the update formula. Thus a can be already available
Y

for S .

2. Numerical Results

In this section we report the results of numerical experiments

carried out to test some of our techniques. We consider four line search

strategies:

(3 a standard cubic interpolation procedure with h = 1 as initial

search interval,

( >ii a standard cubic interpolation procedure with h given by the

step to the minimum in the previous line search,

(iii) a strategy for satisfying the Goldstein condition in which h

is reduced by the factor 118 if q <c , and

(iv) the method for satisfying the Goldstein condition given in the

previous section.

Product form updating for the Choleski factorization of both H and

H-l 'G has been implemented, and the results obtained for each are

given.

The problems considered include:

( 1i Hilbert: Minimization of a quadratic form with matrix given by

the Hilbert matrix of order 5 . Here

1
F =2 E c

5 (xi-') Cxjol)
i+j-1 J

i=l j=l

and the starting point is given by

x. = -
1 4/i Y i = 1,2,...,5 .
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(ii) Banana(n) : The Banana function in the cases n = 2 (the

Rosenbrock function) and n = 8 . Here

F = nF [100(x
i=l

i+l-x~)2+ (l-xi)*3 ,

and the starting point is given by

x. = -1.2
1 if i odd, otherwise x. = 1 .

1

(iii) Woods: Here

F = 100(x* * *-x1) +(l-xl)*+gO(x * *4 OX3)

+ (1-x3)*+10.1((1-x2)*+(1-x4)*)

+ 19.8(1-  x2) (1 -x4) ,

and the starting point is

XT = -c 3 Y -1, -3, -13 .

(iv) Singular: Powell's singular function is designed to test the

performance of algorithms on a function with a singular Hessian

at the solution. Here

F = (x1+10x2)*+  5(x3 -x4)2+ (x2 - 4
2x3) +wy-x4)

4
Y

and the starting point is

XT = 13 Y -l,O,l] .

( 1V Helix: Here we define

R= 1 2
[x2 + x*p Y

1 x2
T = if xl> 0 then - arctan x

*Tf
0 1

1
if x1 < 0 then - arc-tan

2rr +*5 Y
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and set

F = 100((x3 -lOT)*+ (R-1)*)+x;  l

The starting vector is

XT = {-1,0,0] .

Numerical results are given in Table A.l. For historical reasons,

the test for terminating the calculations was based on the size of ll~sl\

( lj~ilj < m/n with EPS = 10 -' ). This proved reasonably satisfactory-

for all cases except the singular function -- in fact in all other cases

the ultimate convergence was clearly superlinear, and the results were

accordingly only marginally affected by the size of EPS. In the case

of singular the convergence test proved difficult to satisfy in most

cases (indicated by * in Table A.l), and these computations were

terminated by the number of iterations exceeding the specified limit.

However, in all cases the answers were correct to at least six decimal

places. There is some variation in the H and G columns. This shows

the effect of rounding error, as these would be identical in exact

arithmetic. The most interesting case is the H column in both cases

of the Banana (8) when satisfying the Goldstein condition. In these

cases both H and G formulae produce very similar results until the

100th iteration at which point-the H formulae produce much larger

reductions in F than do the G . However, this progress is not main-

tained and at the 200th iteration (in the case of the line search

- algorithm of Section 3) the H matrix becomes singular and the iteration

is terminated. A restart procedure could have been used at this stage.

The numerical results indicate that the new algorithm is promising.

In general, although more iterations are required, we make significantly

75



fewer function evaluations in comparison with the routine'using a

standard line search. As only one derivative evaluation is required in

each iteration, the real saving can be considerable. We note that on

the basis of the evidence presented it is not possible to draw conclusions

as to the relative values of the H and G algorithms. However, that

both manage to produce very comparable results provides some evidence of

their stability.

The program which gave the results presented here is coded in

AIGOL W for the IBM 360/67 at Stanford University. The calculations

were carried out using long precision (14 hexadecimal digits).

A FORTRAN version of the program has been developed at the Australian

National University.
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1. Basic properties of barrier functions.

Consider the inequality constrained problem (ICP)

min f(x)

subject to gi(x) 10 , i = 1,2,...,m  (ieIl) ,
N

where we assume (as before) that fk, gi , i&C
2

1'
are in C . We also

assume that S = {x;gi(x) ,> 0 , icIl] is campact, has a nonvoid interior

so ,
and satisfies the regularity condition that every neighborhood of points

of S contains points of So (this precludes S having 'whiskers'). If

xcs and gi(x) = 0 for some
N

i then it is assumed that xkSo .

Definition: mx)) is a barrier function for S if the following
- -

conditions are satisfied.

( >i # >o Y XES . If X closed set, X c So , then @CC* on X .
d

(ii) #-'a, gi+O, iAl. .

(iii) $ < 0 if gi < pi where the pi, ieIl , are fixed positive constants.
.

(iv> ,&ei
bounded on N(x,&) if gi > 0 on N(x,g) .

H

m
Example: (i) fi = c l/gi(x) (inverse barrier function),

i&l

(ii) fi = f (lOg(l+ gi(�))  -log gi(�))  l

i=l

Remark: In the second example the term with argument l+ gi(x) merelyN

ensures that the positivity condition is satisfied. It could be

replaced by a bound ki for log(l+gi(x)) on S if this is known. In
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practice it is of no consequence. The barrier function

-log gi(")) is called the log barrier function.
N

Definition: T(x,r) is a barrier objective function if
e

T(x,r) = f(x) + redx))OI w w

where r >0 .

04

Lemma 1.1: 8 x = x(r) eSO such that T(x(r),r) = min T(x,r) .
CI c1 N xc3 -

m

Proof: T(x,r) is bounded below on S , and T(x,r) ++a as x + & .
H N w

cl

Lemma 1.2:

( 1i

( 1ii

(iii)

Let {rj] J 0 , and let z(rj) = zj . Then

CT( zj,rj)) is strictly decreasing,

Cf(j5j) 3 is nonincreasing, and

Cd(xj) 3 is nondecreasing.

Proof: Let ri < r. then
3

f(ci> + ri#(g(xi))  ,< '(jfj) + 'iB(~(~j>)  YN

< ‘(“j) +‘ja(,g(xj)) I

This demonstrates (i). Subtracting the inside and outside inequalities

gives

( rj - ri)#(&(xi)) 2 Crj - 'i)#(g(:j))
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which gives (ii). Fram the first inequality we have

f(“i> 5 f(zj) + ri($(_g(xj)) -16(g(X,>))

Remark: If T(x,r) is strictly convex, then all inequalities are
N

strict.

Theorem 1.1: The sequence {Tl(xi,ri)] converges, and
c

Em T(x,ri) = min f(x) .
i3m x&3 -

L

c

‘L

Proof: By Lemma 1.2, fT(xiY ri)) is decreasing and bounded below and

hence convergent. Let f* = min f(x) , then
XES -
N

T(x,ri) 2 f(x) 2 f*

whence

lim T(x,ri) 1 f" .
ida

(W

Now let E > 0 be given. Choose zeSO such that f(z) -f* < e/2 (thish)

is possible because of the regularity condition on S ), and choose ri

such that ri@(g(x)) < s/2 . ThenNCI

min T(x,ri) ,< T(%,ri) < f*+ e
x -

N

whence

lim T(Eiyri) ,< f* l U
i-bca

Cl*31

Corollary 1.1: Thelimit points of {x] are local minima of the ICp.
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Remark: The generality of these results should be noted. For example,

we have not required S to be Lagrange regular at the limits points

Definition: Qbv) is a separable barrier objective function if
NII

m T
Q(xtr) = f(X) + 1: ri$i(gi(X))  = f(X) + r #(X)GIN N i=l

#e CI @he@- 04

where r>O,and 6, is a barrier fUxtion for S
’ 1

i
CI

i = l,*,...,m .

The previous

summarized in the

results are readily extended to this case and are

following theorem.

Theorem 1.2: Let zi >~r+~, i = 1,2,... , and lim zi = 0 . Then
i+ce N

( >i

( 1ii

(iii)

min Q(~Y zk) is attained for sme
XES

YS0 ,
d

tQ(+ rk) 1 is strictly decreasing, If(j) 1 is nonincreasing, and
N M

lb &bkyrk) = f* ,
k--)- ..#

and the limit points of [zk] are local

minima of the ICP.

Remark: Given a sequence of positive vectors tending to zero then it

is possible to select a subsequence which is strictly decreasing.

Conclusions (i) and (iii) remain valid in this more general case.
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2. Multiplier relations (first order analysis)

In this section we assume sequences irk] JO , [xk'j -)x* . TheLI CI

condition that T(x,rk) is stationary at rk gives

m
= Of&) - us Vgi(xk) = Om (24

where
k

ui
= - rk >$- (g(5)) . Note that ut = O(rk) -4 , k 4~0 ,

iHd

if
k

i/Boy and ui-> 0 for ieBo and k _'ko by the conditions

defining barrier functions. Equation (2.1) is formally similar to the

multiplier relations given earlier @P&2)), and it is comparatively

straightforward to deduce these relations from (2.1) in certain special

cases. We assume that B. = {1,2,...,t] , that the rank of the system

of vectors Vgi(x*) , ieB is0 s_<t f and that v@;,(⌧*),  l 0 d%&~*)
c1CI

are linearly independent. We define matrices C,(x) , C2(z$ by#e
T

Ki(C1) = Vgi(X)’ , i = 1, , l .*,S , and Ki(C2) = Vgs+i(~) >

i = 1,2,...,t-s , and vectors w k
:1 = FL

(NT k
Y ."Y :2

= uc uk] .
s+l". s

Lemma 2.1: 'is bounded then the Kuhn-Tucker conditions hold

at x* .

Proof: From (2.1) we have

vfbJT ~= c1(xk)“l(k) + c2bQu2(k)+O(rk) .
CI N -

c-9

The linear dependence of the set of vectors Vgi(x*) , isBo , gives
#u
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c,cx*1CI
= C,(x*)RN

so that (2.2) can be written

(2.3)

] + {‘,(5>  - C1(%)R?Eik) + Ob$) ’ $4)

Provided k is large enough the rank of Cl(~) will be s (see
N

MP Remark following Lemma 3.3). Thus

04
As 22 bounded we conclude from (2.5)

( 1i 04
5

bounded, and

(ii) lim ;?)+Rx&~)
k+a

= {cl(⌧*)Tcl(⌧*) ]-lCl(⌧*)Tv~(⌧*)  l

h) m h) N

are bounded and nonnegative (at least for k large

enough) this property is shared by the limit points of the sequences.

Consider subsequences tending to ~"1 , ti respectively. From (2.2)

we have

Vf(xpT =

h)
cl~x*~~;+ c2(x*)$

N w

or

(24Vf(x*) = c u; vgi(x*) .
w ieB w

0

Thus the Kuhn-Tucker conditions are satisfied. 0

Corollary 2.1: If the Kuhn-Tucker conditions do not hold at x* ,#u

are unbounded.
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L

c

Corollary 2.2: If restraint condition A holds then the Vgi(x*)N

are linearly independent for ieB
k

0 l

In this case {z2] is null,

converges. If restraint condition A holds then the multipliers

in the Kuhn-Tucker conditions are uniquely determined.

Lemma 2.2:
04If restraint condition B holds then {t2 ] is bounded.

Remark: (k)By MP Lemma 5.2, this implies that [y2 } is bounded for the

convex programming problem provided S has an interior.

Proof: If restraint condition B holds then 3 ,d such that Vgi(x*)d > 0 ,H CI)

i = l,*,...,t . From (2.2) we have

t

1 UF Vgi(xk)d = Vf(xk)d+O(rk) l

i=l 1 - CI H
cm

As Vgi(x)d is a continuous function, we must have ut >O and
MN

Vgi(x&d > 0 , i = 1,2,...,t , provided k large enough. Thus (2.7)
M CI

gives

tc Uk.
i=l ’

<
vf(s)d+  ‘bk)

mG vpi(xk)d
i

N II
.

k
This relation shows that the ui are bounded as k 400 . 0

(24

Remark: The results of the first section showed that convergence of

barrier function algorithms can be proved under very few assumptions.

The results of this section show that valuable structural information

on the problem is available as a by-product of the caputation. Note

k
that the conditionthat  the ui be bounded is a weaker restraint condition

than either A or B.
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3.

that

Second order conditions.

Consider now a barrier function # and a sequence {r,} JO such

w *4x Yw w *-*xl . It is convenient to assume the following-

properties which are satisfied by all barrier functions of practical

interest.

( >i Uk =-
i >' , rk = 1,2,...,m, Vk .

2
( >ii L?!rk 2 5 -,+O" t k4ao,( > ieB

'gi
0 l

(But see Example 4(ii) p. 100

for qualification.)

(iii) a-$&- =0 if i+j.
i j

Lemma 3.1: If the matrices vk:kyrk) are positive definite for

k ,> ko and the p.gi(x*) , ieBo , are linearly independent then
N

T 2
v v I:(x*,u*)v > 0 ,
CI H N LJ

Vv # 0 such that vgi(x*)v = 0 ,
CI N h)

VieBo .

Proof: Differentiating T(z,rk) gives

v'(Xk,'k) = v2d\'uk) + rk ifl (3.1)N au =

which can be written

Where

2
0 > aa
kiizrk 2 5 ' i( 1 = 1,2,...,t .

'gi
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Let

'k = cl(xk)clo~+- Y

then, for arbitrary nonzero v such that (I -Pk)v # 0#u h) #u

0 < vT(I -pk)v%(3fk)rk)(I  -Pk)"H d

= vT(I-Pk)v2S(xk,uk)(I;Pk)V+o(l)H N N

(3.2)

as

(I -pk)cl(\)  = � l

The desired result follows frm this on letting k --,Qo . 0

Corollary 3.1: If in addition to the conditions of Lemma 3.1 we have

also strict complementarity then the second order sufficiency conditions

(the conditions of MP Lemma 4.3) hold at x* .
N

Remark: The problem of generalizing this result to the case where the

active constraint gradients are not linearly independent is the following.

In general, when k < a3 , radCl(x& 1C2(5) 1 > s . ThusY

‘k = Cv ; Vgi(~> v = O,VieBo] CUk = {vjv = (I-Pk)u , usEn] .CI CId & eu N

We have

lim Uk = V* = {v;vgi(x*)v = 0 , VieBo] .
k+=

d & CI

It is not difficult to construct examples in which lim v,cv* .
k+m

Consider Cl(xk) = zl , C2(xk) = el+~$(~-~*);2  . ThenN N
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Vk = I
T

";"yJ
T

= :*I =o] = lim Vk C v* = {v;_eTlv = O] . The
kd= N N

T 2argument of Lemma 3.1 shows only that v v g(x*,u*)v > 0 for
N CI N N

VClimV .
k k403

Lemma 3.2: Let

w = u+yv$ ,

N= Ct;Iltll =l,v%=O] ,N c1 CI

M = {u;Ilu/ = l,u~N'] - ,CI N N

T T
v =mint Ut>O , 0 =minu UU , p=min

-tcN" N um" - UEMm w N

7 = min tTUu , p = mi.n(O,Q
tcN,uF_M N ti
w

then W is positive definite provided

Proof: Any unit vector w can be written
N

II _I1vu >o ,

W =au+~t where UEM , -txN , and
2

a +p2 = 1 .N N N h)

Thus

wTww = cx2uTUu+2cq3uTUt +p2tT ut+ ya*p%11*
rr) N - N CI CI CI N )cI

>- Q? o+Y~2-v)+2~q(l-d)l/2p+v

(3.3)

(3.4)
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%

'as p<o. Provided y >q (a weaker condition than (3.3)), the-
PJ

right hand side has a minimum at a =
-P

0 + Yp2 - v
>o . The value at

this minimum is -P2 + v
0 + Yp2 - v

which is positive if (3.3) holds. 0

Corollary 3.2: If W = U+VDVT where D diagonal, and if the

conditions of Lemma 3.2 hold, then W is positive definite provided

min D > p2+v2 -(JV
ii 2 l

If D is positive definite the result holds
'i WJ

provided the smallest eigenvalue of D satisfies this inequality.

Proof: We have

TwVD 3
N

_>min Dii
i

.

The result now follows as frm equation (3.4) above. 0

*
Lemma 3.3: If the second order sufficiency conditions hold at xN

then v% (zk,'k) is positive definite for k large enough.

c

Proof: We have

v* s u* = {v ; pg(x*)v = 0 , Vi eBO such that ui > O] l
M h) h)

Thus the second order sufficiency conditions imply that

T 2v v x(x*,u*)v > 0 , vv E v* such that ,v f 0 l From Corollary 3.2
N Y w N

it follows that 3 Do such that V*$(X*,u*)  + [C,(X*) IC2(x*)  In[c,(xW)  Ic,(X*)l’
CI hl h) OI c1) c



is positive definite for D_>Do. By continuity this implies that the

corresponding matrix evaluated at xk is positive definite for k large

enough. The desired result follows from this as (Dk)ii + Q) ,

i = 1,2,...,t as k + eo . 0

Lemma 3.4: If U is nonsingular, D diagonal, and V of full rank,

then the system of linear equations

[U+VDVT]x = Vy
CI c1) (3.5)

has the solution

x = U-lV(I+M)-'My
c1) (3.6)

where M = (VTU-lV)-%l provided I+M is nonsingular. A sufficient

condition for I+M nonsingular is II IIM < 1 which is satisfied if

min lDiil is large enough.
i

Proof: The result follows on substituting (3.6) into (3.5). 0

Remark: From (3.6) it follows that

x - U-+.&J-lV)-lD-ly
N

as min lDiil -+ 00 .
i

Corollary 3.3: If the right hand side of equation (3.5) is z ,
N

a general vector, then the solution is given by

x = U-lV(I+M)-~(VTU-lV)-lVTU-lz
H N

+ u-l(I-v(du-lv)-lVTu-l)z  .
N

(397)

(3.8)



4. Rate of convergence results.

In this section, rate of convergence estimates for barrier function

algorithms are considered. Unless stated otherwise the conditions

imposed in Section 3 are assumed, together with the condition that

IIVgi(x")il  f; 0 , ieD l

Lemma 4.1: Provided {t,] is bo&ded then

t

Proof: The result follows by taking the scalar product of (2.2) with

*
:k-:

and identifying with terms in the Taylor series expansion. 0

Definition: We say that uk is SO(vk) (strict order vk ) provided

b) \ = 'bk) , and

(ii) 3ko<m and ~>0 such that luk\ ,> pIvkI for k 2 k. .

Remark: (4.1) gives an error estimate provided the remainder term is

small. A sufficient condition for this is

f(\) - f(⌧�)  . = SOCIlr, - ⌧*11> l (44

& m 6 CI

This implies that for at least one i , uk gi(:k) = soCl\~ - ⌧�II>  l
CI

If (4.2) does not hold then for i = 1,2,...,t either

( 1i
k

u. 30,1
k+m,or
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If (ii) holds then the approach of L to x" is tangential to the

surface gi(x) = 0 at x = x* .
e.d

Lemma 4.2: If the ICP is convex, "then

( >i :k' :k are dual feasible, and

(ii) f(zk) - f(x*)
c1

< uF gi(xi;> .

Proof: The dual feasibility is a consequence of (2.1) and assumption

(i) of Section 3. This follows directly from Wolfe's form of the duality

theorem (MP Corollary 5.1). We have

which demonstrates the second part of the desired result. 0

Example: For icBo let gi(\) = SO(ll\ - x*!j) , u: > 0 .N w e

( 1a inverse barrier function. We have

whence

Si(Xk) = ☺rk / ur l

This gives .

llr,-x*11  = O($*) .

_ (b) log barrier functions. In this case

Uk
i = 'k/ gi(xk)

which gives
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and

Thus the strict order condition permits us to deduce a rate of convergence

result. We now show that the SO condition is equivalent to the
.A

condition of strict complementarity for the inverse and log barrier

functions. In these cases the remark following Lemma 4.1 gives us a

geometric interpretation of strict complementarity.

To discuss this equivalence , consider the following system of

equations which define
Ek and u,k

as functions of rk .

Of(\) - fm i=l
u~V@;i(lk)  = O )

N

and

=- rk t i = 1,2,...,m .

If the Jacobian H(x,u) of this system with respect to x f u or an
- - N N

appropriate  transform of it is nonsingular then we can study the behavior

Of 44 9 u(T) as a function of r by integrating the system of
&

differential equations

H(x,u)
where = {l,l,...,l] .eT We have

CI
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H(x,u) =
N N

-2v e(w)- N

.

.

.

-u
m

Let D be the diagonal matrix

where

then

DH =

D = w1
.

.
.

w. = -
1 P-gi

v* x(x+>- -

u1v6Q4

.

.

.

“mv x%I(-)

Wm
I

.
.

.

. . . - v@jplT

.
.

.

(4.7)

(4.8)

(4.9)
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Provided 3. Y k-+ap, ieB0
then DH will be non-

singular for k large enough provided J(x*) is nonsingular (see Mp

Lemma 4.4). This implies

( >i the second order sufficiency conditions hold,

(ii) the active constraint gradients are linearly independent, and

(iii) strict complementarity holds.

In this case

DH

whence

r

dx
G-1du22w

=
rk

-s
0

provided the components of

(4.10)

(DH) -1
0II dr
W

w are
N

integrable.

Example: (i) inverse barrier function.

We have

a 2u!v
Qi - a 2 a2# 1

gi ag2 = - 2 '
i 6-Y'i q

=2@;i"

In particular, it follows that DH(x.& is nonsingular for k large enough,

while -w.
1
= $dF . We have
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du

G

1

ii?-
1 2 D-0 -1

.

0

J-5.

i.

whence, changing to r112 as independent variable,

dx
ip-)

du

Thus we have

I-
x(r) -x*

i: 1u(r) -u* I = r1/2[DH(x*)]-1

.

0

I<U
*
1

.

.

.
*

/--\U
c m

+ o(rV2) .

(ii) 10~ barrier f'unction. In this case

so that (4.10) becomes

du

TiiF 1

P+*w

(4.13)

(4.14)

(4.15)
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In particular, x(r) , u(r) inherit the differentiability properties of
h)

f and Qi Y i = l,...,m for r small enough (if f,geCP then

x,uEC~-~ ). Thus
GIN

(4.16)

Remark: These results can also be derived by differentiating (2.1) with

, respect to r . We obtain

dx
v%(x(r),r) s = - f -$ Vgi(x(r))T  l

i=l i N

(4.17)

In this case Lemma 3.3 guarantees that V2T(x(r),r)  is positiveN

definite for r small enough, and Corollary 3.3 can be used to give
du

the solution to (4.17). Note that (4.17) results if J$ is eliminated

from (4.10).

We can now proceed to the main result.

Theorem 4.1: Provided J(x*) is nonsingular, then the strict
w

complementarity and strict order conditions are equivalent for the

inverse and log barrier functions.

Proof: The argument is essentially the same for both barrier functions,

but is simplest for the log function. Thus only this case is considered

here.

For the log penalty function ~2 = rk/gi(xk) so that
M
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fQ - f(xE) = 1 5N i~B
0

Gi(xk) ‘i(%) + O(IIXk - :*/I)

= ’ rk+ “((I\ - x*II> ’N

If strict camplementarity does not hold then for at least one ieBo

*’ gi(xk> = vgi(x*) (ok  OX*) ’ O( ‘ikk - x*\I) is O(ll\ -x*1\) at most, itCI w

(4.18)

fol.lows that rk = 0(11x,-x*il, -and hence, from (4.18)’ that

f(⌧k)  - f(⌧*) = �ciljsk  -⌧*\l)  l Thus the SO condition does not hold.

If strict complementarity does hold then asymptotically for small r

Thus r = O((\x(r) -x*\i) . As J(x*) is nonsingular (4.16) holds and this

implies (as r = 0(/x

II$) - “II

r) -x*i()) that
d

< Kr +O(r*)

for some K > 0 . This shows that r = w \(xb> - x"(l) so that, by (4.18)’
H w

the strict order condition is satisfied. 0

- Remark: The above argument shows that if strict complementarity does

not hold then the strict order condition cannot. The condition that

J(x*) be nonsingular is required only for the second part of the theorem.
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Example: (i) minimize x +x
1 2

subject to -x;+x2-->o, x120

Figure 4.1

From Figure 4.1 it is clear that the minimum is f = 0 at xl = x2 = 0 ,

and that strict complementarily  holds.

( )a inverse barrier

T =x1+x2 + ILx
1
>

q=o =l+r{(x2::;)2 --$}

aI?T=O=l+r (
- 1

{ )
22 l

35 - Xl>
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This gives a pair of equaticns for 7.
and x, as Funct ion:;I .

112X1=r - r+ O(r3/*) ,

x2 =r1/* + r+ O(r312) .

(b) log barrier function

T = x1+x2-r{log (x2-x$+log xl]

ar
ax2

{

-2x1
= 0=1-r 2

x2 OX1

+

= 0 = 1-r
1 -

c >

2
x2 OX1

1
x1
>

Solving for x1 and x2 as functions of r gives

x1 = r-2r2+O(r3) ,

- r+r2+0(r3) .
x2 -

( 1ii minimize x2

subject to x2 -x: > 0 , x1 2 0 .

In this case the minimum is again f = 0 at x1 = x2 = 0 . However,

vf(O) = $ is orthogonal to vg2(0) = zt . Thus, as both constraints

are active at zero, strict complementarity

the constraint g2 = xl2 0 is redundant,

trajectory is tangential to the constraint

does not hold. Note that

and that the barrier function

surface gl = 0 . Note also
Ac

that the rate of convergence is reduced, and that rk apr

&z2
does not

tend to m for the constraint with the zero multiplier.
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( 1a inverse barrier f'unction.

T 2
=x+r 1 1

{ >

2+q
x2-x1

0 r

{

2xl= =

(
2 2

x2 - Xl)

aI?
ax,

=O=l+r -1

{ 1(
2 2

35 - Xl)
whence

x1 = (r/2)li3 , u1 = 1 ,

x2
= 3r/2 , U2 = (4r) 113 = 4

(b) log barrier function.

T = x2 - rChz(x2 - xf) + m3 x,1

= 0 =1-r
1{ .I2x2-x1

whence

2
xl = (r/2)q2 , U1 = 1 , r 3 = 2

1

.

= 3r/2 , U2 = (2r)V2 , r
2

x2
ai

ag;
= 2 l
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(iii) minimize -x1

subject to (10~~)~ -x2 ,> 0 , x2 2 0 .

This is the example used in MP Section 3 (see Figure 3.1). The

optimum is f = -1 at x1 = 1 , x2 = 0 . The Kuhn Tucker conditions

do not hold at this point.

( )a inverse barrier

T= 1-x +r

tiction. \c 1 + IL

0-q 45
3 5)

g = O = -l+r{((13::;;-)1?)

&r
axo="=r {

1 1

L ((1-x~)  -5)
3 2-z >

whence

= 1 e112 3’14 r114
x1 - Y

x2 =
z112 3314 r314

l

In this case y(T) = u2(r) =
2 . 33/’ . r1/2

(b) log barrier fur&ion.

T = -X1 - r{log((l -xl13  -x2) + 1063 x,3

2
ar.
q = O = -lor

-3(1-x1)

{ >
(1-x >3_,

1 2
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whence

x1 =
1-6r ,

x2
= lo8r3 .

In this case ul(r) =u2(r) = - .
lo8r2

The above examples confirm the predictions of our analysis, and for

a given fixed sequence of rk values effective convergence is attained

more rapidly (i.e., for earlier members of the sequence) with the log

barrier function.

Now let fl be a barrier function. Then

fl1 = log(a+#) , 0 >l (4.19)

is a barrier function. Let xk minimize
N

f+rk$ , ;ck minimize
CI

f+rkfll  l
Then comparing corresponding Lagrange multiplier estimates

gives

whence

3 1 rk 30

Essentially this says that gi(;ck) -) 0 more rapidly than gi(x& , soN H

that a faster rate of convergence is anticipated for the dl barrier

function.
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Consider now the sequence of barrier functions defined recursively

bY

@ (1)
i = ‘Og( ki - l”g(g;(x)) Y

fi ( >i
j

= log(o+#j(i-1)) ., 1= 2,3,..., 0 > 1 ,

p = f &il .

j=l J
(4.20)

In this case the error estimate is

f(2Cii))  - f(x*) = -rk gj($ = 5 k rk
j=l j -log(g.

J
) E '*

j

(4.21)

The right hand side of (4.21) tends to zero as i + CD , and this suggests

that increasingly rapid rates of convergence can be obtained by using

barrier functions associated with large values of i .

However, an even more interesting result is possible. This shows

that in certain circumstances it is possible to choose a barrier function

having the property that the solution to the ICP is approximated

arbitrarily closely by the result of a single unconstrained minimization,

without requiring r to be taken arbitrarily small. Let

T%br) = f(x) +r f-.-a N j=l
#ii+gj(x)) , and

Q(O) = f(x)+ f X.(kGIN w j=l J j
-log(gj(x)))  ’H
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Theorem 4.2: Let Q(x,h) have a unique stationary value (necessarilyti-

a minimum) in S
0

for each

for i = 1,2,... and fixed

are local minima of the ICP.

h>O, and let x i( 1 minimize T(+x,r)
& N

r . Then the limit points of {x i ]( )
N

Remark: Note that r does not have to be small in this result.

.
Proof: If x1( > minimizes

CI
T(i)(x,r) then

N

m.
Vf(x ' ) -r r( 1

N j=l kj -

= 0 I

and this expression has the form

vQ(x~i),h(i)) = 0
N

(4.22)

(4.23)

where X ( )i
j

has the numerical value

Ai =( >
r

j k

(i)] 1
.

Thus the {x a so correspond to a sequence minimizing Q(x,h ' ) by( )
u HN

Y j =1,2,...,m .

(4.24)

the assumed uniqueness of these stationary values. Now, as 0 >l ,
.

a
( 1 h 1( 1
j
' > 0 , s = 1,2,...,i-1  ,

3
can be made arbitrarily small for

each j by choosing i large enough. The desired result is thus a

consequence of the remark following Theorem 1.2. 0

105



. I

Remark: The conditions of the theorem are satisfied if f(x) convex,

giCx) Y i = 1,2,...,m concave, and strict convexity / concavity holds

for at least one of these functions.

In what follows it is convenient to use the superscript i to

indicate the appropriate member of the log barrier function sequence

(4.20).

Lemma 4.3:

=

.( 1
_ PC

Y i = 1,2,...,

where

( >
i

'3
= &i-l) + g

j 3-
@) < p(i-l)

j gj j Y

and

( 1i
9 -,I- Y gj

30 .

' Proof: Let j&O) = -log g. then
3

so that (0)p. =l.
3

Now, differentiating the relation

(i+l) ( >

%=$I+%+

gives

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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so that

= o- .

L 1

This demonstrates (4.25) and (4.26)’ (4.27) follows on noting that

(0)
2

=l, and that, from (4.29)'

= 1,2,... . IJ

A consequence of this lemma is that, provided J(x*) nonsingular,h)

then #)H@) is nonsingular for x(r) sufficiently close to x* .IyN

Lemma 4.4: Let J(x*) be nonsingular, and I1 = B. , then the SO
N

condition is satisfied.

Proof: We have from (4.29) that

( )i ( 1i
w. =-
J ( )/c

“j

2 y;$‘q,

3
.

so that ( )iw; 30 as r -) 0 for jeBo . NowJ

- II M 1
I

< [,Ci),Ci) (5) 1-l

Pi( 1

*-Xzsc,
*

:k-U,

k
u1 gl

.

.

Ui
m gm.

(4.31)

+ smaller terms
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where P ( >i .
is diagonal, and P.?( > ( 1

53
=l/pji -4, rk 30,

j = 1,2,...,m . This result implies that for k large enough

II ok - x*lI L K C uJ gj(Xk) ’W.

The SO condition is an immediate consequence of this inequality. 0

Remark: If B. c I1 then w.~( 1
3

need not tend to zero for $Bo .

Thus eventually the largest components of w i( 1 will be those associated

' with the inactive constraints. This implies that llr,-x*1\ = O(rk) .

Bu-t Q-YJ
jeBo , is o(rk) which suggests that, in general, the SO

condition does not apply. This case should be contrasted with the log

and inverse cases where the contributions of the inactive constraints

do not dominate in w (in the inverse case the active constraintsN

_ dominate). We note that the SO condition is only sufficient for (4.1)

to provide an error estimate and numerical experience indicates that it

is applicable in the calculations with the log sequence. However, the

above discussion suggests that to &Main the maximum rate of convergence

with the members of the log sequence, the inactive constraints should be

identified and discarded. A possible way to do this automatically is by

the use of a separable barrier objective function

mUL
Q+P,) =CI f(x) + rk 1 u;-l @(g&x))

i=l Y (4.32)

k-l
where p = rk u , rk

A ..,
is the usual barrier parameter, and u.k-l is

1

the multiplier estimate obtained from the previous minimization. This

objective function has the property of forcing the multiplier estimates
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for the inactive constraints to zero at a very fast rate. We have

uk+l = -
i ( jsk+l>

k
_< rk+l Pi"i ,< (4.33)

where p. is a bound for ( ):k '
k = 1,2,... .

1

This choice can also be favorable in the case of nonstrict comple-

mentarity. Consider the previous example

min x2
subject to x2 -x: 2 0 , Xl->0 l

X 2 - r2{10g(x2 Ox'l, + Uk-l log xl] ' Then VQ = 0 gives

2
x2 Ox1 = rk ' 2x+kUkl t

Set Q:=

so that

rk"k-l
Uk = x1

- *l/’ r'/* u112
- k k-l '

-k 'k
rk=a , Uk/2 = a reduces this toSetting

The solution to this difference equation satisfying the initial

condition PO=0 is

B, = -k+(l-($)k) .

From this it follows that uk = O(rk) , and hence that x1 = O(rk) .

Thus, for this example, we are able to obtain results as favorable as

those in which strict complementarity  holds.

Example. Show that the error estimate (4.1) is valid in this case.
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There is a penalty to pay for the generality of the barrier

function algorithms, and this is a significant burden of calculation

associated with each of the successive unconstrained minimizations.

This can be eqlained (at least in part) by looking at the Hessian of

the barrier objective function. Experience (in part supported by

theoretical results) indicates that the condition number of the Hessian

is a good indicator of the degree of difficulty of an unconstrained

optimization problem when it is solved by descent methods.

On the assumptions that the second order sufficiency conditions

hold at x* , and that the active constraint gradients are linearly

independent, then it is possible to deduce fairly complete information

on the eigenvalues and eigenvectors of V2T(zk,rk) from (3.8).

(i) There are n-t eigenvectors associated with eigenvalues of

V*r(x,,r,) that are O(1) as rk --) 0 . The smallest eigenvalue tends

to

vTv2e(x*,u*)v
m = min N

G
N c1

I
V vv

Vv such that Vgi(x*)v = 0
N OI N

, VieBo .

H N

(ii) There are t eigenvectors associated with eigenvalues of

V2T(zk,rk) which tend.to ~3 as rk --) 0 . These eigenvectors are

asymptotic to vectors of the form where xi are eigenvectors

of the problem

2
where A is a diagonal matrix, Aii = apr .

Y 1 =lY l **, t .
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The corresponding eigenvalues tendto

that is, like where a

like +irk
max

l,<jlt

is the maximizing index.

This shows that the condition number of v2T(xk,rk) tends to i

like l/ga(xk) or like l/II~:,-x*ll L! if the SO condition is satisfied.

In this latter case we have shown that our measure of the cost of a

barrier function calculation depends in the main on the accuracy desired

rather than on the choice of barrier functions. However, our estimates

for the log family indicate that these will be samewhat more expensive

than the above estimate except when all constraints are active.

Note that the device introduced to force more effective elimination

of the inactive constraints does not force the Hessian to be worse

conditioned in the case that strict ccxnplementarity  does not obtain, at

least in the examples that have been worked out. The use of this

device would appear to be an important improvement in barrier function

algorithms.

50 Analysis of penalty function methods.

Consider now the equality constrained problem (ECP)

min f(x) ,
x&3 -

S = {x;hi(x) = 0,i = 1,2,...,q (ieI,)j . (3.1)
N c1

h)

It is assumed that S is nonempty, and that (3.1) has a bounded minimum

(say P ).
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Remark: The inequality constraint g(x) > 0 can be written as the
H -

equality constraint

h(x) = min (O,g(x)) = 0 (5.2)CI

so that formally the ICP is a special case of an ECP. However h(x)

given by (5.2) can have discontinuous first derivatives.

Definition: F(x,h) is a penalty objective function if
0)

q
F(xYh) = f(x) +' C ~(hi(x))N c1 i=l N (5-3)

where 444 is a monotonic increasing function of Ihl , and q(O) = 0 .

Fxample: Let q(h) = Ih(l+a: then $ is a penalty function if a > -1 .

If g(x) is concave then, from (5.2)' so is h(x) , and q(h) is

convex provided a > 0 . 2 -- If a < 0 then dh is unbounded as h 30 .

Theorem 5.1: Let rxi3 tm y and zr minimize F(x,h,) . ThenN

Cf(jj,>  3 nondecreasing, {F(x ,h )) strictly increasing unless x ES ,

and {gl $(hi(Er))) nonii:,Ising. If (zr] ---) x then " i:lves

the ECP.

Proof: Let hr < hs . Then, provided zr,zs 4s ,

F(xrJhr> 5 F(xsY �r) < F(~SY�~)  5 F(~.,☺hs) l

Thus (compare Lemma 1.2) the results for the sequences follow as before.

We have

min F(x,h) 5 min F(x,h) = min f(x) = ? . (5*4)
x - XES - x&3 -

e N
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Thus the F(xr,hr) are bounded, and hence x*&3 . Now '

x*&s =a f(x*) ,> ? ,
H

but, bY (5.4)’

so that

u-m f(X,) 5 F .
r-0

Thus f(x*) = ? , and x* solves the ECP. 0

Remark: In the more general case in which 'z,] is bounded it follows,

by restricting attention to convergent subsequences, that all limit

points of {E,] solve the ECP.

Theorem 5.2: Let {z,] 3 x* and assume *Chi) continuously differentiable,

and ohi , ie12 , linearly independent. Define :r by

ru. =-h
1

sgn(hi) , i = 1,2,...,q

then {;,] -'u* , the vector of Lagrange multipliers for the ECP.

Proof: Define the matrix B(xr) by K,(B(x-)) = V~,(X-)~  ,
NA

i = 1,2,...,q . The condition that

cl
0 = vF(ph,) = vf(xr) +hr ?Li=

SO that

.L rr.J- J. #WI

X minimize
r

F(x,h,) gives

a$

'Ihi
sgn(hi)vhi(~r>

Vf(xr)T  = B~"$_u,  .

(5*5)

(5.6)

(5.7)
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Now B(x,> has full rank for llzr-x*ll small enough. Thus
cv

U
3 = (B(,r)T B(E,))-~ By vf(xr)T

4 (By B(x*))-' By vf(x*)T = u* . 0
N N CI N (5.8)

Remark: (i) If strict complementarity holds so that IuJI > 0 ,

i = 1,2,...,q , then the convergence of the Lagrange multiplier estimates

implies (from (5.5)) that sgn(hi) is constant for i large enough as

a
+-I I

XES .
hi"' N

Thus the minimizing sequence approaches S 'from one

side'. In this sense S acts like a barrier.

(ii) Note that hi(x) = min(O,gi(x)) = 0 identically in a neighborhood
N m

of x* if gi(x*) > 0 . Thus vhi(x*) = 8 so that, in this trivial
h) N N

sense, the constraint gradients are not linearly independent. However,

if strict complementarity holds, then a multiplier result can be proved

for the active constraints (do this!). In fact, the strict camplementarity

restriction can be relaxed samewhat.

Theorem 5.3: If the conditions of Theorem 5.2 hold, and, in addition,

c ,I
*

U +U 'and ?$+ -+a~, i = 1,2,...,q  , as r 4 a0 , then the

second order sufficiency conditions hold at x* if and only

v2F(xr,hr) is positive definite for r sufficiently large.

if

Proof: This is essentially the same as that of Lemmas 3.1 and 3.2. 0

Example: Derive the analogues of Lemmas 3.1 and 3.3 which apply when

the EP is obtained by transforming an ICP by/
means of (5.2).



Remark: The condition that hr
dh2

3 03 is related to strict

4

ccanplementarity. Consider $ = \hiIBa: , a > 0 . Then

AL
dhi

= (l+a:)Jhi)" sgn(hi) , - 'r ~ =u~
i

so that

h & = (l+a)a(hil"-' = -
alu;l

r d3-l; I I
.

hi

(5-9)

(5.10)

Thus hr b-+-
dh*

Y h -to if IuJ >o.i
Strict camplementarity

is of particular importance for equality constraints derived from

inequality constraints by (5.2). In this case, the one sided convergence

implied by the multiplier relations is needed if we are to be able to

talk about second derivatives at all.

The parallel development of the treatment of the ECP by penalty

function methods and the treatment of the ICP by barrier functions can

be completed by discussing convergence rates of penalty function algorithms

in much the same way as we treated the barrier function case. For example,

multiplying (5.6) by zr -x* gives
N

f(x*) - f(xy =
d t

ut hi(⌧r) + O( IIzr  - ⌧*\l2)
l

i=

N

(5W

The assumption that the SO condition is satisfied can now be used to

provide estimates. From (5.9)

(l+a)',lhil~  s@(hi) = - us

so that
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(5.12)

1 l/aThis suggests a rate of convergence of 0((r) ) , which contrasts
r

favorably with the estimates obtained for the barrier function algorithms.

In particular as a 3 0 , (5.12) suggests that the convergence rate

becomes arbitrarily great. However, the results of the previous section

also indicate that the condition number of the Hessian will become

. arbitrarily large as a 3 0 . The next result provides information on

the limiting case a = 0 .

Theorem 5.4: In the ICP let f(x) be convex, and gi(x) , ie1w N 1'

concave. Let w be an infeasible point, z. an interior point of S ,
c1

a = min gi(xo) , b = f(zo) - f(x*) 'and X
ic1 h) o = (b+l)/a . Then x*

H
1

minimizes

F(x,h) = f(x) -A f
i=l

min(OY gi(x>>M (5J3)

provided h 2 ho .

Remark: It is necessary to demonstrate the result only for X = ho .

For all larger h it ‘is then a consequence of Theorem 5.1.

Proof: Let v be the boundary point of S on the join of w and x
-0 '

and Bv be the index set of constraints active at v . Define
N

44 = f(x) -‘O C gi(x> Yd i.eB -
V

(5.14)

then
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c

S(Xo) = f(~o) -ho c gi(xo)
ieB

V

_< f(Jo) - b-4

= f(x*)-1

5 f(v) = s(v) = F(v,~~) l

M CI &

As s(x) is convex and v is on the join of z. and w, 3Q,c1 N

0 < 0 < 1, such that

s(v> = Qs(~o)+(l-Q)s(w)N

5 0s(v)+ (1-@s(w) -
CI

whence

SW ,< s(w) l
N

Now s(w) ,< F(w,hg) so that, from (5.15) and (5.16)
cu rwl

Thus min F(x,ho) must be attained at a feasible point. q
X

6. Accelerated penalty and barrier methods.

(5*15)

(5.16)

The problems of poor conditioning of the computational problem and

(comparatively) slow convergence make it worthwhile to search for methods

for accelerating the convergence of the penalty/barrier function

algorithms. Consider the (generalized) penalty objective function

P(XYWY  ti
CI w

= f(X) + ~ wiiJl(hi(x)  + ni)
N i=l

(64



where W is the diagonal matrix of penalty parameters, and the 'Q.
1

are further parameters to be used in the acceleration process.

At a minimum of P , x(W,'@ satisfies
cv

qw(x) - ?Li=
ui(W,~)Vhi(x)  = 0CI ry (6.2)

where 3JL(W, 11) = - Wii x l Provided ()x(W,'@ -x*/ and
i N N

\tUWY 7) -"*I\ are suff'iciently small, the second order sufficiency

conditions hold at x* , and Vhi(x*) , are linearly independent,
#u

ieI2 ,

then (by Theorem 5.3) x* also solves the EP

min f(x) , S
XE

Aw

&

w r\ = CX ; hi(X) = hi(X(W,~)) 3 id21 l

3 N N

4

One sequential strategy for making x(W,q) 3 x* is to force
c1 N

h = min Wiitm . However, the parameter vector r\ is also available,
i N

and we ask is it possible to adjust it to make

hi(x(WY 7) >

3 X

Let 07\ be -lJhe

j = 1,2,...,q . If

=o , ie12 . (6.3)

3X.
matrix with components $, i = l,...,n ,

3

v2ww3 T) Yb n) is nonsingular, then, by the

implicit function theorem, we can solve (6.2) for x = x(v) holding
N -4-d

W fixed. We have

where all quantities are evaluated at x(W,v) . Defining the diagonal



matrix V by Vii = Wii -
ah2

i

= 132, . . ..q , and the

matrix B by Ki(B) = vhi , i = 132, l **,q 3 then (6.4) can be written

(v's+BvB~) $ = -BV .

Choose V. to make U = v2e+BVoBT positive definite, and set

v1 = v-v0 . Then, by (3.6), if min Vii is sufficiently large
i

3X

q - -
U-$(BTU-lB)-l+O(V-l)  .

(6.5)

(64

This relation can be justified if

( 1i the second order sufficiency conditions hold at x* and vhi(x) ,M CI

ie12 , are linearly independent,

(ii) /x-x*\\ and llu -u*(I are sufficiently small,
- rr) N N

(iii) min V.. -,a as minW
11

+QD for 7\=8,and
i i

ii N N

( 1iv min W..11
sufficiently large.

i

Consider now the use of Newton's method for solving (6.3). This

suggests that a correction 67 to 7\ be found by solving

BT ax
Jy - - 1+o(v--l) (6-8)

(6.7)

c
so that

tYq = h+O(V-') .
& M

(6.9)



Thus we expect the simple correction S'/J = h to approximate arbitrarily

closely to a second order process provided V is sufficiently large.

Algorithm (ECP)

( >i Initialize r\ (1) , W (1) .

(ii) Minimize P(x,W(~),~(~)) to determine xk , u,~ .
H

(iii) IF ut hi(\) < TOL THEN STOP.
i=l

( 1iv FOR I =l STEP 1 UNTIL Q DO

IF mS(hi(xk)) < DECR*ABS(hi(~k_l))c)

THEN -if+' = $+hi(x&

ELSE Wck+‘)  = Ej(p*Wck)
ii ii

Uk.

J&

ii >

( >V K := K+l.

( >vi GQ TO (ii).

Remark: The idea behind the algorithm is that the correctian (6.9)

is used whenever the convergence of hi to zero is satisfactory.

Otherwise it is assumed that Wii is too small and it is increased

accordingly. '& is modified at the same time to ensure thatI

Uk
*

i
4U

i
as h

i
40.

a$ -1
kd indicates

For the ICP we consider the modified

R(x,W(~),+~)) f(x)+ f W(k)=
N i=l ii

the inverse function to x .

barrier function

up1 a(gi(x) + ~) (6.10)
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where tkml is the vector of multiplier estimates frcxn the previous

minimization, and W04 is now the diagonal matrix of barrier parameters.

We note that, in the particular case in which all constraints are

active, the previous analysis is applicable, at least formally, and

suggests a correction

(6.11)

with order of magnitude departure fram a second order iteration of

. However, we require automatic selection

of the active constraints if we are to make use of this result, and it

is important to note that this is provided naturally in the algorithm

by the options

( 1
k?-1 k

i if gi -) 0 at a satisfactory rate then 'Qi = 'Qi+ gi , and

(ii) if the convergence rate is too slow, then decrease the barrier

parameter.

This second option can be expected to apply to the inactive constraints,

and will drive the contribution to (6.4) from this source rapidly to

zero by (4.33). Note that the boundedness of the barrier terms requires

that gi+ '$ be positive. If- r\ (1) is set to zero then (ILL) ensures
CI

that this condition will be met initially. Provided strict ccmplementarity

holds, the convergence of the multiplier estimates will ensure that it

must hold ultimately. Of course, the calculation must be started from

a feasible point.
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Algorithm (ICP)

( 1i Initialize 17 (1) , W (1) , z. .

(ii) Minimize R(x,W(~),T/(~))  to determine xk , u,~ .
m cu d

(iii) IF f u: gi(x.& < TOL THEN STOP.
i=l

(iv) FOR I = 1 STEP 1 UNTIL M DO

IF ABs(gi(Xk)) <DECR*ABS(gi(Xk_l))

'-fH$J'f w(k+1) = -
ii l/Pgi '

( >V K := K+l.

(vi) GO TO (ii).

Remark: As in the previous algorithm
a -1( g)t denotes the inverse

function to
a
J@& l

For example, if fi = - log g then r\ = W .

Consider now another modified penalty function for the ECP

s(x) = f(x) -u(x)Th(x) +h(x)TWh(x) (6.12)
d Nd HII NN -N

where the matrix W is positive definite.

I.emma  6.1: If the second order sufficiency conditions hold for x = x* ,
N

and the Ohi , ie12 , are linearly independent then S(x) has a
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L

local minimum at x
CI

smallest eigenvalue

Proof: We have

* provided u(x) du* as
*.

= x x + x and the
M NU d N N

of W is large enough.

vs(x*) = vf(x*) -Us Vh(x*)
CI c1 NN

- h(x*)T(Vu(x*)  -2Wvh(x*))
NN N& N

= vf(x*) -u+TVh(x*)
N M mti

= 0

as u* is the vector of Lagrange multipliers for the ECP. Thus S

has a stationary point for x = x* . Now

v2s (x”,

where terms which vanish at x* have been ignored. Corollary 3.2 can

show V2S(x*) is positive definite. We setnow be applied to

v = Vh(x*)T , U = v~~(x*,u*) -Vu(x*)Tvh(x*) -vh(x*)Tvu(x*) , and note
NW N CI CIH -N GIN rycI

that

c

N N

= v2s(",") - vu(x*)Tvh(x*)GIN II

- vh(x")Tw(x*)N NW

+ 2Vh(x*)*WVh(x*)
CI N

min tTut = min tT v2 e(x",u",t = m > O

vTt=o, \\t\\=1 - - VLO, I\t\\=l - - N N
CI N ..d Y

as the second order sufficiency conditions hold at x* . 0N

c
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Theorem 6.1: Let the conditions of Lemma 6.1 hold at x* and set

u(x) = B(x)+ Vf(x)T
N N (6.14)

where B(x) = vh(x)T . Then (6.12) has a local minimum at x* provided
N N

the smallest eigenvalue of W is large enough.

Proof: This result is an immediate consequence of Lemma 6.1. As the

Vhi(x*) 3 ie12' are linearly independent, B(x*)+ is a bounded

operator for I/xhl -"ii small enough. Thus u(x) -ru* as
*

x-,x .oc1 c1 N H

Remark: (i) By using (6.14) we can construct a penalty function which

is differentiable in a neighborhood of x* (contrast with (5.13)) and

*
which has a local minimum at x = x for sufficiently large but finite

values of the penalty parameter. However, (6.14) requires first derivatives

of the problem functions so that minimization of (6.12) with a method that

requires first derivatives of S will require second derivatives of

the problem functions. Two cases have been considered (Fletcher).

(i) s(x) = f(x) -h(x>TB(x>+vf(x)T+  #+c)j\2 , and- - N -

(ii) s(x) - f(x) -h(x)TB(x)+vf(x)T+  c\l(B(x)+)Th(x)I/2  ,- - - N

(6.15)

(6.16)

where c is a penalty parameter.

(ii) There is a close connection between the penalty function (6.15) and

the algorithm based on (6.1) in the case Jl(h) = h2 . At aminimumof P

- we have (as VP = 0 )

2W(h+0) = - B+(vf)T .
- N (6.17)
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Thus the correction formula corresponds to updating the Lagrange

multiplier estimate by (6.14) at the end of each unconstrained minimiza-

tion rather than continuously which the use of S requires.

(iii) Note that S(x) can be interpreted as a Lagrangian. ForN

example, in the case S(x) is given by (6.16),d

where

w(x) = B(x)+vf(x)T - aB(x)+(B(x)+)Th(x) .
N d w N NN

(6.18)

(6.19)

Lemma 6.2: w(t) defined by (6.19) is the vector of Lagrange multipliers

for the problem

minimize f(t)+Vf(t)(x-t
c1 N NN

X
,) + ; 1\x-q2 (6.20)

II N

subject to the linear constraints

h(t) +Vh(t)(x-t) = 0 ,
NN NCI HN

(6.21)

provided this minimum exists.

Proof: Any point satisfying the constraints (6.21) has the form

x = t - (B(t)T)+h(t)-FA(t)zN N e-4 N GIN
(6.22)

where B(t)TA(t) = 0 . The multiplier relation for (6.20)~  (6.21) is
N

Vf(t)+ a(x-t)T = uTB(t)T
hl N &

so that u can be taken as (substituting (6.22) into (6.23))
N

(6.23)

u = B(t)+{Vf(t)T  - c(B(t)T)+h(t)] . 0
c1 N CICI
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If (6.22) is substituted into (6.20) the problem becomes one of

minimizing w.r.t. z

aTTvfAz +F z A AZN

whence

' (ATA)-lATgfT .:=-r (6.24)

Thus c plays a role in ensuring that x(t) , the minimum of (6.20)~
NN

cannot deviate far from t (cf. remark (ii) following Mp Corollary 5.1).

Example: (i.) The Lagrangian interpretation provides a method for

generalizing the above discussion to inequality constraints. Consider

the problem min x(x,w(x)) where w(t) is the vector of multipliers for
x --- H rc)

the problem

min f(t)+vf(t)(x-t) +
x c-) - NCI g l/x-tl12NN

subject to g(t)+vg(t)(x-t) ,> 0 .
HN NH NN

Under what conditions does g have an unconstrained minimum at x* .
M

What role does strict complementarity play in this problem?

(ii) (6.12) can be generalized to other penalty functions and to

barrier functions (cf. RaIlark (ii) above). How much of the above

analysis goes through? What modifications are required? Evaluate the

resulting algorithms.
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Notes

1 2.03 See Fiacco and McCormick's book. Also the paper 'Penalty

function methods for mathematical programming problems',

J. Math. Anal. and Applic. (1970), by Osborne and Ryan.

3. Fiacco and McCormick were the first to draw attention to the

importance of these (as they were to much of the material in this

section).

4. The log family is due to Osborne and Ryan. The importance of the

conditioning of the Hessian to Walter Murray. Rate of convergence

formulae have also been developed by F. A. Lootsma, (Thesis, also

survey paper at Dundee conference).

5* Fiacco and McCormick. The exact penalty function is due to

Zangwill.

6. The algorithm for the ECP is due to Powell in the case $ = h'

(Harwell  report, also Procedings of Keele Conference). The exact

penalty function S(x) is due to Fletcher who has developed it

together with his student Shirley Lill and described it in several

Harwell reports. The extension to inequality constraints (example (i))

is also due to Fletcher.
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