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Abstract

These notes are based on a course of lectures given at Stanford
and cover three nmajor topics relevant to optinmization theory. First
an introduction is given to those results in mathematical progranmm ng
whi ch appear to be nost inportant for the devel opment and anal ysis of
practical algorithms. Next unconstrained optimzation problens are
considered. The main enphasis is on that subclass of descent nethods
which (a) requires the evaluation of first derivatives of the objective
function, and (b) has a famly connection with the conjugate direction
methods. Numerical results obtained using a program based on this
material are discussed in an Appendix. In the third section, penalty
and barrier function nethods for mathematical programming problens are
studied in some detail, and possible nethods for accelerating their
conver gence indicated.
This research was supported in part by the National Science Foundation
under grant nunmber 29988%, and the Office of Naval Research under contract

number N-00014-67-A~0112-00029 NR Ok4-211 .  Reproduction in whole or in
part is permtted for any purpose of the United States Governnent.






[ ntroduction

These notes were prepared for a course on optimzation given in
the Conputer Science Department at Stanford University during the fal
quarter of 1971. |In part they are based on lectures given during the
year of study in nunerical analysis funded by the United Kingdon Science
Research Council at the University of Dundee, and on courses given at the
Australian National University.

The choice of material has been regulated by limtations of tine as
well as by personal preference. Also, nuch material appropriate to the
devel opment of algorithms for l[inearly constrained optimzation problens
was covered in the parallel course on numerical |inear algebra given by
Professor Golub. Thus, despite same anbition to cover a larger range,
the course eventually consisted of three main sections. These notes
cover these sections and have been suppl enented by brief additiona
coments and a list of references. A nore extensive bibliography is
al so included. This is an amended version of a bibliography prepared
by nmy former student Dr. D. M Ryan

The first section is intended to provide a solid introduction to
the main results in mathenatical programmng (or at least to those results
whi ch appear to be the nost inportant for the devel opment and anal ysis
of practical algorithms). The main aimhas been to characterize |oca
extrema, so that convexity and duality theory are not treated in any
great detail. However, the material given is nore than adequate for the
purposes of the remaining sections. Qpportunity has been taken to
prevent the recent results of Gould and Tolle which provide an accessible
and rather conplete description of the first order conditions for an

extremum The second order conditions are also considered in detail



The second section on unconstrained optimzation is largely restricted
to that subclass of descent methods which  (a) requires the evaluation
of first derivatives of the objective function, and (b) has sone
fam |y connection with the so-called conjugate direction methods. This
is an area in which there has been considerable recent activity, and
here an attenpt is made both to summarize significant recent devel opments
and to indicate their algorithmc possibilities. An appendix (prepared
with the help of M A Saunders) summarizes numerical results obtained
with a program based on this material. One significant om ssion from
this section is any detailed discussion of convergence. However, the
convergence of certain algorithns (those that reset the Hessian estimate
periodically or according to appropriate criteria) is an easy consequence
of the material given.

In the third section, penalty and barrier function nethods for non-
linear programming are considered. This turns out to be a very nice
application, in particular, of the results of the first section. These
met hods have advantages of robustness and sinplicity but carry a definite
cost penalty. However, attetnpts to remedy this situation show sone
promisc. The material presented in this section has inportant connections
with other areas: for exanple, with the nethod of regularization for

t he approxi mate sol ution of inproperly posed problens.
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1. M ni mum of a constrained function.

Consider a function f(x) on S cE - E where S is a given

~

poi nt set.

Definition: x is the global mninumof f on S if

~

£(x7) < f(x) VxeS. (1.1)

Remark: x. exists, for exanple, if Sis finite, or if Sis

~

compact and f(x) continuous on S .

Definition: x is alocal mnimumof f on Sif % 8 > 0 such that

f(x*) < f(x) ¥x eN(x,8) (1.2)
wher e
N(x,8) = {t;8n {t;t —ic\\f/ <8}} . (1.3)

If strict inequality holds in either (1.1) or (1.2) whenever X ;éx*

then the mnimumis said to be isol ated.

Definition: S is convex ificl,iceEsﬁ 9§l+ (1-@)32 es for 0 <o <1

Exanpl e: If Sis convex all finite conbinations of points in Sis
m m
again inS. That is Y} Ax eS where x;eS, PA =1,
1=l =l
A, >0, 1l<m<eo.
Definition: f(x) is a convex function on the convex set S if
f(e§l+(1-@)§2) < Qf(icl)+ (1-9)1‘(352) , 0 <o <1 . (1.4)

In
1t = {Zti}l/g , the euclidean vector norm of t
~ i=1



If strict inequality holds when 0 <0 < 1 then f is strictly convex.

Say g(x) 1is concave (strictly concave) if -g is convex (strictly

convex).

Lema 1.1: If f(x) is a convex function on the convex set S then
a local mnimumof f is the global mninum If f is strictly convex

then the mninumis unique.

Proof : It is necessary to consider only the case f bounded bel ow.

If x* is a local mnimmbut not the global nininum 3 X such that
£(x") < £(x') . Now, by assunption, 3 6 > 0 such that" f(x) > f(x*)

for x CN(X*,S) . Choose ¢ > 0 sufficiently snall for

*% * *
ox + (1-8)x eN(x ,8) then

(i) f(x*) < f(@x**+ (l—@)x*) as x is a local mni mum and
(i) flex  + (1-0)x') < 6f(x ) + (1-8)£(x') by convexity
< f(x*) unl ess f(x*) = flx ).

Now assume x , X both are global mnima and that f is strictly

convex. Then

* *¥e x* ¥
fox + (1-8)x ) < ef(x ) + (1-60)f(x *) , 0<e <1l

whi ch gives a contradiction. O

Definition: A set Cis acone with vertex at the origin if

xeC=>MxeC, AN>0. Cis acone with vertex at p if

~

-[Xx-p 5xeC} is a cone with vertex at the origin.

~ o~
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Definition: x is in the tangent cone T(S,xo) to S at x. if

- 0
3 sequences {xn} >0, {x]3 - X, {}Ncn} c S such that
1 )
5 0 <) <l < 0. )

Example: (i) § = {x 3 HX:W\LZ r} T(S,}fo) = {x ;,XT,.(XO -wy = 0} -

(11) 8- {esfx-wl| < ) . 7(S;%5) = B if x, in interior of S,

ot herw se T(S’}fo) = {x; ﬁT(’fo -w) <0} .
Lemma 1.2 T(S,xo) is closed.

Proof:  Consider a sequence {t.} e7(s,x,) such that Hti—tH -0, i-®.

It is required to show that te:r(s,xo) . Now tie:r(S,JSO) = 3

i 1 . i, i :
{xj} >0, {}fj} c S such that jl—l:x: \\%.j(;ij -}Nco) 'Ei“ =0 . Prescribe
{e,34 . Select t, such that \\El —:E]\ < ei/2 , and j =i(j) such
i,.1 i, 1
that |M(x5 -x) -l < eg/2 . Then [nSG -x0) Bl <eg = ® € T(8,%0) -
O

+

Lemma 1.3:  (Necessary condition for a local nminimum) If f(x) ect ¥

and if X, is alocal minimumof f on S then vf(xo)x~20 ,

Vx C T(SJ'}Eo) .

Proof:  Let x be defined by sequences {» 3}, {x;}. As x,is a local

mnimum3 & > 0 such that f(x*) > f(xo) Vx*eN(xo,S) . Consider now

the restriction of the sequences {N} , {x } such that x eN(x,,8) .

+ 1 : .
Y sect at Xy f f(x) = f(’fo) vf(}fo) (x - }EO) + o(“yj - }EOH) . Higher
- : o 2
order continuity classes are defined simlarly. For exanple, feC
if the o( ) termcan be estimated in the form

2 o) 9P (- x) + ol - )



\\& have

- | -
< Vf(}fo) (}fn ’fo) + O(“\}fn )EOH)

whence (note it is sufficient to consider x such that IX|F 1)

0< Vf(XO))-n(?fn - }fO) + O(}\'n“i(,n - N()H)

S vf(x )X+ o(1)  as n -+ w . -

lixample ( 5.) Ir x, ¢S  (the interior of S ) then j‘(s,xo) = F

0 0 n:

Thus x can be chosen arbitrarily- so that vf(xo) =0 .

~

(i) If S = {x;f-w| = r} then 7(s,x) = (x ;XT(XO -w) = 0} .
In particular if }fej'(s,)fo) then -x eT7(8,x.) . Thus we nust have
Vf(}fo)’f = 0 vx such that XT(X -w) = 0. Thus vf(xo) = Oé(xo -w)

for some « .

(iii) If S ={x; |x -w|| < r} and \\xo -w|| = r then

7(8,%,) = {x 3 }iT(XO -W) < 0}. Inthis case we have vf(xo)x >0
vx such t hat xr(x()—w) <.0 . Thus vf(xo) = a(w -x.) for sone

nonneyrative o .

Let A be a set in En

Definition: The polar cone to A is the set A* = {x;x'y <0 VyeAl} .

A" has the foll owi ng properties.

. * .

(i) A is a closed convex cone.
. * *
(i) If A C A, t hen A, CA; .

(iii) A** = Aif and only if Ais a closed convex cone.




(iv) A* = (Ac)* -- the polar cone of the closure of the convex hull
of A . The convex hull of a set is the smallest convex set

containing it. Thus A® =nX, AcX, X convex.

(v) If Ais a subspace then A* = A*

Renmar k: Lerma 1.3 can be restated: *t if x* is a local mninmmof f

~

on S then -vf(x*) e:r(S,x*)* r.

Lemma 1. 4: If Y ¢ :r(s,xo)* then -y is the gradient of a function

having a local mninumon S at x

=
Remar k: It is sufficient to consider the case ||y||=1, x,=0".

Proof : Let Ce = {x;xy < = 1 e =12,.... W first show that
for each e, 3 e(e) >0 such that N(0,e(e)) < C, . For assume this is

not the case. Then 3 {xp} C E -C_,with xpeN(o,l/p) , P = 1,2,...

such that
XT Yy 1
”P—.” > = 5 P L2 . (1.6)
ke |
X
The sequence =B i s bounded and therefore contains a convergent
Iz
subsequence - { —== -z . By-definition z e7(8,0), but, by (1.6),
Iz 1 - -

zTy>—2_;—>O

whi ch contradicts yej’(S,O)*.

10



Now | et & = sup{e,N(0,¢) c C,.} . W define

k 1%
min(l e T ) k>1
= 2 k=17 ?

and

P(z) = 2|l z |, HEH 2

2zl Nzl ey 2l g - 12 ] et :
k-1 e Tl k T Gyl - Rt
o , 1z|~|=|I 0
It is clear that & > 0 and &) nonot oni cal |y decreasing. Further
P(z) >0, P(z) is an increasing function of |z| , and
2tz I,
lzll <o = P(2) —<—T%

Thus P(z) = o(|| z ||) so that vp(0) = O .

Now let z = x - (3<r’ny) y . W show that, under appropriate conditions,

XTy <P(z) It is sufficient to consider xTy >0, and in this case
T T
Izl -xy < Jlzil < lxli+xy (1.7)
L ,
If xeC_ then xy < S Using (1.7) we have
-1 1
==l < Y=zl = == (1.8)
Now assume X e N(0, €) , ¢ < ey . Then [ % || el epqse,] for some k > 3

whence xcck . This gives



-

z
Y S Tk S TERT (2-9)

% Cle+l > €t whence

2l z ||
(z) > T (1.10)
so that, combining (1.9) and (1.10)
XY S gleny PR SH@ (11
Thus the function
f(.}f) = -)~c‘§+ P(X~_ (}fTX)}[) (1.12)

has a local mnimmon S at Xy = O . Further feC- at 0, and

gf(0) . .. . O

~

2. Sone properties of linear inequalities.

Definition: The set H(u,v) = {x ;uT

~

x =y} is a hypsrplane. Note that
the hyperpl ane separates Erl into two disjoint half spaces

R+ = {’f 5‘%;1E}r<n-> v} » R = {>§ ;~qu < v}

Lenma 2.1: (lenma of separating hyperplane). Let S be a closed convex set

in E, . and | et xof.‘s - Then 3 a hyperplane separating X and S .

Proof:  Let X, pe any Point in S .Then M ns\\f “%ol < kg - xoll =
X € ~ - -

~

The function |lx-x.|| is continuous on the closed set SN {x;|x-x <r}

oll
and hence the mninumis attained. Let this point be x . From

Figure 2.1 it is suggested that
(x-x ) (X' -x) =0 (2.1)

12



Figure 2.1

is an appropriate hyperplane. To verify this, note that Xy €R SO

that it remains to showthat S c R . Let xeS then for 0 <6 <1,

o+ (103" - x|

* 2
2 “}f -)joﬂ
so that
@2Hx —x*||2+ 26(x -x*)T(x* -xo) >0
and, letting @ - 0,
*

(x -x) (x -x

X %) 20

whence xeR_ . O
Definition: Cis finitely generated if

P . .
C:{§;>i:z>\ic.,1>\.>0, i =1,2,...,p} . It is clear that ¢
1=

is acone. It can be shown that Cis closed.

Lemma 2.2. (Farkas Lemma). Let A be a pxn matrix. |f for every

solution y of the system of Iinear inequalities

~

Ay >0 (2.2)

13
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it is true that

aTy >0 (2.3)
then 3 x > 0 such that Ax = a .

Proof : Let C be the cone generated by pi(A) , 1= 1L,2,000p .

Then the result of Farkas lemma is that if (2.2) = (2.3) then aecC .
W assume a/fC and seek a contradiction., By Lemma 2.1 there exists
. * .
a separating hyperplane. To construct it let x be the closest point

in Cto a. Then \\)\.x*-a\]e has a mninumat A = 1 . Differentiating
and setting A =1 gives

o -a) - o (2.2)
By (2.1) the equation of the separating hyperplane is
(x-x*)T(x* -a) = XT(X*-a) =0 (2.5)

whi ch shows that it passes through the origin.

By Lemma 2.1 C c R_ whence
vTA(x* -a)>0

for arbitrary v > 0 so that

AKX -8) >0 (2.6)
but aeR whence
al(x'-a) <0 (2.7)

which gives the desired contradiction. O

13.1



Renark: Anot her way of looking at this result is that at nost one of

the following pair of systenms can have a solution.

(1) Ax =b , x>0

(i) a'y 50, bvy<o

This is an exanple of a 'theorem of the alternative'.

Mil tiplier relations.

N

V& consider now the mathematical programmng problem (MPP)
mn f(x) subject to
g (x) >0, 10Ty

hi(f) =0 , icI2 .

W assune that f , 8y icIl, and hi, ieIE, are in C2

the constraints on the problemare not contradictory. This corresponds

and that

to the problem discussed in Section 1 with S given by

S=1{x;g(x)>0, 1cI;, h(x) =0, ieL}. (3.1)

At any point Xy ES | et B, be the index set for the constraints

sati sfying gi(xo) =0 . If ieB, we say that e; is active at x

0 o .

Definition: S is Lagrange regul ar at Xy iff for every f such that

(i) f has anminimmon s at x, , and (ii) feC™ at x, (i.e.,

0
chO) 3 u, vsuch that

(i) vf(x) = Y u;v8; (%) + v v;vh, (x,) (3.2)

ieBO ieI2

(i) w.>0 , ieB

14



This can also he witten

(i) ve(x)) = L wues(x)+ L von (x))
~ i«sI:L ~ :'LeI2 ~

(ii) u'g(x)) =0 , and

(iii) u >0

where zero nultipliers are introduced corresponding to the inactive

constraints.

Renar k: If (3.2) holds for TeF, then f satisfies the Kuhn-Tucker
condi tions.
Exanpl e: It is inportant to realize that (3.2) need not hold. Consider
the MPP

mnf = “Xq

subjectto g, =x; >0, 8, =%,>0, g5 = (1—xl)5-x220.

From Figure 3.1 it is clear that the mnimumis attained at x, =1,

X, =0, and here

o and & are active. W have

€1
Ve = V83 = &
whil e

Vo= e

so that a relation of the form(3.2) is inpossible.

<€ [ » Figure 3.1



Let

Ho = {x s vhy(x0)x = 0 ,ieL,},

G = {5 vg;(x)x >0, ieB ] .

Lemma 3.1: S is Lagrange regul ar at X, iff -V (x,) e (GO nHO)*
for all feFO .

Proof: |If -vf(:fo) € (GO n HO)* t hen

-vf(x))y >0

Yy such that
milly 20
—vhi(fo)_}/. >0 , ic I,
ves(xg)y >0, icB

Thus, by Farkas Lemma, vf(x ) is a |inear conbination with nonnegative

~o)
weights of Vgi(}fo) » 1 €B, , and vhi(ico) R -vhi(fo) , 1eI, . Thus
(3.2) holds. On the other hand, if (3.2) holds then vf(xo)y_> 0 for

all :l/rCrO n HO.S

Renar k: Lemma 3.1 shows the difficulty with the above exanple. Here

4 = {x = e, , & > 0} » Gy N Hy = {x = deq, o unconstrained] . W have

T =right half plane, (GO o) thex, axis. By Lenma 1.4 for

every xcT there is a function with a mninumat (1,0) and such that

n H

"-yf = x . Thus the conditions of Lemma 3.1 are not net in this case.

16



* *
Lemma 3.2: (G, N Hy) < T(S,x5) .

Proof : This result follows if we show that T(SJXO) CHy NG, . If

icetj'(s,}fo) 3 {}fn} - X ’{fn} c S, {an > 0 such that

UNES ‘i‘o)} -~ x . W have

0 = h(x)) = 0y () + 9By (%) (k7 - xp)+ o(lixy - %) 5 BTy,
and
0 < gy(xy) =85(%) + ve (%) (x - %) + 0 ( lx, =%l 5 ieBy

Mil tiplying by A and repeating the argument used in Lemma 1.3 we have
vhi(ico))f = 0, iel, , Vgi(§0)>~c~_>_ 0 , ieB |,

so t hat xeGy N Hy . O

Theorem 3 .1: The set S is Lagrange regular at x  iff

-0
* *

* * *
Proof: If T(Sﬂfo) = (GO n Ho) then -vf(}fo) € (GO n HO) Ve T, by
Lemma 1.3. Thus (3.2) holds by Lemma 3.1. If Sis Lagrange regular at

* .
%, thenbyLemma3. 1 —Vf(fo) € (GO n Ho) ¥feFy . ., by Lemma 1.4,

* * ¥* *
J’(Syfo) C_I(GODHO) . Thus T(S’}fo) = (G. N HO) by Lemma 3.2. O

0

Remar k: Condi tions which ensure that S is Lagrange regul ar at X

are called restraint conditions. Theorem 3.1 gives a necessary and

sufficient restraint condition.

Corollary %.1:  (Kuhn Tucker restraint condition). If vgi(xo)t~>_0 ,

ieB, , and vhi()jo)f;: 0, ieI

5 t is tangent at x, to a once

17



differentiable arc x = x(e) , x(0) = X

some & > 0 then S is Lagrange regular at x

contained in N(»XO,S) for
.-

Pr oof : It is clear that t c7T(s,x,) for consider a sequence {0,340

o)

and define {}fn} = {f(@n) 3, {xn} = {61'} t hen
n

dx(0)
P =x)} = 5= = t eT(Sx))

Thus the Kuhn Tucker restraint condition inplies (GO N H) < :r(s,xo) )

The result now follows from Lemma 3.2 and Theorem 3.1. O

*
Lemma 5.5: Let ki(x) ¢ ? , ki(x ) =0, and vki(x*)t =0,
I 1,2,...,8 < N . W assume T e > 0 such that the Vki(x) ,

i1, ..., are linearly independent for |x - X*H <e. Then %

X
o smooth arc  x = x(8) , X(0) = x , such that ki(x(@)) =0,

| ’ %, dx(0)
L2, oo, for jjx(e) -x || < ¢ and = ~t.
, _ T T, -1 _ —
Proof : Let P(x) = K (K K) ~ K where pi(K) = vki(x) Ll = 1,2, 00,8 .

Then x(8) can be found by integrating the differential equation

dx

s~ = (1 PG (3.3)
subject to the initial condition x(0) =x . 0
Remar k: Let the k, be as given in the statement of Lenma 3.3. Then

the |inear independence of the vk, in a region containing x s a
consequence of the linear independence at x . For consider the matrix

kKT . At x = % this matrix is positive definite as K has rank s .

18



Thus the smallest eigenvalue is positive. Cearly it is a continuous
function of x so that it remains positive in a small enough nei ghborhood

of x*, and in this neighborhood the vki(x) are linearly independent.

Lemma 3.4: (Restraint condition A). S is Lagrange regular at X
if the set of vectors Vgi(§0> , Ie?,o, Vhi(}fo) , ieI2 are linearly

I ndependent .

Proof : This is a consequence of Corollary 3.1 and Lemma 3.3. For

| et teGO nHy and let B(t) be the index set such that
vgi(xo)‘t = 0, ieB(t) . Then by Lemma 3.3 a snooth arc can be constructed

such that X = x(Q) , gi(:f(e)) = 0 , ieB(t) , hi(}f(e)) , ieI,

N ax(0)

£,(x(8)) > 0, ieI;-B(t) , x(6) eN(x,8) for some 8 > 0, and —<z— =t

Lemma 3.5: (Restraint condition B). If vhi(xo) , 1el, are l'inearly

i ndependent, and if d t such that Vgi(xo)t >0 , ieBy. Vhi(xo)t =0,

icl, , then S is Lagrange regular at x

Proof:  Assume w eGy N Hy but w£7T(S,x,) . Prescribe {e,} 4 0 and

set w, =w+et . Then ve;(xp)w, >0, 1eBy, wh(xg)wy =0, iel, .
ax, (0)

Now construct x = ;ch(e) such that :fk(o) = Xy B - W

hi(fk(e)) = 0 ,iel, , for ;fk(e) i s sone nei ghborhood of X By
continuity there will be a subnei ghborhood (say N(xo,sk) for some

ax, ()
de

>0, 1eB, , and

&, > 0) such that (i) ve,(x,(6)) 0

k

(ii) gi(}jk(g)) >0,1ieI;-By for gk(e) eN(}fo’sk) . The argunent
of Corollary 3.1 now gives w, e T(S,x;) . But, by construction,

{wkg —-w . Thus Wej’(S,xO) as T is closed. O

19



L. Second order conditions.

In certain cases it is possible to further characterize local mnim

of f on S by |ooking at second derviative infornation.

Lemma L.1:  Let w(x) ece, w have a local mnimumon S at x ,

=0
and vw(xo) = 0. Then tTvew(xo)t >0 V¥t e:r(S,xO) L f
TV
t w(xo)t >0Vt ej"(S,xO) then I8 >0, m >0 such that
2
w(x) }_w(fo) + me - fOH , Xe N(EO,S)
Pr oof Let {er} : {>\ } be defining sequences for te7(S, X ) . Then

for n large enough we have, as vw(xo) =0,

0 W, -wlxg) =5 (x, - %) 0owl) (e - x0) + o (fx, - %)

.0 < A2 (w( ) w(x )) = % tTvew(xO)E4-o(l) as X = %

Now assune tTvgw(xo)t >0 V‘teT(S,xO) and 3 no m >0 such that

w(x) > w(x,)+ mi|x - XoH2 for x in any nei ghborhood of Xy - Thi s

inplies that for any integer q , & X, € S such that (i) X eN(XO,l/q) ,

(i) wlx) -ulx)) <7 lx

q-xol|2 . Sel ect a subsequence of the X such

X =-X

t hat ~q ~0
X =X

-t eT(8,x,) . Then (i1) » ™y%(x )t < O which
~q 0! ~ ~ ~ ~~

gives a contradiction. O
Definition: The Lagrangi an function associated with the MPP i s given by /

s(nu,v) = £(x) - L oue () - L ovoh (x) | (4.1)

~ . i~ive iit.
1€Il 1eI
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Lerma 4.2: Let S be Lagrange regular at x

I't will frequently be convenient to suppress the dependence of £ on u
and v in the case where these are inplied by the Kuhn Tucker conditions.

In this case (3.2) becones

v.,s:(fo) =0 . (4.2)

f(x) have a | ocal

0’ ~
m ni rum on S at Xy and 8, = {x~;>£€S, gi(;c) =0, ieBO} t hen
T 2 N
79 L(x,)t > 0 L Ve T(S,%,) . (%.3)
Pr oof : Note that £ =1f on Sy so that g has a m ni num on Sl
at x, +«.0- =. .1S Lagrange regular at Xy vs:(xo) = 0 . Thus

the result follows from Lemma 4.1.0]

: T 2
Renar k: | f S, Is Lagrange regular at X, t hen Ev £(§O)E_>_ 0 vt

such that vgi(ic )j =0, ieB, and vhi(}jo)iz 0, ieI, .

Exanpl e: Consi der

2 2 2 2
gl:x1+ (x2+l) -1_>O > 8 =l-xl~(X2—l) >0

Sis illustrated diagramatically in Figure 4.1. At X, = Xy = 0,

Vg, = Vg, = (0,2) . However S is Lagrange regular at the origin --

for exanple, e, satisfies a2
veg.e. > 0 , vg.e. > 0 so gl>og’=0
1.2 2.2 2
g2>0
“that restraint condition B
y X
: : . 7 71
applies. In this case S, is
the single point fzesothat g, =0

‘:r(sl,e) is null. _
~ Figure 4.1
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LKD) .
Lemma b Ir tlv“s(xo)t >0 ¥t eI(S,xO) such that vgi(xo)t =0
Vi B, such that ui > 0 then 4m 8 >0 such that

f(x) > £x) ralx = x ||, xeN(x,8) . (k)

Proof : Assume ® no m, 8 > 0 such that (4.4) holds. Then for each

integer q 4 Xg such that (i) X, € N(fo’l/q) s (ii) f(fq) - f(fo)

<Lix ox Hg _ Select a subsequence of the x_  such that
q '~q 0 ~q

3 %o

Xl

EES ~teT(8,x). Set G = ), u.g(x).Then G > 0 on S,

1€B0

G(xo)z 0, and £ = g+G . For the subsequence defining t we have

£(x ) - £(x,) G(x)
L2 = o 2, (k.5)
Ik, - %, I, - %
Thus
G(x )
tTvgx(xO)t + lim sup ————23———é.f 0 (k.6)
T e gx -l

A G(xq) > 0 ,the second termis bounded and nonnegative. Therefore

G(x,)
0= 1lim = = Y uwva(x)t (%.7)
am Tgrml T oim 7T
Thus
vg;(x,)t = 0, VieB such that u, >0 (4.8)

so t hat (1.6) states that 4 te T(S,x,) such that t satisfies (4.8) and

t hat tTezs(xO)t < 0. This gives a contradiction. O
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Consi der now the system

vs(fo)T =0
uigi(}j) =0 ’ I = 132""Jm )
h(x) =0, i =12,...,p (4.9)

where explicit enumerations of I, 'and I, are assuned.

Definition: J(xo) is the Jacobian of the system (4.9) with respect to

(f)E’X) .
[ > T T T
v £(x4) gy (%5)" - . . -vg (X)) v, (%9)7 . . -vhpgfo)T
u,v8, (%) g, (%)
T(o) = | upve (%) 2n(%o)
vh, (x5)
b, (%)
(4.10)
Lemma 4. 4. | f J(>~<O) i S nonsingular, t hen X5 is an isolated |ocal

mnimmof f on 8§ .

Renar k: Note that the condition J(xo) nonsi ngul ar i nposes strong
conditions on the problem For exanple,

(1) the active constraint gradients nmust be linearly independent, and
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(ii) if gi(fﬂ) = 0 then u. > 0 (this condition is called strict

o 1
complementarity) .
In particular S, is Lagrange regular at Xy .
y -
Proof: If J is singular there is a vector a sati sfying
2
v J
J| a = 0 . (b.11)

1o

This relation gives
(i) Vhi(’fo)Z =0, i =12 .00,p,
(ii) uivgi(ico)z+ aigi(ico) =0,i =1,2,e..,m , and

oy 2 s T lR- T _
(111) voe(x)y - Ziziivgi(xo) - fthi(xo) =0 .

From (ii) we see that ui>0=>vgi(x)y:0V\/ni|e u. 1-0=>a.1-0.

Now consi der the problem

min y'y? £(x4)y

subject to vgi(fo>¥ =0, ieBy | Vhi().f())gn,: 0, iel, , and || y }lg =1.
Clearlythe constraint ‘gradients are linearly independent as

2y = v( Hg“e) is in the orthogonal conplenent of the set spanned by the
other constraint gradients. Thus the set of feasible y is Lagrange
regular at eve-q point by restraint condition A Let Yo mnimze the
obj ective function (the mnimumexists as the constraint set is conpact),
then the Lagrange regularity ensures that 4 multipliers A, 2; » 1By ,

bi » iel, such that
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2 T T
29" 2(%0) ¥ - 2Ny, - iEZB 2;va; (%) - i§1 b3vh, (%5)" = 0 (4.12)
0 2

whence

T2 . T 2
M= gV s(x)y, = min y9ts( x )y > 0

Now if N =0, (4.12) shows that conditions (i) -(iii) above are
satisfied and hence J(xo)singulai. Thus if J(xo) nonsi ngul ar,
then x>0 . In this case Lemma 4.3 shows that the mninumof the MPP

is isolated. O

5.  Convex progranmm ng problens.

| f gi(x) concave, ieIl , then the set S = {x;gi(x) >0, ieIE}

is convex. The problemof mninizing a convex function on Sis called

a convex progranmming problem In this section certain properties of this

problem are studied. W require the follow ng characterization of convex

functions.

Lemma 5.1: |f f(X) et

~

then f(x) is convex on S iff

£(x) +v£(x)(y-x) < f(y) » %y €S (5.1)

Proof . If f convex'then, for 0 <A <1,

£(x+ (10) (Y-4) < 2(x) + (1N (£(y) - £(x))
whence, if N <1,

f(x+ (1-h)(y-x)) -F(x)

. F(y)_ (%)

25



The necessity follows on letting A -1 . Nowif (5.1) holds then
£+ (1-0)y) + WEQx+(1-M)y) (y-x) < f(y) (5.2)

P(Ax + (1->\)y2 - (1-M)vf(Ax+ (1-h) y)~(y-x) <__f(x~) . (5.3)

~ o~

Mil tiplying (5.2) by (lI-h) , (5.3) by A and addi ng gives (1.4) which

dermonstrates sufficiency. O

Lemma 5.2: |f S = {x; gi(x) >0, g j concave, ieIl} has an interior

poi nt X , then every point of S is Lagrange regular.

Proof : Consi der XnES . Let ieBO then Lemma 5.1 gives
* *
vg; (%)) (x -x)) > g, (x) >0 (5.1)
as gi(xo) =0, ieBO . Thus restraint condition B is satisfied. O
Lemma 5.3: If f convex satisfies the Kuhn Tucker conditions at X

then f has a mninmnumon S at Xo

T In this case (3.2) gives

Vf(X ) = Z uivgj_(xO) > uTg(x ) = 0 b/ u-i Z 0 *
~ iel, ~ *
€L

~ R

Let x be any other point of S, then

f(x) > (%) - L we, () = £(x) (5.5)
~ - iel - ~
1
_where g(x) is convex on S as the gi(gg) ,  ieI,. are concave. Thus

f(}i) >~£(§O) + V,S:(}fo) (f - }50)

f(f) .
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Renar k: If f has an interior the Kuhn Tucker conditions are both

necessary and sufficient for a mninumof the convex progranming problem

Definition: The primal function for the convex programmng problem is
w(z) = inf £(x , S, = ix;8(xX) 22 (5-6)
- XeS - T -

Note that if zq > 2z, t hen SZ1 c Sz2 so that ‘”(fl) > ‘”(52) and t hat

if Shas an interior then s nonempty forz >0 and snall enough.

Lemma 5. 3: w(z) s convex.

Proof : If x;€ Szl,;~c2 € SZ2 then, by concavity of g; iel,
5(}\.351+(1-?\.)352) > kEl+(1-x)Eg ’ 0<AN<1.
Thus A, + (1—>\.);~<2 Essz(l_}\)zz .\ have
w(?\gl+(l->\)52) < i nf £(Nx, + (1-x)§2)
X.lESz ,XEESZ
- 1~ 2
< i nf O"f(xl) + (1->\)f(x2)) by convexity

)(.]_ESZ ,X_EESZ ~ -
~ 1 2

<N inf f(xl) * (I-h) inf £(x,)
xleSz‘ ~ X2ESZ ~
- 1 ~ 2

<ha(z)+ ANe(zy) - O

Definition: The dual function is
g(z) = inf f(x) -g(x)z , z*>0 (5.7)
xeq ~ 7 7 7 -
where Q is the region on which f | -g, » iel, , are convex.
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Lemma 5.4: ¢(z*) i's concave.

*

Proof : Let 0O <AN<1, and Zy5Z5 20, then

¢(>\£+ (1->\)EZ) =inf {f(x) - g (x) (>~§+ (1-3)25))
. £ -

M- g s (I - )

~

>\ inf (£-g'2))+ (I-h) it (1 - g z,)
>n Bz + (1NB(z) o

Lemma 5.5: Let T' = {z ; 3 xen such that g(x) > z} . Then

p(z) = inf (w(z)-22).

Proof:

B(z") = inf (f(x) -exT2),
! ) -elx)_

IN

inf (f(x) -2°2)
xeSZ - -

*
W 2) 2%7

B(z) < inf (u(z) -2'2) .
~ ze - ~7 -

~

Now | et i(fl) =z, . Then

28
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T * . T *
£(x1) -g (x))z" > inf (f(X) -z;2 )
xc—:SZ ~
~ A
*

T
> w(zy) -2] 2

~

*
> inf (w(z) - )

zelr 7
inf (£(x)) -g (x))z ) > inf (w(z) -2'2') - (5.10)

The result follows fromthe inequalities (5.9) and (5.10). a

Theorem 5.1: (Duality theoren). (i) sup ¢(z*) <inf f(x) .
z*>0 xeS 7

~

(ii) If Shas an interior, and 3 X5 such that the Kuhn Tucker

conditions are satisfied, then 3 z maxim zing ¢(z~) and equality

holds in (i).

Proof: From Lenmma 5.5 we have that

B(z') < w(8) = inf f(x)
1(CS -

holds for each z > 0 . Thus

sup f(z') < inf f(x) . (5.11)

*
z >0 }feS

| f Sxo such that the Kuhn Tucker conditions are satisfied then xo

T
omg where the u, >0

~

mnimzes f on S . Defining z :{ul,cifio

are the multipliers in the Kuhn Tucker conditions we see that

*

p(z) = £(xy) - O

~
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Corollary 5.1: (Wlfe's formof the duality theoren). Consider the

prinmal problem mnimze the convex function f(x) subject to the concave
constraints gi(x) >0, i =1,2,...,m, and the dual problem maximze
g(x,u ) subject to V8 = 0, uw>0. |If a solution to the primal exists

then the dual problemhas a solution and the objective function values are

equal

Renark: (i) The linear progranmm ng problem

Mnax subiect to Ax-b >0 (5.12)

is a special case of a convex progranm ng problemas linear functions have
the special property of being both convex and concave -- this is an

i mredi ate consequence of Lemma 5.1. This property of linear constraints
permts the previous discussion to be extended to permt linear equality
constraints. Note that if the linear equality constraints are not to be
contradictory, then their gradients must be linearly independent.

(it) If the restraint condition Bis satisfied at x and f(x) has

~0
a mnimumon S at X, then x, al so solves the linear programm ng
probl em
min £2(x0) + 92( x)) (x, - x,)
subject to

(1) ey(xy) +ves (k) (x-%5) > 0, ie1, , and
(13) 1 (x0) + vh; () (x-%0) > 0,

-h, (%) - vh, (%5) (x -x)> 0 , iel, ,

as the Kuhn Tucker conditiomms are both necessary and sufficient for a
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solution to the linear progranmming problem That the converse need not
be true is readily seen fromthe exanple mn -x subject to
l—xe-y2 > 0 which has a mninumat x=1, y =0 . The associ at ed
linear progranmming problemis mn -X subject to 1-x > 0 which
has the solution (1,y) for any . . Thus additional conditions are
required if the converse is to hold (for exanple, Lemmas 4.3 or 4.4

could be used).

Exanpl e: (i) (Duality in linear programming). Consider the primal
probl em
mnimze a'x subject to Ax-b >0

The corresponding dual is

meximize bu subject to Au-a. u>0

If the primal has a solution then so does the dual and the objective
function values are equal.
(ii) (The cutting plane algorithm.

(a) Consider the set S = {x;gi(x) > 0 and g4 concave, iell} .

| f x*,és t hen gi(x*) < 0 for at least one i . Let « satisfy
ga(x*) < gi(x*), eI, . Consi der the half space

U= {x; ga(}f*) + Vga(f*)pf-ic*) >0} . Then xfu . Nowif g,(x) > O

t hen, as g, concave,

* * *
gy(X ) + 98 (x ) (x-x) > g (x) >0 -
Thus g,(x) > 0 = xeU so that

Sy = {x58,(x) >0} cU .
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W have S c 5, €U . Thus t he hyperpl ane ga(x*)+ vga(x*)(x -x*) =0

~

*
separates x and S.

(b) The convex programmng problem nininize f(x) subject to xeS is

equival ent to the problem mnimze x subject to xes , X 41" £f(x) >0

mtl
wher e X1 IS a new independent variable (note th:t the new constraint

Is concave). This equivalence follows fromthe Kuhn Tucker conditions

by noting that the new constraint must be active. Thus a convex programi ng
probl em can be replaced by the problemof mnimzing a |inear objective

function subject to an enlarged constraint set.

(c) Consider the problemof mnimzing ?\IT[g' subject to xes and S
bounded. In particular we assume that S c Ry = x;A&-p>0) . W

~

can now state the cutting plane algorithm

(0) i =0.
(i) Let x, m nimze ch subject to XeR, .

~

(ii) Determine o such that ga(}fi) < gj(zfi) , JeI .
(iii) If ga(fi) >0 goto (v).

(iv) Set Ry.y =R N{x;ex)+ vgylx) (x-x)>01 ,

i:= i+l , go to (i)

(v) st op.

Note that step (i) requires the solution of a linear programmng problem

(d) The cutting plane algorithm generates a sequence of points X, with
the property that

. T
< oo <cX, <.eo <min ¢'X

T . .
as Ry 2 R, 2 ... 2 S . Thus the sequence {c xi} is increasing and

32



bounded above and therefore convergent. Let x be a limt point of
the {x.} . Then x*eS and therefore solves the convex programming
. *
problem To prove this, assune x £S . Then
. * *
min g;(x) = gy(x) = -A<0.

Let a subsequence {xj} % , then, 3 k such that

. * A
@ k-l < &, ana
A
(i1) g (%) < - &
where C > val(ic)H . xeRy , 1el;
Let
Then g_( )<-§ Now x a linmit poi nt of {x}::x*eﬂR . In
B\ %k 2 - X X1 = X i
particul ar, < €R,,, Whence
+ * ) >0
8 (x) + 9 () (x - %) 2
But
* A A
veg(x) (£ -2l < ze ¢ < 7
so that

*

gs(fk) + vga(@) (X - }fk) < - -g— + “Vgﬁ(ﬁ) <X* - }fk)“

< 0

whi ch gives a contradiction.
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Not es

L. For properties of tangent cones, see Hestenes. Luenberger discusses
pol ar cones (which he calls negative conjugate cones) on pp. 157-159.
Lemma 1.4 is due to Gould and Tolle. The proof is due to Nashed
et al.

2. Hestenes is a good general reference for this section and includes
a proof that a finitely generated cone is closed. The proof given
here of Farkas Lemma is standard (see for exanple vajda's paper).

An extensive |ist of alternative theorens is given in Mangasarian.

3. The main result is due to Gould and Tolle. The treatnent of the
other restraint conditions follows Fiacco and MCorm ck.

L. The treatnent of second order conditions is based on Hestenes.

Simlar material is given in Fiacco and MCorm ck.

5. The treatment of duality is based on Luenberger. A related treat-
ment is given by Wittle who is good value on applications. Vajda
Is a good reference for the mathematical programm ng application.
Wolfe's papers in both the Abadie books discuss various aspects of

the cutting plane nethod.
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I1. Descent Methods for Unconstrained Mnimzation
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1. CGeneral properties of descent methods.

The class of descent nethods for mnimzing an unconstrained
function F(x) solve the problemiteratively by means of a sequence
of one dimensional mnimzations. The main ideais illustrated in

Figure 1.1. At the current point X, a direction ti is provided, and

the closest mninmumto X, of the function

Gi()s.) = F(}Nci+ NEi)

sought. At X1 Ve have

. = x.+N.E, .
wher e )..('1+l ~1 il

Figure 1.1

- Definition: A step in which Xii1

conditions is said to satisfy the descent condition. W consider N

is determned by satisfying the above

a profitable search direction if F(Xi”‘ti) decreases initially as »

increases from zero. This condition is formalized as foll ows.

37



Definition: (i) The vector t is downhill for mnimzing F at x
if vF(x)t <0 . (ii) The sequence of unit vectors {:’Lc,g I's downhill
for mnimzing F at the sequence of points {xi} if 285>0 ,

independent of i , such that vF(x;)t; < -8|vF(x,)| .

Exanpl e: The sequence of vectors {-vF(:fi) / “VF(}fi)H} satisfies the

downhill condition with 8 =1 . In this case we say that Ei is in the
direction of steepest descent.

An estimate of the value of N mnimzing G, is readily given.
V¢ have

2

— i T -
0 = VF(x;, )y = VE(x)E Ay 8y VE(x)Y

wher e ii =X+ iiti is an appropriate nean value. Thus

“UF(x5)%s B lvF ) |l

. = >
1 EE v° F(x,)t, B HV2F (}:(i) |

Theorem 1.1: (Ostrowski's descent theorem). Let R = {x; F(x) < F*} s

m o ~
and assune that F bounded bel ow and t" v F(x)t < K[|t ||°, xeR .

Def i ne
*ie =% Wﬁéﬂ t; and
VF(x;)t, < -8lleR(x) |, (it = 1,
for i = 1,2,... where 8 > 0 . Then {F(}fi)} converges, and the limt

poi nts of {xi} are stationary values of F .
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Proof : As {ti} downhi || then {xi} c R . Expanding by the nean

val ue theorem we obtain

sllvr(x,) || sllvr(x,) || )2
Fxp,q) = Flxy) + —=— wF(x,)t, +;2L'(—‘_K~l_“> quij VEF(%i)JEi

~ ~

wher e ii is a mean value. W have

(ller(x )" (o )
ey DD %< HVF(fi)H)K

F(X541) < Flxy K K
57 lwr (x,) [P
< Flx) - —— (1.3)

Thus the sequence {F(’fi)} i s decreasing and bounded bel ow and therefore

convergent. Further, from (1.3),

l9PGe) || < FVRKEGR) - Ry, 1)) (1)

Thus vF(x') =0 if x s alinit point of =} . O

Remar k: By (1.2) the step taken in the direction . under est i mat es
the step to the m ni mum of Gy - Thus (1.3) holds if the descent

condition is satisfied so that the conclusions of the theoremare valid

also in this case.

Theorem 1.2: (Goldstein's descent theorem). Let R = {x ;F(x) < F*)

be bounded, and assume FeC1 and bounded below on R . Define
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BN = F(x) ~F(x; +M8,)

A(xi’ }\')

V(xgph) = - WF~injti
where {t.} downhill, and the {x,} are generated by the algorithm

(1) xypq =y 1f 8(xN =0

(ii)y If q;(xi,l) <o where 0 <a <1/2

then choose A, such that o < q;(xi,xi) < 1l

el se choose hi =1 .

(F) %00 = %3P0 -

Then the limt points of {xi} are stationary points of F .

Proof:  a(x;,M) = -MWE(x;)t; + o(h)

Thus A(}fi,%.) =0 = HVF(’fi)” =0 as {’EJ.} downhi |l so that X, is a
stationary point. Qherw se VF(zfi)’Ei < 0 so that ﬂ/(}ji,)\) = 1+ o(1)
whence q;(j_gf,o): 1 . Aso the boundedness of R inplies that

A(ici,x) < 0 for some X\ large enough so that, as q;(ici,h) i s continuous,

A, can be found to satisfy condition (ii) of the algorithm Note that

{xi} ¢ R. W have

v

NoB[loF (x| (1.5)

Thus {F(xi)} decreasing and bounded bel ow and therefore convergent. To

show that the limt points of {xi} are stationary values of F consider
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.~

‘-

-

-

t he subsequence {XIJ» } - %

1

|lvF(x )| > ¢ for i >4i . This inplies that inf A =N, >0 as

o

and assume HvF(x*)H > > Then

otherwise sup \lf(Xu ,7\“) = 1 contradicting v(x;,M) < I-a . Thus
T M -

F(}f ) —F<}fp,.+l)
o7z O < ;o"s = . (1.6)

1

The right hand side - 0 as i -« Wich establishes a contradiction. O

Renar k: There are two aspects of this theoremwhich are of particul ar

: : : 1.

interest. (i) It is necessary to assume only that feC™ 1n R.
However, the boundedness of Ris used explicitly.  (ii) The algorithm
for determning the step length A is readily inplenented. A value of
N satisfying condition (ii) of the algorithmw |l be said to satisfy

the Goldstein condition.

Theorem 1.5: (i) Let the vector sequence in the CGoldstein algorithm

be defined by

T
s; = ARG 5t = sy /sl (1.7)
N . (AL)
where A is positive definite, bounded, and X(A,) = % >0 >0,
! 1 max i
i =1,2,.... Then {ti} is downhill with constant & = w .
.. * -1 2 _
(ii) Assune that {x,} - x , and that |a; -V F(x;)|| = o(1) , then
A= HSiH satisfies the Goldstein condition for i large enough.

(iii) The ultimate rate of convergence of the algorithmis superlinear

for this choice of xi )
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Proof: (i)

i
VF(x;)AVF(x,)

PG TR

vE(x)Es = -

Npin () G I

N ax A

IA

- ollvE(x,) || -

- F(x;) -F(x; +2,)
(ii) \If(fi:x) = - }"VF(fi)Ei

)\2

T2 -
ME(x;)E + 5 57 P,
ME(x5)t4

wher e z'ci is a mean val ue dependent on A . Now, witing

2 =y _ -1
V() TA;HE;

and noting that [E/| - 0 as i -« , we have

T
tT E, t
A 1 i 71 i
V(x,N) =1 -2 + = =
o 2 B
[BAl - wF(x,)t,

so that

RIEA
I\“fi’”-(l"ﬂ@n” = engin ol[7E ()]

AT

EHEJ w
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In particular

[ 11 llay
l 1—(”L — » i — & -

1
sl -3 1 < 3

(iii) Another application of the mean value theorens gives

o Ml AiVF(fi)T = - Ay - VF(Xj) )"
= - A (9R () (x - x) + ol ey - )
== e x) o kex D (1.10)
Thus
* *
X

. -Xx =Xx,t7.8.~-X
~itl L ~1 71,,1 ~

= (1-7) 0 =2+ oflfey -x) (113

From (1.11) the choice 7, = 1 (= ”fin) gives superlinear

convergence. C

Renark: Theorem 1.3 shows that if v=F is positive definite in the

nei ghbour hood of an unconstrained mninmm then it is possible to have
algorithns with superlinear convergence w thout the necessity of satisfying
the descent condition.. It is not generally considered econonmic to conpute
the second partial derivatives of F , and considerable enphasis has

been placed on devel opi ng approximations to the inverse Hessian using

only first derivative information. Although the steepest descent

direction is initially in the direction of most rapid decrease of the

function it gives in general only |inear convergence.
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2. Met hods based on conjugate directions.

The problemof mnimzing a positive definite quadratic formis
an inportant special case of the general unconstrained optimzation
problem In particular it is frequently used as a nmodel problemfor the
devel opnent of new algorithnms. It is argued that in a nei ghborhood of
the mninum a general function having a positive definite Hessian at
the mnimumwll be well represented by a quadratic formso that nethods
which work well in this particular case should work well in general

Let F be given by
F(x) = a+bx +5 X OX - (2.1)
where C is a positive definite, necessarily symetric mtrix. W have

VF(x) = b+ xC (2.2)

Consi der now a descent step fromxi in the direction ti . The

descent condition gives

. T
0= VR(xs )b = £(C0x;+ At + )

whence
£ g
N = = NlT ~1 (2'5)
t.Ct.
~1 L1
wher e 9, = vp(xii. To calculate the change in the value of F in

a descent step we have

L
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T T 1.0.7
n - = + - >\- -t. t.
Pl +A0,) -F(xg) =MDt +h, X, CE 4 5 A E5C8,

~

T, . 1.2,T
ME ST EMECE

i

~ e

N
(g5 t;)

__ 1
2 ¢Tow,
~1 ~L

Exanpl e: (Linear convergence of the nethod of steepest descent).

Let F = = 3x . Then (2.4) gives

2.
T2 2
(%507) - Flx;) 1 505
F(x. - F(x. = -z = =
~itl i 2 XI:FC5X.
~1 ~1
T 2
1 (wi Wl)
h 2 T
Yicvﬁl
wher e w, o = Cx, .
1 7T.-1
- = . SO that
W have F(}fl) EVI.]'.C vy
T 2
1 (wy wy)
Flx) = | 1-3 7 T o1 F(x;)
Wi c.w W, c Wi

The Kantorovich inequality gives

T 2
(Y V!) § 4 01 0‘n
T -1 T - 2
we W W (o + cn)
wher e oy and o are the smallest and |argest eigenvalues of C

respectively, whence

L5
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»]
on - orl .
Fxe)) s | 579, ) T
n 1

whi ch shows that the rate of convergence of steepest descent is at |east

[inear.

To show that it is exactly linear consider the particular case in
whi ch
i

Y
X. = 0O v+ v
~1 1.1 mn._n

wher e vy and v, are the nornalized eigenvectors associated wth o

and o, respectively. W have

41 i+
_ - - + o O! v
X1 7% N1t l\in (1 7‘1"1)0‘ vyt (=200 vy

with (from (2.3))

2 2
<1> o+ ()% o
A =
i.2 2
@ o§+<an> '
so that
L (ot) (c —cl)c S
1 2 O}+ a)e Oj o
and
2
ai+l _ _ (QC)(O‘ '0)0 i
n )2 o}+(a )2 a5
In particular
i+1 2 i L-1
Q% Y 4%
S 2 1 i-1
n ] o
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L g

so that the ratios oc;‘_/ocrl1 assune just two values for all i (depending

on i even or odd). Now

|oci+1| > (1 - 91— '(oci)eg(‘w |O‘i| ’

n
and
i+1
"7 > ( 5 ||
(a )%+ (a )2
so that
2 i i
. . g ag a, A
|al+l|+ |a1+1| > 1 - 1 1 1l n ' |+ Iall)
1 n o] a 2
n n l) (
2(1- )( )7(| |+l )
r . )
i i+1
il %
ar ar1]+l
where Y = nin T’ e ? < 1, and Y is independent
a o
1+ —l- 1+ l
ot a1+l
¢ ' N1
of i . This inequality shows-that the rate of convergence of steepest

descent is linear.

Definition: Directions ‘51,32 are conjugate with respect to Cif

T
tyCty, =0 . (2.5)

~

In what follows it will frequently be convenient to speak about a

L7



"direction of search* without intending to inply that its normis
unity. However, the null vector is excluded fromany set of nutually
conjugate directions. It is clear that any set of mutually conjugate

directions are linearly independent.

Exanpl e: The eigenvectors of C are conjugate. The property of being

both conjugate and orthogonal specializes the eigenvectors.

Lenma 2. 1 Let tl,...,En be a set of mutually conjugate directions

(with respect to C). Starting fromxl | et Xy XzyeerX g be points

produced by descent steps applied to (2.1). Then

gl.' t. =0 , | = 1,2,40.,i-1 . (2.6)
~l oJ
Proof:  The descent condition gives giTt.i_l = 0 so it is necessary
only to verify the result for j <i-l . W have
T T
& Es B (C§i+3) Es
-1 T
= (Cx_, . +b+ M Ct )Tt
~st1l o k=S¥ k k ~S
7 i -1
= g t + A_ d-C.t s S = l’2,ooo,i-2
~st+l s ks k k7 .s

Corollary 2.1: The m ninmum of a positive definite quadratic formcan

- be found by making at nost one descent step along each of n nutually

conjugate directions.
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Proof : From Lemma 2.1 we have g‘;l t-i 0 , i=1212..4n.
Thus ¢, is orthogonal to n linearly independent directions and

therefore vanishes identically. O

Remark: A nethod which minimzes a quadratic formin a finite nunber

of steps is said to have a auadratic termnation property.

Exanpl e: The sequence of vectors

t,=-8 >
eI |

Ei - - §i +~—‘2t,:i-l_ ’ I = 2y5ee0yn (2.7)
lg; o

are conjugate. The algorithm based on this choice is called the nethod

of conjugate gradients.

V% now consi der the generation of sequences of conjugate directions
to provide a basis for a descent calculation. To do this we note that
the mnimumof (2.1) is at x = < 1b sothat if vemnimzein the

direction t = -él(Cxl+b) = -C'lvF(x then the mninumis found in a

%)
single step. In general c1l is not known in advance, so that we are
| ead to consider processes in which each step consists of two parts

(i) a descent calculation in the direction

- - 2
2 Hig, (2.8)

1 , and (ii) the calculation

where H is the current estimate of C
of a correction to H which serves both the purposes of making the
by conjugate and m&ki ng H approach ¢l .1t is convenient in what
follows to assume that the H; are symetric. This seens a natural

condition given the symetry of C but is in fact not necessary.
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If we assune that t,» s <i, are nutually conjugate then the

condition that each be conjugate to t.i is

T T .
0t = g H;Ct . = 0 s <1,

and, by Lemma 2.1, this is certainly satisfied if

HiC'ES=pt 5 s <I

sos
W wite this equation in the equivalent form (multiplying both sides
by Ag)

Hoy, = pdy » 8 <i, (2.9)
wher e

4 X541 7%50 Y 5 B8y (2.10)

Consi der the symetric updating fornula

nd) ()

= + -
Hi+l H £ d d “1H1~.1~1 i Q(E 151 1

wher e £, oMy 5 G, areto be determned (or prescribed). W have

Hi+1 Vo = Hi Vg = o _c}s 5> S <1 , provided (2.9) holds as
T T T T
Nizs )‘ A tl ~5 =0, and lelyS _)‘s X:LH:.CEszps )‘szijsz
Kshd{“ -0 . Thus (2.9) is satisfied for i := &1 if
T
= 1+, (v B y,) - g, (4 y) ) (2.12)
and
T T
py = 85045 v3) -G (v Hyyy) (2.22)

If €, and M; are expressed in ternms of P4 and Cs from(2.12) and

(2.13) we have
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T
7 g i
i - 7T i T ’
Yiti s Vi Vs
and
0 y'I."H. .
1 1l 1.1
&, = F T8 T ’
d; v d; v
so that equation (2.11) becones
I o TS £ 5
41 T iTPL T T
vy ViV
T T
v. H., V. da. v,
viTidi T 1Y T _ T - dT
Ya( T d; 9 * T, By yy 93 By -4y vy By =B 9594
4 Y5 Vit ¥y
T
= 2.1k4)
D(pi,Hi) tC TV (
wher e
£ 2.1
vy = 9y T-rHi:Xi’ (2.15)
and
T
v, H. y.
7, = === (2.16)
i 5
4 Y4

Exanple:  Theparticularcase p; =1,¢ =0, 1=12,... gi ves
the variable metric or DFP fornula which is the nost frequently used

menber of the famly.

The class of fornulae described by (2.14) generate recursively a set
of conjugate directions so that the first of our aims is satisfied. It

still remains to show the relationship between the H, and C~ . Todo
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this note that (2.9) can be witten (introducing the symetric square

1/2

root c of the positive definite matrix C).

01/2Hi Cl/QCl/zts - pscl/2 L. s=12..,11,

~

or, nore briefly,

Hyt oo = oty 5 s =1L,2,...,1-1 . (2.9a)
~ " .E
Defining the matrix T by Ki(T) =— i = 1,2,...,n, and the

~S
J
Wl ¢ £ )2
=5 © s v

di agonal matrix P by P.. = p; i = 1,2,...,n, We can wite (2.9a)

1

inthe case i =ntl in the form

- . 2.9b
T =TP (2.9b)

Now T is an orthogonal matrix so that

~ ~ AT
Hn+l = TPT ]
whence
Ho =c Y2apaTe /2 | (2.17)
nt+l
In particular, if P =,I,

Ho. =t (2.18)

Renark: Remenber the notivation for developing the recursion (2.14) is

the search for efficient descent directions. Specifically we are |ooking
not only for conjugate directions but also for good estimates of the
inverse Hessian. This indicates that o = 1 is the natural choice (or

at least o = constant ), and alnost all published nethods use p =1 -
However, from (2.17), the choice of p variable may well have scaling
advantages in the initial phases of a conputation with a general objective
function. Presumably the strategy for choosing p should make

p » constant to ensure a fast rate of ultimate convergence.
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Lemma 2. 2; Provided the descent condition is satisfied,

v, or null.

Hip8ia Y

Renar k: In what follows it is convenient to drop the i subscripts
Quantities subscripted i+1 will be starred. In what follows we assumne

p 1S constant.

Proof : W have (using the descent condition, the definition of t
and d = )\t )
. adr I{nyH .
D(psH)g = (Hrp 7~ 7 ) 8
&y yHY

T
Hyy H(y+g)

:H’y+Hg - N’;:'_“

- v Hy
T
1 yda

cm < (a - == Hy)

1 yHX ~

Wence
* ¥ m %
Heg =-(% + grvg)v . (2.19)

Renark: (i) The condition that Hfg* = 0 when y‘% 0 gives a

condi tion which determines ¢. W have

* 1 ¥ ¥
ve =-TE Hy--3g Ho
so that (from (2.19))
¢ = —— . (2.20)
g Hg
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Provided this value of ¢ is excluded from consideration.then Xis
i ndependent of ¢ . Note that this result is true for a general
function as no properties specific to a quadratic form have been used

in its derivation.

(ii) W can only have v = 0 with d and g* nonnull if His

singular, and in this case H is also singular and the null space of

H is at least as large as that of H. This follows from (2.15) which
can vanish only if (a) H%* =o and 1+—>—\-1T: 0, or (b) Hg and
Hg* are parallel. Nowif His singular 3 w, wH =0 .  Thus

YT(E = 0, and hence \AFH*: 0 .

Cearly it is inportant that H, positive definite = Hiy positive
definite, i = 1,2,... in order that premature teminaion Shoul d be
avoided (H'g* =0 and H positive definite =>§* = 0 whence % is
a stationary point). Conditions which ensure this are given in the

following lema (due to Powell).

Lemma 2. 3: If O <p,7 <=, Hpositive semdefinite, and
HE v =v (where 1 is the generalized inverse of H), then H is

positive senmdefinite, and the null space of B s equal to that of H

provi ded
- :y'Td
> — (2.21)
T oa 2
(@5 d(y Ay - (@)
Proof : VW first note the identity
T T
D(p,H) = (I+uy )H(I+yu) (2.22)

wher e
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]
]

-~

and

det(I+uyT) = l+yTu = \/_%

: : : T
so that, by the assunptions, I+uyT is nonsingular. Now y v =

~e~ o,

so that H* can be witten
* T
H= (T+uy?) (B+ CTww ) (T+yu) .

T

Thus the problemreduces to considering H ¢1vv V¢ have

+
H+ger:=Hu+ng vﬁ)

. . +
The null spaces of H and qowill agree provided I+(TH vV

nonsingular. The condition for singularity is

det(I+ ¢ tH y_VT)

o
1]

+
l+g'rvTH v

NnmgtMtHfH:FL and HE'v = v > HH & = d we have

T
T o+ d'y ¥y Hy
l+gf(§H9.-2——T——+ 5

l+[;TVTH+V

(@) ¢

1+ cr(du a -

Y Hy
and this vani shes provided

de
T
(~

T (@dE )

Hy)
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The stated result is a consequence of this and the observation that

decreasing ¢ below this value will make B indefinite. a

Remar k: (i) The condition on = is automatically satisfied if

His positive definite and the descent condition is satisfied for then
ST:Z = —ng = )\§THg . However the lemma does not require that the
descent condition be satisfied and remains valid even though the exact
mnimmin the direction Jf is not found. In this case the condition

on T S necessary.

Corolary 2.2: | f Hy positive definite, and Hipq = D(p,Hi) ,

i =1,2,... then provided the descent condition is satisfied for

i = 1,2,... then He, is positive definite.

1

Proof : This is a consequence of (2.22) and the above remark which shows

that if His positive definite, and if the descent condition is

satisfied, then I+ uyT IS nonsingular. ¢

Theorem 2.1: (D xon's equival ence theoremy. If (i) the formula (2.14)
is used to generate descent directions, (ii) Cs satisfies (2.21) for

i =1,2,... and H, is positive definite, and (iii) the descent

1
condition is satisfied in each descent step, then the sequence of points
generated by the al gorithm depends only on F , H ,op, and X, and

i s independent of gi o= 1,250 .

Remar k: It is inportant to note that Fis not restricted to be a

quadratic form in this result.
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Proof:  Let o, =H, , D, = D(p,Di 1) 1 =23.... . W show that
, _ T _ s
i f H = Di+a§iii , then Heyqg = Dypq¥Bdy e,y - By Lenm 2.2 we
X *
have H = D(p,H) +7y4d 3t . Now
T
ad (D+Otd.d)yy (D+add) T
D(p,H) = D+p “5 - =+ add
a'y y (D+o:dd)y ~T
adt Dyy D+ Ay d)(Dydi+dytD)+of (d y) aat .
=D+p == - =T R ~~ + qdd
T T 2 <
dy ¥ Dy+a(yd) ”
T.\ 2
d)
o
Dyy Do -+ oy d)(Dyd +ay D) -y Dy) dd’
5 ¥y Dy - - . ol
N B T T \2
y Dy+a(y d)
T T
% afy” D y) ya yI T
=D + — (d-T:—DEr)(Sl- z Dz) ) (2.26)
y Dy+a(yd)~ - y Dy y Dy

By Lemma 2.2, g* HD(Q,H)E;* . By (2.26) D(p,H)g* I D*g* . Thus

dIHD N B But the case j =1

~ d~ l+l H 1+l~l+l '
I's a consequence of Lemma 2.2 so the result follows by induction. O

Exanpl e: Equi val ence results for a wide class of conjugate direction
algorithns applied to a given positive definite quadratic formcan be
denonstrated by noting that at the i-th stage we find the mnimumin the

translation to X, of the subspace spanned by tl,...,ti , and that this

subspace i S al so spanned by Hﬁl""’Hﬁi . Thus Xir1 depends only on
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Xppo oy and not on the particular updating formula for the inverse

Hessian estimate. If H =1 this equivalence extends to the conjugate

-~

gradient algorithm (2.7).

Lemma 2.4%: |f the descent condition is satisfied at each stage then

T
t he sequence gED.g

g;D. 8., i = 1,2,... s strictly decreasing provided Dy

is positive definite.

Proof: W have (as g%Td =0 )
*T 2
XT % ¥ s x (87DY)
g Dg = ¢ Deg -—3 ’
- y Dy
*T o *2
sp % (87DE)
= 8 Dg'*lx % T H

g Dg +g Dg

X7 % T
(¢ "Dg)(e Deg)

= ¥ % T
g Dg +g Dg

Thus

. (2.27)

By Corollary 2.2, the D, are positive definite so that the desired

result follows from (2.27). O

Renar k: This result indicates a potential defect of the DFP al gorithm

For if the choice of D, Is poor in the sense that it leads to too

smal | a val ue of éiDl then the al gorithmhas no mechanismto correct

&
this, and rmust initially generate a sequence of directions which are

nearly orthogonal to the gradient. This nust also happen if, for any
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reason, an abnornmally small value of gTDg is generated at some stage.

A possi bl e cause of such behaviour is poor scaling of the probl em

Lenma 2.5: Corresponding to the formila (2.14) for updating H there

is asimlar formula for updating Hi Specifically we have

H™ = p(p,m) ™+ ppww’ (2.28)
wher e
-1 1 W 1 T -1, -1..T
D(p,H) T = H™T (—— + ER’— -?7.— (y&'®H "+H "dy) , (2.29)
Ty lg
o= T (2.30)
<y
woo-Y- -i;H-ld ’ (2.31)
and 7 is related to ¢ by
- - et .
Y o= ¥ T, . (2.32)

1+gtv H

Proof : From (2.22) we have

D(ppH) ™ = (T - \/—gg ) BN - \/%— u gT)

and (2.29) follows fromthis by an el ementary ca culation.  From (2.25)

HL =1 v @ @ fE e

=(1-\/—£—ZET)(H'1- Cf - gty mt Y (1 _\/—uy )Y

l+g'rvT I—iL v ~-

(2.33)
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Now

=Hla-uy

= ‘Paz ) (2.3)4-)
so that (2.28) is a direct consequence of (2.33) and (2.34). O

Remar k: If we take y = - ':1r_ in (2.28) then we obtain

-1 -1.1
GpyH™) = H +2 2 o ==
P yTa aTEta
= (I +~5dT)H'l(I+§ 20) (2.35)
wher e
z = L Ly Luglal . (2.36)
- Tylaln WWe =~ Ye -
(@y)(a 5 3a)
V¢ have
D(pH ™)™ = G(p,H™Y) + E- v
ya -
= (1+z S+ -%—WYT)(I+ a'z) (2.37)
- 7 - >
as dw =0 .
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To sunmarize these results we have the follow ng:

(i)

T T
D(p,H) = (I+ w)H(I + yu)

G(pH ) = (I+ ~€dT)H~l(I+ RﬁT)

(i) DleE) ™" = 6(pE™) + = Wi
yla -
GlpsE ™)™ = D(pyH) + == v
yar~~©
update formula updat e formuls for inverse
ad’ Hyy'n 1, 1 v 1, .-l .-1,.T
D( pyH) Htp 55— - —= B4 (G W) -5 (W& H+H "dy)
dy v Hy y dy -~ ~
N T plaal gt adr 1 . T
G(p,H 7)| H &+ === - T H+ (p+ 1) = - 4 (dy H+Hyd)
P ya & H-d y dy ~~ -
D(p,H) » G(p,H'l) have been called dual formulae by Fletcher.
Lemma 2.6: Let A be a symetric matrix, A= TATT where A diagonal
. * .
(Ajj =2 . 1 =12..,n), and T orthogonal . Let a; , i = 1,2,...,n
be the eigenval ues of A+0'a.g,T , then either ¢ > 0 and

<A

i+l
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Proof : W have

det{A+0 a ET -} Tr'l('(xi-x) det {I+0(p~AI) "l(TTei) (TTE)T}

i=1
= ﬁ' (A -M) (1 o(17a) T (1 - A1) "H(7Ta))
i=1 ~ ~
2
=‘[Br(>\, AN {1+0 i Vi ) v, = p-(TT)a
A A R

and the desired result is an easy consequence of this expression. O

In the follow ng theoremwe consider specifically the mnimzation
of a positive definite quadratic form W assunme that the initial

estimate of the Hessian H, is positive definite, and we make use of

1
the foll owing sequences of updates for the current Hessian estinmates

(a) Hi+l = D(PaHi) » I = L,2,..., and

~ —l —l -
(b) Hipg = G(p,Hi) s 1 = 1;,254e..

Further we do not assume that the descent condition is satisfied.

Theorem 2. 2: (i) Let K, = cl/zHicl/e , and let the eigenval ues of

Ky ordered in increasing nagnitude beﬁx'?i .} = 1,250.0n . Then

it A > 4 then w1 2m @ e, white it AY <p then
WD al® < cptor j = ae0n . (1) Let & = cM2g Y2
~and let the eigenval ues of f{i beJ(X(?"'L , 53 = L2eeen o | igl) >p

then (M Zigg) >ee>p, whileif igl) < p then

igl) <A@ < cofor o= 12,
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Remar k: This result is inportant because it shows that we have a
'weak' convergence result for these Hessian estimates when ninimzing a

positive definite quadratic formeven when the descent conditions is

not satisfied at each step.

Proof: Noting that Cl/2d=C_l/2y=zi, we can wite the fornula for
updating K as

. ., m Eeex

T

W can break this into the two operations

Ka,aIK
J=K-—=5 , and
a Ka
aa.T
* ~~
K =Jd+p T

a a

~ o~

Note that J has a zero eigenvalue, and that a is the corresponding

eigenvector. By Lenma 2.6 we have A (3) =0, and A, S <A

1
for j =2,3,..,n. The rank one nodification which takes J into

K changes the zero eigenvalue to o and leaves the other eigenval ues
of J unchanged. Assune that kj(J) <p < 7~J.+l(J) then reordering the
ei genval ues in increasing order of magnitude we have xlt = %.k+l(J) ,

k = 1,2,...,3-1, ){; - P )\'—)}: - )“k(J) , k ~ 31 .., . This

establishes the first part of the theorem The second is dempnstrated

“in sinlar fashion by noting that K1 satisfies a formlly sinilar

A

update relation. This establishes the result for the eigenvalues of X

and hence for their reciprocals. O
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Remar k: Not e that both Hy and ﬁi are positive definite i = 2,3,...
ifoH IS positive definite. In this case the result does not depend

on the descent conditions being satisfied.

Theorem 2. 3: Let H be positive definite, and consider a step d in

. . A -1 -
the direction -Hy . Let g = D(p,H) , H = G(p,H )1:

A *
va, and H@ = eH+ (1-8)H = D(p,H) + %{- vt . Let

ya~~

T
D(p,H) + —T—

14
=Y

K = Cl/2H01/2 , and define K , K, Ky simlarly. Let the eigenvalues

of X, K , k&, ky be M. x.g, ’ia , and x? respectively,

. A *
j = L2..,n. Let 0 <e< 1. If szpthenxj?_szxi?zszp

while if x <o then kjgkggxgsijgp. If ©¢[0,1] then x?
need not lie in the interval defined by Jx. and p.
Proof : It follows fromthe definition of & , &, and B, and
Lemma 2.6 that 735 Sx? <A, 3=L2..n, provided 0 <o< 1.
The first part of the result is now a consequence of Theorem 2.2. To
show t hat 7\? need not lie in the interval defined by A, end p o,
consi der the exanmpl e
[ l+e /¢ 0
C = ’ P H=I F] pzl ) a. =
Je € - 1
1 —
| W have A, = q, A, = 1+2¢ -7 where q = 5 (1+ 2¢ -V1l+pe) . Thus
L -nis positive and o(¢?) . Inthis case we have
T
a Ka l/
; K=C , T = Z—= = ¢ Cl/2v=a-;Ka=- 1
. T ’ ~ ~ €~
aa 0
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loo
It is readily verified that K*[:;is , S0 that K-e=[o 1]’

- | 1+2e 0 ei genval ues lie outside the
Kive {: 0 1] . In both cases g
prescribed interval. In the first case we have 0 <1, and in the

second 1+2e > 1+2¢ -1 .

Remark:  This result shows that & gives the best inmprovement in the
ei genvalues <p , Wile g has a sinilar property for those > p .
Thi's suggests an algorithmin which a choice is made between updating
Hto & or ® depending on sone appropriate criterion. Fletcher

. . T -
suggests that if = > 1 (that is, gIHX >y C !

y) t hen g shoul d
be used, while if <1 then £ is chosen. He has used this criterion

in an inplementation of Goldstein's algorithm and has reported satisfactory

results.
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Not es

1. For ostrowski's theorem see his book 'Solution of Equations'
(2nd edition) or Kowalik and Gshorne. Goldstein's theoremis from
his paper 'On steepest descent' in SIAM Control, 1965. Theorem 1.3
Is abstracted from Goldstein and Price, 'an Effective Al gorithm

for Mnimzation', Num MNath. 1967.

2. For background material see Kowalik and Gsborne. The form of the
update for the inverse Hessian is due to Powel| 'Recent Advances in
Unconstrai ned Optimization' to appear in Math. Prog. It is a
specialization of a formderived in Huang, 'Unified approach tO
quadratically termnating algorithms for function minimization,
JOTA, 1970. The form(2.14) and the result of Lemma 2.2 are
probably due (in the case p = 1) to Fletcher 'ao new approach to
variable nmetric algoritmmst, Conp. J., 1970, and Broyden, ' Convergence
of a class of double rank minimzation algorithms', JI MA, 1970.
Lemma 2.3 is due to Powell (to be published). The product update
form(2.22) is due to Geenstadt (to be published). Dixon's paper
containing Theorem 2.1 is to appear in Math. Prog. The significance
of (2.27) for the successful performance of the DFP algorithm was
noted in Powell's survey paper already cited. Attention was drawn
to the dual updating formulae by Fletcher. This material together

with Theorens 2.2 and 2.3 are included in his paper already cited.
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APPENDI X Numerical Questions Relating to Fletcher's Al gorithm

L. | npl enent ati on

In this section we consider two questions relating to the implemen-
tation of Fletcher's algorithm These are
(i) an appropriate strategy for determining N to satisfy the

Gol dstein condition, and
(i) the use of the product updating fornulae for the inverse Hessian

esti mat e.

In his program Fletcher uses a cubic line search to determne A . Here
we use a sonewhat sinpler procedure which has the advantage of requiring
only additional function values. Also we work with the Chol eski deconpo-
sition of the inverse Hessian estimate. This has certain nunerical
advant ages whi ch have been outlined by GII and MJrray‘)—e/. In particular,
it is possible to ensure the positive definiteness of H and this can
be lost through the effect of accunul ated rounding error when direct
eval uation of the updating formulae is used. Another possible advantage
of the Chol eski deconposition is that we can work with an estinmate of
the Hessian (that is gt ) rather than with Has division by a triangul ar
matrix does not differ greatly in cost to multiplication. W felt this
coul d well be an advantage in problems with singular or near singular
Hessians, in which case H would be likely to contain |arge nunbers.

To inplenment the line search we note that by Theorem 1.2 we shoul d
test first if "’(i‘i’fi’ilfi“) = ¥(x;,8,5 1) satisfies the Goldstein condition.

This requires the evaluation of F(x;+s,) and this, together with the

* wpr, Mathematics Divisi on, Report 97, 1970.
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known val ues F(xi) and F'(xi) = VF(xi)si , gives sufficient information
to deternmine a quadratic interpolating polynomal to I? . W wite this
as

P(N\) = F(ici) +F'(§i)x+M2 (A.1)

where A is to be determned by setting P(1l) = FQ‘:’ +§j) . This gives

- - 1
A = F(x;+8) ~F(x;) -F'(x,)

F(x,) (W(xy5851) -1) - (4.2)

The m nimum of P(h) is given by

F'(x,) 1

on = 2(1-¥(xgsg1)) (8.3)

N = -

To test if this is an appropriate value we conpute q;(xi,si,x) . This

{1 i 3 P Ms;) 3
| A (A.)

J

where X is a nmean value. Thus, if F is quadratic and

gives

o
+
PO+

U(x,8N) =

w(xi,si, 1) < ¢ then A given by equation (A 3) satisfies the Goldstein

condition for any allowable ¢ (normally o is chosen small

say :Lo'h ): For nonquadratic F the test is satisfied if the relative

error in estimting %»F"(xi+ Xsi) by A is not too l|arge.

This anal ysis provides the basis for our nethod which is given below.

Al gorithm

(i) Calculate |ls;|| , set w= min(l,HfiH) > M=1.

(ii) Evaluate ¢ = “’(fi’fi’)‘) .
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(iii) If N<g then begin pA» = A\,

go to (ii), end.

(iv) If N<1l-c gotO EXIT .
If x>1 then begin if A>1/w go to EXIT,
A =28, end.
else N = .5(M+pA) .

goto (ii).

Remar k

(1) Nurerical experience has shown that the value of XN predicted in
(iii) can be too small, and that an additional instruction
[f N < s¥ph then N = s¥pA
should be included. A value for s of about .1 has proved
satisfactory (1/8 was used in the nunerical experinments reported
in the next section).

(ii) It is readily verified that  1im ¥(x,,s.,N) = 1 . Thus the
A-0 Tt

al gorithm can be expected to return a value of A\ satisfying the
Gol dstein condition unless Vv exhibits rather pathol ogical

behavi or .

W wite the Chol eski deconposition of H as

H = R'R (A.5)
where R is an upper triangular matrix. Thus we require to find R

such that
RIR = H (A.6)

where H is given by either
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“

(1) H = (I+11~3LT)RTR(I+3§1}‘) s or
(i) Ho= (e ) @R+ G J(Tepd)

The second case can be reduced to the first if we wite
TR - RR+LT v (A.7)

To calculate R note that

R
RR+ET YZT = [’ |V/E v]
o v
" R
- & |V vie'e| (A.8)
ST

where Q is orthogonal. Thus we seek an orthogonal matrix Q such

t hat
R R
Q, - (A'9)
mE o Le

Let W(i,J,{p,a}) be the plane rotation such that W(i,J,{p,a})A
conbines the i-th and j-th rows of A, and reduces Apq [0 Z€ro. It

is necessary that p be either i or j . Then Qis given explicitly
by

W(i,n+1, {n+1,i}) : (A.10)

N

"It is readily verified that the zero introduced by each transformation

s preserved by the subsequent transformations provided they are carried

out in the order indicated.
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Consi der now the problem of constructing the Chol eski deconposition
of s's where S = T+abT , and T is upper triangular. This corresponds
to our problemwth the identifications T = R or R,
a=R or ﬁl’ , and Nb:y. In this case the deconposition is done in
two stages. Qur nethod uses ideas due independently to Stoer, Gol ub,

and GIIl and Mirray.

(i) W determine an orthogonal nmatrix Q such that

Qe = ”aan . (A1)
If we set
n-
Qy =T|'lw(i,n, {i,*}) (A.12)
i=1

where the * indicates that the rotation is defined by being applied

T

to zero an element of a vector, then q;5 = QI+ [alle b™ differs from

an upper triangular matrix only in having possible nonzero el ements in

the last row

(ii)  To conplete the determination of R We sweep out the elenents
in the first (n-1) places in the last row of Q.8 by plane rotations.

Thus R* is given by

R = ,(aT+ lafle, %) (.13)
wher e
1
Q= | | Win,(m,i}) . (A 14)
i=n-1

It will be seen that the updating of the Chol eski factorization can
be carried out very cheaply. Depending on the update fornula used, the

maj or cost is either 2n or 3n plane rotations. It should be noted that
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Fay = |rylf =] (4.15)

is required in the update formula. Thus a can be already available

for S .

2. Nunerical Results

In this section we report the results of numerical experiments
carried out to test some of our techniques. W consider four line search
strategies:

(i) a standard cubic interpolation procedure with AN =1 as initial

search interval,

(ii) a standard cubic interpolation procedure with A given by the
step to the mnimumin the previous |line search,

(iii) a strategy for satisfying the Coldstein condition in which A
is reduced by the factor 1/8 if ¥ <o , and

(1v) the method for satisfying the Goldstein condition given in the
previous section.

Product form updating for the Choleski factorization of both H and

ut - ¢ has been i npl enented, and the results obtained for each are

gi ven.

The probl ens considered include:
(i) Hilbert: Mnimzation of a quadratic formwth matrix given by

the Hilbert matrix of order 5. Here

ié 5 (xi-l) (xj—l)

1
F=32 -1 ’

i=l j=1
and the starting point is given by

Xl :-)-F/:.L s | 21,2,.-.,5.
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(ii) Banana(n) : The Banana function in the cases n = 2 (the
Rosenbrock function) and n = 8 . Here
n-1

_ 2,2
F = igl {100(x,, = %)“+ (1-x,)

2

3,

and the starting point is given by

X, = =12 if i odd, otherw se X. = 1.

1
(iii) Wods: Here
F = lOO(xETx?:l'_)2+ (l-xl)2+9o(xh—x§)2
+ (l-x3)2+10.l((l-x2)2+(l-xh)g)
+19-8(1-x)(1 -x)
and the starting point is

X = {-3, -1, -3,-1} .

(iv) Singular: Powell's singular function is designed to test the

performance of algorithms on a function with a singular Hessian

at the solution. Here
2 2 L L
F= (xl+ le2) +5(x3-xh) + (x2 - 2x3) + lO(xl-xh) s
and the starting point is

X = {3,-1,0,1)}

(v) Helix: Here we define

2 2,1/2
R={Xl+}in / s
. 1 %o
T =if x> 0 then.— arctan —
1= 2m b'd

o1
. 1 %o
i f x; < 0 then —7a¢rc-tan EI + .5

Th



and set

2

F = ;Loo((x5 - lOT)2+ (R'l)z) Xz .

The starting vector is

= {-1,0,0}.

Nurerical results are given in Table Al. For historical reasons,
the test for terminating the calculations was based on the size of |s,||
( HfiH.S EPS/n with EPS = 10'8 ). This proved reasonably satisfactory
for all cases except the singular function -- in fact in all other cases
the ultimte convergence was clearly superlinear, and the results were
accordingly only marginally affected by the size of EPS. In the case
of singular the convergence test proved difficult to satisfy in nost
cases (indicated by * in Table A.1), and these conputations were
termnated by the nunber of iterations exceeding the specified limt.
However, in all cases the answers were correct to at |east six decinal
places. There is sonme variation in the H and G colums. This shows
the effect of rounding error, as these would be identical in exact
arithmetic. The nost interesting case is the H colum in both cases
of the Banana (8) when satisfying the Goldstein condition. In these
cases both H and G formul ae produce very simlar results until the
10-th iteration at which point-the H formulae produce nuch Iarger
reductions in F than do the G . However, this progress is not main-

tained and at the 20-th iteration (in the case of the |ine search

~algorithm of Section 3) the H matrix becones singular and the iteration

is termnated. A restart procedure could have been used at this stage
The numerical results indicate that the new algorithmis prom sing.

In general, although nore iterations are required, we make significantly
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fewer function evaluations in conparison with the routine using a
standard line search. As only one derivative evaluation is required in
each iteration, the real saving can be considerable. W note that on
the basis of the evidence presented it is not possible to draw concl usions
as to the relative values of the H and G algorithms. However, that
both manage to produce very conparable results provides sone evidence of
their stability.

The program which gave the results presented here is coded in
AtGoL Wfor the IBM360/67 at Stanford University. The cal cul ations
were carried out using long precision (14 hexadecimal digits).

A FORTRAN version of the program has been devel oped at the Australian

National University.
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TIT. Barrier and Penalty Function Methods
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1. Basic properties of barrier functions.

Consi der the inequality constrained problem (ICP)

mn f(x)
subject to gi(x) >0, i = 1,2,...,m (ieIl) ,
where we assume (as before) that £, g, ., eI . are in C2 . W also

assume that S = {x; gi(x) >0, ieIl} i S compact, has a nonvoid interior

S, and satisfies the regularity condition that every nei ghborhood of points

of S contains points of 8, (this precludes S having 'whiskers'). If

xcS and gi( )= 0 for sonme i then it is assunmed that x,éso .

~~

Definition: P(g(x)) is a barrier function for S if the follow ng

conditions are satisfied.
(i) >0, x5. If Xclosed set, X ¢ 8, , then ¢€C2 on X .

(ii) p-w=, g -0, iel; .

(i) %ﬁ <0 if g, <Py where the py» leI, , are fixed positive constants.
i

(iv) |§£:| bounded on N(x,s) if g > 0 on N(>c~,6) )
m

Exanpl e: (i) ¢ = Z l/gi(x) (inverse barrier function),
i=1 ~

(11) § = § (llog(1+ g;(x)) - log g;(x))

Renark: In the second exanple the termw th argunent 1+ gi(x) merely

ensures that the positivity condition is satisfied. It could be

replaced by a bound k, for log(1+ gi(f‘.)) on Sif this is known. In

9




practice it is of no consequence. The barrier function

m
p = Z(ki-log gi(x)) is called the log barrier function.
i=1 -

Definition: T(x,r) is a barrier objective function if

T(x,r) = £(x) + H(s(x)) (1.1)

where r >0 .

Lemma 1.1: 8 x = X(r) €S, such that T(x(r),r) = mn T(x,r) .
~ ~ ~ xeS -

~

Proof : T(x,r) i s bounded below on S, and T(x,r) -+® as X - 08 .
cl

Lenma 1.2: Let {rj} V0, and let x_(rj) =%, Then
(i) {T(xj,rj)} is strictly decreasing,
(ii) {f(xj) } is nonincreasing, and

~

(iii) {¢(xj)} i s nondecreasi ng.

~

Pr oof : Let r. < r. then
i 3

< f(}fj) +rJ¢(§(§J)) s
< f(xy) + rip(8(x,))

This denonstrates (i). Subtracting the inside and outside inequalities
gi ves

(I‘J. = r1)¢(§(§l)) Z (rJ = I'l)¢(g(X))

~ ~d
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which gives (ii). From the first inequality we have
£(x;) < £(x3) + 73 (Alalxy) - Pla(x;)))

Sf(}fj) . O

Renark: If T(x,r) is strictly convex, then all inequalities are

strict.

Theorem 1. 1: The sequence {Tl(xi,ri)} converges, and

lim T(x,,r.) =mn f(x) .
R L1771 o
i-w xeS

~

Proof : By Lemma 1.2, {T(xi,ri)} i s decreasing and bounded bel ow and

hence convergent. Let f* = mn f(x) , then
xeS ~

~

T()E,ri) > f(x) > £

whence

*
i 1.2
[im T(}fi’ri) >f (1.2)

i-o
- - * .
Now let ¢ > 0 be given. Choose XeS such that f(x) -f < ¢/2 (this

i's possible because of the regularity condition on S), and choose r,

such that ri¢(g(}-c)) < ¢/2 . Then

mn T(x,ri) < T(}—c,ri) < f*+ e
X ~ -
whence

1im T(x.,r.) < £ .0 (1.3)
~1 1 -

1-e

Corollary 1.1; The-limit points of {x,} are | ocal minima of the ICP.
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Renar k: The generality of these results should be noted. For exanple,

we have not required S to be Lagrange regular at the limts points

of {}fl} .

Definition: Q(x,r) is a separable barrier objective function if

m
aler) = 2(x) + ). 7,8, (8,(x) = £(x)_+ x B(x) (1.4)
- i=1 ~

~

where r >0, and ¢i is a barrier function for §; = {x;gi(x) >0},
i = l,e,l..’m .
The previous results are readily extended to this case and are

sunmarized in the follow ng theorem

Theorem 1. 2: Let r. >

5 ri+l’i = 1,2,..., and lim r, =6. Then

i-e ~

(i) Tgé Q(x, fk) is attained for some ickeSO,

~

(ii) {Q(ﬁ{, fk)} is strictly decreasing, {f(fk)} i S noni ncreasing, and

~

(i) lim Q(x

k—qcb ~

k’fk) — , and the limt points of {’fk} are | ocal

mnim of the |CP.

Renark: G ven a sequence of positive vectors tending to zero then it
i's possible to select a subsequence which is strictly decreasing.

Conclusions (i) and (iii) remain valid in this nore general case.
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2. Miultiplier relations (first order analysis)

*
In this section we assune sequences f{r,} 40, {x}-x . The

condition that T(x,rk) is stationary at L gi ves

VT(}fk’rk) —vf(X)‘”ﬁ k5§¢_vg( )

m

k p—
= a k = - — @
wher e ui = k&@;(f{’” . Note that ui_o(rk) 0, k ,
i 148y, and uf > 0 for icBy and k >k, by the conditions

defining barrier functions. Equation (2.1) is formally simlar to the

nultiplier relations given earlier (MP(3.2)), and it is conparatively
straightforward to deduce these relations from(2.1) in certain special

cases. W assune that B. = {1,2,...,%} , that the rank of the system

* 0 * *
of vectors veg,(x), 1ieBj is s <t , and 4=z Vg (X )5 o = o598 (%)
are linearly independent. W define matrices CL(}f) , Cz(f) by
ks (Cq) = vgi(f)T , =1, , .S, and «;(C)) =vgs+i(§)T,
i = 1,2,...,t-s , and vectors (k)T _ {U-_L k ’ Eék)T = {uzﬂ---u;{} .

Lemma 2. 1 If {u;‘} "is bounded then the Kuhn-Tucker conditions hold

at x
Proof : From (2.1) we have

vf(ggk)T = Cl(}k)ﬁk) +02(§{)gz(2k)+0(rk) : (2.2)
The linear dependence of the set of vectors Vgi(ﬁ*) , 1ieB, , gives
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Co(x) = Cy(x R (2.3)

so that (2.2) can be witten

72T = 05 (e) 1l s m{® oo (x) - 0 R v oy . 2

Provided k is large enough the rank of CL(Xk) wll be s (see

MP Remark followi ng Lemma 3.3). Thus

~

o 4 m® _ o ()%, () 170 () oe() T+ (0405 -0, IRl v o(x)] -
' (2.5)
As Eék) bounded we conclude from (2.5)

(i) u:(Lk) bounded, and

(1) 2am u{® e ref L g, (Y7, 17, (N o)

k —»o

As {u§k)} ’ {uék)} are bounded and nonnegative (at least for k large
enough) this property is shared by the limt points of the sequences.

Consi der subsequences tending to w , u.* respectively. From (2.2)

o =2
we have
*. T *, ¥ *, ¥
vE(x )T = Oy (X )8 *Cp(x )1,
or
* * *
vE(x ) = Y u, vgg(x) . (2.6)
~ ieBO -~

Thus the Kuhn-Tucker conditions are satisfied. O

Corol lary 2.1: [f the Kuhn-Tucker conditions do not hold at x ,

then {ui} s {ug} are unbounded.
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) *
Corol lary 2.2: If restraint condition A holds then the Vgi(X)

. . ] . k. .
are linearly independent for ieB  In this case {u;} is null,

and {ull‘} converges. If restraint condition A holds then the nultipliers

in the Kuhn-Tucker conditions are uniquely determ ned.

(
Lenmma_2. 2: If restraint condition B holds then {ulé)} IS bounded.

k .
Remark: By MP Lenma 5.2, this inplies that {ué )} i's bounded for the

convex programmng problem provided S has an interior,

*

Proof : If restraint condition B holds then & g such that vgi({)ii,) 0,
i=1,2,...,t . From(2.2) we have

& x

Lt vy 5)2 < 9r(x)ds ol (2.1
As vgi(x)d is a continuous function, we nust have ul.; >0 and
vgi(:ik)d >0, i =1,2,...,t , provided k | arge enough. Thus (2.7)
gi ves

d+0

- ul.{ < st}fk)" ( (:)r?) (2-8)
This relation shows that the lﬁi are bounded as k -« . O
Renark: The results of the first section showed that convergence of

barrier function algorithms can be proved under very few assunptions.
The results of this section show that valuable structural information
on the problemis available as a by-product of the computation. Note

t hat the condition that t he ul; be bounded is a weaker restraint condition

than either A or B.
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3. Second order conditions.

Consi der now a barrier function ¢ and a sequence {rk} {0 such
t hat {xk} - X |, {uk} -u . It is convenient to assume the follow ng
properties which are satisfied by all barrier functions of practical

interest.

2
M) e @y, )0, 1212w,
i - . 7
1

2
(ii) r a—'@x& o+ , koo, icB _ (But see Exanple L(ii) p. 100
i for qualification.)

(iii) a-$& =0 if if3.
i ]

Lemma 3.1: |If the matrices va'r(xk,rk) are positive definite for

* . .
k >k and the vgi(x ), ieB are linearly independent then

0 0"
vTvzs(x*,u*)v >0, ¥v #0 such that vgi(x*)v =0, VieB, .

PUPTIRP P

Pr oof : Differentiating T(x,rk) gi ves
2 & 3% T
VQ‘I(Jfk,rk) = v e(xou) + 1y z_:l 2 ve,; (%) v, (%) (3.1)
i= gi ~ ~
whi ch can be witten
2
PI(x,my) = vsron) +0 () D ()T T r 28 g (1) e, ()
~ e ~o ~ ieIl-BO Bgi ~ ~

Wer e

2
) .
(Dk)ii = rka_g% ( Z?P\_ r) 1 = l,e,...,t .
i
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Let

+
_ 3.2
P, = Cy(x)C; (%) (5.2)
then, for arbitrary nonzero v such that (| -Pk)g )
0 < V(I -B)VT(x,m) (T BV
= T(I-P )vg.s:(x w )(I~P )v+o(l)
=7 K i et LA M

as

The desired result follows from this on letting k ~« . O

Corollary 3.1: If in addition to the conditions of Lemma 3.1 we have

al so strict complementarity then the second order sufficiency conditions

*
(the conditions of MP Lemma 4.3) hold at X

Remark:  The probl em of generalizing this result to the case where the

active constraint gradients are not linearly independent is the follow ng.

In general, when k < » , ra‘nk[cl(’fk)lcz(fk) ] > s . Thus

Ve = (v g (x)v = 0,¥ieBlcuy = {v;v = (I-PJu, ueE}.

\\& have

- * * L3
lim U, =V = {I;Vgi(i)zz 0, VieBy}.

k-

*
It is not difficult to construct exanples in which lim v <V .

k —e

Consi der C.(x) = C.(x) = e +er(x-x)e, . Th
nsrdaer (%) =&, LolX) = &7 S\x=2 /% . Ihen
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Tv:eév:O} = limy CV*:{v;e v =0} . The

Vv, = {vse
MER] Kow K NED R

k

argunent of Lemma 3.1 shows only that -\I;% £(x*,u*)v >0 for

~ ~ ~

v e lim Vk'

K —e

Lemma 3. 2: Let

W= U+y VI |
W= {esltll =1, vt =0},
M= fusflull=1,uen'y

mintTUt>o, o :m'nuTUu, p=min |Vl >0,

<
il

teN ~ ~ ueM ~ ~ ueM ~
) T o
= mn t°Uu , p = min(0,M)
teN, ueM ~ ~

then Wis positive definite provided

2+v2-0v
y > L8OV (3.3)
v
Proof : Any unit vector w can be witten
w=qQau+pt where ueM , teN , and ocz+ﬁ2 =1.

Thus

woWw = 0Pl Uu+ 2080 Ut + BT Ut + 5o v
ZO‘Z(U‘*'NE-\J)+2|0‘|(1—042)l/2p+v

_>.d2(0+7u2-v)+2|0¢|p+v (3.14)
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as p <O . Provided y >¥3 (a weaker condition than (3.3)), the

2
v
right hand side has a mnimmat a = -92 >0 . The value at
T+ % =V
this mnimmis ++ v Which is positive if (3.3) holds. O

0+ % -V

Corollary 3.2: If W:U+VDVT where D diagonal, and if the

conditions of Lemma 3.2 hold, then Wis positive definite provided

2. 2
mn Dii > 2 Ty -0V If Dis positive definite the result holds
i Vi

provided the smallest eigenvalue of D satisfies this inequality.

Pr oof : \\& have

%
erI VD VTY = 0121~1T VDV u = of ingii( pi(VT)B)z
>min D, oZVal® .

The result now follows as from equation (3.4) above. O

*
Lemma 3. 3: If the second order sufficiency conditions hold at X

then VQT(xk,rk) is positive definite for Kk large enough.

Pr oof : \\& have

* * 3 v =0 ¥i €¢B_. such that u*>0}
VgU:{lr,vgin)v— , Vi eBj N .

~ ~e~o

Thus the second order sufficiency conditions inply that

VTvz,s(x*,u*)v >0, Vve v such that v £0 . FromCorollary 3.2

* % * * * ¥ T
't follows that 3 b, such that v-S(x u) + [C4(x) e (e )IDIC (x)lc,(x)]
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is positive definite for D >D By continuity this inplies that the

0"
corresponding natrix evaluated at X is positive definite for k large

enough. The desired result follows fromthis as (D

Kig = ®
i = 1,2,.0eyt @S K == . O
Lemma 3.4: If Uis nonsingular, D diagonal, and V of full rank,
then the systemof |inear equations
[U+VDV]x = W (3.5)
has the sol ution
X = U'lV(I+M)'lMy (3.6)

where M = (VTU'lV)'J‘D':L provided [+M is nonsingular. A sufficient
condition for I+M nonsingular is ||[M|< 1 which is satisfied if

miln Ip,;| is large enough.

Proof: The result follows on substituting (3.6) into (3.5). O

Remar k: From (3.6) it follows that

X ~ U'lv(vTU'lv)'lb'lg (3.7)
as mnp.. |~ =.
i 11

Corollary 3.3: If the right hand side of equation (3.5) is z ,

~

a general vector, then the solution is given by

U'lV(I + M) 'lM(vT y~t V) “Lyfyt z

X

+ U_l(I—V(VTU-lV)_lVTU-lZz : (3.8)



4, Rate of convergence results.

In this section, rate of convergence estimates for barrier function
algorithns are considered. Unless stated otherw se the conditions

inmposed in Section 3 are assuned, together with the condition that

vai(’f*)” £ 0, icB,.

Lemma 4. 1: Provi ded {uk} i s bounded t hen

% {
£ - £(5) = Y up g
1=

+ o(max{lx ~x %, r e -x 1D (4.1)

Pr oof : The result follows by taking the scalar product of (2.2) with

xk—x* and identifying with terns in the Taylor series expansion. O

~

Definition: W say that u is So(vk) (strict order Vie ) provided
(1) W = O(Vk) , and

(ii) @k, <= and p >0 such that o | > wlv | for k >k

o -
Remar k: (4.1) gives an error estimate provided the remainder termis
small. A sufficient condition for this is
*
£(x) - £(x) L. 80(lr - x ) - (4-2)

k *
This inplies that for at least one i , v & (%) =80(|lx, - x7) .

[f (4.2) does not hold then for i = 1,2,...,%t either

(i) uiI—»O, k »o, or

(1) & 0g) =ollx -x ) -
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If (ii) holds then the approach of X to x is tangential to the

surface gi(x) =0at x = x

Lemma 4. 2: If the ICP is convex, then

(i) X, Wooare dual feasible, and

(i) f(x) - f(x*)< ,Zlu}i{gi(fk)

1=

Proof : The dual feasibility is a consequence of (2.1) and assunption

(i) of Section 3. This follows directly from Wolfe's form of the duality

theorem (Mp Corollary 5.1). W have

lon) = 1050 - b o g05) < 80 = 205) S 5Gg)  (43)

i:
whi ch denonstrates the second part of the desired result. O
. . * *
Exanpl e: For ieB, let gi(zi) = SO(H& - X D, u; >0 .
(a) inverse barrier function. W have
k 2
o= /e 0g)

whence

8, (%) = ry / uf
This gives

e -l = o(=/?)
~(b) log barrier functions. In this case
uljf =7/ 85(x)

whi ch gives
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and

b =% = 0(zy) -

Thus the strict order condition permts us to deduce a rate of convergence
result. W now show that the SO condition is equivalent to the
condition of strict conplementarity for the inverse and |log barrier
functions. In these cases the remark following Lemma 4.1 gives us a
geometric interpretation of strict conplementarity.

To discuss this equivalence, consider the follow ng system of
equations which define Xy and M, as functions of r

k

1

v(x,) - 'Z_l 111ngi(§k) =0,

and

ul::/(«%?; (ﬁz) =- 1 5, 1=L2..,n. (k%)

If the Jacobian H(x,u) of this systemwith respect to x,u or an
approoriate transform of it is nonsingular then we can study the behavior
of x(r) , u(r) as a function of r by integrating the system of

differential equations

[ ax [~ ﬂ
v 0
H(x,u) = - (k.5)
du
= e
-dr . .~
T
where e: {1,1,...,1} . ¥ have
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_\/2 £(>~<, B)

: 2 e a0
=
(%)

H(x,u) =

>°¢

- Um vgm(x)
&y <
S

Let D be the diagonal matrix

[~ n
T
D= hb
m
o J
wher e
2 p)
_ S}
()%
g .
1
t hen
v £(x,u) - vgl(g)T
)
2 [
u.vg. (x) -
DH = 1 ééﬁl agi
8 (%)

T
- vg (x)7 .-

1

- vgm(f)T

9L

ve, (%)

(4.6)

(3.7)

(%.8)

(%.9)



2
Provi ded %ﬁ % .0, x-w, i, then DHwill be non-
i g

singular for k large enough provided J(x*) I's nonsingul ar (see Mp
Lenma 4.4). This inplies

(i) the second order sufficiency conditions hold,

(i) the active constraint gradients are |inearly independent, and

(iii) strict complementarity hol ds.

In this case
d.X p— —
a; 0
DH = - (4.10)
du
= w
R R S
whence
— *-
kT X Tk 1o
= - (oH) dr (k.11)
Yy - Ii* 0 .
- .

provi ded the conponents of w are integrable.

Exanple: (i) inverse barrier function.
V¢ have

gaggfg & ;@2 % 1
— 5] = .
=5 Bg? a 2 g5 agi 2gi

In particular, it follows that DH(}%) is nonsingular for k |arge enough,

while -w, = Zofa /r . Ve have
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i dx
dr 1 (DH) 1 0_
du 2r1; 2 fq
a s
P

whence, changing to r-l‘/2 as independent variable,

ax
—575C 0
a(r ) ( )_1 —_—
= (DH
du /;I
172 :
| a7 S
. m
Thus we have
x(r) -x 0 ]
- /2D (%) = | o(xH?)
u(r) -u M
.*
Aum‘

(i) log barrier function. In this case

2/3- o ()4

so that (4.10) becones

dx
ar _10
= J

du
ar e
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In particular, x(r) , u(r) inherit the differentiability properties of
f and gy » i =1,..0,m for r small enough (if :f‘,gecP t hen

xuec®d ). Thus

~ o~

x(r) -x o
AU I (0 i + o(z%) . (4.16)
u(r) - £

Remar k: These results can also be derived by differentiating (2.1) wth

respect tor . W obtain

dx m
T
P g o= - Loag veEe)” (17)
In this case Lemma 3.3 guarantees that veT(x(r),r) IS positive

definite for r small enough, and Corollary 3.3 can be used to give

du
the solution to (4.17). Note that (%.17) results if ar”— is elimnated
from (4.10).
W can now proceed to the main result.
Theorem 4. 1. Provi ded J(x*) I's nonsingular, then the strict

~

complementarity and strict order conditions are equivalent for the
inverse and log barrier functions.
Proof : The argument is essentially the sanme for both barrier functions,

but is sinplest for the log function. Thus only this case is considered
here.

For the log penalty function ulic = rk/gi(.fk) so that
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r
% k
£q) - £0x) :iéo 2,0 &1 * Ol - x|

= tr + O(Hﬁ'f*u) . (4.18)

[f strict complementarity does not hold then for at |east one ieBO

Ty
1im = 0
g, ( ’fkj

koo

he gy(x) = ve, () (g -x) v ol X ) 28 ok -x [ at most, it
follows that r, = o(lh, -x [) and hence, from (4.18), that
f(fk)' f(x*)ﬁ o(Hyjk -xf”) . Thus the SO condition does not hold
If strict conplenentarity does hold then asynptotically for small r

r r

*
~ s - u, > 0 , 1ieB, .
e () -~ EEED T ieB,

1

Thus r = o(||x(x) —xfﬂ) . As (I(f*) is nonsingular (4.16) holds and this
inplies (as r = o(llx r) -x () that
Hx(r)-x*ﬂ < Kr +O(r2)

for some K> 0 . This shows that r = 80( |jx(r) - x*”) so that, by (4.18),

the strict order condition is satisfied. O

- Remark: The above argument shows that if strict conplementarity does
not hold then the strict order condition cannot. The condition that

J(x*) be nonsingular is required only for the second part of the theorem
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Exanmpl e: (i) mininmze X;+X,

2
subject to -x;+x%x;, >0, x>0

v

Figure 4.1

From Figure 4.1 it is clear that the minimum is f

and that strict complementarity hol ds.

(a) inverse barrier function

1 1
T=xj+x+r x2+x
Xo =%y

—

S
él)
1}
l_l
+
H
r—/\\ C\/H
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This gives a pair of equaticns for X, and x, as funct ion:;

of r . We have
Xl = rl/2 -r+ O(I‘B/g)
X, rl/2 + r+ O(rB/E)

(b) log barrier function

2
T = x +x2-r{1og (XE'X1)+lOg xl}

1
-2X
or 1 1
> ~0=i- 7=
X, =X 1
2 1
oT 1
2 1

Sol ving for Xy and X, as functions of r gives

>
I

r - or° +O(r)

1
X, = r+r +O(r5)
(ii) mnimze %,

. 2
subject to Xg-xl>0, x; 20,

In this case the mninumis again f = 0 at R 0 . However,
yf£(0) = eg is orthogonal to vgg(o) = e'_:rL . Thus, as both constraints
are active at zero, Strict complementarity does not hold. Note that

the constraint g, = x, > 0 is redundant, and that the barrier function

trajectory is tangential to the constraint surface g =0 . Note al so
. o
that the rate of convergence is reduced, and that T 5.2 does not
g

tend to « for the constraint with the zero nultiplier.
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(a)

(b)

i nverse barrier function.

1 1
T=xz+r 2+-x—l
Xo =%y
2x
gcr—=°=r l2)2"}%2‘
1 (%5 - % 1
oT -1
6—};—:0:14‘1‘ 2
2 (xe-xl)
whence
2
1/3 J
x, = (x/2) , u,= 1, r
1 1 ag

2

| og barrier function.

2
= - - X
T X r{log(x,2 xl) + log l}

or 1, 1
> -0= 2 %
1 x2-xl 1
oT 1
%:0=1_rx-x2
2 1
whence
22
xl—(/g)l/z’ ul 1’ r'a_%:
3
g'll
o etz L 3B
x2=5r/2, 2—(1‘) ,rage
2
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(iii) mi ni mize -x;

>0, x,>0.

- >
subject to (1-xl) -X 0 2

2
This is the exanple used in MP Section 3 (see Figure 3.1). The

optimumis f = -1 at X = 1, X, = 0 . The Kuhn Tucker conditions

do not hold at this point.

(a) inverse barrier function.

T= v . s
(l-xl) - X, 2
.- 3(1-%,)°
Sk, = 0= 5 2
1 ((1-%)7-x%))
S LR 15 2~ "12'
3%y (1-x)7-x)° =

‘ = 1-21/2 5:L/u r1/&

. 2:L/2 55/l+ r;/h

1
In this case uq(r) = ug(r) = 5 . 55[2 .

12

(b) log barrier furé& on.

T =-x - r{log((1 -xl)3 -x2) + log xe}

-3(1 -xl)z

oT
=0=-1-r
&—l (l'xl)j"xz
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or -1 + L
&, 9=T 3 X
2 (l-xl) - X, 2
whence
X _ 1-6r ,
X, = 21.081'3
h () =u (x) =
In this case u.(r) =u.(r) = — )
1 2 1087°

The above exanples confirmthe predictions of our analysis, and for

a given fixed sequence of r,_ values effective convergence is attained

k
nore rapidly (i.e., for earlier menbers of the sequence) with the |og
barrier function.

Now | et ¢ be a barrier function. Then
p, = log(o+p) , o >1 (k.19)

is a barrier function. Let x m ni m ze f+rk¢, X, mnimze

~

£+ rk¢l . Then conparing corresponding Lagrange nultiplier estimates

gi ves
s G
- -1, rk—oO
(0+9()) 5 (%)
whence

B -o( R &) e noo

Essentially this says that gi.(.ﬁc) - 0 nore rapidly than gi(;:ck) , SO
that a faster rate of convergence is anticipated for the ¢l barrier

function.
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Consi der now the sequence of barrier functions defined recursively

by
g1 = 10g(x, - 108(e,(0)
¢§I) = lOg(0+¢§'i—l)) ) 1= 2)5:'--; c>1 )
¢(i) = )I:n: ¢Si) . (4.20)
j=1 Y

In this case the error estimte is

(1). i
. & o, L r =
(1) “ - i _ k —r
f()fk ) - f(x*) = Ty ng gj gg(},fk) —J=ZJ:. jk-log(gj S‘E]E‘ G+¢J‘S
(h.21)

The right hand side of (4.21) tends to zero as i - =, and this suggests
that increasingly rapid rates of convergence can be obtained by using
barrier functions associated with large values of i

However, an even nore interesting result is possible. This shows
that in certain circunstances it is possible to choose a barrier function
having the property that the solution to the I1CP is approxinated
arbitrarily closely by the result of a single unconstrained mninmzation,

without requiring r to be taken arbitrarily small. Let

T(i)(f,f) = £(x) +r§1 ¢§i)(gj(§)) ., and

BN = T+ b 10y - 20 (3)))
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Theorem 4. 2: Let Q(x,M) have a unique stationary value (necessarily
a ninimn in SO for each N >0, and |et x(i) mnimze T(i)(x,r)

for i = 1,2,... and fixed r. Then the linit points of {x(i)}

are local mnina of the |CP.

Remar k: Note that r does not have to be small in this result.
Proof : | f x(i) mnimzes T(i)(x,r) t hen
m -1
(1) - 1 1 1
vE(x\t) -r ¥ : : -
- 1k, - tog(e; (X)) 52 a+9{% (6, M) i)
=0 , (k.22)
and this expression has the form
v A3y 2 o (4.23)
wher e h§i) has the numerical val ue
i-1
(1) r ?;TA 1 P
A = - < ] =1,2,.00ym .
J kj—log(gj(x(l))) s=2 0+¢§.S) (gj(x(l)))
(k.2k)

Thus the {:f(i)} also correspond to a sequence m nim zing Q(?j,?:(i)) by
t he assumed uni queness of these stationary values. Now, as ¢ >1 ,
¢§.S)> 0, s = 1,2,ee0,i-1 xgl) can be nmade arbitrarily small for
each j by choosing i large enough. The desired result is thus a

consequence of the remark following Theorem 1.2. O
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Renark: The conditions of the theorem are satisfied if f(x) convex,

g;(x) , 1 =1,2,...,m concave, and strict convexity / concavity holds

for at least one of these functions.

In what follows it is convenient to use the superscript i to

indicate the appropriate menber of the log barrier function sequence

(4.20).
Lenma 4.3:
. . (1)
324(1) (1) pt" |
J‘e agg' = -'3@—' , = 1,2,..., (4.25)
ng J 3
wher e
- . (1) .
pg') = p.(jl b+ g §§jg7 < p§1 Do (4.26)
and
p§i)*l > 8520 (k.27)
/ Proof:  Let ¢(O) = -log g t hen
24(0) (0)
P S L (4.28)
ng €5 €5
so that p(o) =1 Now, differentiating the relation
5¢(i+1) 1 ap(i)
= - b,
3, B O (%+29)
gi ves
3Pp (1) 1 (P 2 1 32D
- (1).2 3e. * ) 5
Oe; (o+g*"7) 3 o+ %



so that

a2¢(i+1) a¢(i+l) i a¢(i+l)+ a2¢(i)/a¢(i)
a = 779

. 2 - og.
agi €3 € ng J

1l

")

2w, e
&5 \"

-

This denonstrates (4.25) and (4.26), (4.27) follows on noting that

°§O) =1, and that, from (4.29),

(1)
gjag - 0O ’ gj-—»O F) i: 1’2,-00 . D
J

A consequence of this lemm is that, provided J(x ) nonsingul ar,

tnen D(PE(®) is nonsinguar for x(r) sufficiently close to x

Lemma L.k4: Let J(X*) be nonsingular, and I, = B then the O
Lemma k.4 9 1

o )
condition is satisfied.

Proof : V¢ have fram (4.29) that

- WY /250 8y
Wj(l) i -<§%g_3'_> age. i o(i) agj ’ (-2
"J

J
so that wgi) -0 as r - 0 for jeBo . Now
*
- | 0
X - X o N
< [D(l)H(l) (fk) ] . "
uk-u* P(l) ul gl
k
_um €n _

+ smaller terns
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x ~0>

j =1,2,...,m . This result inplies that for k large enough

wher e P(i) i's diagonal, and Pg-;) = 1/p§i) -1, r

~

*
=, - x|l <k z ul.{ g.(x) .
The SO condition is an inmedi ate consequence of this inequality. O

Remark: I'f B, = I, then wgl) need not tend to zero for j;éBo ,

Thus eventual |y the |argest components of w(i) will be those associated

“with the inactive constraints. This inplies that ka-x*]\ = 0(ry)

But (%Y JeBy IS o(rk) whi ch suggests that, in general, the SO

condition does not apply. This case should be contrasted with the |og
and inverse cases where the contributions of the inactive constraints
do not dom nate in w (in the inverse case the active constraints
domnnate). W note that the SO condition is only sufficient for (4.1)
to provide an error estimate and nunerical experience indicates that it
is applicable in the calculations with the |og sequence. However, the
above discussion suggests that to attain the maxi mumrate of convergence
with the nenbers of the |og sequence, the inactive constraints should be
identified and discarded. A possible way to do this automatically i s by

the use of a separable barrier objective function
T k-1
Q(x,p) = £(x) + rki);"_l u; " ge, (%)) (4.32)

- k-1 , , k-1
wher e Ho= oo U, T s the usual barrier paraneter, and Uy

the nultiplier estinmate obtained fromthe previous mnimzation. This

is

objective function has the property of forcing the multiplier estimtes
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for the inactive constraints to zero at a very fast rate. W have

ST S S@@ (x, . .)
i B k1 i og, ~kt1
k+1
k k+1 0 "
< rk+l piui < ... < pi lell rj ui ( -55)

)

wher e p, isa bound for %ﬁi (}fk) s, k=1,2,....
This choice can also be favorable in the case of nonstrict comple-
nmentarity. Consider the previous exanple

20, x>0

= o

mn x, subject to X, - X

Set Q = o " z'g{log(x2 -xi) +u ; log Xl’} . Then vQ = 0 gives

2 2
Xo mXp = Ty Xy =TTy
so t hat
r u
o Kkl _p/2 /e /2
k = x k k-1
1
-k Py .
Setting r =a ", uk/e = a reduces this to
1 Kk
B =3Pc1 "2

The solution to this difference equation satisfying the initial

condi tion Bo:o is
k
B, = -k+(1-(5)9) .

Fromthis it foll ows that w, = o(rk) , and hence that x, = 0(r

1 = 0lry)
Thus, for this exanple, we are able to obtain results as favorable as

those in which strict complementarity hol ds.

Exanple. Show that the error estimate (4.1) s validin this case.
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There is a penalty to pay for the generality of the barrier
function algorithms, and this is a significant burden of calculation
associated with each of the successive unconstrained ninimzations.
This can be explained (at least in part) by |ooking at the Hessian of
the barrier objective function. Experience (in part supported by
theoretical results) indicates that the condition nunber of the Hessian
is a good indicator of the degree of difficulty of an unconstrained
optim zation problemwhen it is solved by descent nethods.

On the assunptions that the second order sufficiency conditions
hold at x , and that the active constraint gradients are linearly
i ndependent, then it is possible to deduce fairly conplete information

on the eigenval ues and ei genvectors of vQT(xk,rk) from(3.8).

(i) There are n-t eigenvectors associated wth eigenval ues of

2 .
v T(xk,rk) that are Q1) as r, - O . The snallest eigenval ue tends
to

* x
_ vTvg,s:(x L, u v %
m=mn = 5 ~—=~ , ¥v such that Vgi(x )Jv =0 Vie:Bo

v vV

(ii) There are t eigenvectors associated with eigenval ues of
VeT(Xk’rk) which tend.to = as r, - 0 . These eigenvectors are

: * .
asynptotic to vectors of the form Cl(x )yi wher e y; are ei genvectors

of the problem

*. T *
[Cl(f ) Cl(,}f ) -p‘iA]Xi =0

2 2
where A is a diagonal matrix, Ags =-éJé max ¢ i=1,,
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o . g
The corresponding eigenval ues tend to o like p,r, — MaX 5
1<i<t a%

*

u
-- that is, like éTTE;7 where « is the maximzing index.
s
This shows that the condition nunber of vacﬁark)tends to
like 1/g (x) or like I/ka"f || . if the SO condition is satisfied

In this latter case we have shown that our nmeasure of the cost of a

barrier function calculation depends in the main on the accuracy desired

rather than on the choice of barrier functions. However, our estimates

for the log famly indicate that these will be somewhat nmore expensive
than the above estimte except when all constraints are active.

Note that the device introduced to force nmore effective elinination
of the inactive constraints does not force the Hessian to be worse
conditioned in the case that strict complementarity does not obtain, at
| east in the exanples that have been worked out. The use of this

device woul d appear to be an inportant inprovenent in barrier function

al gorithns.

5. Analysis of penalty function nethods

Consi der now the equality constrained problem (ECP)

mnf(x) , S= {x;hi(x) = 0,1 = 1,2 ¢.05q (ieIE)} . (3.1)
xeS ~ ~ ~

~

It is assumed that S is nonenpty, and that (3.1) has a bounded m ninum

(say f ).
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Renark: The inequality constraint g(x) > 0 can be witten as the

~

equal ity constraint

h(x) =nin (0,g(x)) = 0 (5.2)

~

>

so that formally the ICP is a special case of an ECP. However h(x)

given by (5.2) can have discontinuous first derivatives.

Definition: F(x,N) is a penalty objective function if
q
F(x,N) = £(x) +>~.fi ¥(h; (%)) (5.3)
1=

where y(h) is a monotonic increasing function of |h|, and y(0) = 0 .

1+a

Example: Let y(h) = |n| then ¥ is a penalty function if a > -1 .

If g(x) is concave then, from(5.2), so is h(x) , and y(h) is
convex provided @ >0 . If o < 0 then d%lfis unbounded as h -0 .

Theorem 5. 1: Let {Ki} te , and x_  mninize F(x,xr) . Then

{f(xr)} nondecr easi ng, {F(x s )L strictly increasing unless X €8 .

and {§ q;(h (x ))} nonincreasing. |f {xr} -~ X then x solves

t he ECP.
Pr oof : Let N, <A, . Then, provided x,x ¢S,
F(i.cr’}"r) < F()fs’)"r) < F(}.Es’)\'s) < F(}fr’%’s)

Thus (conpare Lemma 1.2) the results for the sequences follow as before.

\\& have

n F(5,A) = min f(x) =% . (5.%)
€S xeS

~

min F(x,N) < mi
X ~ X
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Thus the F(}Ncr,xr) are bounded, and hence xeS . Now
x'es = £(x) > F

but, by (5.4),
f(}fr) < F(Jfr’%'r> <t

so that

lim £(x ) < f .

Ir —ow

Thus f(x*) =, and x solves the ECP. O

Renark: In the nore general case in which {xr} I's bounded it follows,
by restricting attention to convergent subsequences, that all limt

poi nts of {xr} sol ve the ECP.

Theorem 5.2:  Let {xr} - % and assume \y(hi) continuously differentiable,

and vhi(x*) , ieI, , linearly independent. Define u, by

2

UEIL‘ = - }‘-I_ E‘éhvl‘l‘ sgn(hi) , 1= 1,2,640454 (5.5)

t hen {ur} au , the vector of Lagrange multipliers for the ECP.

. . s T
Proof: Define the matrix B(jfv.) by «.(B(%x.)) =vn,(x)",
i = 1,2,...,q4 . The condition that X mnimze F(x,xr) gives
q > ¢
0 = VF(x,M) = vf(x ) A ig'l Sﬁ{—[ sen(h,)vh, (x ) (5.6)
so that
vi(x,)" = B(x)u (5.7)
~T b

~
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Now B(x ) has full rank for er-xfll smal | enough. Thus

u = (B(x)" B(icr))'JL B(fr)va(fr)T

~

(BT BN ™ BEHT v = WL O (5.8)

Remar k: (i) If strict conplenentarity holds so that lu:l >0,
i = 1,2 ...,4 , then the convergence of the Lagrange multiplier estimtes

implies (from (5.5)) that sgn(hi) is constant for i large enough as
o
llhil

side!'. In this sense S acts like a barrier.

>0, xeS. Thus the mnimzing sequence approaches S 'from one

(ii) Note that hi()i) = min(O,gi(if)) = 0 identically in a neighborhood

of x if g(x)>0 . Thus vhi(zf*) = 6 50 that, in this trivial

sense, the constraint gradients are not linearly independent. However,

if strict conplenmentarity holds, then a multiplier result can be proved

for the active constraints (do this!). In fact, the strict complementarity

restriction can be rel axed somewhat.

Theorem 5. 3: [f the conditions of Theorem 5.2 hold, and, in addition,
2
u 1 o , and x“d—‘,l)’- - o, | =1,2...,4, aS r oo, then the
~d ~ L dh!:.
1

second order sufficiency conditions hold at x if and only if

v2F(x“,>\1) is positive definite for r sufficiently large.

Proof : This is essentially the same as that of Lemmas 3.1 and 3.2. O

Exanpl e: Derive the anal ogues of Lemmas 3.1 and 3.3 which apply when

the KCP is obtained by transformng an ICP by means of (5.2).
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2
Renar k: The condition that A d—‘gk - o is related to strict
dh’
1

complementarity. Consider ¢ = lhill+a , @ >0 . Then
d T
L (a+a) fny ¥ semlny) - A, a%'=“i (5-9)
1
so that
2 . alul |
. £1._\él£ = (l+oc)oz]hi\al = 0t (5.10)
T an’ |, |

2
Thus A ¥, hh -0 if |ui| >0 . Strict complementarity
T

is of particular inportance for equality constraints derived from

inequality constraints by (5.2). In this case, the one sided convergence

inplied by the nultiplier relations is needed if we are to be able to
tal k about second derivatives at all.

The parall el devel opment of the treatnent of the ECP by penalty
function nmethods and the treatnent of the ICP by barrier functions can
be conpl eted by di scussing convergence rates of penalty function algorithms
in nuch the same way as we treated the barrier function case. For example,

mul tiplying (5.6) by x, -f* gi ves
() - 20) = § om0 ol - (532
X L z

The assunption that the SO condition is satisfied can now be used to

provide estimates. From (5.9)
< s (h)=-ur
(1+oc)7~.r‘hil gn(hy 5
so that
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1/a
Juf |

sl =\ T - (5.12)

This suggests a rate of convergence of O((f—“—)l/a) , which contrasts
r

favorably with the estimates obtained for the barrier function algorithns.
In particular as o - 0, (5.12) suggests that the convergence rate
becomes arbitrarily great. However, the results of the previous section
al so indicate that the condition nunber of the Hessian will becone
arbitrarily large as @ - 0 . The next result provides information on

the limting case @ =0 .

Theorem 5.4:  In the ICP let f(x) be convex, and gi(x_) , del,

concave. Let w be an infeasible point, X, an interior point of S,

a=mng(x), b==f(x)-f(x) ,ana A = (b+1)/a . Then x'
ieT ~ ~ ~ ~
1
mnimzes
1Y
F(x,A) = f(x) =M} min(0, g, (x)) (5.13)
i=1 ~

provided » >\, .

Remar k: It is necessary to denonstrate the result only for A = Ny -

For all larger MNit ‘is then a consequence of Theorem 5.1.

Proof : Let v be the boundary point of S on the join of w and x_O s
and B, be the index set of constraints active at v . Define
s(x) = f£(x) -\, Y g, (x) , (5.1k)

ieB
v

t hen
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I

s(xy) = £(x0) 'Xoieg g; (%)
v

< 2(x,) - (0+1)

£(x)-1

IN

f(v) = s(v) = F(v,N). (5.15)

As s(x) is convex and v is on the joinof x, and w, &6,

~

0 <o <1, such that
s(v) = gs(}fO) + (l-@)s('vl)
< es(v) + (1-0)s(w)

whence

s(v) < s(w) | (5. 16)

Now s(w) < F(w,xo) so that, from (5.15) and (5. 16)

Thus mn F(x,N,) must be attained at a feasible point. O
q o~

o)

6. Accel erated penalty and barrier nethods

The problems of poor conditioning of the camputational problem and
(comparatively) slow convergence nmake it worthwhile to search for methods
for accelerating the convergence of the penalty/barrier function

algorithns. Consider the (generalized) penalty objective function

q
P(x,W, M) = £(x) + ) W y(n, (x) + 7)) (6.1)
0 2

17



where Wis the diagonal matrix of penalty parameters, and the 0y
are further paraneters to be used in the acceleration process.

At a mininmmof P, x(W,m) satisfies

q
(%) -i);l ui(W,I])Vhi(ic) =0 (6.2)
where u.(W, M) = - W A provi ded = (W, 1) -x*\l and
1 W == Wy 5 Al

|
llu(w, 1) -1~1*H are suff'iciently small, the second order sufficiency

conditions hold at x , and vhi(x ), ieI are linearly independent,

2 )
then (by Theorem 5. 3) x also solves the EP

o nﬂf(p Sy q = B3 By = B, T) 5 deTy)

One sequential strategy for neking x(w,n) - x is to force

A=min W te However, the paraneter vector 1 is al so avail abl e,
i ~
and we ask is it possible to adjust it to nmake

b, (x(W, M) =0 , il . (6.3)
3X : . Bxi :
Let 31 be the matrix with conponents gﬂ—j,l = 1,ee.,n ,

i = 1L,2,600,q . If VEP(X(W, M) ,W, M) is nonsingular, then, by the
inplicit function theorem we can solve (6.2) for x = x(n) hol ding

W fi xed. \\& have

2 dx d Py _m
P = - W.. h
v igl 1 Snom; Vi
where all quantities are evaluated at x(W,m) . Defining the diagonal
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trix Vb =W o = W 824‘ i=12 and the
matrix Y Vi3 = iigié‘ 11 303N, ’ 28y 0l
matri x B by Ki(B) = vhg i = 1,2,0 07s0, then (6.4) can be witten
(V2£+BVBT) %’T‘] - -Bv . (6.5)
Choose A to make U = ve.s+BVOBT positive definite, and set
vy = V=Y. Then, by (3.6), if rriin Vis is sufficiently large
%}151 ~ v B@ETute) trovh | (6.6)

This relation can be justified if
(i) the second order sufficiency conditions hold at X and Vhi(}é) :

iel, , are l'inearly independent,

(ii) Jx-x) and |u -u'|| are sufficiently small

(i) mn \/11. »®as minW, - for =6, and
[ [ -

(iv)  mnW sufficiently large.

i 11
Consi der now the use of Newton's method for solving (6.3). This

suggests that a correction 37 to m be found by sol ving

mEon=s Fon--n (6.7)

But, by (6.6),
BT %xﬂ ~ - T+0(v7h) (6.8)

so that

&1 = h+0o(Vh) | (6.9)
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Thus we expect the sinple correction &) = h to approximate arbitrarily

closely to a second order process provided V is sufficiently |arge.

Al gorithm (ECP)
(1§D

(i) Initialize 1 :

(ii) Mnimze P(xw( k) (k)) to determne X

k
(iii) IF i{;l ul h(x) < TOL THEN STCP.

(iv) FOR | =1 STEP 1 UNTIL Q DO
IF ABS(h. (xk)) < DECR * ABS(h., (xk l))
THEN n. = M+, (x,)
ELSE w(k N E[)(P*ng-r{)

(8 ()
i W
(v) K := K+1.
(vi) G0 TO (ii).

Remar k: The idea behind the algorithmis that the correction(6.9)
i s used whenever the convergence of hi to zero is satisfactory.
O herwise it is assumed that W is too small and it is increased
accordi ngly. M is nodified at the same time to ensure that

* Nyv-1 . . . A
u. -»u, as hi -0 . <BE) indicates the inverse function to 5

i i
For the ICP we consider the nodified barrier function

R, ) o (x)+ Z ) 0 (g () + ) (6.10)
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where u, is the vector of nultiplier estimtes from the previous
k)

m nim zation, and V$ is now the diagonal matrix of barrier paraneters.
W note that, in the particular case in which all constraints are
active, the previous analysis is applicable, at least formally, and

suggests a correction
ag(k) = I](k) + E’(}fk) (6.11)

with order of magnitude departure from a second order iteration of

2 -1
0 min ng)-u?'l é—g- . However, we require automatic selection
i dg

of the active constraints if we are to make use of this result, and it
is inportant to note that this is provided naturally in the algorithm
by the options

‘ i f t tisfact te then 157" % ok« and
iy i g; ~ 0 at asatisfactory rate thenm, = '="T+g ,

(ii) if the convergence rate is too slow, then decrease the barrier

par anet er.

This second option can be expected to apply to the inactive constraints,

and will drive the contribution to (6.4) fromthis source rapidly to

zero by (4.33). Note that the boundedness of the barrier terns requires

t hat g+ Ty be positive. If" B(l) is set to zero then (6.11) ensures
that this condition will be met initially. Provided strict complementarity
hol ds, the convergence of the multiplier estimates will ensure that it

nust hold ultimately. O course, the calculation must be started from

a feasible point.
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A gorithm (ICP)

(i) Initialize n(l)'w(l)’EO'
(ii) Mnimze R(XN,W%),n(k)

~

) to determneﬁg, Uy
5k
(iii) IF ii;lui g;(x,) < TOL THEN STOP.

(ivy FORI =1 STEP 1 UNTIL M DO

IF ABS(g, (x,)) < DECR*ABS(g, (x, )

. wlEHD) - -l/§¢— )
11 g5

(k+1) (%)

Y - e )
ELSE wglf’l) - DECR *w?i ,
k+1 -1 ‘1
ﬂg ) - (Eég%) (- Wik+15>
ii

(v) K:= kl.

(vi) GO TO (ii).

Renark: As in the previous algorithm (%%)'1 denotes the inverse
function to %g For exanple, if # =-1log g then 1=W.

Consi der now anot her nodified penalty function for the ECP
- T T
s(x) = f(x) -u(x)"h(x) +h(x)” Wh(x) (6.12)

where the matrix Wis positive definite.

Lemma 6.1: |f the second order sufficiency conditions hold for x = X

and the vhi(x*) , ie12 , are linearly independent then S(x) has a
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local minimumat x =X provided u(x) ~u as x+x and the

smal | est eigenvalue of Wis |arge enough.

Pr oof : \\& have

v8(x") = ve(x') ~u(x)" Vh(x*)

- 1) (vu(x") -2Wen(x))

* *T *
9f(x ) -u “vh(x )

as u is the vector of Lagrange nultipliers for the ECP. Thus S

. . *
has a stationary point for x = x . Now

~

o % o % % * T *
VS (x) = v g(x,u) - vu(x ) vh(x')

- va(x) ' (x)

~ o~

+ 2vh(>~c*)vah(>~c*) (6.13)

where terms which vanish at x  have been ignored. Corollary 3.2 can
now be applied to show VQS(;;*) is positive definite. W set

v = o, U =ePsou) -vu() Ten(x") - vn(x) Tvu(x) , and note
t hat

. * ¥
mn Tyt = mn £ v2 gx,u)t =m>0

V=0, st vt=0, ig]j=1

as the second order sufficiency conditions hold at x . O
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Theorem 6. 1; Let the conditions of Lemma 6.1 hold at x* and set

u(x) = B(x)+ v(x)" (6. 14)

~ o~

where B(x) = vh(:c)T . Then (6.12) has a local m ninmm at X provi ded

the snall est eigenvalue of Wis |arge enough.

Proof : This result is an inmedi ate consequence of Lenmma 6.1. As the
vhi(x*) » eI, are l'inearly independent, B(x*)+ is a bounded

operator for |x-x|| small enough. Thus u(x) —u" as x -x . O

~

Renar k: (i) By using (6.14) we can construct a penalty function which

is differentiable in a neighborhood of X (contrast with (5.13)) and
which has a local mnimmat x = X for sufficiently large but finite
values of the penalty parameter. However, (6.14) requires first derivatives
of the problem functions so that mnimzation of (6.12) with a nmethod that
requires first derivatives of S will require second derivatives of

the problem functions. Two cases have been considered (Fletcher).

(1) 8(x) = £2(x) -n®)"

~

B(x) vr(x) "+ olu(x)|? , and (6. 15)
(11) 5(x) = £(x) =n(x) B ve(0) + ol (B )| (6. 16)

where o is a penalty paraneter.

(i) There is a close connection between the penalty function (6.15) and

the algorithmbased on (6.1) in the case {§(h) = n? . At amni nunof P
~we have (as VP =10 )
oW(h+8) = - B ()T . (6.17)

12k



Thus the correction fornula corresponds to updating the Lagrange
mul tiplier estimate by (6.14) at the end of each unconstrained mnimza-

tion rather than continuously which the use of S requires.

(ii1) Note that S(xN) can be interpreted as a Lagrangian. For
exanple, in the case S(x) is given by (6.16),
5(x) = £(x(x) (6.18)

wher e

Wx) = B() 92" - B (BE) ) ) | (6.19)

Lemma 6. 2: w(t) defined by (6.19) is the vector of Lagrange nultipliers

for the problem

mini i ze f(1)+VE(1)(x-t) gnf-fne (6. 20)

subject to the linear constraints

h(t) +vn(t)(x-t) = 0, (6.21)

~ o~ ~ o~

provi ded this mninmum exists.

Proof : Any point satisfying the constraints (6.21) has the form

x =t - BN B Fak)z (6.22)
wher e B(t)TA(‘tN) = 0. The miltiplier relation for (6.20),(6.21) is
VE(t)+ o(x-t)" = uTB(t)" (6.23)

so that u can be taken as (substituting (6.22) into (6.23))

u = B(t)+{vf£t)T - c(}é(t)T):’E(t)} =
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If (6.22) is substituted into (6.20) the probl em becomes one of

mnimzing wr.t. z

vaz+§cz TATAZ

whence

z = -2 (aTa) Aot (6. 24)

Thus o plays a role in ensuring that x(t) , the mninmm of (6.20),

cannot deviate far fromt (cf. remark (ii) following MP Corollary 5.1).

Exanpl e: (i) The Lagrangian interpretation provides a method for
generalizing the above discussion to inequality constraints. Consider

the problem mn g(x,w(x)) where wt) is the vector of multipliers for
x ~

the problem

m'Xn f(1)+v(t)(x-1) + 2 H?j-EHQ

subject to g(t)+v|%ﬂ:)(x-t) >0 .

Under what conditions does ¢ have an unconstrai ned mni num at x .

Wiat rol e does strict complementarity play in this problen?

(i) (6.12) can be generalized to other penalty functions and to
barrier functions (cf. Remark (ii) above). How much of the above
anal ysis goes through? Wat nodifications are required? Evaluate the

resulting algorithns.
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Not es

1., 2. See Fiacco and MCormck's book. Also the paper 'Penalty
function nethods for mathematical programmng problens',
J. Math. Anal. and Applic. (1970), by Gsborne and Ryan.

3. Fiacco and McCormck were the first to draw attention to the
i nportance of these (as they were to much of the nmaterial in this
section).

4. The log famly is due to Gsborne and Ryan. The inportance of the
conditioning of the Hessian to Walter Mirray. Rate of convergence
fornul ae have al so been devel oped by F. A TLootsma, (Thesis, also
survey paper at Dundee conference).

5. Fiacco and MCormck. The exact penalty function is due to
Zangwill.

6. The algorithmfor the ECP is due to Powell in the case ¢ = n”
(Harwell report, also Procedings of Keele Conference). The exact
penalty function S(x) is due to Fletcher who has devel oped it
together with his student Shirley Lill and described it in several
Harwel | reports. The extension to inequality constraints (exanple (i))

is also due to Fletcher.
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