STANFORD ARTIFICIAL INTELLIGENCE PROJECT MEMO A IM-166

COMPUTER INTERACTIVE PICTURE PROCESSING

BY

LYNN H. QUAM SIDNEY LIEBES, JR.
ROBERT B.TUCKER MARSHA JO HANNAH
BOTOND G. EROSS

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AND ADVANCED RESEARCH PROJECTS AGENCY ARPA ORDER NO. 457

APRIL 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS ITY


```
        INFORD ARTIFICIAL INTELLIGENCE PROJECT
        MC A!M-166
    JMFUTER SCIENCE DEPARTMENT
EPGRT CS-281
```


computer interactive picture processing

by

Lynn H, Quam. Sidney Llebes, Jr, Robert B. Tucker Marsha Jo Hannah
Botond G.Eross

ABSTRACT:
Thls report describes work done in image processing using an interactive computer system, Technlaues for lage difiepencing are described a nd examplesusing images returnedfrommarsbythemarlarer Nine spacecraft are shown, Alsodescrioed are technlaues for stereo image processing. Stereo processing for both conventlonal camera systems and the viking 1975 Lander camera system is reviewed.

This research was supported by the National Aoponautlos and Space Adminlstration and the Advanced Research Projects Agency,

The views and conclusions contained in thls dooument are those of the authors and should not be Interpreted at necessarily representing the officlal dolicles, eitherexpressedor imolied, of NASA, the Advanced Research Project Agency, or the U, S, Government,

Reproduced in the USA, Available from the National Teonnical Information service, springfield, Virginia 22151 , pricer pull size copy $\$ 3.00$; microfichecopy $\$ 0.95$.

TABLE OF CONTENTS

Seot Ion page
A Introduction 1
B. Image Information Management 2
C Automated Image Difieponcing 4
D Viking Lander lmagepy Investlgation 11
ADDendloes
A Camer a Modelsand Stepoo lmageprocessing
B Colorlnformation I n Steroodmage Prooessing

This report peviews the work of the stanford Aptlicial Intelligence Laborator, done under NASA Grant NCR-05-020.508, For the purpose of this report the work la divided into three areas: image Infopmation management, automated image differencing, and 'stereolmage processing, Sectlon B discusses some of the problems Involved with handiing a large volume of Image data and someof the solutions. Section Creviews the lmage differencing work together with various ingut processing steps used in preparing the data por differencing, section 0 describes work done in the area of near-field stereo image analysis orlented towards the Viking 1975 lander camera system, ADDendicios A and B are two term padors related to the questior of stereo image processing which were Supported, In oart, by thls Want, The data base used In thls wopk has come from the Mariner Mars ppobes of 1969 and 1971, promprototype viking 1975 camera equipment, and from locally produced. lmages of eapth scenes,

In addition to the above mentioned grant, thls wopk racleves suppopt from JPL Contract 9132489, Langley Conttaot NAS 1-9682, and ARPACortract SD-183.

8, I MAGE I NFORMATI ON MANAGEMENT

An Informationpatrlavalcapabllity has been Implemented at the Stanford A/』 project whlch enables us to quickly pevlow the iolanot covepage of the MM-71 TV Misslon, It is oplmaplly oplented toward perealing the extent of repeated TV coverage of any area specified by latltude and longitude, !t enables the User to oulckiy determine If an areahas been ohotogranhed, and if so, how many times, on whlch orbits, by whion camera, and by which piotures within an orbit. On adisplay screen ls shown the d'sk of the olanat, the footppints of the lmages, and vootorsindicating viow and sun angles, The coprespondence between OAS shutter time and the opblt-camera-plcturewithlnorbit (Expepimenter) ldentiflep is also shown, The usep Is also able to alter the scalo of the disolay to improve clarlty, Most of the Indutdataporthlssystem comes form the MM'71LIBSET system Operated by the Science Data Team (SDT) at JPL,

A saditionaltolepellminarynavigatlon parameters) pleture catalog datals pecelvedit merged with the dataproviouslypeoolved and stopedon the disk system. Phlsoperation provides us with the navigation data necessary to perform the geometric orojections described below and also provides the libeary information used to Iocate Images on the Image data (PTV) tapes and the JPL film products. The exact manner In whloh the above has been dong has vapled durins the mission sincethereliablilty and timeliness with whlch we have pecelvod the TOL and plcture Catalog data tapes has varied, we began pecelving the pieture Cataloa data on tadenear the end of the nominal missionppimarliy in anattomotto make up oor the absence of the comolete SEDR, SDT also Inc|udes the IPL Enhancerrent Log on the tape whlon Allows us to automatloallyperlow the RDR (finaldecalibpation processing) status,

As additional data on thelmagesis more readlyavallabie, It wlll become apapt of the system, In tho short time that the system has been ooepatlonal it has proven to be a valuable asset, Since more than six thousand imagesexist, the need for suchasystem is obvious, \quad ts 1 moortance wlll grow as the number of lmages, and the information about these lmages, inopeases, this capabillty could prove aulte useful in olotupe targeting and landing site selection for the Vikingmission.

It Is Important to note that thls is an Interactive system orianted towards the needs of the sclentists. Its success depends on itsablility to present data inamanner conslstant In format and organization with the way the experimenters view the object under investlgation.

The above
initial phase of operation, Wlth
mentioned capabllityactually represents the the process for the projection and difiepencing the identiflersandiootopintsofall the lmages
before the user the list can bepruned until just the footprints of interest are present, The user can then proceed directly to the projection and differencing steps,

One area which deserves additional attention ls the cataloging of output products, When simple operations are performed on a single lmageit. Is generally quite easy to catalog the output products. The problem becomes somewhat complex when several Images ape combined ling the case of Image differencing, color reconstruction, and polarization studies. The approach we are using involves the use of a header of arbitrary sizewnich is stored with every Processed Image, Actually, two headers are used; one is a "short form" whichsimoly indicates thelmages and processes used to create the lmagein question, the other is a "long form" which includes the actual parameters used In each of the processes, The benlfits of such a system come only with the ability to aulckly retrieve images utilizing the information in these headers and information about the original Images l location on the planet. camera, filter, shutter tlmeand date, orbit, and eton.

The above capacity, when combined with a disc based storage system (see input processing below), gives the scientist a significant degree of flexibility to review the Image data and the Processing carried out ont.

C. AUTOMATEDIMAGED!FFERENCING

Inout Ppocessing
The processing of a series of images is generally \ln ltiated by a n investigatop supplying us with alist of plotureldentifers (elthor DAS time opopbit and oloture within orbit) of the image in which he is Interestod,

The ldentiflers are entered at aterminal and asearch of libpary information is madeto determine: If navigatlon data ls avallable for the images, If the PTV Or RDR tades for the Images are avallable inour library, if the lmages have already been loaded into our olsk system (see below) as the result of ppoviousprocessing, and other information related to the lmage fillter, oxposure thme and etc).

If the image has not been previously processed but is avallable in our tapellorapy it 13 mounted on a tape unlt and read in, Several oderation are applled to the data at thls time, A "fipst order" ohotometric coprection ls made using a two dimensional interpolation of a matrix of vidicon response parameters, Reseau marks are also located and square apeas cwhlen approximate their actual shape in an Image) are set to a zepo DN value, thus ldentifing those points as Invalid datafor later ooerations, Noxt, a "custering" operation lsperformedto identifyoltdroopagesinthe Image data, This is done by comparing oondolnttotho mean of a three by three area around lt, A diference of more than three standard deviations from themeanldentifiesitasand eppor, inls procedure also has the effect of ldentifying aserpors the various "frlinges" left as the result of modeling the lmagesof the reseaus a 3 squares. Finally, these olxelsidentifiedaserforsape peolacedby averaging the neighbopingoolnts. The posultis an Imagee with a reasonable degree of photometrto intogilty (signifloant error8 stll| exists along the odges) with peseaus shown as squape apreys of invalld (zefo) data,

A s these processes are belng apolied, the image is belng transfered from the tape to the general systom disk area, one additional operation take8 Place, The suceesslve diffepences between each plxel and its nelghborontheleftiscalculatedand a histogram of all these values is developed, Thlshlstogramis used to develop a modifled Huffman coding scheme forthedifferences, inls is a varlable length coding system withwhlchwo e reabletocomorassthe Images by afator of between two and three (muchbotteronsatellite Images) without any information loss, Asthlsoomoression is belng done the resulting data ls stored under our UserDisk fack (UDP) arrangement on the I8M3330 disk systom. Thls facllity allows a user to have an exchangeable disk packfor hisown use, Woexpect to be ableto store a b o u 200 completelmagesonasingledisk pack

Using the above comoression scheme,
The user Is thusleft with the compressed verslon on the UDP for future reference (after decompression) and the nopmally ooded version on the generalilie system, The normal one ls used as describe below to satisfy the current drocessing reauest and afterwards ls deleted,

Image Diffepencling (1) :
Two images are differenced by transforming them to the same projection, al lgning them, and then subtracting the aligned lmages.

Theuserls able to Select any portion of thelntepsectonof two images for diffepencing. Actually, whatis selectdis a rectangular window in an orthographic projection for which there is data in ooth images, Thus, two new images are opeated, However, they are not accurately aligned due to errors in the navigation (TOL) data that Is used in develoding the Projections, these errors in alignment are determined by successively allgning subareas of the window using a cross correlation technique. For each sub-area an error vector is thus determined, One of the orlginal Drojections is then repeated incorporating this error information and theresultis two lmages that are generally in allgnment to within a olxel.

These two aligned images, oail them A and B, are then subtracto. The difference 1 mages A-8 and B-A are ereated and displayed on a Standard TV monitor together with the images A and B. output Products

The experimenter is then able to make 4" by $5^{\prime \prime}$ polaroid prirts of the images disolayed, Also produoed ls a computer dript-out descpibing the Processes by which these lmages were generated and the parameters used in each process. Thls log is maintalnedautomatically b the individual Procesing steps end resices on the disk system,

The capacity also expsts to put these resulting images and notations descpibing them, onto magnetic tedelnaform that can be reac by the JPL-IfL Video Film Converter for production of hard cooy. These products are then entered into the Sclence Data Team s data library.
(1) See "Computer Comparisonof Plctures", Lynn $H_{\text {, }}$ Quam, Stanford Artificial Intelligence Project Memo AlM-1448 May 1971 ,

Di scussed below are some examples of Images whlch have been projected, allgned, and differenced using the technlaues disscussed, FIGURE 1 shows, at the tod, Portlons of two high posolution Marlnergh ages taken Of the Thyles Mons reglon of Mars (75 deg. S, , 165 ceg. W.). These were taken under almost identical l|lumination and viewing angles eighteen days apartcupoer left on opbltilz, upder right on orblt 150). The upper frames show the the lmages after they have been transformed to a common projection and al igned as previously described, Even with thls processing done, ltis difficult to accurate IY detepmine the changes that have taken olace, The bottom frames show thelp diffopence palpsileftminus ploht and pight minus left, The subtle changes which have occurred in the "riffles" are clearly brought out in these lower frames,

Flgupe 2 Is an examoloof remarkable changelnadark tall strikingly b rought out by the ploture diferencing technlaues, These images of the northern part of Thaumasla were taken nlneteen days apart under 3 lmillar lighting oondltons and viowed near verticle but from oposite alpections. Note the small black tall in the upoep right of the area, since lt has not changed It ls cleanly pemoved by the picture difforencing prooess,

Two views of a portlon of Pyphaeregloappear In figupe 3 and show some rather obvlous changes, Dark material has appeaped along scapps, Crater walls, and other topographlcal boundaries, Although the major changes In the tooframes are easly detectable by the eye, the minor ones emerge clearlyonlyin the olfferencelmages.

In Flgupe 4 is another portion of Pyrrhae Roglo, Again, dark material has adoearedalongacrater wall, These examoles ape pom the same orlginal Images as those In Flgure 3 and, like flgupe 3 , have simillar lllumination oondltlons but viewed in ooposite - direotlons from near the veetlide the todoogradilc features are - completely pemovedin the oleture difference, leaving only the true aloedo changes.

Figure 1

Figure 2

D. VI King lander imagery INVESTIGATION

The effort has been devoted to problems associated with the extraction of neapafleld panging lnfopmatlon from lander camera stereo image palps. This latter work, which has used the facilities of the Stanford Artiflelal intelligence Laboratory, ls described below,

Figure 1 l lustrates a stereopair oflmages recopded of a portable terpaln model by a lander Camera prototype, The lloupes displayedin thlsandthefollowingllustrations are perpoductions of folarold pletures taken of the output of a computer driven video-synthesizer, The upder and lowerlmagespedresentieft and pight views, pespectively, of the model as recorded by a single Iander camera prototype located at two diferent dositions 100 c m apart, approximately135 cm above the model and atroughly $100-200 \mathrm{~cm}$ noplzontal pange, The model conslists of an undulating suppace of aapk sand upon which have been placed four consplcuous pocks and some smaller pebbles, since the horizontal range ls comparable to the inter-camera disolacement, henceforth called the "basellae", the two views of the scene aodoaraporeclably different, lt has been determinedexperimentally that lt ls impossible to ylsuallyfusesuch disparate images, a opepequisite t o visualdepth perception.

Flgure 2 indicates the same palr of lmages upon whlch have been overlayed two smooth curves. These cupves have been construoted as follows, a plane, henceforth referred to as the camera-centers olane", is defined to contalnt h e two effective camepascentep Dositions. This plane has been rotated about the basel|neuntllit nasses through the selected polnt of intepestin the left view at the center of the prepositlonedbox located dipectly beneath the central rock. Thls plane projects lnto the left and plaht cameravlows as the curves shown, The fact that the plane orojocts as a ofve rather than a stralght line ls aconsequence of the scanning geometry of the facsimile camera and of the associated disolay popmet. Speciflcally, the camerascans the scone, dolnt by oolnt, finniform polar andazlmuthalsteps, The disolay format is Ilneaplnoolar and azimuthal angles, andhence represents a Ilnearmapping of the opiginal recording, The lowest polnt in each of these curveg corresponds to an azimuthal viewing dipection perpendleular to the baseline atthecameralocetion in aues ton, scene dolnts lying on the carrepaccenteps plane and common to both views mus neoegsarlly lie on the projections of thls planeln eaohlmage,

Figure 3 lllustrates the same Imagedalp overlayed with Image Dointlocation boxesiused In the scene ranging mode, The boxin each vien has been visually oosltioned to a scene polnt that ls common to both views and ls toberanged, The oositionlng procedure is as fol lows, The box is first lnteractively centeped about a oolnt of interest n the left cameralmage. A cameramentergolanels then tlltedto containthispointingdirection. The physical dolnt of
interestin the pight view now mustlioontheprojectionofthe nlanei nthat image. Thus, only a singledegree of freadom pemalns for the definition of the corresponding boxlocatlonintherlghthand vien, Thlslaterparameter hasteonarbitparlly chosentobe the x-coordinate ofthe doint, Inlmagecoordinates. Thelocationof the matching polntin theright view is determined visually, The box is then brought to position by the adjustment of the x-coordinate, The associated value of the y-coordinate ofthe doint is then lmmediately evaluated, remalning parametep.

Once thecorpespondincoolntingdirectionsinthe twosenes have been established, we have sufflcientinformation to evaluate the spatial location of theselectedpolntrelativetothe Cameras, The ranging Information ls Promptly computeda n d recorded andior displayed.

Following development of the above Programswe moved onto a familiarizationstudy of some ofthecharacteristloso f h e unlaue data format, preparatory tolnvestigatingautomationoffangingand contour map production.

A flpst step inthisprocessi sindicatedi nflgure 4 , whlch contains additional overlays t othose discussedabove, The osclllatorycurves adoearlnginthese views redresent plots of the scene intensity scanned along thecamera-centers olane and parareterizea l inearly inthexacoopdinate, It willbe noted that the Hfes of constant phasefor the sand ripples running across the lowerlefthandoortion of theleftviewaperoughly orthogonal to the baseline, These same waves, when viewed from therighthand camera Dosition are observed obllauely and consequently exhlbit foreshortened projected wavelength, Therelativedistortions associatedwiththegrosslydifferent derspectivesof the the two viens pose special picture polnt correlation problemstor automation of ranging,

Figure 5 lllustrates a remapping of the Intensityplot 8 of figure 4 into a fopmat that would be more amenableto a one-dimensional correlation of datafrom the two scenes, The intenslty curves infigupe 5 haveteen obtainedb y transiopmingt he curvesinflguresto the appearancetneywouldhaveifrecopded bya camera locatedat the mid-point between theleftandright camera dositions, under the assumption that the scene ls derfectly flat, horizontal, andat the nominalvalue of observedpelative elevation, The horizontalscale has been changed to utllizethe full widthof the screen, The mappingbetweenthesceneand thelmagenowls nonlinear and themutual interpelationshio no longer is as padily discernajloa sintheprevious illustrations, lt ls evident, however, that one-dimensionalolctupepofnt copfelatlon would be more reacily conaucted In thistransformedimagelntensityspace than in theinltialspace,

Wedo notplan to proceed further along the above lines.

Rather, we are considering a more general and powerful approach toward the development of near-fleld automated ranging, Theppoposal is toexploretheportionci the 3 -spacemutuallyacessablethrough the left and plght windows, bycorrelation of left and ploht lmagery data over a variously tilted and positioned problng olanar paton. Oncelthas beendetermined, by prescribedocipelationoplteria, that we havesucceededin"landing"on a surface, we can"cpawl"overthe surface in any manner desired, accumulating ranging infopmation as we go. Elevation contour Ilnes could for example be genepated by instructing the probe to exploreat flxedelevation. An automated contour map could thus be constructed,

We also are commmencing various image transformations directed both toward compensating for Inherentopojectivedistortions and towardfacllitating the comparlson both of lmages taken from the samecarera under diferent recording conditions and of lmages taken from the two different lander camerapositions. FIGURE CAPTIONS

Figure 5. A stereo pair of images recorded of a portable terrain
model by a single lander casera prototype located at
two different positions. Upper image left view;
lower image right view.

Figure 6. Overlay of a projection of the camera-centers plane onto
the stereo images.

Figure 7. Stereo images overlayed with image point location boxes
in the scene point ranging mode.

Figure 8. Overlays of the scene point intensity along the cameracenters plane as a function of the x-coordinate of the image point.

Figure 9. Overlays of transformed scene point intensities.

APPENDIX A

Thlsdaderpgoortsprogressmade o n asystem oforograms for orocessing gedlumeengle stereo images, the papertakesthe form of docurertationo nwhat theseoarateprogramswritten for thls opoject do, with comments as to how they fit togithisr. None of the desciptions areintendedto e n able thecasual reader of thls dadep t o Lse the dronpamsinvolveg. Anyone desiring to oderate any of these prospams is aovisoctocontact the author for a demonstration,

Suppose one were given two pletures of the same sene taken fron moderately fifferent viewlng oolnts, By moderately fifferentis mearethat the change Inviow dolnt causes the olctures to difer by mope than an infinitesimal amount but not by so much that an object orgsentin both oicturesi s noteasily recognlzablea solngthes a me object, Mathematically, this can be characterized by thlnking of the focal axes of the twocameras as vectors and descifolnga, the angle bethper these vactors, For the purposes of thls peport, |a|<n/8 is a peasonablearoroximationto the Phrase "moderatelydifferent viowling ooirits".

Given two such aictures, one would llke to know how they, pelate to one another, How were the camerasthat tookthem arranaed withresoect to each other? Whatcluesaretherelnthet woblctupes ast osizea n doositiono ftheobjects?

Several thinọ are known tobe undecidable given Just the informationln the cletures. absolute position, iop instance, is not derivatie,t hatis,itisn o toossibleto say precisely whereln J-scace one of the cameraswas or to give the exact threedimensional co-opolnates copresponding to 8 givenpoint in a pictupe, Likewise, ít is Impossible to sajexactly how large orhow far away a given oblect is, Both absolute position and absolute slze pequlpe knowlegge not contained in the olctupes.

It ls dosslole, however, toderiverelativedositions and relativesizes for objects in the olctures, This is done by assignlpa narbltrarydositionandopientationto on 8 Ofthecameras a n d ryflxingsome distance, usuallythe baseline distance between cameras. From these stapting doints, the oriontations ofthe cameras a d positions o fobjectswhichapoearinbothoioturescanbe calculsted.

Thls ppoject, then, was a start toward automating the calculation of saidrelativeorientations and oositionsgiven no more then tho stereo views and a reasonable guess as to the baselline distance,
theprograms.
Hork on this project was segmented into Separate tasks, each oerformed by an indecendent SAIL program, Thls Segmentation was forcea, to some extent, b the fact that the system usuallydoes not livelong enought o supoort one long program. thusit became acvisahle to have severs small programs whlohdepended on user interaction rather than one large programwichwouldfun by itself,

Thebaslesections a nd their functions apo parset, whloh fings pairs of doints using no outside information about the
oictupes, CAMERA, whien uses point-páps to find aporoximate camera models, and CA:ASCH, whicn finds palps of points using eamepa models.

PARSET
The duppose of thls orogramistofind a set of dalps of Doirts, one colnt out of eachoicture, whleh match, intultively, two Doirts maten lf they soth are ppojectionso fthe samethreeaimersional oolnt. Computationally,the cplterion for mateh is that the normalizedcross-copre, ation between the 2_{n+1} x $2 n_{n}+1$ windows immeriately suppounding each of the two doints be high enough, Since the corputational orocess can gnlsa -that dolntamatches doint b with orotahilityp, this pronram's oupdoseis to findpalpsof points which match with fairly hign probability.
as a preliminaryt o the matching process, this opogram seafentsonth Picturesinto overlapoing areas, usualiy 20 olxels
 oictureand sorts eachoictare's areas by varlance, kesplng track of where lo the dictura each areacamefrom.

The matching process oegins by Selecting an areat random frof the too enc cf the vaplencelist of the first oicturo, usually the too 25%. Thislimitationis imposedbecause the measure of match DEirr used-- nopmilized cross-correletion-- works best where there is a larce amount of infop:nationdresent, which is symptomized by the varisnce belng lapeg.
sinceareaswhicrmatch should have simt lar variances, the se lectec area of the firsi oicture is compared witheacharea of the secord cicture whose vapiance lswlthin 20% of $t h a t$ of the area under eonsideration, (in the following, let the oreflxes"fipst-"and "second-" stand for the moditylng phrases "of the first oleturg" and "of the second plicture" respectively.)

Each eligible second-ares is initiallytested to see ifits mear is similar thatof thefirst-area, lf a second-area dassesthls test, a sezpch is made to find the second-point (some oolnt in or near the second-area under consideration) such that the $2 n+1 \quad x \quad 2 n+1$ wincew surpounding this second-point ls the best match for (has the higrost normelizad cross. \& relationwith) the $2 n+1 \times 2 n+1$ window surpounoing the center coint of the first-area. The searen strategy usea is essentially that used by Quam(1371).

Forcomputaむional expediency, the above searchiscaprledbut usire a small wircow, typically 7 dixels sauare, As the orogram orneoeds tipough thesecony-areas, then second-areas (where N Is usualiv 5) yieleingthe nighest correlation values arekeot track of anc ere re-scarched usinga larger area,tydically21dixels sauape, to sheck that the apeas co indeed matcn.

Testsare then made to determine whether the best match found was good enough, Fipstofall, the correlation must be above. 5 , since a corpelation lowerthan . 5 can occurbetween areas whleh do not really match. Seconcily, the toptwo correlations must differ sigriflcantly, Failureto d o so would indicate that more than one match was possible, casting doubt on the validity of elther match, Faf lide in elther of these tests causesaflpst-areatoberejected as havins noreliablematch, and anotherfirst-areaistried,

Note that, when this orocess is finished, the center point of the first-area has been paipedwlthasecond-dolntwhich has Integer co-crainates. In opactice, however, the píopermatch for a glven fi, st-point will be a second-point with non-Integercomordinates. Since the only coprelation values whlch are available are those at integer second-oofnts, some form of interpolation is necessary,

Therefore, the final operation on a match ls an
 $(* y+?+E * y+F))$ is fitted byleast squarestechniguestothe corpelationvalues between the window around the first-point and : imilar a indows around doints i n the neighborhood of the secord-coint, Solving this functionfor a maximum resultsin either inewmatchatsomenon-Integersecond-Dolnt, or In an error if there is rie maximum within a one-dixelradiusof thematchlngsecond-doint.

In the latter case, the first-area ls said to have n o pel iable match, and thefrogrameontinuesto anotherfipstoapea. The mostcormoncauseof sucnfallurelsa stronglinear edgewithlittle information on aither slae, in whlch case the chances oferror are sifficlentto cast any such match In doubt,

If the match passesthls final test, it is recorded for use i- a leter program, andthisorogramproceedsto anotherflestarea.

CAMEFA
The job of thisprogramlstofind camera models, A camera motel consists of seven numbers whlchsoeclfythe focal lengths of the $\mathrm{t} \boldsymbol{\mathrm { c }}$ camerasanc the orlentation of the second camera with respect to theflpst.

The firstcameraistakento have lts focal doint at the orisin, its focal axis along thezmaxis, anditsimage olanethe olario z=F1. (See lllustration 1.) The focal point of the second camera is a ooint which is described by the basellne distance and two angles. The two angles are the angles by which the firstcamera must be namned, then tlited, to dolntat the secondfocalooint, (see lllustration 2.) The focal axis of the second cameraisdescibed by two more ancles. Theyargthe angles through whlchthefrlst camera must be canned, then tileodsothatitsaxisparallels the axis of the second camera, The image olane of the second cameralsthe olane

llustration 1.
Apbitpary co-ordinate system with first camera In place.

II |ustration 2.
co-cpyinate system with first camera Panned and tilted to locate foca lo int of saconct camera.

Depoancicular to the focqlaxisatdistancefa from the focal doint. (ses lllustration 3.) The oriantation of the second imageplaneis descricec oy the anglethrouahwhichthe first imageolanemust roll (aftor having oeen panned and tllteo to make the axes darallel) in orter to brling the two "נロ" directions into agreement,

This prorpar takasas ineut a set of daips of firstadoints ant secont-soints found to be ratches and attemotstofind a camera mocel which woult account for these Dolnt-nalis. ietermination of a motelisdonebyminimizin?a measuce of cameramodel error,

The errop measure is tre average error in match taken over the point calr's. For each colnt pair, ths epror in matchis determired as iollows: using the camera model, the fipst-oolnt is projocted into soacegiolding a ray from the focal dolnt through the image noint. Thie rày is then vackmorojected into the image olane of

$$
\text { I llustration } 3 \text {. }
$$

Co-ordinato systemwith seoong camere inplace, first camera panned and tiltedso its focal axis dapallels thatef the second camera.

 second-poirt and this linesegment, inthe usualmathematicalsense. (Soe Illustration 4.)

Actual rinimization o fthe erporfunction is carpied out by the incenenaently compiled subpoutine MiNIMZ.

lllustratinn 4.
Co-crairat syster itt nootncameras indace, showing afirstmodint projecter lnto 50ace and the resulting ray back-opojected Into the
secra inale.
rhis sue-orogram is a function minimizer which uses no' eqpivetive infopmetion in seeklnn a minimum, not using derlvative irfermation was a constraint forced by three considerations--the fact that the deplvatives of the camera model error function ape discentinuous since the function has been truncated to avold boating ooint overflows in the calculations, the fact that the lecatiors of these discontinitities are not precisely known, and the fact thar the camera model eiropfunctlonitself does not obey any of +le corstralnts (monotonicity, lask of local minlma, ete.) usually olscec or functions to bs mimizedby derivative methods,

The workhorse furction of this sub-program takes an n-dimensional vector (in the camera model casa, $n=7$) and finds 3 starting polite elong this vector such that an uoward-facing oarabola can te fitted to the theoe points. The inner load fits the parabola, files the minimum of this narabola, gualuates the function at the naranolg minimum, and crooses wnich of the four avallable doints are "hlest" to fit anotner varauola to. This continues eitheruntll the seacifled number of cycles (usually iz) have been comoleted op untll successive oarabola fits yield the same function valus, within a toleranes (idsually acag1).

The outer loop of this suo-drogram constructs a set of ortrinnormal vectops estartincwith the co-ordinate axes) and calls tae worknopse function descrited above along each of these vectors, wher this setofvectors is axhausted, the outerlood then calculates ins vector difference netweenthe Starting point for that round and tho final oolnt fourc, in I svector ls then used ln constructing a new set of opthonopnal vectops, inis iteration continues until the cifferance lf starting and fintshing function values is less than the aiven tclerance (as atove) or until the function value drops below some pre-set limit,

Like all minimizeps, this one can get stuck at a local -irimum. Thls isunfoptunate, because the camera modelerror function azesars to have a lapge numes of potential local minima near the acturl minimum, However; it also apoeaps that having more points available fopuse reduces the number and depth of local minima, pedue ing the chanceof a spurinus minimum being taken as the actual 1 errarptlity Tnis sugeasts itsrating CAMERA with the following opogram, CaMSCh, to get better arig better carnera models based on more and more ocirts.

CAMSCH
Thi 3 proaram takes as inoutacamera model elthergepivedby CA:EFA or sjepl ié oy some other means, Tomatch adesignated first. coiri, this grooram arojects the firstootnt into space,
back-projects the pay so produced linto the seoond Imageithen searchesalong theresultingllne.(Seelllustration 5.)

The actual seapch conslstso fopolng alona the line, starting from the Infinity point (the dolnt of the linecopresponding to the dolnt ont heprojectedray whichi s farthest away fromthe first camera, butstl|lislbleto the second camera), Ateachsted along the line, the coprelation between the window around the
 the seconoolnt cu pently undepscutinyis calculated, As stepoling continues, the be:ENsuch correfations (ágain, N isusually 5) ape keottpackof and a local search for maximum corpelationis yone in therelghborhood of each such second-dolnt.

Testing whether or not the match is sufficiently good and interdoletionare similarto the samedrocesses described for PARSET.

One search=oruningheupistlcusedin b oth PARSETand CAMSCH neecs, Defhaps, to be justified, \quad n PARSET,lfthe center point ofa givensecond-area does not show a positive correlation with the

I Ilustration 5,
A dalp of stereo víews showing a dolntandits surpounding corpelation wincow overlaldo n the todimege and the line that the polnt orojects to overlaldon the lower image, Polarold dicture taken of Data Disc whlle CAMSCH was In odepation.

center roint of the first－area，the second－area is pejected as belng lan irucoracile alace to look for a match，CAMSCH，Instead of fexaminlra avery picint along the line projectedinto the second image， exarines every t－th ooint，where N is half the radius of the coppelation winoow goirg urec．Thus，in both programs，decisions are made on the basis of the value of tae corpelation function at some sscond－point neap（but nctat）the matching second－point．This，it turre olt，is áresseracletning to do，Taking any cross－section of the correlation function will yiald a graph shaded somewhat like
 metcr hill nefairly nish－－atlast，above the noise level．Hencea veryloncorpalationvaluecan be taken to mean that there is no matem if the vicimity of the dolnt underconsideration，and the comectarion necessary te search that area can be avoided，

It is interesting to note that different programs pequipe gifferprt tearegs c accuracy from their cameramodels，

CAMSCH，for irstance，with its local search strategies，can est hy with pather ineccupatecameramodels．Anycamera model which wil rut Jamser in the pi gint ballpark is good enough to produce －ateres for most ocints．Fxoerinentationhas shown that almost any csnera rocel havins anaverage squaradeerror below． 25 dixels is good －nolen for fatchinsetleast 38% of the points tried，fhfs would suceost not，soanciing epeat amounts of time ninimizing the first eameparedel，as nas deencone in most cases tried so fat，Instead， an inaccurate tode can be derived auickly，CAMSCH can use thls to finc more oolnts，whicheanhe used toderivea better camera model， ete．

On the other hend，rirograms whish do dedth modelling peaulre Extromety accurate çmepa notels．For instance，on one dalp of Dictures，atout $\overline{\text { E }}$ different camera models were depived．Their scuared－error varies frcm， 2 to ．DOC 4．Deoths given for one point at －essuftc i itancezen faet from tha camera ranged from 25 feet to 25 foei．In feriepel，mocels with smaller sauaredmerrors were netiar thas those withlapzer erpors．However，the best model was met the one witr the lowest error：This woula indicate that the rodels eelne found all pezresent local minima on the eppop function； thl true model tiss yot to be found，

This result lec to further mocification of the minimizer，in riozes cf heing zale 60 ne ．closer to therealminimum，Asyet，this is efet desslale，Aceurate decth ranging remains a nit－op－miss thing， esremalis on wather errot a model can be found whlehis good eroush，
inerp are severel other minor programs intenced for चg～もestrations which fit inte this set of programs．

Ulinste si－aly t－kes a file containing point－daips and －isclave tnga，Dsir at a time，as overlays on dictures shown on data －isも。

DEPTH works similarly to WINSHO, except that it also asks for a careramodel, and calculates the distance from the fipst camera to the three-dimensional Dolnt, It then displays this distance on the Data Dlsc screen with the adorodelate overlays representing the two Doints, t the end, thls prospam.rounds each depth to the nearest unit of distance and disolays these distances as overlays at tha copresponding points in the first plctupe. (See lllustration 6,)
dllustration 6.
Photograph from Data Díse of overlald deoths as generatec by UEPTH.

CONCLUSICN
There arg a number of possible varlations on this set of orograms.

One posslble alteration would be to incopoopate color information into the matching process. This change would peaulpe using three aligned color-filter olctures, and modifying the corpelation function so that it uses a vector of Information at each oicture dolnt rather than a single scalar number, This technlaue woulo give more information at each point, making gross mismatches less llkely,

Another interestins icea would be to use the camera model to snabe thf correlatiom windnw，rabing correlation less sensitive to nistopticpenfamosject dLe tc the aifferences in projection．Thus， a cirera mouel naving rost of the change in the horizontal dipection woule to ne：c to ceuse e coprelation window which was tall and こnim－－ssins more imtopmetion in the dipection in whlch little jistnrtion occurs，less in the distopted direction．（See I\｜しくtratiori 7．）

Cf ouvise，much can ne done to automate these mpograms，At cresent they ofton ston ane ask iop guldance when thare ls doubt as To imetrer or not a rator is jood．

Ir Pategt，where jil macches must oe goode strengtnaning the critoricn for j match is one way to do tnis－owhen in doutt，throw it nut，\quad notmer method of insuring tnat camera gets only good口oir：ーfairs is to allon CANEFA to weed doint－dairs given it．if， wi＝－mirimun of sorts is fount，one or more of the polnt－oalps are four．to contrloute acncpmelly hign（or low）eprors，these dalrs coils ce pejocter，anj a pe－minimization done．

Thouretical｜y－－that is，given enough time and some low －iEverness－it is rossible to usu CANSCH to find a matching oolnt for －vfry fiest－moini wrich ras a matoh，under tnls assumotlon，the iecririzu of 0 erallaxing（ereatinj mapoings from one olcture to arntrer，ars firmins azpap ax adges is now feasibp．Assumlng good camerarocels，the sossession of sush a madping makes deeth modelling ar：tne location of ceoth edges possible．

It seems，then that the next moves on thls project will be in ing diracilon of imnrovenents to oxisting ppograms．Speclflcally， the low runninet necessary to fopm the matches needs to be develoded． The oronranj tocymenteg here meed to ve optimized so they can pun in
 －orel fro：rams neer to ve inproved so that more reliable camera mocels are önsitie．

Illustration 7，

[^0] aモEMpriatel $\begin{gathered}\text { smazec ooreelation windows（size exaggeratod）．}\end{gathered}$

EIELIOGFAPHY
Buar, Lynn H. [j979], "Computer Comparlson of Pictures", Stanford hetificlalintelligenceproject Memo No, 144,

OTHEC FEFEREGCES
Sonel, drwln[isca], "Camera Models and Machinefrepeption", Stanford mptifici?l lntellizence project Memo No. 121,

Tomes, G. C., and Calahane. D. A. [1967], "Comouter Alded Netwopk Uetinizaticr--TneStateof theArt", Proc, IEEE, Vol.5 5 , Fo, :1, icv, : 967, 201332:63.

M y DPojectforthisquarterwasto startimplementatlonofa system for processing colorstereopairs, simllar to my systompop Drocesilng black a n dwhite stereo Images (see Hannah, 1971, fop details ofthatsystem). Slncethe black andwhltesystem was bullt around the Idea of using nopmallzedcposs-corpelationas a measure of match between two Points, theflpst thlngthat was neededfopthenew system has some oqulvalent measure of matoh for colop lmages. (Actually, correlation Is a measure of match between two areasithe voo oolnts peferedt o are the centers of theareas, in the following, the phrases "between two doints"and"betweentwo apeas" will be used interchangeably in referring to correlation),

Basleally, h ad thecholceof somehow alteringeoprelatlon for use with Color Informatton orcreatinganentirelydifferent oeasureof match, Havinghadllttleluckin an earlier attempto find a new measupeof match fortheblack andwhltecase, lchose to oodifycorpolatlon,

This documentredorts thederivationand implementationo f color correlation, and describes a program, NEWPTS, whlch ilnds initialoolnt-Dalp matches Inelthercoloporblack and whltestepeo dairs.

COLOR CORRELATION

It ls generally recognized thatcolop consistsof thipe components, A child learns lngrade-schoolart that all colors can berado fromped, yellow, and blue pigments, Inhigh-schoolohysics, he istold thatallcolors result fromred, green, and bluellght. Incollege psychology courses, color is discussedin terms of intenslty, hue, and saturation,

Ignopingfor the moment the thorny questionsof what the components of colop"peally"are, we shalladm|tonlythat there are three such components, SInce the color images we cuperntly are working with were obtaines y digitizing three blackand whlte pictures which resulted fromphotographlng an ordinary color slide under red, green, and blueflltersprespectively, we shall pefer to the components as R, G, and B.

It is somewhat more convenlent (as well as more matriematlcal:) o think of a color pletupe as one appay of vector-valued points (p,g,b) Instead of threeseparateariaysof scalar-valued oointsr, and b, Thls suggests pogarding the text-book-version of normalized crossecorrelation

$$
\operatorname{SUM}((x-\operatorname{MEAN}(x)) \quad(y-\operatorname{MEAN}(y)))
$$

COR =
SQRT(SUM($(x-\operatorname{MEAN}(x))+2)$ * SUM($(y-\operatorname{MEAN}(y))+2)$)
(where smalleters denotes ample elements, SUM is the sum over some set of such elements, MEAN is such a sum dividedoyting number of elerents summed over, $S Q R T$ is the square root function, and denotes multiolicatlon)
astheonedimensionalcase of a vector function
$\operatorname{SuM}(\quad(X-\operatorname{MEAN}(X)) \quad,(Y-\operatorname{MEAN}(Y)) \quad)$
VCOR $=-\operatorname{SQRT}(\operatorname{SUM}(|X-M E A N(X)| \cdot 2)$ SUM($|Y-M E A N(Y)| \cdot 2)$)
(wherecapltalletters denote vectops, is vector dot product, and |Alisthe norm ofthe vector A),

Consldering only the factor SUM((X-MEAN(X)) (Y-MEAN(Y))) (since SUM($|X-\operatorname{MEAN}(X)|+2)$ and SUM($|Y-M E A N(Y)|=2)$ are both sdeclal cases, of this SUM with X substituted for Y in the flpstcase and Y substituted for X In the second) and-letting $X b e(x p, x g, x b)$ and Y be (yp,yg,yb), we have
$\operatorname{SUM}((X-\operatorname{MEAN}(X)) \bullet(Y \cdot \operatorname{MEAN}(Y)) \quad)$
$=\operatorname{SUM}((x, x, x, x b)=\operatorname{MEAN}((x p, x g, x b))) \quad$ $((y p, y g, y b)=\operatorname{MEAN}((y p, y g, y b))))$
$=\operatorname{SUM}((x p-\operatorname{MEAN}(x p), x g-\operatorname{MEAN}(x g), x b-\operatorname{MEAN}(x b)) \quad$ -
$(y p-M E A N(y p), y g-M E A N(y g), y b-M E A N(y b)):)$
$=\operatorname{SUM}(\quad(x p-\operatorname{MEAN}(x p)) *(y p-M E A N(y p))+(x g-M E A N(x g)) *(y g-M E A N(y g))+$ $(x b-\operatorname{MEAN}(x b)) *(y b-\operatorname{MEAN}(y b)))$

If wo cleverly notice that all three terms withln this sum are the same in form and combine them into one term under a summation which sums over allcomponents as wellas al elements of oomponents, we get
$=\operatorname{SUM}(\mathrm{x} \cdot \operatorname{MEAN}(\mathrm{x})) *(\mathrm{y} \cdot \operatorname{MEAN}(\mathrm{y})) \quad)$
whichlsthe representative factor of the formula for opdinary coprelation (see- above formula for coprelation).

It is convenient (It somewhat ambarassing) to have color correlation turn out to be a dressed unformofordinarycorpelation, for thlsmeans that color coppelation has all of the mathematical oropertieso fordinary correlation, this, in turn, wlll be Dapticularly usefulint h elnterdolation of correlation values a t non-integer points in the picture, since ppevlously develooed techniquesforsuchinterdolation neednot bejustifledagaln.

Sinceboth vector and Scalar correlation havethesame fopm, save for thenumber of componentswhehneedbes ummedover, thet wo orarids of corpelation have been implementeda s one subpoutine. zORLAT, in the Sallioad-module SCOREL. Which calculationls done
depends on the global flag COLOR, For expediency in comoutation, thé coefflolent is calculated as

```
            ( n * SUM(x y ) - SUM(x) - SUM(y) ): 2
```


that ls, with sums arranged so that onlyone dass need be taken to calculate ail sums, Note, too, that the squape of the copielation is usea (as It was in the black and white casej, tiading a multiplication for a call on SQRT.

No modifications (other than a small amount of ootimizing) have been made on the functions MATCH and MAXCOR which call CORLAT and live In SCOREL, A separate program, NEWPYS, has been created to serve the function of PARSET in the color case and replace PARSET in the black and whits case, It is descifod below as lf itooerated i n color mode, only,

NEWPTS
The purpose of thls program is to find a set of pairs of Doints, one dolnt out of each olctupe, which mateh, intultively, iwo points match if they both are projections of the same threedimensional doint, Since the computationaldrocesscan oniy say that point A matches Doint B with some probabillty, this program's purpose is to pind Daips of doints which maton with falply high opobabllity,

As a dpeliminapy to the matching process, thls opogiam segments both olctures into overlaoding areas, usually 20 olxels square, It then computes the mean and vaplance of oachapa ln the ti pst component of each ooior olcture conly one oomoonent ls used to expedte computation) and sopts each oleture's areas by vaplanoe, keeping track of wherein the pletupe each area came from,

The matching process begins byselecting an area at random frof the top end of the variance llst of thefirst pleture, usual ly the top 25%. This I imitation is imposed because the measipe of maten being used works best where there is alarge amount of fifopmation oresent, which is symptomized by the variance belng large,

Since areas whlch match should havesimilar varlances, the selected area of the first plcture is compared with each area of the second picture whose variance is within 28% of that of the area under considepation, (In the followlng, iet the dreflxes "flrste" and "second-" stand for the modifying phrases "of the first olctupe" and "of the second plctupe" pespectively.)

Each ellgibie second-area is initially tested to see lifits mean is similar that of the first.area, If second-area Dassts thls test, a search ls made to find the second-point (some dolnt in or near the second-apa under consioeration) such that the $2 n+1 \quad x \quad 2 n+1$
wincow surrounding this second-pointisthe best match for (has the highest normallzedcrosscorrelation $w / t h$)the $2 n+1 \quad x \quad 2 n+1$ window surrounding the center polnt of the flestarea. The search strategy used is essentiallythat usedby Quam (1971).
for computationalexpediency, the above searoh is cappled out us ing only the first component of the colorplctupe, Asthe orogram Proceeds through the second-areas, the N second-areas (where N is usually 5) yielding the highest correlation values apokeot track of, Later, a second searchlsdone onthese areas using coior correlation to detepminewnich of the areas that matched on the basis of theone-component search match bestincolor,

Tests are then made to determine whether the best match found was good enough, first of ail, the correlation must be above. 5 (calculated square of thecoprelationabove, 25), sinceacorpelation hower than .5 can occur between areas which do notpeally match, Secondly, the tod two coppelations must difer slgnificantly. Fal lure to do so would Indicate that morethan onematch was Possible, castlng doubt on the validity of elther match, fallupe in either of these tests causes allist-apea to be pejected as having no reliable match, and another first-arealstried,

Note that, when thls process is finlshed, the center point of the flpst-areahas been paired with a second-point which has integer co-opdinates, Inopactles, however, the Dpodermatchiopagiven first-doint will be second-dolntwith non-integerco-opdinates. Sincethe onlycoprelation values which are avallable are those at integer second-dolnts, some form of interpolation is necessary,

Thepefore, the inal odepation on a match is an interdolation, A functionoftheformEXP(- (A*XP2 + B*X+C*X*Y. + $0 * Y+2+E * Y+F)\rangle$ is fltted byleastsquares techniguesto the colorcoprelationvaluesbetween thewlndow around the first-doint and simllar windows around polnts In the neighborhoodo fthe second-dolnt, Soivingthl sunctionfor a maximum results in elther a new match at somenon-integersecond-polnt, or Ina n error ifthere isn o maximum within a one-dixelradius of the matehing secondodoint.

In the latter case, the flpst-area ls said to haveno peliadematch, and theprogpam continues to anotherfipstapea. The oostcommonc a useof suchiallupelsastronglinearedgewithlittio information on elther side, in which case the chances of error are sufficient to cast any such match In doubt,

If the match passes this final test, it ls recorded for use i n a later program, and this program proceeds to anotherfirstearea.

ADJITIONS AND IMPROVEMENTS

Ouppresent dpactice of usingred,green, and blue as the three components of the color picture hasits drawbacks, One would

Wiketo calculate the means and varlances of the average lntensltes inthe thre componentsor the ouppose of narpowing the soarchesfor the Inltial dolnt-Dalp matchings, To do thlsunder the opesent schere, one must elther calculate the averages as one goes-a rather slon dpoosss-op keed around an extra Daft of olotures, the lntensity oletures-a scheme whlech onlargens (hence slows) one's job excessively, A solution to this Problem would be to have the intenslty picture be one of the three comoonents of the colop oletupe.

There are at least two schemes of oolop representation whloh have Intenslty a one component, The best known, Dephadsis the Intenslty, hue, and saturation scheme, commerclal television uses the different, although related, scheme of Intensity, xa, a nd y-chpomatielty, Both of these are besed on the ldea of a colop whel. le, colops arranged clpcularly around a hub, The hue-saturation Scheme corpesponds t ousing dolar co-ordinates to nocate a colop point on the wheel, The x-, yechromaticity soheme corresponds to usinga (not necessaplly pectangular) capteslan co-opdinate system to locate the color polnt.

Implomenting one of these systems seems to be desirable. Precisely whlch one to implement and how to depive these comoonents
 study.

Once the pepresentation question has been settled, there are a number of statistics which can be oaloulated over the segmented oletufes, in addition to the mean and vaplance of the intanslty, one coulc calculate the mean and varlance of the oolor, the mode fmost frequentlyoceuping) color, possibly the next most frequent color : etc. Each arealn each picture would then be assoclated with a veotop of such statistles, and searches for a matohlng second-area could be constralned to those seoondareas whose vectopdistancefrom the first-areals withinsometolepanco.

Amore thorough Investlgation of the properties and redpesentationso foior seems to be ln order, it is ln thls direction that this project wlll proceed.

BIBLI OGRAPHY
Hannah, M. J. [1971], "Camepa Models and Stereolmage Ppocessing", Term Project Report, CS-293, Stanford Unlversity,falli1971.

Quar, Lynn H, [1971], "Comouter Compar bon of Pictures*, Stanford Apt|ficial!ntelligence Project Memo No, 144,

[^0]:

