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EDMONDS POLYHEDRA AND A H ERARCHY OF COMVBI NATORI AL PROBLEMS

by

V. Chvital
Stanford University, Stanford, CA 94305

ABSTRACT

Let S be a set of linear inequalities that determne a
bounded pol yhedron P. The closure of Sis the smallest set of
inequalities that contains S and is closed under two operations:
(i) taking linear conbinations of inequalities, (ii) replacing an

inequality yya Xj 2 ags wher e 8558y, . . ., & are i ntegers,

3
by the inequality Z%. j(_<_,a with a> [a]. Qoviously, if
integers x,,x,, . . ,x_ satisfy all the inequalities in S
then they satisfy also all the inequalities in the closure of s.

Conversely, let Y Cy %y 5

» X s that satisfy-all the inequalities in S. Then

hold for all choices of integers

Xl, Xz, .
we prove that J ¢y X X ¢y belongs to the closure of S. To each
integer linear progranming problem we assign a nonnegative integer,
called its rank. (The rank is the m ninum nunber of iterations

of the operation (ii) that are required in order to elimnate the
integrality constraint.) W prove that there is no upper bound
on the rank of problens arising from the search far |argest

i ndependent sets in graphs.



1. Characterizations and good characterizations.

Let us exam ne the formal structure of the two follow ng

t heor ens.

THEOREM A (Tutte [17]). Let G be a (finite undirected) graph.
Then the two following conditions are equivalent.
(i) Ghas a perfect matching (that is, a set of pairwise
di sjoint edges that cover all the vertices of G,
(ii) if an arbitrary set S of vectors is deleted fromG
then the nunber ky (6-5) of odd conponents (that is, conponents
having an odd nunber of vertices each) of the resulting graph G

does not exceed |sj.

THEOREM B (Gal lai [11]). Let G be a (finite undirected) graph.
Then the two following conditions are equivalent.

(1) G is k-colorable,

(ii) the edges of G can be directed in such a way that the
resulting directed graph contains no (sinple directed) path having

k edges.

Both of these theorens, asserting the equivalence of (i) and
(ii), are characterizations? Yet there is a considerable fornal
difference between the two. Theorem A gives necessary and sufficient
conditicns for the existence of a certain structure (perfect matching
in G interns of the absence of another structure (a set Swth

ky(G=8) > IS{). On the other hand, Theorem B gives necessary and



sufficient conditions for the existence of a certain structure
(k-coloring of @ in ternms of the existence of another structure
(the directions of the edges of G. Another aspect of this difference
can be illumnated as follows. It is easy to convince one's supervisor
that G has a perfect matching. To do this, one only has to exhibit
the matching. (The question of the difficulty of finding the matching
is irrelevant for our discussion.) It is equally easy (with help of
Theorem A) to convince the supervisor that G has no perfect matching --
one has to exhibit a set S with k,(G-8) > IS|. On the other hand,
while it is easy to convince the supervisor that G has _a k-coloring,
Theorem B gives no easy way of showing that G has no k-coloring.
Apparent|y Ednonds [6] has been the first to turn attention
to this feature of characterizations; he introduced the term "good
characterizations" for the theorems of the first type. Hence Tutte's
theoremis a good characterization while Gallai's theoremis not. Need-
| ess to say, the words "good characterization"” form a nonseparabl e
entity without any reference to the enotional charge of the adjective
"good". The statement "Callai's theoremis not a good characterization”
asserts nothing whatsoever about the quality and depth of the theorem
In our further considerations, the duality theorem of Iinear
progranming will play an inportant role, It expresses the maximm of
a linear form} ci X, subject to a set of constraints (prinal
problem) as a nininum of another form § b, vy subject to other
constraints (dual problem)y. Hence to show that a feasible primal
sol ution (xl, Xos oo xn) is optimal, one only has to exhibit a
feasible dual solution (v, v, . . . , y)vith X c, ¥ = ¥ by vy
In a way, the duality theorem of linear programmng is a prototype of

a good characterization.



our | ast sentence has nore into it than meets the eye.
Actual Iy, Ednonds [7] has shown how to relate Theorem A to the duality
theorem and made it clear that his approach can be adopted in nmany

different settings. It is the purpose of this paper to study

various questions related to Edmonds' technique.



2. Ednonds polyhedra.

Let G be a graph with vertices Vis Vos o oo vm and
edges €€ - o ., en;for each ] =1, 2, . . . , mwe set
S(j) =1{i: vy is an endpoint of ei}' The problem of finding a
perfect matching in G can be formulated as the following integer

l'inear programmng problem Maxinm ze

)
X (2.1)
i=1 *
subject to the constraints
x, 20 =12 ...,n, (2.2)
'2. Xiil (j=1’2|--'1n')1 (2'3)
ies(j)
X, = i nt eger i=1, 2, ..., n). (2.4)
Qobviously, every characteristic vector (Xl,xz, L ,xn) of a

set of pairwise disjoint edges satisfies (2.2), (2.3) and (2.4).
Vice versa, every vector (Xl"XZ’ . ey xn) that satisfies (2.2),
(2.3), (2.4) turns out to be a characteristic vector of a set of
pairwise disjoint edges of G Hence G has a perfect matching
~if and only if the maxi mumof (2.1) subject to (2.2), (2.3), (2.4)
equal s -2-1 m

Because of the integrality constraint (2.4), we cannot express

the maximum of (2.1) in terns of the mninum of a dual problem  Besides,

5



if (2.4) is dropped then the maximum of (2.1) can increase. For instance,
if Gis a triangle then X; =X, = X5 = -z—lsatisfies (2.2), (2.3) and

yields }, xi = —3— However, the maxi mum of (2.1) subject to (2.2),
(2.3), (2.4) equals one in this case. Nevertheless, there is a

standard way of getting around the inequality constraint. (One can

think of the polyhedron P (in the n-dinensional Euclidean space)
determned by (2.2), (2.3). The set F of lattice points inside

Pis finite and its convex hull E(P) is another polyhedron. A

monent's reflection shows that the maxinum of (2.1) over F equals

the maxi mum of (2.1) over E(P) -- indeed, F is a subset of E(P)

while the extrenum points of E(P) come fromF. Mre generally,

for any polyhedron P and any linear form Z c; Xy» t he probl em of

maxi m zing , c, Xiover the lattice points inside P reduces into the
probl em of naximzing ! c X, over E(P). 'The latter is an ordinary (non-

integer) linear programmng problem that offers the advantage of using the

duality theorem as long: as the list of faces of F (P) is known,

In general, it seems extrenely difficult to determne all
faces of E(P) fromthose of P. However, in the above case -- when
P is defined by (2.2), (2.3) -- the list of faces of E(P) is
available.  Indeed, Ednonds [7] proved that all the inequalities that

determne E(P) are (2.2), (2.3), and

egg X, <k (2.5)

i

Here S runs through all sets of 2k + 1 vertices (k arbitrary)

and each edge is interpreted as a two-point set. Now, the naxi num of

b



(2.1) subject to (2.2), (2.3), (2.4) equals the maxi mum of (2.1)
subject to (2.2), (2.3), (2.5), which is, in turn, equal to the

m ni mum of the corresponding dual program  Therefore Ednonds'
theorem (conbined with the duality theoren) yields instantly a good
characterization of graphs w thout a perfect matching as follows.

A graph G has no perfect matching if and only if there are non-
negative real nunbers 815 8y, ., & and b(S), where S ranges

through all odd-cardinality sets of vertices, such that for each

edge e with endpoints v.J, Vi the inequality

a, +a_ + 3, b(S) »>.1
J kgts

is satisfied and

m 1 1
Loarhzdsl-nbs <ga.
Besi des, Edmonds [8] proved that the a; and b(S) can be
chosen to be zero or one. Under this added assunption, the above
characterization reduces into Tutte's theorem (O course, Ednonds'
theoremis nore general; it provides a max-min formula for any
wei ghted matching problem  Ednonds also generalized these results
to the case of optinmmweighted degree-constrained subgraphs of a
given graph (see Section VIII of [7] and al so [9]). Since these are
the only cases when E(P) is a proper subset of P but the descrip-

tion of the faces of E(P) is known, we call E(P) the Ednonds

pol yhedron of P.



W have seen that the know edge of the faces of E(P) vyields
imediately a max-mn formula for the corresponding integer |inear
programming problem Next, we will study the relations between the

faces of E(P) and those of P.



3. The main theorem

It is easy to see how (2.3) and (2.4) inply (2.5). Indeed,
let S be any set of 2k+l vertices of G Summing the inequalities

(2.3) for all j with v.JEvae obt ai n

2 N omy S 2k
e, C8

or
- 1
Z X, <k +=

By (2.4), the left-handside of the last inequality is an integer and
so (2.5) follows. This observation leads us to the definition of a
closure of a set S of linear inequalities. W shall say that an

i nequal ity E a; %, < b belongs to the elenentary closure of S

iIf there are inequalities

n
jg'laijxjibi =12 ....,n

in S and positive real nunbers STRSTIRTE AL such that

Exiai.=aj:integer G=12 ...,n,



(here [x] denotes the integer part of x). The set of all inequalities
belonging to the elementary closure of S wll be denoted by el(s);

for any integer k >1 we define ek(S) recursively by

ek(S) = e(ek'l(S)). Finally, we set

o]

d(S) = U e8s) ;
k=1

the set c¢(S) will be called the closure of S. Evidently, all

vectors (xl, x » x ) satisfying all the inequalities in S

2’.
plus the integrality constraint

Xy = i nt eger i=1 2, ..., n
satisfy also all the inequalities in «(s). A converse is gi ven-by our

next result.

THEOREM 1. Let the inequalities

n

(where aij’ b, are real nunbers) determne a bounded pol yhedron in

the n-dinensional Euclidean space. |gt ¢ . C_ be integers

0* ‘1’ - n

such that
n
gl c; %y < ¢ (3.2)

10



hol ds for any choice of__integers X1 x2,.** X satisfying (3.1).
Then (3.2) belongs to the closure of (3.1).

In the proof, we will use the following auxiliary result.

LEMA 1. Let (3.1) and (3.2) be as in Theorem 1; let ¢ be an integer

1 Xgs o oo X

satisfying (3.1). Then the inequality 2 ¢y %5 < c belongs to the

such that } Cy x4 < ctl for every choice of reals x
closure of (3.1).

PROCF of Lemma 1. Let c* be the maxi mumof §] c subject to

3%
the constraints (3.1). By one of the versions of the duality theorem

(see [13], Theorem 8.3.1), there are nonnegative reals A y A

1’ AZ’ . o m

such that A8,=C5 G = 1,2, ..., mw and Y hi by o= c*

Since c* < c+l, we have [c*] < ¢ and the conclusion follows.

PROCF of Theorem 1. Let c* be the maximumof J ci x, subject to

(3.1); set c¢ = [c*]. By Lenma 1, the inequality 2 Ci x; < C bel ongs
to the closure of (3.1). If ¢ < < then we are done. Next, we wll
assume  c > C, and prove that the inequality 2 ¢y x; 2 c-1 bel ongs

to the closure of (3.1). Repeating this process c-c,times,we

0
arrive at the desired conclusion.

Since (3.1) determines a bounded pol yhedron, there is an
integer Mwith |xi| < M whenever (3.1) is satisfied. By Lemma 1,

the inequalities

-x, <M (1

]
-
!\)

=}
~

X, <M G=12 ...,n)
11



belong to the closure of (3.1). Gven a vector (sl, Sz" Co sk)
where 0 <k <n and 5 € {-M, -M+1, . . . , M} we construct a

. . , _

linear form (in the X s) L(sl, Sy - , sk) and a nunber

R(s;s 5,5 . » 5y recursively as follows. Firstly, for the zero-

l ength vector ¢, we set

L@ =% c R(B) = c-|

R
Secondly, we set
Llsp sy wx v §) = QiHl¥s) L(spysy, ovv 8 9) - 1,

) + M.

R(Sl’ Sz’ . . . ] Sk) = (M+1+Sk) R(Sl’ 82"*a ] Sk 1

It follows directly fromthe definition that
L(Sl’ 52’-** ] Sk) = L(sl’ 32,.0. y Sk l) + L(Bl, 82,...,8k-1) )
R(sys sy 5 8) WR(syseys ™ 8y 1) + R(sy, 85,...,8,-1)

whenever >-M. Now, it is easy to establish (by induction on k)

Sk
t hat

12



L(s;s8,, . -8
¥ X 3 \
=), ¢, x, + L(6,,8,,.es , si-1) - X, ,
174 o F-t 1’72 syt
) (3.9
R(sl’ Sz’ . = sk)
=(c1) + LRy, S, . .., si-1) +T M, /
s, #-M 2 8;="M
Qur next observation is essential for the proof.
CLAIM  Let (sl, 55 . . » §) be any vector with 0 <k < n and
J € (M, -, . . ., M. If
L(sl, Sys v e si—l) =R(sl,sz,. Co si—l) (Si # -M)
(3.4)
X, =M (si = -M)
Z ci Xl = C
thenxi=si for all i =1, 2, ..., k.

PROOF of the Claim \ proceed by induction on k. The JJaimis
trivially true for k = 0. By the induction assunption, the daim
hol ds for the vector (s, s,, . . . , s _,) and so the equations

(3.4) withi #kimly xi =si  forall 1=1, 2, . .. |, k-1. If

13



s, = -M then we are done. |f # -M then we argue as follows.

k Sk
The equations (3.3) and (3.4) inply that

L(sl,sz, ee Sk—l) = R(Sl’ Sys ’ sk—l> + 1
By definition, we have
L(sl, Sps - v sk—l) = (M+sk) L(sl’ Sy Sk-—l) - X
R(sl, Sy» - : Sk-l) = (M+Sk) ICHNEI , Sk—l) M
Using the last three equations and (3.4) with i = k we deduce
X, — S, which is the derived result. Thus the claim i s proved,

Now, we are ready for the final coup de grace. |nductively,
we shall sweep through the entire set of inequalities

L(Sl’s ] Sk)_iR(sl’ SZ, . o = Sk) (3'5)

2%

in a specified order, and prove that each of these belongs to the

closure of (3.1). (In particular, the inequality L(®) < R(®) --

which comes last in our ordering -- is the one we want.) The |inear
order a |exicographic one with each blank -- corresponding to
Spa1? Sgag® - -+ 0 Sy T interpreted as M+l. Mre precisely, we say

that (3.5) precedes the inequality L(tl.tz,...,tr) < R(tl,tz,...,tr)
if and only if, either sj< tj or r<j<k wherej isthe
| argest subscript with s; Tty for all i <j.

14



CASE 1. k = n. (This case includes the very first inequality in our
set, one with sq = sZ=.** =S, = -M.) By the induction assunption,

all the inequalities

L(sl,sz,...,si—l) < R(sl,sz,...,si-—l) (s, # -M) (3.6)

i

belong to the closure of (3.1). Mreover, the inequalities

-x, < M (Si = -M) 3.7)

2 c; Xy <ec (3.8)

belong to the closure of (3.1). Summing up (3.6), (3.7), (3.8) and

using (3.3) we arrive at the inequality
L(Sl’SZ""’Sn) iR(sl,sz,...,sn) + 1. (3.9)

This inequality holds for every choice of reals xI, Xop o o o0 X
that obey (3.6), (3.7) and (3.8). Besides, our Claiminplies that
equality in (3.9) can occur only if Xj =584 (i =1,2,...,0) and
Eci % = c. However, these n+l equations are inconsistent with
at least one of the constraints (3.1) -- otherwise the assunption of

our Theoremis violated. Therefore

L(s

l,sz,...,sn) < R(sl,s ,...,sn) + 1

15



hol ds for any choice of reals Xy Xy oo X satisfying (3.1),

(3.6), (3.7), (3.8). By Lemma 1, the inequality

L(Sl’sz’ cee Sn) < R(sy» Sys - (3.10)

bel ongs to the closure of (3.1), (3.6), (3.7), (3.8). As (3.6), (3.7)

and (3.8) belong to the closure of (3.1) thenmselves, we conclude that

(3.10) belongs to the closure of (3.1).

CASE 2. k <n. By the induction assunption, the inequality

L(sl,sz, see Sy M) < R(sl, Sys . - S M)

belongs to the closure of (3.1). This inequality can be witten as

(2M+1) L(s < (2M+1) R(s ., sk) + M.

1’ sz,...sk)—xk 1° Sp0

Besides, the inequality

belongs to the closure of (3.1). Adding the last two inequalities

and dividing by 2M+1 we obtain

* %
L(Sl’SZ" , sk) < R(sl’SZ’ cer sk) +

Therefore

16



L(s , sk) < R(s

1,82, s e 1,82, L] k)

bel ongs to the closure of (3.1).

Now, we have proved that all the inequalities (3.5), including
Z',ci X, S c-1, belong to the closure of (3.1). Repeating this argument
c-Cy tines (as mentioned above) we prove that (3.2) belongs to the
closure of (3.1) and finish thus the proof of Theorem 1.

One nore remark. It is easy to see that the Ednonds pol yhedron

of P can be described by inequalities

i * b* (i=,2 n‘)
a X, < Fidy o0 L,
j=1 ij 73 i

* .
where all the a;j‘s and bi's are integers. Hence Theorem 1 can be

restated as foll ows.

COROLLARY 1A. If (3.1) defines a bounded pol yhedron P then the

closure of (3.1) determnes E(P).

17



4, The Bool ean case and Branch-and-Bound net hod.

Among the integer linear program ng problems, those with
the constraints

x, =0 or 1 i=1, 2, 1)

are particularly inportant. The problems arising from conbinatorial

considerations have nearly always this form the x 's usually represent
|

the characteristic vector of a set satisfying specified conditions.

In this section, we turn our attention to these problems. & shql]

consi der pol yhedra defined by inequalities

(4.1)

n
J'glaijxjibi =12 ..., m

and present an alternative proof of Theorem 1 within this restricted
class. The proof may be found to be nore direct and transparent than
the one given above; besides, it js related in an anusing way to the
branch and bound nethod. as in the preceding section, we only have to
prove the follow ng statenent.

Let cl, cp,enn, c, and c be integers such that

(1) the inequality 3 c.x, < C belongs to the closure of (4.1),

(1) there are no integers x, x,, ..., x_ satisfying (4.1)
and })c.x, = C.
Then the inequality 7] e.x < C-l belongs to the closure of (4.1).

18



Actually, we are going to prove that all the inequalities

n
Loeygx, + Lx - ox o< ocol o+ A (4.2)
=1 1l ot 1ER

where A,B are disjoint subsets of {1, 2, . n} belong to the

closure of (4.1). The proof goes by backward induction on {A] + |B];
the inequality (4.2) with A=B=¢is the one we want. The induction
step is easy. If |A| + |B| <n then there is a subscript k & A UB

and, by the induction assunption, both inequalities
xk+2cixi+zyi—2xi_<_c—l+|A|+1
A B
—xkfl-Z'cixi+E xi~2xi_5_c—l+ |A]
A B

belong to the closure of (4.1). Adding them and dividing by two we

obt ai n

E cixi+§xi—§xi_<_c-| +IA|+-]2l

and conclude that (4.2) belongs to the closure of (4.1). It remains
to verify that all the inequalities (4.2) with |A] + |B| = n bel ong

to the closure of (4.1). Here, we distinguish two cases

CASELl ), a <b, foralli=12 ..., m |nthis case, we
.EA J - 1 '
3

have

Eci<c

i€A
19



for otherwise (ii) is violated by

1, i€A
Xy =
0, i €8
Setting M= max|ci| we have
(M+ci)xi < M+c1 (i €A
(M-ci) (=x,) <0, i € B)

-1) 3! c; x; £ (M=1)c
Adding these inequalities and dividing by M we obtain
1

Do + 5y -Dx cerlaf+geerDe
A B A

and conclude that (4.2) belongs to the closure of (4.1).

CASE 2.}, a;.> b, for sone i. Setting M= max[a;.| we have
jea 13 i e

A
==
QD

(Ma)y  <May, G € a)

A
o
-

(W, ) (-x,) < ( € B)
2 aij xj < bi .

20



Adding these inequalities and dividing by M we obtain

1
X, - x, < |Al += (b, - L)
and concl ude that
L ox - ux < A -1
A 1 g1

bel ongs to the closure of (4.1). Therefore (4.2) also belongs to the
closure of (4.1).

The proof is finished. The reader may have noticed that not

all the inequalities (4.2) are required for the induction leading to

ZICi Xy <c-l. Indeed, we can restrict ourselves only to those with
AUB={1,2, . . . , |a| +|B|}.

Then the induction is performed along a binary tree with n+l |evels.

Al the 2% vertices of the k-th level are labelled by distinct zero-one

vectors (zl, Zys o oo zk) and associated with inequalities
c, x, + (2z,-1)x, < c-1 + Z Zi
=1 1t ogg o 1T 1=1

Each vertex labelled (zl,zz, cee zk) with k < n has two successors
labelled (zl, Zgy 0 Zps 0) and (Zl’ Zoy en s Zps 1). The
inequal ity assigned to a parent vertex is obtained by adding the

inequalities at its two successors, dividing by two and rounding the

21



right-hand side down to the nearest integer.  (since the right-hand
sides of the successors differ in parity, the rounding always
cuts down exactly one half.) The inequalities at the termnal vertices
are obtained in one of two different ways, according to whether
(z;, Zys . . »2)) is feasible with respect to (4.1) or not.

The whole picture rather resenbles a binary search (in vain)

for a feasible vector (zl, z , zn) that would satisfy

2’ . ne
Zci zi =c. Actually, it turns out that our nethod is a translation

of -the branch-and-bound method [1] into the |language of linear inequalities,
During the search,we are after the inequality }; S c-1. Therefore

we split all possible choices of integers x5 X x into two

2’ ' ' ' )
classes (corresponding to X, = 0 and x; = 1) and proceed to prove the

inequality in each class separately. The two classes correspond to the

two first-level inequalities. |ndeed, the inequality

i's just another way of saying "if x =0 then }] c.x <c-I; if
1 ii=
x; = 1 then possibly } c, X; =c" Sinilarly, the inequality
Xl+zci xif_c )
reads "if x, = 0 then possibly §c, x, =c; if x, =1 then
necessarily {1 C.ox < c-1." The dichotony between x, _ 0and x;, _ 1
Is taken care of by the rounding device, go on like this, step by

step, and require one nore X; at each step to be fixed at a specified

22



value (zero or one) until we hit the level where all the xi's are
fixed. |If they are feasible (Case 1) then they cannot satisfy
Z]ci X, = G if they are not feasible (Case 2) then they cannot be
reached at all.
Oten, it happens that a k-th level inequality (k < n) belongs
to the elenmentary closure of the inequalities (4.1) and )} c; Xi < e
In that case, Wwe can stop branching out from the corresponding vertex
and sinplify the proof considerably. In the following section, we

illustrate this situation (Exanple 1).

23



5. Conbinatorial applications: jndependent sets in hypergraphs.

Many extremal conbinatorial problens can be fornulated as
problens of finding the [argest independent set in a hypergraph. A
hypergraph H is an ordered pair (V,E) where Vis a set and E
a collection of subsets of V (see [2]). A set XCVis called

i ndependent (in H) if thereisno A€ Ewith ACX. If Vis

finite then the problem of finding the |argest set X independent
in His the follow ng zero-one l|inear programmng problem  waximze

Y x, subject to
1

i€v
(5.1)
Yy ox, < |A -1 (A €E),
i€ *
x, = i nt eger 1EV). (5.2

Theorem 1 guarantees that each inequality Toxio< X, val i d under
iev
constraints (5.1), (5.2) belongs to the closure of (5.1). Therefore

a solution to the above problem can be always obtained through a series

of elenentary closure operations,

EXAVPLE 1: Hamiltonian circuits in graphs.

The problem of determ ning whether a given graph G = (v¥, E¥)
has a Ham Itonian circuit is one of the above kind. The corresponding
hypergraph H = (v,E) has V = E* and the collection E includes two

different kinds of sets A

24



(i) those consisting of three distinct edges of G that have

all one vertex in comon;

(i1) those consisting of circuits in G having less than |v#| edges.

It is quite easy to see that each independent set of size |v*|

in Hconstitutes a Hamltonian circuit in G and vice versa, Thus

G has a Hanmiltonian circuit if and only if the corresponding zero-

one linear programmng problemhas a feasible solution with

L ox, = [v¥| .
ijegx 1

As an exanple, we consider the Petersen graph with edges

enunerated as in Fig. 1. Setting up the linear programmng problem

We arrive at constraints

0<x, <1 i=1,2,..,15 , (5.3)

ten "star constraints" of the type (i), that is

) (5.4)

etc

and many “"circuit constraints" of the type (ii), that is
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x, + x, + x, + x + X +X5i5 (55)

etc. )

It is notoriously well-known that the Petersen graph has no Hamiltonian

circuit. Equivalently, one has

5 x, :
X, < 9. (5.6)
i=1 *
for every choice of integers Xs Kps o o0 Ko satisfying (5.3), (5.4),
(5.5). The integrality constraint is essential here -- indeed,

; 2 .. .
setting x, = 3 =12 ..., 15 we satisfy (5.3), (5.4), (5.5)

and violate (5.6). W are going to show that (5.6) belongs to the
closure of (5.3), (5.4), and (5.5), giving thus a proof of the non-
existence of a Hamltonian circuit in the Petersen graph.

Let us consider the binary tree in Fig. 2.  Wth each of its

vertices (labelled A B), we associate an inequality

15
; x4 Boxg - Doxg < 9+ [l
i=1 i€A i€B

It is not difficult to prove that the inequalities assigned to the

termnal vertices belong to the closure of (5.3), (5.4), (5.5).

(Fig. 2)
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For instance, the inequality corresponding to A =1{9, 14, 1}, B=¢

Is obtained as the sum of the inequalities

X, *x, +txg <2, ¥8 + x12 t x14 £ 2,
X
+ + <2 s
9 x13 x15 < x1+x5 +x6 <2
X
10 + X, + <2 .,
11 + x14 = X, tx, +tx, <2

‘The inequality corresponding to A = {1, 9}, B = {4, 13, 14} is a sum

of the inequalities

xlo+x11+x14i2,

X + X5 +x, <2,

6
xl+x2+x7_<_2
Xq <1,
- x14 < 0,

x+x+x12+x + x <4,

Simlarly, every other inequality corresponding to a termnal vertex
of our tree can be obtained as a sum of a subset of (5.3), (5.4), (5.5).
As in Section 4, the inequality at each parental vertex (labelled A B)
can be obtained by taking the sum of the two inequalities assigned to

its descendants (labelled A Uik}, B and A, B Uik}), dividing by two
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and rounding the right-hand side down. Thus we conclude that (5.6)
bel ongs to e5(S) where S is the set of inequalities (5.3), (5.4),
(5.5).

The application of this technique to the problens of existence
of Hamltonian circuits is discussed in detail in [5]. In particular,

[5] contains the following "one-two-three theorent. Gven any graph

G= (v,E) consider the S of inequalities

<1 1LEw ,

]
=
-
A
0~

vewvn,

Ingt|
]
e
A

<wl-1 W Cv, o< u<[v]).
iw

If the maximum of )} x; subject to the constraints S and so called
i€E
"comb inequalities" (which belong to el(s)) equal s |[V] then G has

the follow ng properties:

(1) deletion of k vertices from G always results in a graph
with at nost k conmponents (in other words, G is |-tough),
(ii) V can be covered by pairwise disjoint circuits (in other words,
G has a 2-factor),
(iii) given any u, v, w€ Vthere is acircuit in Gthat passes

through all three wu, v, w (in other words, G is 3-cyclable).
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EXAMPLE 2: Mbser's cube oroblem.

Let us consider the three-dinensional tick-tack-toe cube
with 27 points (0,0,0), (0,0,1), ..., (2,2,2). Our objective is to
select as many of these 27 points as possible wthout choosing three
col linear ones. Assigning to each point (a,b,c) a variable X;
wWthi =9a+3b+c+1 (see Fig. 3) we arrive at the follow ng

integer programming fornulation of the problem

(Fig. 3

Maximize  J, x,  subject to
-

Xp o+ Xy 4 Xpy 22

I nt eger ia=1 2 ..., 27

"
1

(Atogether, we have 49 constraints of the form x_ + X+ % 52,

corresponding to 49 collinear triples.) Setting X, = 2/3 (i =1,2,...

we satisfy all the inequalities (5.7) and obtain }, x; = 18. However,

29

Y (5.7)
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can be shown that every choice of 17 points out of our 27 always contains
a collinear triple. Equivalently, the inequality }, X4 < 16 bel ongs

to the closure of (5.7). This can be shown as follows. W have

%(-"1+X2+x3>5—%’
%(x1+x4+x7)i'§' ‘
%(x3+x6+x9,)_<_—53—,
-2—(x7+x8+x9)i%,
%—(xl+x5+x9)i%,
%(x?) . x5+x7)_<_%

%(x2 +x5+x8)_<_% R
%(x4 +x5+x6)_<_% .

Adding these inequalities up we conclude that

26
2(x1+x3+x7+x9)+(X2+x4+x6+x8)+x5_<_[-§—] =8

belongs to the closure of (5.7). Miltiplying the last inequality by
il and adding the inequalities

5
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1 5
2 4
-5-(x3+x5+x7)_<_-§ s
.];( + + -
5 Ky txstxgd <52,
1 2
-5— (x4 + X5 + X6)i5
we find that
2(x, + x, Fxo Fx) F(x, FX 4+ x +x)+ 2% < [*=8 (5.8)
1 3 7 9 2 4 6 8 5—"5 ‘
bel ongs to the closure of (5.7). Now, we set

A=x + x, + x, +x, + x + x + x

1 3 7 T¥%g 19 21 25 t ¥

27°

B = x, +x, +x, + x, + X +

g P X, T Xg + Xg F X0t Xpp 4 XK + F1g + Foo + ¥oo + X24 + F26

=X v Xy Xyt X5 o4 X7 4 %30

D_
X4 -

Hence ais the sum of variables assigned to the corners of the cube,
B corresponds to edges, Cto faces and D to the center of the cube.

The inequality (5.8) applies to the points in the bottom horizontal
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plane. Adding up nine inequalities of this sort (corresponding to

nine planes perpendicular to one of the coordinate axes) we obtain

6A + 4B + 4C + 6D < 72

Adding up all the 12 contraints corresponding to lines that join

centers of edges via centers of faces we obtain

2B + 2C < 24 .

Dividing the sumof the last two inequalities by six we arrive at

f{ x;, =A+B+C+Dc< 16
i=1
which is the desired result.

Mre generally, one can consider the 3"-cube and ask for the
largest size f(n) of its subset containing no three collinear points.
It is easy to show that f(1) =2, f(2) =6, f(3) = 16; recently
Chandra proved that £(4) =43. It is not difficult to show that
f(n) <c. 3% /a, see [4]. Moser [16] conjectured that f(n) = o(3%);
this, apparently difficult, problemis still unsettled. Perhaps t he

t echni que indicated here could help to solve Mser's conjecture.
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6. Conbinatorial applications: coloring of hypergraphs.

A k-coloring of a hypergraph H= (V,E) is a partition

= Usenr U
V ClUC2 Ck

such that each C, is independent in H. In a coloring problem one
asks for the smallest k such that H admits a k-coloring. The
coloring problens include the celebrated four-color conjecture as well
.as the problenms of Ransey's type [3]. At first, it seenms that the
coloring problens are different from those considered in the previous
section. Yet there is an easy way of reducing themto the previous
type. Gven a hypergraph H= (V,E) and a positive integer k we
consi der the hypergraph u* = (v¥, E*) where V* =V x {1,2,...,k}
and E* includes two kinds of sets A*:

(1) all the sets A* = Ax{j} where A€E 1< <Kk,

(ii) all the couples A* = {(v,i), (v,j)} Wwhere v &€V, i # j.

A moment's reflection shows that His k-colorable if and only if u*
contai ns an independent set of size |v|. An anusing consequence of
this trick goes as follows. Every algorithm that finds the |argest

i ndependent set in a graph (with n vertices and m edges) within
f(n,m steps can be used to check the k-colorability of a graph

within f(nk, mk +na(5) steps.
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EXAMPLE 3: Ransey's theorem

It is well-known that, whenever one colors the 15 iedges of a
conpl ete graph with six vertices by two colors (customarily, red and
blue are used), a monochromatic triangle is bound to pop out. Quided by
the philosophy explained above, we can fornulate this statement as

follows. The maxi mum of

T = (x Vis)
1ii}<]j <6 I TTH
subject to
2
I+ Xjk + ik = A
(1<1i<j<k<06)
Yij t Yyt 22
-X.. <0 ? (6.1)
1] —
-y33 = 0 (1<1c<j<6b) /
xII + yij <1
and
%y = i nt eger, yij = | nteger
does not exceed 14. (Here iy " 1 corresponds to the edge {i,j}

col ored day-gl ow orange [19] and i, = 1 corresponds to {i,j} col ored

]
vernmlion.)
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W proceed to show that T < 14 belongs to the closure of
(6.1). W easily find that T < 15 does so. Indeed, this is just the
sum of all the inequalities Xy * Yy: 1. Actually, the maxinum

of T subject to (6.1) equals 15 and can be attained by setting

Now, adding up the inequalities

X1t ¥13 + X3 =
X9+ Xy T Egy S

X13 + x14 * x34 £ 2

Yog F Yoy t Vg 22
Xty sl (ij # 23, 24, 34)
T <15
we obtain the inequality
2(T + X9+t X g ¥ Xl4) < 35.

Hence

T+X12+X13+Xl4'<—17

bel ongs to the closure of (6.1), In the sane way, we deduce

T <17,

T X004 *13 4 %15

Tz, ¥ x5, x5

T+ x4+, +x,<17.

A

17 ,
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Adding up the last four inequalities and < 30 on the top, we

obtai n

32T + %y, + %4+ %, X;5) £ 98

Therefore

2T + x12+ x13+ Xl4+ x15<32

bel ongs to the closure of (6.1). Simlarly, we obtain

2T + Xi9 + X4 + X0 + X6 < 32,

2T+x12+xl3+x15+x16<32,

2T+x12+x14+x15+x16<32,

2T  + x13+x14+x15+xl6i32.

Adding up the last five inequalities and 2T < 30, we arrive at

4(3T + Xjg t Xyg t Xt xl6)_g 190 ,

so that

ST+ + 3 + %, + %5 + x4 2 47

bel ongs to the closure of (6.1). By the same series of argunents, the

I nequal ity
3T 4 Y19 + Y93 + Y14 + Y15 + Yig < 47
bel ongs to the closure of (6.1). Adding up these"two inequalities and all
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X, +y,, <1 (2 <i<j<6)

we arrive at 7T < 104, Therefore T < 14 belongs to the closure
of (6.1).

The astute reader has noticed that our proof sinulates the
standard one. W& investigated colorings where some of the edges can
be left uncol ored butno monochromatic triangle occurs; the total nunber
of colored edges is T. We start by observing that Xip = ¥y = %, =1 i's
inconpatible with T = 15 (in other words, if in a full coloring all
three edges {1,2}, {1,3}, {1,4} are col ored day-gl ow orange then we
run into a contradiction -- either one of the triangles 123, 124, 134
is day-glow orange or else 234 is vernilion). Equivalently,

T+ Xt Xyt xS 17. Thus only two of the three edges {1,2},
{1,3}, {1,4} can be colored day-glow orange. Now, symetry and
common sense show that only two out of the five edges {1,2}, {1,3},
{1,4}, {1,5}, {1,6} can be colored day-glow orange

(3T + Xpg t Xgt Xt o+ X < 47). However, the process of
getting this inequality fromT + x, * x1j xS 1.7 is painfully
slow Simlarly, only two out of the five edges {1,i} can be col ored
vermlion (3T + Yig ¥ Vi3t Vit Yys T Ve 47) and so the coloring
can never be full (T <14). Avong the sane lines, one can translate

the entire proof of Ramsey's theorem into the closure operation |anguage.
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7. A hierarchy of conbinatorial problens.

A T.V. comrerical for our main theorem would read

COMBI NATORI CS = NUMBER THEQRY + LINEAR PROGRAM NG | (7.1)

Indeed, a host of conbinatorial problens can be formulated as integer
l'inear programmng problenms, Then the process of solving them can be

split into two parts, that is

(i) determ ning enough new inequalities that belong to the
closure of the original ones,
(i1) solving the resulting ordinary (non-integer) |linear programing

probl em

The first phase depends heavily on the divisibilityproperties of the
| inear conbinations of our original coefficients. Hence a justification
of the slogan (7.1). (It is not exactly a strong one, but then again --
we all know how the T.V. comercials are.)

Now, we ask how vital a role the part (i) plays. It turns
out that for certain, rather inportant and naturally arising conbinatorial
problems, all the vertices of the underlying polyhedra P are lattice
points, that is E(P) = P. In these cases (that include network-flow
probl ens, matchings in bipartite graphs, etc.), the phase (i) becones
void and the desired max-mn formula turns out to' bejust a special case
of the duality theorem For a nore detail, see [14], [18]. Next, we
consider an arbitrary problem of maximizing a |inear form E ci X, subj ect

toaset S of linear inequalities plus the integrality constraint
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szinteger G =1 2, ..., 1.

Qur Theorem 1, resp. Corollary 1A, guarantees that there is a positive
integer k such that the desired maxi num equals the maxinmum of I ci X
subject to (a finite subset of) linear constraints ¢X(sy. The smallest
such k will be called the rank of the problem pence the problens
of finding a maxinmal flow through a network have rank zero and so do
the problens of finding a nmaxi numweighted matching in a bipartite
‘graph.  Edmonds' theorem shows that the problems of finding a maximum-
wei ght ed mat chi ngi nan arbitrary graph have rank one (the added
inequalities (2.5) belong to el(s)). The higher the rank of a problem
the nore involved the phase (i) of its solution. |p a way, one may
classify the difficulty of solving an integer |inear programm ng
problem by its rank.  (However,there is no indication of a relation-
ship between the rank of a problem and its conputational conplexity.)
Finally, we turn our attention to the search for a largest
i ndependent set in a graph G = (V,E).  The set of all cliques (that
is, maximl conplete subgraphs) in Gwill be denoted by & ; each

Ae will be seen as a subset of V. The problemis to maxinixe

Y, x, subject to
iev

-Xi_<_0 aev,
Y ox; <1 A€y, (7.2)
i€a

x. = integer (i €v).
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W are going to show that these problens can have arbitrarily high rank.

An inequality }; a x; <b will be called positive regular

i f i = Co
| aj_>_0 (j =1, 2 , N and b > max(al, a,, .

A strength of such an inequality is the ratio (Zaj) b-1 A linear

,an)>0.

inequality will be called negative regular if it reads _yx <« .
j —

LEMA 2. Let S be a set of linear inequalities

n
.. X, < b, | =
jglalijil =12 ...,
where, for each i =1, 2, ..., n, the ith inequality reads -x <0
i -
and, for each i = ntl, n+2, . , m the ith inequality is positive

regular of strength <s. et the inequality
n
Y9 a x, <b (7.3)
1 . , N
bel ong to e (S). Then (7.3) can be witten as a |inear conbination
of the negative regular inequalities in g and a positive regul ar

inequality of strength < 2s that belongs to el(s).

PROCF.  There are nonnegative nunbers A Ays vees) such that
m

m m
a, = ) Xra,, =\, + MiA, a,. = integer  (5=1,2,.. . ,n),
Ioq= T3 gt Y )



Set

Ai—[xi], =12, .. .,n
i =atl,n-1-2, . . ., m.

Then all the Wy's are nonnegative and (7.3) can be witten as a sum

of inequalities
1 =) <0, (7.4)

n m n
Lo (Y wya)x <[2 ui‘bi] : (7.5)

j=1 i=1 LR W]
For each j =1, 2, . . . , n we have
m m
s = =, = [A + A, a,., = integer
igl My Ay ( 3 [ J]) i=§+l 1 354 = Integ
m
Besides, we have A, - [x,] < 1 and § A. a . 0. Therefore each
J I i=p+1 i -
m
., = . . 1S a nonnegative integer. . =
¢ igl L g g If ¢, =0 for all
i=12 ..., n then (7.3) is- a sumof inequalities (7.4) and we
are done. Next, we assune ¢, > 1 for some k. Since b, > a5 for
all i =n#l,n+2,. . ., mandj =1, 2, C. , n, we have
3 3
A, b _> Apa,. >c
i=n+l 1= fepn P BT
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for each j and so b >_cj for each j. Hence (7.5) is positive

regular and b >1. Then 2b = 2[f A, b1 > 3 A; b, and so

2s*b > A L(sb,) > A, ( a,.,)
tem T0Y Tyl 1S 13
m n n
BN HEENREE SOV
i=1 lj=1 ij j=1 J

Hence (7.5) has strength < 2s and the proof is finished.

A repeated application of Lemma 2 yields

THEOREM 2. Let S be a set of regular inequalities; let k be a
positive integer. Then each inequality that belongs to &(S) can
be witten as a linear conbination of negative regular inequalities
that belong to S and a positive regular inequality that belongs to
ek(s). Besides, if all positive regular inequalities in S have
strength < s then all positive regular inequalities in ek(S) have

strength < 2k°s.

CORCLLARY 2A. Gven any N there is a graph G such that the problem

of maxin zing gv x4 subject to (7.2) has rank greater than N
i

PROCF. Erdos [10] has shown that given any n there is a graph G

a/2 vertices that containsneither a conpl ete subgraph

with nore than 2
with n vertices nor an independent set of n vertices. Let k be
the rank of the corresponding problem  Then the naximum of } X,

subject to ek(S) does not exceed n-l1 and so, by Lemma 1, the inequality
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bel ongs to ek+1(s). By Theorem 2, the strength of each positive
regular inequality in ek+l(s) is smaller than (n-1) 2k+l. Hence
we have
IV|.(n—l)-l < (n-1) gkl
and so
Jk+l 5 ,n/2 (a-1)"2

If nis sufficiently large (with respect to N then the last inequality

implies k > Nwhich is the desired concl usion
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8. APPENDIX. Relations to Gonory's algorithm

An alternative proof of Theorem 1 can be based on Gonory's

i nteger programm ng al gorithm [12]. Here we begin with a set of

inequalities
-x_ <0
j <
(8.1)
n
. b
n
j§l cj Xj _<_.C0 (8.2)
wher e aij, bi, ¢ are integers, the polyhedron defined by (8.1) is
bounded and (8.2) holds for every choice of integers Xps Koy o o oy K

_that satisfy (8.1). Conory describes a way of generating new constraints,
called cuts, that are satisfied by every choice of integers Xy 2Ky eeesX
satisfying (8.1) as well as all the previously generated cuts, It

turns out that these cuts belong to the closure of (8.1); an account

of this is given by Hu (15], Section 13.3). Conory proves that, after

a finite numbercofcuts are generated in a systematic fashion, the

maxi num of ) c¢i xi, subject to (8.1) and the added cuts, can be

attained by integers X1s Xgs o s X Therefore, by the duality
theorem, (8.2) bel ongs to the closure of (8.1). Now, to prove Theorem 1
inits full generality, one has to get rid of the inequalities xy >0

in (8.1) as well as to get around the . integrality assunption placed

50 bi. However, these nodifications can be carried out in quite
a routine nanner.

upon a,,
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