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EDMONDS POLYHEDRA AND A HIERARCHY OF COMBINATORIAL PROBLEMS

bY

V. Chva'tal
Stanford University, Stanford, CA 94305

ABSTRACT

Let S be a set of linear inequalities that determine a

bounded polyhedron P. The closure of S is the smallest set of

inequalities that contains S and is closed under two operations:

(i) taking linear combinations of inequalities, (ii) replacing an

inequality c aj xj 2 ao, where al, a2, . . . , an are integers,

by the inequality c a. x < a with a 1 [a,]. Obviously, if
J j-

integers Xl' 5’ l *a 9 ⌧n satisfy all the inequalities in S

then they satisfy also all the inequalities in the closure of S.

Conversely, let g c <cl
j XJ - 0

hold for all choices of integers

Xl’ 5’ l ** 9 Xn� that satisfy-all the inequalities in S. Then

we prove that 1 cj xj 2 co belongs to the closure of S. To each

integer linear programming problem, we assign a nonnegative integer,

called its rank. (The rank is the minimum number of iterations

of the operation (ii) that are required in order to eliminate the

integrality constraint.) We prove that there is no upper bound

on the rank of problems arising from the search far largest

independent sets in graphs.



10 Characterizations and good characterizations.

Let us examine the formal structure of the two following

theorems.

THEOREM A (Tutte [17]). Let G be a (finite undirected) graph.

Then the two following conditions are equivalent.

(i) G has a perfect matching (that is, a set of pairwise

disjoint edges that cover all the vertices of G),

(ii) if an arbitrary set S of vectors is deleted from G,

then the number k. (G-S > of odd components (that is, components

having an odd number of vertices each) of the resulting graph G

does not exceed IS;,

THEOREM B (Gallai [II]). Let G be a (finite undirected) graph.

Then the two following conditions are equivalent.

(i> G is k-colorable,

(ii) the edges of G can be directed in such a way that the

resulting directed graph contains no (simple directed) path having

k edges.

Both of these theorems, asserting the equivalence of (i) and

(ii), are characterizations? Yet there is a considerable formal

difference between the twoc Theorem A gives necessary and sufficient

canditions for the existence of a certain structure (perfect matching

in G) in terms of the absence of another structure (a set S with

ko(G-S) > jsi)n On the other hand, Theorem B gives necessary and
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sufficient conditions for the existence of a certain structure

(k-coloring of G) in terms of the existence of another structure

(the directions of the edges of G). Another aspect of this difference

can be illuminated as follows. It is easy to convince one's supervisor

that G has a perfect matching. To do this, one only has to exhibit

the matching. (The question of the difficulty of finding the matching

is irrelevant for our discussion.) It is equally easy (with help of

Theorem A) to convince the supervisor that G has no perfect matching --

one has to exhibit a set S with kO(G-S) > ISI. On the other hand,

while it is easy to convince the supervisor that G has a k-coloring,

Theorem B gives no easy way of showing that G has no k-coloring.

Apparently Edmonds [6] has been the first to turn attention

to this feature of characterizations; he introduced the term "good

characterizations" for the theorems of the first type. Hence Tutte's

theorem is a good characterization while Gallai's theorem is not. Need-

less to say, the words "good characterization" form a nonseparable

entity without any reference to the emotional cha.rge of the adjective

"good". The statement "Gallai's theorem is not a good characterization"

asserts nothing whatsoever about the quality and depth of the theorem.

In our further considerations, the duality theorem of linear

programming will play an important role, It expresses the maximum of

a linear form C ci xi subject to a set of constraints (primal

problem) as a minimum of another form c bi yi subject to other

constraints (dual problem). Hence to show that a feasible primal

solution (x1' 3’ l *a 9 Xn) is optimal, one only has to exhibit a

feasible dual solution (y,, y2, . . . , Ym> with c ci xi = c bi yi.

In a way, the duality theorem of linear programming is a prototype of

a good characterization.



Our last sentence has more into it than meets the eye.

Actually, Edmonds [7] has shown how to relate Theorem A to the duality

theorem and made it clear that his approach can be adopted in many

different settings. It is the purpose of this paper to study

various questions related to Edmonds' technique.
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2. Edmonds -polyhedra.

Let G be a graph with vertices vl, v2, . . . , v andm

,edges el, e2, . . . , en; for each j = 1, 2, . . . , m we set

S(j) = ii : vj is an endpoint of ei). The problem of finding a

perfect matching in G can be formulated as the following integer

linear programming problem. Maximize

subject to the constraints

n

c
i=l *i

(i = 1, 2, . . . , n) ,

(24

(2.2)

c xi F l (j = 1, 2, . . . , m) , (2.3)
i=(j)

xi = integer (i. = 1, 2, ..C , d . (2.4)

Obviously, every characteristic vector (x1s x2’ . . . 9 xn) of a

set of pai;rwise disjoint edges satisfies (2.2), (2.3) and (2.4).

Vice versa, every vector (x1' -3’ l ** ? ⌧n> that satisfies (2.2),

(2.3), (2.4) turns out to be a characteristic vector of a set of

pairwise disjoint edges of G. Hence G has a perfect matching

- if and only if the maximum of (2.1) subject to (2.2), (2.3), (2.4)

1
equals T m.

Because of the integrality constraint (2.4), we cannot express

the maximum of (2.1) in terms of the minimum of a dual problem. Besides,
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if (2.4) is dropped then the maximum of (2.1) can increase. For instance,

1if G is a triangle then x1 = x2 = x3 = T satisfies (2.2), (2.3) and

yields c xi = $. However, the maximum of (2.1) subject to (2.21,

(2.3), (2.4) equals one in this case. Nevertheless, there is a

standard way of getting around the inequality constraint. One can

think of the polyhedron P (in the n-dimensional Euclidean space)

determined by (2.2), (2.3). The set F of lattice points inside

P is finite and its convex hull E(P) is another polyhedron. A

moment's reflection shows that the maximum of (2.1) over F equals

the maximum of (2.1) over E(P) -- indeed, F is a subset of E(P)

while the extremum points of E(P) come from F. More generally,

for any polyhedron P and any linear form z ci xi, the problem of

maximizing C ci xi over the lattice points inside P reduces into the

problem of maximizing x cixi over E(P). 'The latter is an ordinary (non-

integer) linear programming problem that offers the advantage of using the

duality theorem as long‘ as the list of faces of F'(P) is known,

In general, it seems extremely difficult to determine all

faces of E(P) from those of P. However, in the above case -- when

P is defined by (2.2), (2.3) -- the list of faces of E(P) is

available. Indeed, Edmonds [7] proved that all the inequalities that

determine E(P) are (2.2), (2.3), and

x. < kl- (2.5)

Here S runs through all sets of 2k + 1 vertices (k arbitrary)

and each edge is interpreted as a two-point set. Now, the maximum of
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(2.1) subject to (2.2), (2.3), (2.4) equals the maximum of (2,l)

subject to (2,2), (2.3), (2.5), which is, in turn, equal to the

minimum of the corresponding dual program. Therefore Edmonds'

theorem (combined with the duality theorem) yields instantly a good

characterization of graphs without a perfect matching as follows.

A graph G has no perfect matching if and only if there are non-

negative real numbers
al9 a2* l 9 am and b(S), where S ranges

through all odd-cardinality sets of vertices, such that for each

edge e with endpoints v., v
J

k the inequality

aj f ak + E b(S) > 1
eCS

-

is satisfied and

m

c
i=l

ai +c i (ISi - 1) b(S) < $m .
S

Besides, Edmonds [8] proved that the ai and b(S) can be

chosen to be zero or one. Under this added assumption, the above

characterization reduces into Tutte's theorem. Of course, Edmonds'

theorem is more general; it provides a max-min formula for any

weighted matching problem. Edmonds also generalized these results

to the case of optimum-weighted degree-constrained subgraphs of a

given graph (see Section VIII of [7] and also 191). Since these are

the only cases when E(P) is a proper subset of P but the descrip-

tion of the faces of E(P) is known, we call E(P) the Edmonds

polyhedron of P.
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We have seen that the knowledge of the faces of E(P) yields

immediately a max-min formula for the corresponding integer linear

programming problem. Next, we will study the relations between the

faces of E(P) and those of P.



3. The main theorem.

It is easy to see how (2.3) and (2.4) imply (2.5). Indeed,

let S be any set of 2k+l vertices of G. Summing the inequalities

(2.3) for all j with v. E S we obtain
3

2 xl ,.22k+l ,
eiCS l

or

c -
1

cs
y-k+y 9

ei

by (2.4), the left-handside of the last inequality is an integer and

so (2.5) follows. This observation leads us to the definition of a

closure of a set S of linear inequalities. We shall say that an

inequality c aj xj 2 b belongs to the elementary closure of S

if there are inequalities

n
c <b
jslaij xj- i (i = 1, 2, . . . , m)

in S and positive real numbers Xl, AZ, .., , 'rn such that

m
c Xi aij = aj = integer (j = 1, 2, . . . , n) ,
i=l



(here [x] denotes the integer part of x). The set of all inequalities

belonging to the elementary closure of S will be denoted by e'(S);

for any integer k > 1 kwe define e (S) recursively by

k
e (S) = e(ek-l 6)). Finally, we set

. 00

d(S) = U ek(S) ;
k=l

the set c(S) will be called the closure of S. Evidently, all

vectors (x1' 3’ l ** 9 Xn) satisfying all the inequalities in S

plus the integrality constraint

x. =
1 integer (i = 1, 2, . . . , n)

satisfy also all the inequalities in c(s). A converse is given-by our

next result.

THEOREM 1. Let the inequalities

n

c a
j=l ij

<b
xj - i (i = 1, 2, a.. , m) (3.1)

(where a
ij ' bi are real numbers) determine a bounded polyhedron in

the n-dimensional Euclidean space. Let co, cl, . . . , c
n be integers

such that

n
c
j=l '3 xj ' Co (3.2)
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holds for any choice of integers x1, x2, l ** , xn satisfying (3.1).

Then (3.2) belongs to the closure of (3.1).

In the proof, we will use the following auxiliary result.

LEMMA 1. Let (3.1) and (3.2) be as in Theorem 1; let c be an integer

such that z c
j xj

< c+l for every choice of reals x1, x2, . . . , xn

satisfying (3.1). Then the inequality c cj xj 2 c belongs to the

closure of (3.1).

PROOF of Lemma 1. Let c* be the maximum of c c
s xj

subject to

the constraints (3.1). By one of the versions of the duality theorem

(see [13], Theorem 8.3.1), there are nonnegative reals Al' 3’ l �* 9 Am

such that c A.a.. = c
= =J j

(J = 1, 2, .*. , m) and c hi bi = c*.

Since c* < c+l, we have [c*l 2 c and the conclusion follows.

PROOF of Theorem 1. Let c* be the maximum of z ci xi subtject to

(3.1); set c = [c*]. By Lemma 1, the inequality c ci xi < c belongs

to the closure of (3.1). If c 2 co then we are done. Next, we will

assume c > c o and prove that the inequality c ci xi 2 c-l belongs

/ ‘ to the closure of (3.1). Repeating this process c-co times,  we

arrive at the desired conclusion.

Since (3.1) determines a bounded polyhedron, there is an

integer M with lxil 2 M whenever (3.1) is satisfied. By Lemma 1,

the inequalities

-XiLM

x. < M
l-

(1 = 1, 2, . . . , n)

(i = 1, 2, . . . , n)
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belong to the closure of (3.1). Given a vector (sl, s2, . . . , Sk)

where O<k<n and siE {-M, -M+l, . . . , M) we construct a- -

linear form (in the xi's) L(sl, s2, . . . , sk) and a number

R(y,  s2, l ** 9 sk> recursively as follows. Firstly, for the zero-

length vector 8, we set

wo = c ci xi, R(B) - c-l .

Secondly, we set

us1' s2' l ** ' 'k) = (M+l+sk) L(sl, 52, .a* , skol) - Xk ,

R(sl, s2, . . . , Sk) = (M+l+sk) R(sl, s2, l *a , sk l) + M l

It follows directly from the definition that

L(sl, s2, l ** , Sk) = L(Sl, s2-, l 0. , Sk 1) + L$, s2,...,s kol) 9

R(sl, s 2' l **

9 Sk) = R(sl, s2,- l ** , Skol) + R(sl, $2,...,sk-1)

whenever
'k

> -M. Now, it is easy to establish (by induction on k)

that
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Lb+  3, l ** , Sk)

3:

c

ci ⌧i +

)☺ m,, b2, l es , si-1) - c xi ,
s #-M

i s.=-M
1

(3.3)

R(sl, s2, l ** , sk>

= (c-l) + E R(sl, s , . . . , si-1) + c M .
si+-M 2 si*-M

Our next observation is essential for the proof.

CLAIM: Let (s 1' 9’ l ** Y sk) be any vector with 0 2 k 2 n and

s E
i {-MY -M+l, . . . , M}. If

ml’  9’ . . . , si-ll = R(sl, s2, . . . , si-1) (Si # -M)

I

(3.4)
-x =M

i (s i
Z-M) '

then xi = si for all i = 1, 2, . . . , k,

PROOF of the Claim: We proceed by induction on k. The Claim is

trivially true for k = 0. By the induction assumption, the Claim

holds for the vector (sl, s2, . . . , skol) and so the equations

(3.4) with i # k imply xi = si for all i = 1, 2, . . . , k-l. If
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'k
= -M then we are done. If sk # -M then we argue as follows.

The equations (3.3) and (3.4) imply that

L$, s2, ..a , ‘k-1) = Rb 1, ‘2’ “* , ‘k-1) + ’ *

By definition, we have

L(sl, s2, . . . , ~~-1) = (M+sk) L(s1, ‘2’ l �* , �k-1)  - Xk ,

R(sl, s2, . . . , ~~-1) = (M+sk) R(s 1' ‘2, l ** Y �k-l) + M �

Using the last three equations and (3.4) with i = k we deduce

Xk = 'k which is the derived result. Thus the claim is proved,

Now, we are ready for the final coup de grace. Inductively,

we shall sweep through the entire set of inequalities

L$, s2, . . . , sk> < R(s- 1' ‘2’ l *� , sk> (3.5)

in a specified order, and prove that each of these belongs to the

closure of (3.1). (In particular, the inequality L(g) 2 R(g) --

which comes last in our ordering -- is the one we want.) The linear

order a lexicographic one with each blank -- corresponding to

~k+~, s~+~, . . . , sn -- interpreted as M+l. More precisely, we say

that (3.5) precedes the inequality L(t t
1' 2 ,-a,t,) 2 R(tl,t2,m,tr)

if and only if, either s < t or
j j

r<j<k is the- where j

largest subscript with s
i
= ti for all i < j.
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CASE 1. k = n. (This case includes the very first inequality in our

set, one with s = s = l ** = s =
1 2 n -M.) By the induction assumption,

all the inequalities

L(Sl’S2’ . . . , ~~-1) ~ R(sl,s2,*~.,si-l) (Si # -M) (3.6)

belong to the closure of (3.1). Moreover, the inequalities

-x. < Ml- (9 i
= -M) (347)

c Ci xi L c (3.8)

belong to the closure of (3.1). Summing up (3.6), (3.7), (3.8) and

using (3.3) we arrive at the inequality

L(~~ys~y.4~) 2 R(sl,s2,-4 + 1 . (3.9)

This inequality holds for every choice of reals xl, x2, . . . , xn

that obey (3.6), (3.7) and (3.8). Besides, our Claim implies that

equality in (3.9) can occur only if x
i

= s.
1 (

i = 1,2,...,n) and

c c x =c.i i However, these r&l equations are inconsistent with

at least one of the constraints (3.1) -- otherwise the assumption of

our Theorem is violated. Therefore

L(sl’s2’“*, sn) < R(s
1 2
,s ,...,sn) + 1
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holds for any choice of reals x1, x2, . . . , x
n satisfying (3.0,

(3.6), (3.7), (3.8). By Lemma 1, the inequality

L(y,  s2, .e. , sn> < R(s- 1, S2’ l ** , Sn) (3.10)

belongs to the closure of (3.1), (3.6), (3.7), (3.8). As (3.6), (3.7)

and (3.8) belong to the closure of (3.1) themselves, we conclude that

(3.10) belongs to the closure of (3.1).

CASE 2. k < n. By the induction assumption, the inequality

L(sl, S2, 0.. , Sk, M) 2 R(sy s2, l ** , Sk, M)

belongs to the closure of (3.1). This inequality can be written as

(2M+l) L(sl, s2, ..a sk) - xk 2 (2M+l) R(sl, s2, .,. , sk) + M .

Besides, the inequality

belongs to the closure of (3.1). Adding the last two inequalities

and dividing by 2M+l we obtain

L(y, s2, l ** , sk> < R(s
2M

1' ‘2’ ‘*’ , sk> + 2~+1  l

Therefore

16



L$, “2, a** Y sk) 2 R(y, 3, **a Y ‘k)

belongs to the closure of (3.1).

Now, we have proved that all the inequalities (3.5), including

c ci xi 2 c-l, belong to the closure of (3.1). Repeating this argument

c-c0 times (as mentioned above) we prove that (3,2) belongs to the

closure of (3.1) and finish thus the proof of Theorem 1.

One more remark. It is easy to see that the Edmonds polyhedron

of P can be described by inaquallties

n *
c

*
aij xj L bi (1 = 1, 2, . . . , m)

j=l

where all the a* '
*

ij
s and hi's are integers. Hence Theorem 1 can be

restated as follows.

COROLLARY 1A. If (3.1) defines a bounded polyhedron P then the

closure of (3.1) determines E(P) e
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4. The Boolean case and Branch-and-Bound method.

Among the integer linear programing problems, those with

the constraints

X. =O or 11 (i = 1, 2, ..e , d

are particularly important. The problems arising from combinatorial

considerations have nearly always this form; the x 's usually represent
i

the characteristic vector of a set satisfying specified conditions.

In this section, we turn our attention to these problems. We shall

consider polyhedra defined by inequalities

o<x <l- i- (i = 1, 2, eP1. , d

n

c a
j=l ij

<b
xj - i (i = 1, 2, . . . , m)

1 (4.1)

and present an alternative proof of Theorem 1 within this restricted

class. The proof may be found to be more direct and transparent than

the one given above; besides, it is related in an amusing way to the

branch and bound method. &s in the preceding section, we only have to

prove the following statement.

Let cl, c2, Oe. , c andn c be integers such that

- (i) the inequality c cixi 2 c belongs to the closure of (4.1),

(ii) there are no integers x1, x2, OR. , xn satisfying (4.1)

and ccixi= c.

Then the inequality c c.x < c-l
i i - belongs to the closure of (4.1).

18



Actually, we are going to prove that all the inequalities

n

ial ci xi
c + E xi - c xi 2 c-l + IAl (4.2)

iEA i.eB

where A,B are disjoint subsets of {l, 2, . . . , n) belong to the

closure of (4.1). The proof goes by backward induction on IAl + IBI;

the inequality (4.2) with A - B = 8 is the one we want. The induction

step is easy. If I4 + IBI c n then there is a subscript k%AUB

and, by the induction assumption, both inequalities

Xk + E ci xi + E x - c Xi 2 C-l + IAl + 1
A i B

-%tCciXi+C  xi-~xiCc-l+  IAl
A

belong to the closure of (4.1). Adding them and dividing by two we

obtain

c ci xi + g xi - g xi 2 c-l + (Al + $

and conclude that (4.2) belongs to the closure of (4.1). It remains

to verify that all the inequalities (4.2) with IAl + IBI = n belong

to the closure of (4.1). Here, we distinguish two cases.

CASE 1. c
Ia

aij I, bi for all i = 1, 2, . . . , m. In this case, we

have

c
ieA ci < c

19



‘II.:

for otherwise (ii) is violated by

i

1,

x. =1
0,

iEA

iEB

Setting M = maxici/ we have

(M+ci)xi < Mfc.- 1 (i E A)

(My) C-x,> < 0 ,-

(M-1) c ci xi 2 (M-1)c

(i. E B)

Adding these inequalities and dividing by M we obtain

c c xi i + 1 X. - C xi 2 c + IAl + $ C-C + C Ci>
A'B A

and conclude that (4.2) belongs to the closure of (4.1).

CASE 2. & a ..> b
jEA lJ

i for some i. Setting M = max I Ia we haveij b

(M-a )xij j < M-a- ij ' (j EA)

(M+aij)(-xj) < 0,- (j E B)

c <b
aij ⌧j - i l

20



Adding these inequalities and dividing by M we obtain

xj 4j B "j L, I IA aij >

and conclude that

c c c A -1
xj - B xj -

I I
A

belongs to the closure of (4.1). Therefore (4.2) also belongs to the

closure of (4.1).

The proof is finished. The reader may have noticed that not

all the inequalities (4.2) are required for the induction leading to

c c. x. < c-l.
1 l- Indeed, we can restrict ourselves only to those with

A u B = (1, 2, . . . , IAl + ]BI} .

Then the induction is performed along a binary tree with n+l levels.

All the 2k vertices of the k-th level are labelled by distinct zero-one

vectors (z1' 3’ l a* Y 'k) and associated with inequalities

n k k
ial ci xi + c (2zi-l)xi(  c-l + c zi .c

i=l i=l

Each vertex labelled (z1' 3’ '*a Y 'k) with k < n has two successors

labelled (z,, z2, . . . , zk, 0) and (z1, z2, ..* , zk, 1). The

inequality assigned to a parent vertex is obtained by adding the

inequalities at its two successors, dividing by two and rounding the

21



right-hand side down to the nearest integer. (Since the right-hand

sides of the successors differ in parity, the rounding always

cuts down exactly one half.) The inequalities at the terminal vertices

are obtained in one of two different ways, according to whether

(z 1' 5’ l *o Y Z☺ is feasible with respect to (4,l) or not.

The whole picture rather resembles a binary search (in vain)

for a feasible vector (z 1' 3’ l eC Y zn> that would satisfy

c C i zi = c. Actually, it turns out that our method is a translation

ofthe branch-and-bound method [1] into the language of linear inequalities,

During the search,we  are after the inequality E ci xi 2 c-l. Therefore

we split all possible choices of integers x1, x2, . . . , xn into two

classes (corresponding to
x1 = 0 and x1 = 1) and proceed to prove the

inequality in each class separately. The two classes correspond to the

two first-level inequalities0 Indeed, the inequality

-x1 + c c x -c c-l
i i-

is just another way of saying "if
x1 = 0 then c c x < c-l; if

i i-

x1 = 1 then possibly c ci x
i = cl'. Similarly, the inequality

x1+& x <c ,i i-

reads "if
x1 = 0 then possibly c ci xi = c; if x1 = 1 then

necessarily c c
i xi' c-l." The dichotomy between

x1 = O and x1 = IL
is taken care of by the rounding device, We go on like this, step by

step, and require one more x
i at each step to be fixed at a specified

22



value (zero or one) until we hit the level where all the xi's are

fixed. If they are feasible (Case 1) then they cannot satisfy

c C i xi = c; if they are not feasible (Case 2) then they cannot be

reached at all.

Often, it happens that a k-th level inequality (k < n) belongs

to the elementary closure of the inequalities (4,l) and c ci xi 2 c.

In that case, we can stop branching out from the corresponding vertex

and simplify the proof considerably. In the following section, we

illustrate this situation (Example 1).

23



5, Combinatorial applications: independent sets in hypergraphs.

Many extremal combinatorial problems can be formulated as

problems of finding the largest independent set in a hypergraph. A

hypergraph H is an ordered pair (V,E) where V is a set and E

a collection of subsets of V (see [2L A set X C V is called

independent (in H) if there is no A E E with A C X0 If V is

finite then the problem of finding the largest set X independent

in H is the following zero-one linear programming problem. Maximize

c X,
iW '

subject to

o<x cl- i-

c x.< A -1
iQ l- ! I

(i E V) ,
(5.1)

(AEEl ,

X.1
= integer (iE V) . (5.2)

Theorem 1 guarantees that each inequality c xi 5 x0 valid under
iEv

constraints (5,1), (5.2) belongs to the closure of (5.1). Therefore

a solution to the above problem can be always obtained through a series

of elementary closure operations,

EXAMPLE 1: Hamiltonian circuits in graphs.

The problem of determining whether a given graph G* = (V*, E*)

has a Hamiltonian circuit is one of the above kind. The corresponding

hypergraph H = (V,E) has V = E* and the collection E includes two

different kinds of sets A:
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(i> those consisting of three distinct edges of G* that have

all one vertex in common;

(ii) those consisting of circuits in G* having less than IVES edges.

It is quite easy to see that each independent set of size I 1V*

in H constitutes a Hamiltonian circuit in G* and vice versa, Thus

G* has a Hamiltonian circuit if and only if the corresponding zero-

one linear programming problem has a feasible solution with

c x. = v*
iQv l I I r

As an example, we consider the Petersen graph with edges

enumerated as in Fig. 1. Setting up the linear programming problem,

we arrive at constraint8

OLXiLl 0 * 1, 2, L.. ) 15) , (5.3)

ten "star constraints" of the type (i), that is

x1 +x2+x722

x2 + x3 + xg 2 2

etc

?
Y I

(5.4)

and many "circuit constraints" Qf the type (ii), that is
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x1 + x2 + x3 + x4 + x514 3

x1 + x2 + X8 + Xl4 + x1() + x5 2 5 9

I

(5.5)

etc.

It is notoriously well-known that the Petersen graph has no Hamiltonian

circuit. Equivalently, one has

(5.6)

for every choice of integers x1, x2, . . . , xl5 satisfying (5.3), (5.4),

(5.5). The integrality constraint is essential here -- indeed,

setting xi = -$ (i = 1, 2, . . . , 15) we satisfy (5.3), (5.4), (5.5)

and violate (5.6). We are going to show that (5.6) belongs to the

closure of (5.3), (5.4), and (5.5), giving thus a proof of the non-

existence of a Hamiltonian circuit in the Petersen graph.

Let us consider the binary tree in Fig. 2. With each of its

vertices (labelled A, B), we associate an inequality

15

c xi + c‘ xi - c xi2 9 + IAl .
i=l ieA iEB

It is not difficult to prove that the inequalities assigned to the

terminal vertices belong to the closure of (5.3), (5.4), (5.5).

(Fig. 2)
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For instance, the inequality corresponding to A = (9, 14, 11, B = 8

is obtained as the sum of the inequalities

x3 + x4 + x9 2 2 , x8 + x12 + x14 L 2 9

x9 + x13 + x15 2 2 9 x1 3- x5 -I- x6 I, 2 3

x1O + x11 + x14 L 2 9 x1 + x2 + x7 2 2 ,

*The inequality corresponding to A = (1, 91, B = (4, 13, 14) is a sum

of the inequalities

x1o + xi1 + x14 1. 2 9

x1 + x5 + x6 2 2 ,

x1 + x2 + x7 2 2

xg 21,

- x14 2 0 9

x3
+ X8 + xp2 + Xl5 + x9 2 4 l

Similarly, every other inequality corresponding to a terminal vertex

of our tree can be obtained as a sum of a subset of (5.3), (5.4), (5.5).

As in Section 4, the inequality at each parental vertex (labelled A,B)

can be obtained by taking the sum of the two inequalities assigned to

its descendants (labelled A u(k), :B and A, B WC)), dividing by two
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and rounding the right-hand side down. Thus we conclude that (5.6)

belongs to 5e (S) where S is the set of inequalities (5.3), (5.4),

(5.5).

The application of this technique to the problems of existence

of Hamiltonian circuits is discussed in detail in [5]. In particular,

[5] contains the following "one-two-three theorem". Given any graph

G = (V,E) consider the S of inequalities

o<x <l- i-

c
ei

xi L 2

c
iQ

xi L 1'1 - 1

b E v) 9

(w c v, 0 < IWJ < Ivl) .

If the maximum of c X.
iEE 1

subject to the constraints S and so called

"comb inequalities" (which belong to e'(S)) equals [VI then G has

the following properties:

(i) deletion of k vertices from G always results in a graph

with at most k components (in other words, G is l-tough),

(ii) V can be covered by pairwis.e disjoint circuits (in other words,

G has a 2-factor),

(iii) given any u, v, w E V there is a circuit in G that passes

through all three us v, w (in other words, G is 3-cyclable).

28



EXAMPLE 2: Moser's cube uroblem.

Let us consider the three-dimensional tick-tack-toe cube

with 27 points (O,O,O), (O,O,l), e.. , (2,2,2). our objective is to

select as many of these 27 points as possible without choosing three

collinear ones. Assigning to each point (aAd a variable x
i

with i = 9a+3b+c+l (see Fig. 3) we arrive at the following

integer programming formulation of the problem.

(Fig. 3)

27
Maximize c X

i subject to
i-l

o<x cl- i-

x1 + x2 + x3 < 2

x4
+ x5 + X6 < 2-

. . .

x1
+ x5 + x9 2 2

. . .

x1 + xl4 + x27 1.2

. . .

X i = integer

(i = 1, 2, . . . , 27)

(i = 1, 2, a.. , 27)

(Altogether, we have 49 constraints of the form xi + xj + XkL 2,

corresponding to 49 collinear triples.) Setting xi = 2/3 (i = 1,2,...,27)

we satisfy all the inequalities (5.7) and obtain c xi = 18. However, it
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can be shown that every choice of 17 points out of our 27 always contains

a collinear triple. Equivalently, the inequality c x < 16 belongs
i-

to the closure of (5.7). This can be shown as follows. We have

5 (x1 + x2 + x3> I, $ )

; (x1 + x4
5

+x703 9

2 (x3 + x6 + x9-) < 5
-'? 9

2 (x7 + xg +x9)1.$ ,

$ (x1 + x5
2

+xg)q 9

$ (x3 + x5 +x7)($ ,

i (x2 + x5 +x8)($ ,

+ (x4 + x5 +x6)($ .

Adding these inequalities up we conclude that

2(x1+x3+x7+x9)+ (x2+X4+X6+X8)+X
5([3

26] E 8

belongs to the closure of (5.7). Multiplying the last inequality by

4
'5 and adding the inequalities
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$ (x2 +x5+x8)'s 2 3

$ (x4 + x,j + 75) 2 5

we find that

2(x1 + x3 + x7 + xg) + (x2 + x
4 + x6 + xj-3> + 2x (5.8)

belongs to the closure of (5.7). Now, we set

A = x1 + X3 + X7 + X9 + X19 + X21 + x25 + x27 9

B = x2 + x4 + x6 + x8 + x1(-, + xl2 + x16 + xl8 + x2~ + x22 + x24 + x26 '

C =x5+x11 + x13 + xl5 + x17 + x23 '

D = Xl4 .

Hence A is the sum of variables assigned to the corners of the cube,

B corresponds to edges, C to faces and D to the center of the cube.

The inequality (5.8) applies to the points in the bottom horizontal

31



plane. Adding up nine inequalities of this sort (corresponding to

nine planes perpendicular to one of the coordinate axes) we obtain

6A + 4B + 4C + 6D < 72 .

Adding up all the 12 contraints corresponding to lines that join

centers of edges via centers of faces we obtain

2B + 2C 2 24 .

Dividing the sum of the last two inequalities by six we arrive at

27
c xi =A+B+C+D$Gi=l

which is the desired result.

More generally, one can consider the 3%ube and ask for the

largest size f(n) of its subset containing no three collinear points.

It is easy to show that f(1) = 2, f(2) = 6, f(3) = 16; recently

Chandra proved that f(4) = 43. It is not difficult to show that

f(n) 2 c l 3n/ &, see [4]. Moser [16] conjectured that f(n) = 0(3~);

this, apparently difficult, problem is still unsettled. Perhaps the

technique indicated here could help to solve Moser's conjecture.
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6. Combinatorial applications: coloring of hypergraphs.

A k-coloring of a hypergraph H = (V,E) is a partition

V = Cl uc2u-* u ck

such that each C i is independent in H. In a coloring problem, one

asks for the smallest k such that H admits a k-coloring. The

coloring problems include the celebrated four-color conjecture as well

*as the problems of Ramsey's type [3]. At first, it seems that the

coloring problems are different from those considered in the previous

section. Yet there is an easy way of reducing them to the previous

type* Given a hypergraph H = (V,E) and a positive integer k we

consider the hypergraph H* = (V*, E*) where V* = V x {1,2,.,.,k)

and E* includes two kinds of sets A*:

(i> all the sets A* = A X (j} where A E E, 1~ j 2 k,

(ii) all the couples A* = ((v,i), (v,j)} where vEV,i#j.

A moment's reflection shows that H is k-colorable if and only if H*

contains an independent set of size /VI. An amusing consequence of

this trick goes as follows. Every algorithm that finds the largest

independent set in a graph (with n vertices and m edges) within

f(n,m) steps can be used to check the k-colorability of a graph

within f(nk, mk 9 n(k)) steps.
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EXAMPLE 3: Ramsey's theorem.

It is well-known that, whenever one colors the 15 !edges of a

complete graph with six vertices by two colors (customarily, red and

blue are used), a monochromatic triangle is bound to pop out. Guided by

the philosophy explained above, we can formulate this statement as

follows. The maximum of

T = II (x >
l<i<j<6 ij + 'ij
-

subject to

Xij + xjk + Xik L 2

Yij + Y
jk + Yik 2 2

- x.. < 0
=J -

- Yij 2 '

Xij +y.. < 1
=J -

(l<i<j <kc 6)

- I

(6.1)

(l<icj < 6)-

and

xij = integer, y
ij

= integer

does not exceed 14. (Here xij
= 1 corresponds to the edge {i,j)

colored day-glow orange 1191 and y
i j

= 1 corresponds to {i,j) colored

vermilion.)
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/ -

We proceed to show that T < 14 belongs to the closure of-

(6.1). We easily find that T < 15 does so.- Indeed, this is just the

sum of all the inequalities x.. + y., < 1,
=J 1J -

Actually, the maximum

of T subject to (6.1) equals 15 and can be attained by setting

1
X ij = 'ij = -2'

Now, adding up the inequalities

x12 + xl3 + x23 2. 2

x12 + xl4 + x24 L 2

x13 + x14 + x34 2. 2

'23 + '24 + ' 34 L 2

X
ij +y.. c 1

iJ -
(ij # 23, 24, 34)

T < 15-

we obtain the inequality

2(T+x12+x13+x14)<  35.-

Hence

T+x
12

+ Xl3 + Xl4 2 17

belongs to the closure of (6.1), In the same way, we deduce

T + x12 + x13 + x15 < 17 ,-

T + xl2 + xl4 + xl5 2 17 ,

T + xl3 -t- xl4 + xl5 2 17 .

35



Adding up the last four inequalities and 2T 2 30 on the top, we

obtain

3(2T + xl2 + xl3 + xl4 + x15) 2 98 .

Therefore

2T + xl2 + xl3 + xl4 + xl5 < 32

belongs to the closure of (6.1). Similarly, we obtain

2T + xl2 + xl3 + xl4 + xl6 L, 32 ,

2T + xl2 + xl3 + xl5 + xl6 < 32 ,

2T + xl2 + xl4 + xl5 + xl6 < 32 ,

2T + x
13

+ xl4 + xl5 + xl6 2 32 .

Adding up the last five inequalities and 2T 2 30, we arrive at

4(3T + xl2 + xl3 + xl4 + xl5 + x16) 2 190 ,

so that

3T + Xl2 + xl3 + xl4 + xl5 + xl6 2 47

belongs to the closure of (SJ). By the same series of arguments, the

inequality

3T + y12 + y13 + Y14 + Y15 + Y16 2 47

belongs to the closure of (6.1). Adding up these 'two inequalities and all
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X
ij +y., < 1

=J -
(2~ i<j c 6)-

we arrive at 7T < 104, Therefore- T < 14 belongs to the closure1

of (6.1).

The astute reader has noticed that our proof simulates the

standard one. We investigated colorings where some of the edges can

be left uncolored butno mmxhromatic triangle occurs; the total number

of colored edges is T. We'start by observing that xl2 =I x13
= x14

= 1 is

incompatible with T = 15 (in other words, if in a full coloring all

three edges {1,2), {1,3), {1,4) are colored day-glow orange then we

run into a contradiction -- either one of the triangles 123, 124, 134

is day-glow orange or else 234 is vermilion). Equivalently,

T + xl2 + xl3 + xl4 2 17. Thus only two of the three edges U,21,

(1,3), {1,4) can be colored day-glow orange. Now, symmetry and

common sense show that only two out of the five edges {1,2), {1,31,

(1,41, {1,51, {1,6) can be colored day-glow orange

(3T + xl2 + xl3 + xl4 + xl5 + xl6 < 47). However, the-

getting this inequality from T + xii + x
13

+ Xlk 2 1.7

slow. Similarly, only two out of the five edges Cl,iI

process of

is painfully

can be colored

vermilion (3T + y12 + y13 + y14 + y15 + y16 2 47) and so the coloring

can never be full (T < 14).- Along the same lines, one can translate

the entire proof of Ramsey's theorem into the closure operation language.
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7. A hierarchy of combinatorial problems.

A T.V. commerical for our main theorem would read

-l

COMBINATORICS = NUMBER THEORY + LINEAR PROGRAMMING (7.1)

Indeed, a host of combinatorial problems can be formulated as integer

linear programming problems, Then the process of solving them can be

split into two parts, that is

(i) determining enough new inequalities that belong to the

closure of the original ones,

(ii> solving the resulting ordinary (non-integer) linear programming

problem.

The first phase depends heavily on the divisibilityproperties of the

linear combinations of our original coefficients. Hence a justification

of the slogan (7.1). (It is not exactly a strong one, but then again --

we all know how the T.V. commercials are.)

Now, we ask how vital a role the part (i) plays. It turns

out that for certain, rather important and naturally arising combinatorial

problems, all the vertices of the underlying polyhedra P are lattice

points, that is E(P) = P. In these cases (that include network-flow

problems, matchings in bipartite graphs, etc.), the phase (i) becomes

void and the desired max-min formula turns out to'bejust a special case

of the duality theorem. For a more detail, see [14], [18]. Next, we

consider an arbitrary problem of maximizing a linear form c ci xi subject

to a set S of linear inequalities plus the integrality constraint
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xj
= integer (j = 1, 2, . . . , n> .

Our Theorem 1, resp, Corollary lA, guarantees that there is a positive

integer k such that the desired maximum equals the maximum of c c x
i i

subject to (a finite subset of) linear constraints ek(S). The smallest

such k will be called the rank of the problem. Hence the problems

of finding a maximal flow through a network have rank zero and so do

the problems of finding a maximum-weighted matching in a bipartite

'graph. Edmonds' theorem shows that the problems of finding a maximum-

weighted matchinginan arbitrary graph have rank one (the added

inequalities (2.5) belong to 1
e (SW The higher the rank of a problem,

the more involved the phase (i) of its solution. In a way, one may

classify the difficulty of solving an integer linear programming

problem by its rank. (However,there is no indication of a relation-

ship between the rank of a problem and its computational complexity.)

Finally, we turn our attention to the search for a largest

independent set in a graph G = (V,E). The set of all cliques (that

is, maximal complete subgraphs) in G will be denoted by G ; each

A E % will be seen as a subset of V. The problem is to maximixe

1
z X.
iQ7 i

subject to

-x <o
i- 0. E V) ,

(A-2 3

X
i = integer (i E V> . I (7.2)
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We are going to show that these problems can have arbitrarily high rank.

An inequality c a
j

<b
"j - will be called positive regular

if a > 0 (j = 1, 2, . . . , n)
j-

and b 2 max(a19 a2' . . . 9 anI > 0,

A strength of such an inequality is the ratio <c aj) b -1 . A linear

inequality will be called negative regular if it reads -x < 0.
S-

LEMMA 2. Let S be a set of linear inequalities

(i = 1, 2, . . . , m)

where, for each i = 1, 2, .., , n, the ith inequality reads -x < 0
_ i -

and, for each i = n+l, n+2, . . . , m, the ith inequality is positive

regular of strength 2 s. Let the inequality

(7.3)

belong to e'(S). Then (7.3) can be written as a linear combination

of the negative regular inequalities in S and a positive regular

inequality of strength c 2s that belongs to e'(S).

PROOF. There are nonnegative numbers Al, X 2, .a. ,X m such that

m m
aj =e i=l 'i aij =  -'j + i-n+l Ai aij = integerc c (3 = 1,2,. . . ,n),

b = ☯$ �i bi] = ☯ij+l  �i bi] l

40



Set

i = 1, 2, . . . , n

i = n+l, n-l-2, . . . , m .

Then all the pi 's are nonnegative and (7.3) can be written as a sum

of inequalities

(7.4)

(7*5)

For each j = 1, 2, . . . , n we have

m

c
i=l

pi a.
a = -(xJ -

[‘jl) + 5
i=n+l

'i aij = integer

m
Besides, we have h

j
- [A,] < 1 and c A. a 3 0.

J i=n+l 1 ij- Therefore each

m
c'j = i=sl %. aij is a nonnegative integer. If c

j
= 0 for all

j = 1, 2, . . . , n then (7.3) is- a sum of inequalities (7.4) and we

are done. Next, we assume ck ~1 for some k. Since bi 2 aij for

all i = n+l, n+2, . . . , m and j = 1, 2, C.. , n, we have

m m
c

i=n+l
'i bi ' C-

i=n+l
Ai a.. ' C.

IJ - J
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for each j and so b > c
- j

for each j. Hence (7.5) is positive

regular and b > 1, Then 2b =- 2[z hi biI > C Ai bi and SO

2s*b > E X \(sbi)
i=n+l i

> E U,(jE  aij)  E $ 'j '
-

i=l = j=l

Hence (7.5) has strength < 2s and the proof is finished.

A repeated application of Lemma 2 yields

THEOREM 2. Let S be a set of regular inequalities; let k be a

positive integer. kThen each inequality that belongs to e (S) can

be written as a linear combination of negative regular inequalities

that belong to S and a positive regular inequality that belongs to

k
e (sL Besides, if all positive regular inequalities in S have

strength 2 s then all positive regular inequalities in k
e (S) have

kstrength < 2 0s.

COROLLARY 2A. Given any N there is a graph G such that the problem

of maximizing X.1 subject to (7.2) has rank greater than N.

PROOF. Erdgs [lo] has shown that given any n there is a graph G

with more than 2n/2 vertices thatcontainsneither  a complete subgraph

with n vertices nor an independent set of n vertices. Let k be

the rank of the corresponding problem. Then the maximum of c xi

subject to ke (S) does not exceed n-l and so, by Lemma 1, the inequality
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c X. < n-l
Ev 1 -

belongs to ek+l(s). By Theorem 2, the strength of each positive

regular inequality in ek+l (S) is smaller than (n-l) 2k+1, Hence

we have

IV1 l (n-l)-' < (n-l) 2k+1

and so

2k+l > 2”‘2 l (n-l)02 .

If n is sufficiently large (with respect to N) then the last inequality

implies k 3 N which is the desired conclusion.
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8. APPENDIX: Relations to Gomory's algorithm.

An alternative proof of Theorem 1 can be based on Gomory's

integer programming algorithm [12]. Here we begin with a set of

inequalities

,x co
i -

n
c <b
j=l aij xj - i

n

c
j=l 2 < c

xj - 0

where a b
ij' i' 3

are integers, the polyhedron defined by (8.1) is

bounded and (8.2) holds for every choice of integers x1, x2, . . . , xn

_ that satisfy (8.1). Gomory describes a way of generating new constraints,

called cuts, that are satisfied by every choice of integers X1’X2’***‘Xn

satisfying (8,l) as well as all the previously generated cuts, It

turns out that these cuts belong to the closure of (8.1); an account

of this is given by Hu c[lS], Sectrion  13.3). Gomory proves that, after

a finite numberrofcuts  are generated in a systematic fashion, the

maximum of C ci xi, subject to (8.1) and the added cuts, can be

attained by integers X1' 3’ l @a 9 ⌧n. Therefore, by the duality

theorem,(8.2)  belongs to the closure of (8.1). Now, to prove Theorem 1

in its full generality, one has to get rid of the inequalities > 0
xj -

in (8.1) as well as to get around the _ integra!ity assumption placed

upon a, b
lj' i' However, these modifications can be carried out in quite

a routine manner.

(8.1)

(8.2)
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