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ON THE SCLUTI ON OF MOSER S PROBLEM IN FOUR DI MENSI ONS

Abst r act

The problem of finding the largest-set of nodes in a d-cube of
side 3 such that no three nodes are collinear was proposed by Moser.
Smal | values of d (viz.,d <3) resulted in elegant symetric
solutions. It is shown that this does not remain the case in L
di mensi ons where at nost 43 nodes can be chosen, and these nust not

include the center node.

-

1. [ ntroduction

Gven a standard 2-di mensional tic-tat-toe board, what is the
maxi mum nunber of squares that can be occupied such that no three
occupied squares are in a straight line? The largest solution occupies
six squares, and it is unique nodulo rotation. The problemas generalized
to a d-dinensional tic-tat-toe board was proposed by Mser [3], [2].
A set of nodes of a d-dinensional board is said to be a solution if no
three nodes of the set are in a straight line. The problemis to
determne the largest solution for d-dinensions. W denote the nunber

of points in the largest solution by F(d) . W have

F(1) =2 (two solutions nmodulo rotation),
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(unique solution nodulo rotation), and

16 (unique solution nodulo rotation -- see Figure 1)
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The "unique" solution for d =3 is shown in Figure 1. It is easy to
show that 40 < F(4) <46 . Chvédtal [1] denonstrated a | ower bound for
F(d) that gives F(4) >4 , and, in general, F(d) > c5dﬁ/d . He also
showed that there exists a solution using 43 nodes.

Maxi mal solutions in one, two and three dinmensions have the property
that at |east one in each case is symetric about the center, |eading one
to hope that there mght exist such nice" maxinal solutions for all
dimensions. Unfortunately, this is not true for the four dimension case
It is shown that any naximal solution in 4 dinensions has 43 nodes,
and the center node is not occupied, i.e., it cannot be symmetric about

the center,

2. Sone Results for Two and Three Di nensions

The following results can be easily verified, and are stated

wi thout proof.

(1) The unique solution for F(2) occupies all four side nodes and
two opposite corner nodes

There are five solutions for a two-dimensional board with 5
occupi ed nodes (nodulo rotation and mrror image). These are shown

in Figure 2, and will subsequently be referredtoasa, b, c, d, e

(2) For a three-dinmensional board, the unique best solution has 16
nodes distributed 6, 4, 6 in the three parallel planes (along ngjor

axes) as presented in Figure 1.



Figure 1

The 16-node solution in three di nensions.

X X
X X X
X X X
b c d
Figure 2

The five-node solutions in two dinensions.



(3) For a three-dinensional board, if 6 nodes are occupied in the

mddl e plane, the best solution has 14 occupi ed nodes.

(4) If a solution for the 3-D problemhas 6, 5,4 occupied nodes in
paral l el planes then the mddle five nust be of type e , and of the &,

one nust be a center node in the plane

(5) If a solution for the 3-D problemhas 5,5,5 occupied nodes,

the configuration nmust be (a,e,c) or (a,e,e) .

(6) If the center node is occupied in a solution for the 3-D probl em
then no nore than 14 nodes can be occupied. This follow fromthe
general result that if the center node is occupied in a solution for d

di mensions then the solution can have at nost (3d+l)/2 nodes.

(7) If the left plane in a 3-D solution has 6 occupi ed nodes and
the right plane has either 5 in configuration e or the 4 corners

then the mddle plane can have at nopst 3 occupi ed nodes.

(8) There exists no 5, 4,5 solution in 3-D where the two 5's are

in configuration e (in any relative orientation)

3. The Proof of F(4) < 43

A 4-D board is represented by a tableau of 9 planes each
containing nine points. The planes will be referred to as A,B,...,I as

bel ow.
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|A| will represent the number of occupied nodes in A, etc. In

addition, inplicit use will be made of the symmetries of the problem

Points in a plane will be referred to by adjectives "center", "side",
and "corner". Al so, planes A,C ,Gand | wll be called corner-planes,
etc. "Md row" refers to D, E, F, simlarly for "md col", etc.

|Mid row| obviously nmeans the number of occupied nodes in the niddle
row, and so on. The rowvector of a solution refers to the nunber of
occupi ed nodes in the three colums, e.g., (15,14,13) neans
|1eft col| = |a]+ |p|+ |¢| = 15, etc.; and sinilarly for the colum
vector (the first element refers to the top row).

In the proof below it is assuned that there is a solution with bk
nodes and a contradiction is obtained by case analysis. The cases where

|E| <3 and |E| =6 are easy and are disposed of first.

|E| <3 in a Solution with ki nodes

Both |p| and |F| cannot be 6 , otherwise the best possible row

vector is (1L,15,14) by (3) and (2) (since |E| # 4) and that sums to

only 43 .
[f (md rowl >15 it nust be distributed 6,3,6 -- contradiction.
If |mid row| = 1%, i.e., 6,3,5 the best row vector is

(14,14%,15) since the niddl e colunn also can't contain 15 nodes (by
the previous case).

| f |mid row| = 13 , i.e., 5,3,5 , 6,3,4 or 6,2,5 the best row
vectors are (15,13,15) , (1k4,13,16) and (14,13,15) respectively.

If |mid row = 12 , i.e., both |p| and |F| are not 4, then a
row vector (16,12,16) is inpossible.

I f |mid row| < 11 the best row vector is (16,11,16) .
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|E| =6 in a Solution with 44 Nodes

By (5), [a]+ |1 <8 , |B|+ | <8, |c|+ |o| <8 , |o|+ [F| <&,

whi ch gives a nmaxi num possi bl e solution of only 38 nodes.
Ve next prove a contradiction if |El = 5 .

|E| =5 in a Solution with 44 Nodes

Case 1. |mid row| = 15

(i) I[f the md rowis 5,5,5 and the colum vector is (16,15,13) .
Then Dis a, E is e and |F| =5 by (5), and |A] = |c| = 6 .
Since |a] =6 and Dis a, |G| < 3 by (4). Since |c| =6
and |F| =5, |1 < 4 by (2). As |bot row| = 13 , |u| = 6,

but this is inpossible because in B all four corners are occupied

and in E(=e) three are occupied.

(ii) If midrowis 5,55 and the colum vector is (15,15,1k4) .
Then Dis a, E is e, |Fl =5 as before. The best row
vector is then (1k4,15,15) for which F is e by (4), (5).

If |c] = 6 then by (¥),|c] <4, 1] <%, and since
|bot row| = 14 , |H| =6 and |¢| =|1| = 4 . Then, as
|1eft col| = 14, |A] = 5 and then |B| = 4 . But fromH, E
and B and by (4) the center node of B nust be occupied, which
inplies that |top row| < 14 by (6) -- a contradiction.

If |c|] =5 then |T| = 5 and \A =5 (since \A <5
by A, E, | and if |A| < 5 then |top row| <15 ). Now if
we | ook at the triangle formed by A, Cand | , each line is

distributed 5,5,5 which neans that one end of each |ine nust



be configuration a , and the other not an a , by (5); and that
is clearly inpossible.
If |c| < 4 then |1} = 6 , |A] = 6 since
|third col| = |top row| = 15 ; but that is inpossible (4,EI) .
(iii) If mdrowis 6,54, i.e., |F| =4, then the center node of
F is occupied by (¥), and the best possible row vector is

(14,15,1) by (3), (2), and (6).

Case 20 |mid row| < 14 , and |mid col| < 1k

Now |p|+ |F| < 9 and |B|+ |H| < 9 as |E| = 5 . Al so,
\A+ |1] <10, and |c| + || < 10 by (2); hence the sol ution has no

nore than 4% nodes.

This leaves only the nost "difficult" possibility open, i.e.,

|E|=b,.

|E| =% in a Solution with 4 Nodes

Case 1. Imid row| = 16

By (2), |D| = |F| = 6 , and E has the four corner nodes occupi ed.
BY (3), |left col|,|right col| < 14, leaving |B| = |H| =6 . It
follows that |left col| = |right col| = |top row| = |bot row| = 1 .
Now consider the planes A, C, Gand | . Since all side nodes in
B, D, Fand Hare occupied, at nost L4 side noes of A and C
toget her can be occupied; and simlarly for Gand I . A so, as all
L corner nodes of E are occupied, A and | together can have at

nmost L4 occupi ed corner nodes; and likewise for Cand G. This,
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t oget he

of 20 .

()

(i7)

(iii)

(iv)

r with the four center nodes of A, ¢, Gand | gives a total

We want 16 of these nodes to be occupied.

If any corner plane, say A, has all % corner nodes occupied
its center node can not be occupied, and also no corner nodes can
be occupied in C, Gor | ,~leaving at nmost 3 center nodes

and 8 side nodes -- a total of only ¥+3+8 = 15 .

If any corner plane, say A, has 3 corner nodes occupied,
then no corner node of C or G can be occupied, and at nost
one of | can be occupied. Al so, only 3 center nodes and 8

si de nodes can be occupied, giving only 3+1+ 3+ 8 = 15 .

If in A two "adj acent" corner nodes are occupied there can be
no corner nodes in Cor G, leaving a total of 2 corners

(in A) + 2 corners (in 1) + L4 centers + 8 sides = 16 .
But all 16 cannot be taken since, as all centers are occupied,
each of A, C, Gand | nust have 2 adjacent sides occupied
(to total 8 ). But the orientation of the two sides in | has
to be the sane as in A (and different fromC and G ). But

this conflicts with the corners occupied in |

[f in A two opposite corner nodes are occupied, say top-right

and bottom|eft (abbreviated tr and bl ), then the tr , bl

nodes in | cannot be occupied. If any of the other two corner
nodes in | is occupied then no corner node in C or G can
be occupied. And, if no corner node in | is occupied then

only the tr , bl nodes in C, G can be occupied, and at nost
2 of these can be taken. Either way, the maxinum possible is

only L corners + 3 centers + 8 sides = 15 .



(v) Hence each of A, C, G and | nust have exactly 1 corner
node occupied (to total 16 ). But this cannot be done owing to
the orientation of the corner nodes in B, D, F and H and the

fact that all their side nodes are occupied (see Figure 1).

Case 2. |mid row| = 15, and |mid col| < 15

|Ip} =6, |F| = 5. Thus |left col| < 14 by (3), and as
|mid col| < 15 we nust have |right col| > 15 , i.e., F is e by

(&), (5); but a 6,4,e (D,E,F) is not a solution in 3-D by (7).

Case 3: |mid row| = 14 , and |mid col| < 1k

If the mid rowis 6k, i.e., |Dl =6, then |left col| < 1k
inplying Imid col| = 1k and |right col| = 16 , i.e., F has four
corner nodes occupied; but this is inpossible (D,E,F) by (7).

If the mid rowis 5,45 then |left col| < 15 and |right col| < 15
and as  |mid col| < 1k all are satisfied with equalities. Thus D and

F are both of type e by (L), (5) and D,E,F is inpossible by (8).

Case 4: |mid row < 13, and |mid col| < 13 .

one row and one colum must have 16 -- say the top row and the
left colum. Then |a| =|c| =1|c| =6 . Nowlooking at the triangle
A,C,G , each line is distributed 6,4,6 , and by (2) the orientation of
the two 6's is opposite in each line. And this is clearly inpossible

for the triangle.

This exhausts all possibilities, inplying that there is no solution
for the 4-D tic-tac-toe problem with 4 nodes. Thus, solutions with

43 nodes are optimal.
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| NDEPENDENT PERMUTATI ONS AS RELATED TO A PROBLEM OF MOSER
AND A THEOREM OF POLYA

Abst r act

I ndependent pernutations and their properties are discussed, and
they are shown to be related to the generalization of Mser's problemto
d-cubes of side n with the constraint that a solution have no n
col linear points. It follows, for exanple, that there exist total
solutions (i.e., solutions with nd-nd'I nodes) in arbitrarily large
di mensions.  These problens are also related to the problemof placing
n noncapturing superqueens (chess queens with wap around capability)
on an nyxn board. As a special case of this treatment we get Pélya's

theorem that n superqueens can be placed on an nxn board if and only

if n isnot amltiple of 2 or 3.

1. I ntroduction

A chess queen is a piece that can nove horizontally, vertically, or
di agonal Iy, any nunber of squares. W define a nmore powerful piece which
we call a superqueen. A superqueen noves |ike a queen, but when it
reaches an edge of the board it can wap around to the opposite edge.
Effectively it treats the board as if it were a torus. A typical
superqueen on a 7 x7 board is shown in Figure 1. Squares marked X
denote the squares the superqueen can reach in one nmove. W ask -- for
what values of n (n > 1) can n superqueens be placed on an nxn

board such that no superqueen can capture another? P8lya{7] proved that

11



Figure 1
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this can be done if and only if the smallest prime factor of n is at
least five. W relate Pélya's theoremto a concept of independent
permutations on the set D = {0,1,...,n-1} . Indeed, we obtain bounds
on the largest nunber S(n) of independent permutations on D, and
show that Pélya's theorem follows fromthese bounds. Ve also introduce
two ot her pieces even nore powerful than the superqueen and mention the
condi ti ons under which n of these pieces can be placed on an nxn
board such that no piece can capture another.
W also relate independent pernutations to a problem posed by
Moser (5], [6]. Moser asked for the maxi mum nunber f(n,d) of nodes
of a d-dimension hypercube of side n such that no n of these nodes

are collinear. W find that if d < S(n) then f(n,d) = nd-nd_I

2. | ndependent  Pernutati ons

G ven a set D, = (0,1,...,n-1} , a pernutation on D is al-I
function fromDn onto itself. For any permutation P on D, and

integers a,b where bis 0, 1 or -1, the function P' given by

p'(x) = P((atbx) nmod n) is said to be a nodification of P . In the
special case where b is zero, P' is a constant function, and hence
any constant function P' given by P'(x) = a , aeD is a nodification

of P .
A set of permutations {P,P,,...,P5} is said to be independent

..,P! where P! is a nodification of Pl

if for every P | 1

1] T
1’72’
etc., not all nodifications constant,

Pé is a nodification of P2 ,

the function Pi+PL+ . ..t Py (defined in the obvious way, having the

15



val ue (Pi(x) + Pé(x) + ., ..+ P('i(x) mod n) for argunent x ) is also a

pernutation. Equivalently, for every sequence 810807+ s8y of integers

2"

: a
JELIVRERFL P {-1,0,1}" such that not all b, 's

are zero, the function pdefined by

and every sequence b

P(x) = Pl(al+blx)+. D +Pd(ad+bdx) rm‘d. n, is a pernutation. As an
exanpl e, consider the domain D5 ; the set of pernutations {Pl, PE}

bel ow is independent.

x Pl(x) Pe(x)
0 0 0
1 L 2
2 3 L
. ) 2 1
L 1 3

Their independence can be checked by the definition, but intuitively the
justification is the following: the difference between successive
val ues of Pl(x) is -1 (mod 5) , and any nonconstant nodification Pj
nust have difference 1 or -1 ; simlarly, any P, nust have
difference 2 or -2 . Adding Py and P, nust result in a function
that has a constant nonzero difference between successive values, and
it must hence be a permutation.

Sone of the interesting properties of independent permutations are

the follow ng:

(1) 1r {Pl,Pe, . ..,Pd} is independent then so is {Pi,Pe,.- -,Pd} wher e
Py i's any nonconstant nodification of P, .

(2) Any subset of an independent set is independent.

14



(3) 1f {P,P,, ...,B4} is independent then so is {Pl+k,P2,,,.,Pd}

2)
where k is any integer and Ptk is defined in the obvious way, i.e.,
(Pl(x)+k nmod n) .

(h)If{P,PQ,,M 0 @@ﬂ-ﬁ is independent then so is {k'Pl’k°P2"”’k'Pd}'
where k is any integer that is prime with respect to n, and k-P,

is defined in the obvious way as being (k-Pi(x) mod n) for argunent x .

(5)1f {Pl,P ) o XX Pd} is independent then so is {-Pl,Pe, [ )

The first four properties are obvious; the fifth one can be proved
as follows. Note: all arithmetic below is nodulo n .

Suppose {'Pl’Pe" .o ,Pd} is not independent. Then for some
815855« 8y and b5Dy « e e5Dy
isO, 1or -1 (not all bi's zero) there exist distinct integers

.,b. where a,'s are integers and each b.1

x and y in the domain D such t hat

-P.(a

... +P (a,+b x) =
1 +le)+P2(32+b2X) + d( d a )

1
-Pl(al+ bly) +P2(a2+b2y) + ...+1>d(ad+ bdy) .

Case 1. If b. = 0, then we can find an a!

in D such that
1 1 n

Pl(ai) = -Pl(al) si nce P is a pernutation. Then

P (al) + Y. P.(a +bx) =P (a!)+ L P.(a +Dy)
llgsisdlll 11 gsisdll 1

and this would inply that {Pl,Pg,...,Pd} is not independent -- a contra-

di ction.

15



Case 2. | f b:L = 1 then

P.(a +y)+ Z P,(a,+b_x) = P,(a, +x)+ Z P, (a, + b.Y),
1V71 Esisdlll 171 25i<dlll

and hence

Pl((al+x+ V)~ X) + Z I;i(ai+ bix) =
2<i<d

P.((a,+x+y) -y)+ Y. P.(a, +b.y)
1 1 QSiSd it i i

But this inplies that {Pl, Py . . -,Pd} is not independent -- a contradiction.

Case 3. b, = -1 . This is handled in quite the sane way as

Case 2 above: by choosing aj = al -x-y and by = 1 we get

P (al+ bix)+ ).  P.(a,+b.x) =
1Vl l2§i§d111

P.(a!+Ddly) + 2: P.(a, + Db.y)
1*71 71 25isdll i

i mplying that {Pl,. - ,Pd} i's not independent -- a contradiction.
A set of pernutations {Pl,Pe,. : .,Pd} is said to be additive

if for every sequence C13Cps-.+3Cy where each C, is 0, 1or -1

but not all ci's are zero,

E c.- P,

1<i<a 7

is a permutation. It is easy to check that the properties sinmlar to

(2)-(5) above hold for additive pernutations. In addition, additive

16



pernutations have the property that if the set {Pi’Pe"”’Pﬁ} IS
additive and P is any pernutation then {P1°P’P2°P""’Pd°P} is
additive where EioP(x) = Pl(P(x)), etc. The property of independence
is not preserved in this transformation.

It follows fromthe property (4).above that independence inplies
additivity. The converse is not true, as may be seen fromthe follow ng
exanple. Pernutations P, P bel ow are additive, but not independent
A direct check for additivity is trivial, but we may al so observe that
P ’ P, are addi tive because they can be obtained by pernuting the
previous exanple (of an independent, and hence additive, set). They
are not independent because taking P; to be Py itself, i.e.
(0,3,%2,1) and P} to be (3,0,4,2,1) , and adding we get (3,3,3,4,2)

which is not a pernutation.

X Pl(x) Pg(x)
0 0 0
1 3 L
2 L 2
p) 2 1
L 1 3

The property of additivity is an inportant one for independent

pernuations and we will take recourse to this later

3. Bounds on S§(n)

W are interested in the largest set of independent permutations

for any domain D, -- let its size be S(n) . Sonme values of S(n)

are given bel ow.
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n S(n)
1 1
2 1
3 1
L 1
5 2
6 1
7 2
8 1
9 1
10 1
11 3

It follows from(3) above that for the evaluation of S(n) we need

-

only consider pernutations P for which P(0) =0 .

3.1 Lower Bound

If nis a prine then the set of pernutations

{I; 2':[, 4 1, -a , 2k'I}

where k = Llog2(n)_|—l and | is the identity pernutation over D, .
i's obviously independent.

This construction produces an independent set of pernutations for
any n by taking k = Llog2(m)_| -1 where mis the snallest prime

factor of n . Thus we obtain the following result.

Theorem 1. For n >1 S(n) > Llog2(m)_| ., where mis the small est

prine factor of n .

The construction above uses pernutations of a very special kind,

nanely, a-I where a is sone integer, and the set of pernutations

18



includes the identity permutation itself. It is interesting that the
smal | est exanple of an independent pair {I,P} where P # a.I+b for
any a,b S over the domain D15 (note: for any n, if an independent

pair {P, ,P,} exists, then there exists a pair of the form {1,P} ).

Several exanples exist for Dyz , One i's:

X I(x) P(x)

0 0 0

1 1 3

2 2 8

3 3 11

L L

5 p

6 6 10

7 7 n

8 8

9 9 12

10 10 2

11 11 9

12 12 6
3.2 Upper Bounds
Lemma. If {Pl,. . .,Pd} i's an independent set of pernutations over D
n>1, such that for all i <d, P;(0)=0, then for every pair of
SEQUENCES  8y,8n5) «« 583 and bys0ys e esby where each ay and each b,
is 0 or 1,

a;rPy(1) + . .+ arP. (1) = b P (1)+ . ..+by-By(1) nod n

if and only if a; = by a8y, = Dby e, 8y = b, .

19



Proof . The "if" part is trivial.

For the proof in the other direction assume that there exist

distinct sequences of a,'s and b, 's for which

al.Pl(l)+ R a.d-Pd(l) = bl.Pl(l)+ . ”-kbd.'Pd(l) nod n . Now consi der
t he sequence C3Cns -+ +5Cy wher e c; = a;-b, for each i < d . Each
Cy is 0O, 1or -1, not all cl's are zero, and

C:L'P:L(O)+ .ot cd-Pd(O) =0 as Pi(O) =0 for all i
and

cl-Pl(l) + . .1 cd-Pd(l) =0 nmod n

i.e., {Pl,. :i‘Pd} is not additive, but this is inpossible as shown by

property (¥ of independent pernutations. This conpletes the proof.

It follows fromthis |emma that edg n , and hence:

Theorem 2. For n >1, $(n) < |log,(n)]

This upper bound is about the best nondecreasing bound one can hope

for, since by the |ower bound theoremit is tight when nis a prime.

Theorem 3. For n >1, let mdenote the smallest prine factor of n .

Then

s(n) < &
Proof . Ve will first consider the case m= 2 and show that S(n) <1,
and then show the theorem for odd m. In each case we will only use
the additive property of independent pernutations, and hence the upper

bound is shown to be true even for additive pernutations.
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n even, m= 2 . Suppose there exist two pernutations P, and P,

over Dn that are independent. W wish to derive a contradiction from
this.

Now Pl(o),Pl(l),...,Pl(n-l) are the nunbers 0,1,...,n-1 in sone
order, as are PQ(O),Pg(l),...,Pé(n-l) , and al so
Pl(o) + P5(0) mod n, Py(1) +P(1) nod n, . l(n-l)+1’2(n-l) mod n

by the additive property. Therefore

E Pl(X) o mefn-d) (g) mod n

O_<_x5n—l 2

L ope0 = 2088 = (Bymoan

O_<_x§n—l :

L op(0) +B0) = 221 (By g

0<x<n-1 2
But
L Pp@+pmmdn= L R® + L P(x mdn
0<x<n-1 0<x<n-1 0<x<n-1
= 521-+-g- mod n
= 0 nod n

which is a contradiction.

n odd, m odd . Let




W will first show that o # 0 nod n, and then use this result in the
proof that follows. W have
o= r e L Lo (2,
0<x<n-1 O<x<n -1 O<1<ml
wher e {mil } represents Stirling nunbers of the second kind -- see, for
exanpl e, Knuth [L4], pg. 65. Note that when x < i then (}i{) = 0 hy
definition. Hence

s= ¥ L "y (%)

0<i<m-1 0<x<n-1 * *

-1 . n
= Lo yae ()
o<i<m-l 1 il

i

- 1. :
{2_?[} (ml)! (§)+o<i);m_2 {mi 3 it (iﬂ)? G

SO

n- | N z {m- } (m-l)' (n-1)}

o- (m-l)f = (ml)! m (n-m) ! O<i <im 2 i i+l (n—i-l) T

Now, the first termon the right hand side is

(BY@-1)1 (n-1) (n-2) . . . (n-m+l)

2l

m-1

:(%)(ml)! (-1)™" (m-1)t nod n

(2) ((@-1))* mod n
£ 0 nmod n

since m is a prine; and the second termis O nod n because
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{mil3 , ngHL , and ér_‘—;}%—,- are all integral. Thus
o(m-1)t # 0 nod n , and hence ¢ # 0 nod n .

W can now prove the desired result. Suppose there exists a set
m+1
2
Ve wish to obtain a contradiction fromthis.

of k = i ndependent  per nut ati ons {Pl’ Py ,Pk} over D .

First, let SP denote the set of all vectors (sl,...,sp> wher e

each s, equals 1 or -1 (s stands for "sign"). Consider the sum

m-1
x Lo (syPy(x) + s,By(x) + ...t 5,8, (%))
<Sl’ .. .,sk>eSk 0<x<n-1

Ay

(s.P(x) +. . . +SP(x))m'l
@ngn-l <Sl""§k>esk 1l Kk

On expansion, terms in which any P, appears with an odd power are
cancel l ed out, and the coefficients of terms in which all P.'s appear

with even powers add up, to give

a=  L2f U )"

0<x<n-1 | 1<i <k 1
J J
-1 1 2
L (M) T (R ()
1<i.<i <k ‘172 "1 2
I Ml
Jqs Jp even
J1+J2=m_l
Z’ m-1 jl J.2 j5
* (7 ) (B (®) (B (x)) 7 (P ()
1<i,<i,<i <k 91 Y2 33 1 2 3

1273
jl’ 32} j5 even
Jytighds =m+l
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: 3 (M e <x)) (r ()l
l<1 <. <1 <k 192 k-1 k1l
0<Jl; . @@‘&;D.
Jl:- . ’Jk 1 even
’jl+ .. .+Jk_l =m-1

(i.e., all j's are 2)

wher e (.ml_ Yy 5 (. “?' . ) etc., represent multinomial coefficients.
J1 Jz Jy o I3
W use the follow ng notation:

Bt - Y (@)

lsllsk 1

m | jl je
Ty(x) = L (7)) (B () T (2 (3)
1<i. <i <k 1 <2 1 2
ey s
jl, j2 even
Jytdp =m-1
et c.

Thus

A o Z Tl(x) + Tg(x) + ...+ Tk_l(x)

0<x<n-1

In general, for 1 <p <k, consider the sum

ol



A, = ) L Lo oy p G- cteg®y ()

lSll<l2<...<1pSk (sl,...,sp)esp O<}_{_<n-l

4 P (x))27

= Kr@r; amn (818, ()+ . f
Osx<n-1| 1<y <...<t <k |, ) WHV_P 1 Pl

When we expand the summations shown in brackets above, all terns in

whi ch any P, appears with an odd power are cancelled out, and terms

like (P, (x))™L appear  2°( 51y tines, terms like
1 p-1

(]m-i ) (P, (x)) l(p (x)) appear ep(lg:;) times, and so on,
12

to yield

A = 2P }: (;jj)Tl(x>+(;f:§)T2(x)+...+( ®) 1, (x)

P OSxSn-l

W now formthe sum

A= Z (-1)P 5P A,

1<p<k
RN ) (D% (51)
0<x<n-l 1<p<k
+ T -1)P (
E(X)-es;sz«:( ® (52
+
)P 2
Ty 1(%) k_lgsk (-1 (per1 )
=0

25
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We can also formthe same sumin another way. Noting that

v = XmI

0<x<n-1
and using the additive property of independent pernutations we see that

A =(5Y2Ps nodn
1Y 1Y

Z (_l)P Qk'P Ak

1<p<k

>
I

_of.g. Z -1)® (X)) mod n
1<p<k P

-2k.c mod n

il

But n is odd, and ¢ # 0 mod n, hence A # 0 nod n. This is the

desired contradiction.

Corol | ary. Let mbe the smallest prime factor of n (n >1).

Then if nis prime or m< 5, then S(n) = |1og, (m)] .

The smal | est values of n for which S(n) is not given by this

corollary are 49 , 77 , and 91 .

4, Rel ation to Mser's Problem

Let Mn,d) denote the set of all vectors (xl,...,xd) wher e each

x, is an element of D_ .and let f(n,d) denote the size of the

1 n
| argest subset S < M(n,d) containing no n collinear points.

Goviously, f£(n,1) = n-1 , and f(n,d+1) < nf(n,d) , so that
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f(nd) <l 2!

Mbser conjectured that f(n,d) = o(n% for each fixed n; this

conj ecture has not been proved or disproved yet, though, of course,

£(2,d) =1 for all d . It has-been shown, however, that

£(3,d) >c38/a  (see [2]),and £(3,3) =16, £(3,4) =43 (see [1]).
Also, f(4,2) = 12 , f£(4,3) = L48. These can be shown by the set

S «M(4,3) represented by squares marked x in Figure 2 which represents

four parallel planes of a cube of side four.

Theorem4. Gven any n and d such that 1 <d < S(n) |,

f(n,d) = ndnd-t .

Proof . Gven a set of independent pernutations {Pl,...,Pd} on a

domai n Dn ., We wish to show that

f(n,d) = n ot

Let S be the set of all <x1""’xd> eM(n,d) such that

Pl(xl)+ Py(x,) + . ..+Pd(xd) £ 0 nod n .

. d d-|I
Clearly S contains n - nodes because for every X Xpy e e0Xy

in D, there is exactly one x, for which {x;,x, o .., xd) is not

a
inS. To see that S contains non collinear points, observe that

any |line passing through n points may be represented as:

_ . = N = + .
Xy = al+bl Z 5 X, a2+b2cZ s ) Xq = 8y b(1 Z

where z is a paranmeter that takes on values 0,1,...,n-1 , and for

each i either
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X X |
X X X X
X X
X x |x X

Figure 2
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(i) b. = 0 and a,eD_ , i.e., x, is constant
1 n 1

o'
1]

1 and a, = 0, or
1

(iii) b, -1 and a, = n-1

and not all b.'s are zero. Then by-the definition of independent

pernutations, the function of z defined by

Pl(al+ b Z)+ ...+ Pd(ad+ b-z)

is a pernutation and hence for some value of z it equals 0, and by
the definition of the set S the corresponding node is not in S . This

conpl etes the proof.

Corollary. Gven any d there is an n > 1 for which f(n,d) = nd-nd'I

This follows fromthe above theoremand fromthe fact that S(n)

can be made arbitrarily large by a suitable choice of n .

5. Relation to Pélya's Theorem

W return, now, to the problemnotivated in the introduction,
that is, the question of the existence of a configuration of n
noncapt uring superqueens on an nxn board. W shall relate the
exi stence of such configurations to our concept of independent

pernutations.

Theorem5. If nis any integer n > 1 , then n noncapturing
superqueens can be placed on an nxn board if and only if S(n) > 2 .
Furthermore, the number of ways in which n superqueens can be so placed
equal sthe nunber of bernutations P over D such that {1I,P}is

i ndependent .
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Pr oof . Al arithnetic belowis modulo n . And we use the words

"square" (in an n xn board), "node", and "vertex" interchangeably.

(a) If S(n) > 2 there exists a set {Pl,Pg} of independent pernutations
over Dn . Consi der the configuration in which superqueens are placed on
exactly those nodes (x,y) where Iﬁ(x)4-P2(y) = 0. Now, clearly,

there is exactly one superqueen in every row and colum. Furthernore,

two superqueens cannot be on the sane diagonal (with wap around)

because any di agonal can be represented as y = atbx where b is 1

or -1, and aeDn’.then as Pl@Q-+Peuﬁbx)rn5t be a pernutation

(as P,,P, are independent) there can be only one point on the diagona

1’72

where it is zero, i.e., there cannot be two superqueens on the diagonal
(b) On the other hand, if there is a configuration for noncapturing
super queens then for each yeD there is a unique xeD such that
there is a superqueen at (x,y) . Let Q denote the set of nodes on
whi ch superqueens are placed. W define the pernutation P by

P(y) = -(the unique x for which {(x,y)e@) . P is a pernutation because
for any X there is a unique y for which (x,y)eQ . Now, the set
{1,P} where | is the identity pernutation, is independent, because
if not there exist a8, €D, b, 5by e {0,1,-1} not both zero, and

X 5Xp €D 5 Xy # x, such that

I(al+bl-xl) 4 P( astby,: xl) = I(al+bl-x2) +P(a2+b2-x2)

Thus

Plagtby X)) - Plagbyxy) = by« (x57xg)

Now, b, # 0 because if b, = 0 then b, too would have to be 0 . By

the definition of P, there are superqueens on nodes
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v, = (-P(a,2+b2. Xl)’a2+b2'xi

which is the same as (-P(a2+b2.xl) +bl(x2-xl),a2+b2 X,) . Since

» and on v2=(-P( astb, .xg),a 2+b2.x2)

b, # 0 and Xy # x, the nodes v, and v, are distinct. Now consider

the line of nodes (x,y) given by

x,)+a,.b,+Db..b,.x

“b,.x+b,.y = b2.P(a,2+b2 1 oDy T by byexy

2 1

(this is a valid line since both b,,b, are not zero). But both nodes

2
vy and Vg, fall on this line and hence in the original arrangenent, one
superqueen can capture another -- a contradiction.

It should be noted that in this construction the set of nodes Q
where superqueens are placed is given by those <(x,y) for which
I(x) + P(y) = 0 . Comparing with part (a) of the proof we have a |-

correspondence between superqueen solutions and i ndependent permutations

of the form {I1,P} .

Fromour earlier results (Theorems 1, 3) we see that (for n > 1)
S(n) >2 if and only if n is not a nultiple of two or three. W say
a superqueens solution is regular if it corresponds to an independent
set {I,a-I+b} , otherwise it is nonregular. The smallest nonregul ar
solution is for n = 15 (see Section 3.1). Incidentally, PSlya's
t heorem can al so be used to solve the related problemfor super
nite-queens. A nite-queen is a piece that can nove |ike a chess queen
or a chess knight (two squares in a horizontal or vertical direction
and one square in an orthogonal direction). A super nite-queen is a
nite-queen with wap-around noves allowed. The problem of placing n
noncapt uring super nite-queens on an n xn board has been mentioned

several times in the literature (see, for exanple, Golomb [3]). There

31



exists a solution if and only if n > 11 and nis not a nultiple of
two or three. W can show this by using independent permutations as
follows. Cearly a solution can exist only if nis not a nultiple
of two or three. Fromthe construction in the proof of Theorems5 we
see that if the independent pair {I, P} in which P has the form
P= a.I+b, corresponds to a solution to the super nite-queens problem
then the knight's-move constraint requires that a # 2,n-2,(n-1)/2,(n+1)/2 nod n .
But, for n =5 or 7 the only independent pairs {I,P} are those for
which Phastheform a.I+b, and a=2 or 3 if n=5, and

a = 2,3,4 or 5 if n =7 (see Section 3.1), none of which corresponds
to a solution. Hence there is no solution for n =5 or 7.But we
can easily Qet a solutionif n > 11 fromthe independent pair {I,3I}
if, if course, n is not a miltiple of two or three. Also, the exanple
of the independent set {I,P} for D15 in Section 3.3 corresponds to a
nonregul ar solution for the super nite-queens problem There is another

interesting piece which we call a super K-queen. It noves |ike the super

nite-queen except that in one nove it can take any nunber of knight

steps in any one direction, whereas the super nite-queen could take only
one step. A proof somewhat simlar to the proof for Theorem 3 can be
used to show that n non-capturing super K-queens can be placed on an

n xn board if and only if nis not a multiple of 2,3,5, or 7

(by showing that if m, the least prine factor of n, is Sor 7
then no solution exists, and if m> 11 then {I,3I} corresponds to a
solution). The smallest nonregular solution of super K-queens is unknown

but a conmputer search shows that only regular solutions exist for n <23 .
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