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ON'TBE SOLUTION OF MOSER'S PROBLEM IN FOUR DIMENSIONS

Abstract . .

The problem of finding the largestcset  of nodes in a d-cube of

side 3 such that no three nodes are collinear was proposed by Moser.

Small values of d (viz., _d < 3 ) resulted in elegant symmetric

solutions. It is shown that this does not remain the case in 4

dimensions where at most 43 nodes can be chosen, and these must not

include the center node.

-=.

1. Introduction

Given a standard 2-dimensional tic-tat-toe board, what is the

maximum number of squares that can be occupied such that no three

occupied squares are in a straight line? The largest solution occupies

six squares, and it is unique modulo rotation. The problem as generalized

to a d-dimensional tic-tat-toe board was proposed by Moser [3], [2].

A set of nodes of a d-dimensional board is said to be a solution if no

three nodes of the set are in a straight line. The problem is to

determine the largest solution for d-dimensions. We denote the number

c of points in the largest solution by F(d) . We have

c

F(1) = 2

F(2) = 6

F(3) = 16

(two solutions modulo rotation),

(unique solution modulo rotation), and

(unique solution modulo rotation -- see Figure 1).
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The "unique" solution for d = 3 is shown in Figure 1. It is easy to

show that 40 ,< F(4) ,< 46 . Chvatal [l] demonstrated a lower bound for

F(d) that gives F(4) ,> 42 , and, in general, F(d) > c3d/Jd . He also

showed that there exists a solution using 43 nodes.

Maximal solutions in one, two and three dimensions have the property

that at least one in each case is symmetric about the center, leading one

to hope that there might exist such nice" maximal solutions for all

dimensions. Unfortunately, this is not true for the four dimension case.

It is shown that any maximal solution in 4 dimensions has 43 nodes,

and the center node is not occupied, i.e., it cannot be symmetric about

the center,,

2. Some Results for Two and Three Dimensions

The following results can be easily verified, and are stated

without proof.

(1) The unique solution for F(2) occupies all four side nodes and

two opposite corner nodes.

There are five solutions for a two-dimensional board with 5

occupied nodes (modulo rotation and mirror image). These are shown

in Figure 2, and will subsequently be referred to as a , b , c , d , e .

(2) For a three-dimensional board, the unique best solution has 16

nodes distributed 6, 4, 6 in the three parallel planes (along major

axes) as presented in Figure 1.
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The 16-node solution in three dimensions.
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Figure 2

The five-node solutions in two dimensions.
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(3) For a three-dimensional board, if 6 nodes are occupied in the

middle plane, the best solution has 14 occupied nodes.

(4) If a solution for the 3-D problem has 6,574 occupied nodes in

parallel planes then the middle five must be of type e , and of the 4 ,

one must be a center node in the plane.

i

6

c

(5) If a solution for the 3-D problem has 5,5,5 occupied nodes,

the configuration must be (a,e,c) or (a,e,e) .

(6) If the center node is occupied in a solution for the 3-D problem

then no more than 14 nodes can be occupied. This follows from the

general result that if the center node is occupied in a solution for d

dimensions then the solution can have at most
d

(3 +1)/2 nodes.

(7) If the left plane in a 3-D solution has 6 occupied nodes and

the right plane has either 5 in configuration e or the 4 corners

then the middle plane can have at most 3 occupied nodes.

(8) There exists no 5, 4, 5 solution in 3-D where the two 5’s are

in configuration e (in any relative orientation).

.
3. The Proof of F(4) 5 43

A 4-D board is represented by a tableau of 9 planes each

containing nine points. The planes will be referred to as A,B,...,I as

below.

A B C

D E F

G H I
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I IA will represent the number of occupied nodes in A , etc. In

addition, implicit use will be made of the symmetries of the problem.

Points in a plane will be referred to by adjectives "center", "side",

and "corner". Also, planes A,C ,G and I will be called corner-planes,. .

etc. "Mid row" refers to D, E, F , similarly for "mid col", etc.

\Mid row\ obviously means the number of occupied nodes in the middle

row, and so on. The row-vector of a solution refers to the number of

occupied nodes in the three columns, e.g., (15,14,13) means

Ileft co11 = IA\+ IDI+ JG\ = 15 , etc.; and similarly for the column

vector (the first element refers to the top row).

In the proof below it is assumed that there is a solution with 44-e

nodes and a contradiction is obtained by case analysis. The cases where

IEI 5 3 and 1~1 = 6 are easy and are disposed of first.

c

I4 5 3 in a Solution with 44 nodes

Both IDI and IFI cannot be 6 , otherwise the best possible row

vector is (14,15,14) by (3) and (2) (since IEI h 4) and that sums to

only 43 .

If (mid row\ 115 it must be distributed 6,3,6 -- contradiction.

If lmid row\ = 14 , i.e., 6,3,5 the best row vector is

04,14,15) since the middle colunn also can't contain 15 nodes (by

the previous case).

If lmid row\ = 13 ) i.e., 5,3,5 , 6,3,4 or 6,2,5 the best row

vectors are (15,13,15) , (l&13,16) and (l&13,15) respectively.

If Imid row\ = 12 , i.e., both ID\ and \F( are not 4 , then a

row vector (16,12,16) is impossible.

If Imid row\ 5 11 the best row vector is (16~1~6) .
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\E\ = 6 in a Solution with 44 Nodes

B Y (3), IAl+ 111 _<8 9 \Bl+ lH\ 18 > ICI+ lG\ _<8 f IDI+ \F\ _<8 >

which gives a maximum possible solution of only 38 nodes.
. .

We next prove a contradiction if
.

IEl = 5 l

IEl = 5 in a Solution with 44 Nodes

Case 1: \mid row\ = 15

( >i If the mid row is 5,5,5 and the column vector is (16,15,13) .

Then D is a , E is e and \FI = 5 by (5), and \A\ = \c\ = 6 l

Since IA\ = 6 and D is a , 1~1 5 3 by (4). Since Ic\ = 6

and “(F\ = 5 , II\ 5 4 by (2). As \bot row\ = 13 , IHI = 6 2

but this is impossible because in B all four corners are occupied

and in E(=e) three are occupied.

( >ii

L
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If mid row is 5,5,5 and the column vector is (15,15,14) .

Then D is a , E is e, IF\ = 5 as before. The best row

vector is then (14,15,15) for which F is e by (4), (5).

If \c\ = 6 then by (4), IG\ 5 4 , III _<4 t and since

\bot row1 = 14 , IH\=~ and 1~1 = II\ = 4 . Then, as

Ileft co11 = 14, IA\ = 5 and then /B\ = 4 . But from H , E

and B and by (4) the center node of B must be occupied, which

implies that )-top row\ < 14 by (6) -- a contradiction.-

If Ic\ = 5 then II\ = 5 and \A\ = 5 (since \A\ _< 5

by A,E, I andif \A\ < 5 then l-top row\ <15 ). Now if

we look at the triangle formed by A , C and I , each line is

distributed 5,5,5 which means that one end of each line must

6



be configuration a , and the other not an a , by (5); and that

is clearly impossible.

If ICI < 4 then 111 = 6 , IAI = 6 since

Ithird co11 = ltop row1 =-l-5 ; but that is impossible (A,E,I) .

(iii) If mid row is 6,5,4 ) i.e., IFI = 4 , then the center node of

F is occupied by (4), and the best possible row vector is

(14,15,14) by (3), (% and (6).

Case 2: )mid rowI 5 14 , and \mid co11 ,< 14

c

c

c

c

Now ID\+ IFI < 9 and IB\+ IHI < 9 as IE\ = 5 . Also,-

\A\+ 111 510 , and ICI + IG\ < 10 by (2); hence the solution has no_

more than 43 nodes.

This leaves only the most "difficult" possibility open, i.e.,

\E1=4.

\El = 4 in a Solution with 44 Nodes

Case 1: Imid row\ = 16

BY (2)~ IDI = IFI = 6 > and E has the four corner nodes occupied.

BY (3)> Ileft col\,lright co11 5 14 , leaving IBI = IHI = 6 . It

follows that Ileft co11 = Iright co11 = ltop row\ = \bot row\ = 14 .

Now consider the planes A , C , G and I . Since all side nodes in

LL F and H are occupied, at most 4 side noes of A and C

together can be occupied; and similarly for G and I . Also, as all

4 corner nodes of E are occupied, A and I together can have at

most 4 occupied corner nodes; and likewise for C and G . This,

c
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together with the four center nodes of A , C , G and I gives a total

of 20 . We want 16 of these nodes to be occupied.

( >i If any corner plane, say A , has all 4 corner nodes occupied

its center node can not be occupied, and also no corner nodes can

be occupied in C , G or I ,* leaving at most 3 center nodes

and 8 side nodes -- atotal of only 4+3+8 = 15 .

(ii) If any corner plane, say A , has 3 corner nodes occupied,

then no corner node of C or G can be occupied, and at most

one of I can be occupied. Also, only 3 center nodes and 8

side nodes can be occupied, giving only 3+1+ 3+ 8 = 15 .

(iii) Ifin A two "adjacent" corner nodes are occupied there can be

no corner nodes in C or G , leaving a total of 2 corners

(in A ) + 2 corners (in I ) + 4 centers + 8 sides = 16 .

But all 16 cannot be taken since, as all centers are occupied,

each of A , C , G and I must have 2 adjacent sides occupied

(to total 8 ). But the orientation of the two sides in I has

to be the same as in A (and different from C and G ). But

this conflicts with the corners occupied in I .

( )iv If in A two opposite corner nodes are occupied, say top-right

and bottom-left (abbreviated tr and bl ), then the tr , bl

nodes in I cannot be occupied. If any of the other two corner

nodes in I is occupied then no corner node in C or G can

be occupied. And, if no corner node in I is occupied then

only the tr , bl nodes in C , G can be occupied, and at most

2 of these can be taken. Either way, the maximum possible is

only 4 corners + 3 centers + 8 sides = 15 .*

8



c Case 2: lmid row! = 15 , and \mid co11 5 15

c

c

(v) Hence each of A , C , G and I must have exactly 1 corner

node occupied (to total 16 ). But this cannot be done owing to

the orientation of the corner nodes in B , D , F and H and the

fact that all their side nodes are occupied (see Figure 1).

ID\ = 6 , IFI = 5 . Thus \left co11 ,< 14 by (3), and as

lmid co11 < 15 we must have Iright co11 ,> 15 , i.e., F is e by

(41, (5); but a W,e (DJW') is not a solution in 3-D by (7).

Case 3: Imid row\ = 14 , and lmid co11 5 14

--.
If the mid row is 6,4,4 , i.e., ID\ =fL then Ileft co11 5 14

implying \mid co11 = 14 and )right co11 = 16 , i.e., F has four

c
corner nodes occupied; but this is impossible (D,E,F) by (7).

If the mid row is 5,4/j then Ileft co11 5 15 and Iright co11 ,< 15

and as lmid co11 < 14 all are satisfied with equalities. Thus D and

F are both of type e by (4), (5) and D,E,F is impossible by (8).
c

c

c

Case 4: \mid row\ 5 13 , and lmid co11 ,< 13 I

One row and one column must have 16 -- say the top row and the

left column. Then IA\ = \C\ = IGl = 6 . Now looking at the triangle

W,G Y each line is distributed 6,4,6 , and by (2) the orientation of

the two 6's is opposite in each line. And this is clearly impossible

for the triangle.

This exhausts all possibilities, implying that there is no solution

for the 4-D tic-tat-toe  problem with 44 nodes. Thus, solutions with

43 nodes are optimal.
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INDEPENDENT PERMUTATIONS AS RELATED TO A PROBLEM OF MOSER

AND A THEOREM OF P6LYA

Abstract . .

Independent permutations and their properties are discussed, and

they are shown to be related to the generalization of Moser's problem to

d-cubes of side n with the constraint that a solution have no n

collinear points. It follows, for example, that there exist total

solutions (i.e.,
d d-l

solutions with n -n nodes) in arbitrarily large

dimensions. These problems are also related to the problem of placing

n noncapturing superqueens (chess queens with wrap around capability)

on an nxn board. As a special case of this treatment we get Pblya's

theorem that n superqueens can be placed on an nxn board if and only

if n is not a multiple of 2 or 3 .

1. Introduction

A chess queen is a piece that can move horizontally, vertically, or

diagonally, any number of squares. We define a more powerful piece which

we call a superqueen. A superqueen moves like a queen, but when it

reaches an edge of the board it can wrap around to the opposite edge.

Effectively it treats the board as if it were a torus. A typical

superqueen on a 7 x7 board is shown in Figure 1. Squares marked x

denote the squares the superqueen can reach in one move. We ask -- for

what values of n (n > 1) can n superqueens be placed on an nxn

board such that no superqueen can capture another? P6lya [7] proved that

11
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this can be done if and only if the smallest prime factor of n is at

least five. We relate P6lya's theorem to a concept of independent

permutations on the set D = {O,l,...,n-l] . Indeed, we obtain bounds
n

on the largest number S(n) of independent permutations on Dn and. .

show that Pblya's theorem follows from-these bounds. We also introduce

two other pieces even more powerful than the superqueen and mention the

conditions under which n of these pieces can be placed on an nxn

board such that no piece can capture another.

We also relate independent permutations to a problem posed by

Moser [51,  l3L Moser asked for the maximum number f(n,d) of nodes

of a d-dimension hypercube of side n such that no n of these nodes
x_

d d-l
are collinear. We find that if d 5 S(n) then f(n,d) = n -n .

2. Independent Permutations

c

c

c

c

Given a set Dn = {O,l,...,n-11 , a permutation on Dn is a l-l

function from Dn onto itself. For any permutation P on Dn and

integers a,b where b is 0 , 1 or -1 , the function P' given by

P'(x) = P((a+bx) mod n) is said to be a modification of P . In thee

special case where b is zero, P' is a constant function, and hence

any constant function P' given by P'(x) = a , aeDn , is a modification

of P .

A set of permutations IPl,P2,  l l �9
Pd] is said to be independent

if for every PiJP~,...,P~ where
'i

is a modification of Pl ,

ps is a modification of P2 , etc., not all modifications constant,

the function Pi+P;+ . ..+ Pd (defined in the obvious way, having the

13
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value (Pi(X) + P;(x) + . ..+ Pi(x) mod n) for argument x ) is also a

permutation. Equivalently, for every sequence al,a2,...,ad of integers

and every sequence b ,b1 2’ '-'bd in {-l,O,YJd such that not all bits

are zero, the function P defined by

p(x> = Pl(al+blx)+ . . . +Pd(ad+bdx)  mod n , is a permutation. As an
e .

example, consider the domain D 5 ; the set of permutations Pp $2 I

below is independent.

0 0 0

1 4 2

2 3 4

-=_ 3 2 1

4 1 3

Their independence can be checked by the definition, but intuitively the

justification is the following: the difference between successive

values of P,(x) is -1 (mod 5) Y and any nonconstant modification 'i

must have difference 1 or -1 ; similarly, any Pi must have

difference 2 or -2 . Adding Pi and P; must result in a function

that has a constant nonzero difference between successive values, and

it must hence be a permutation.

Some of the interesting properties of independent permutations are

the following:

(1) If Pl,P2, l **, Pd) is independent then so is [Pi>P2>..  .,Pd] where

?i
is any nonconstant modification of Pl .

(2) Any subset of an independent set is independent.

14
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(3) If CPl,P2, =a=, Pd] is independent then so is {pl+k,  ‘2, l l �, pd)

where k is any integer and Pl+k is defined in the obvious way, i.e.,

(Pl(x)+k mod n) .

c4) If  {‘1,‘2,  l * l ,�d] is independent then so is {k*Pl,k.P2,e..,k.Pd]  ,

where k is any integer that is prime with respect to n , and k*Pi

is defined in the obvious way as being (k*Pi(x) mod n) for argument x .

(5) If EPl,P2, l **, Pd] is independent then so is {-p1’p2’ l *,pd) l

The first four properties are obvious; the fifth one can be proved

as follows.--.  Note: all arithmetic below is modulo n .

Suppose {-Pl,P2, . . . ,Pd] is not independent. Then for some

al,a2,...,ad  and bl,bg,...,bd where ai's are integers and each b.1

is 0 , 1 or -1 (not all bits zero) there exist distinct integers

X and y in the domain D such thatn

-Pl(a1+blx)+P2(a2+b2x)+  ..= +Pd(ad+bdx) =

-Pl(al+bly) +P2(a2+b2y)+ .**+Pd(ad+bdy)  l

Case 1. If bl = 0 > then we can find an ai in Dn such that

plCai) = -Pl(al) since Pl is a permutation. Then

plCai> + C Pi(ai+bix) = Pl(a;> + C
2si_<d 2_<isd

'i("i + biY>

and this would imply that {Pl,P2,...,Pd]  is not independent -- a contra-

c

c

diction.
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Case 2. If bl = 1 then

pl(al+  Y> + c
2_<ild

Pi( ai + bix> = Pl(al+x)+ C
2si_<d

Pi(ai+ biY) ,

and hence

pJ(al+x+Y) -4 + c
2_<isd

Gi(ai+bix) =

Pl((al+x+Y)  -Y)+ C
2<i<d

Pi(ai+biY)  l

- -

But this implies that {Ply P2, . . ..Pd] is not independent -- a contradiction.

Case 3: bl = -1 . This is handled in quite the same way as

Case 2 above: by choosing ai = al-x-y and bi = 1 we get

Pl(ai+  biX)+ C

2<i<d
Pi(ai+bix) =

- -

Pl(ai+biy) + C
2<i<d

‘i(“i + biY)
- -

implying that {P,, . . . ,Pd] is not independent -- a contradiction.

A set of permutations {Pl,P2,  . . .,Pd] is said to be additive

if for every sequence ‘1,‘2, � l �,�d
where each c

i
is 0 , 1 or -1

but not all ci's are zero,

c
l<i<d

Ci'Pi
- -

is a permutation. It is easy to check that the properties similar to

(2)-(5) above hold for additive permutations. In addition, additive

16
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permutations have the property that if the set [Pl,P2,...,Pd} is

additive and P is any permutation then {PloP,P20P, b..,PdoP] is

additive where Plop(x) = P,(P(x)) , etc. The property of independence

is not preserved in this transformation.

It follows from the property (4)above that independence implies

additivity. The converse is not true, as may be seen from the following

example. Permutations Pl , P2 below are additive, but not independent.

A direct check for additivity is trivial, but we may also observe that

pl , p2
are additive because they can be obtained by permuting the

previous example (of an independent, and hence additive, set). They

are not independent because taking Pi to be Pl itself, i.e.,

(0,3,4,2,1) and P; to be (3,0,4,2,1) , and adding we get (3,3,3,4,2)

which is not a permutation.

X p1(x) P,<4

0 0 0

1 3 4

2 4 2

3 2 1

4 1 3

The property of additivity is an important one for independent

permuations and we will take recourse to this later.

3. Bounds on S(n)

We are interested in the largest set of independent permutations

for any domain Dn -- let its size be S(n) . Some values of S(n)

are given below.
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n

1

2

3
4

5
6

7
8

9
10

11

SW
1

1

1

1

2

1

2

1

1

1

3

It follows from (3) above that for the evaluation of S(n) we need
x.

only consider permutations P for which P(0) = 0 .

3.1 Lower Bound

If n is a prime then the set of permutations

{I,~I, 4.1, l -a , 2k.1]

where k = Llw2(n)J -1 and I is the identity permutation over Dn ,

is obviously independent.

This construction produces an independent set of permutations for

mY n by taking k = Llog2(m)J -1 where m is the smallest prime

factor of n . Thus we obtain the following result.

Theorem 1. For n >l , S(n) 1 Llog2(m)J , where m is the smallest

prime factor of n .

The construction above uses permutations of a very special kind,

namely, aI where ,a is some integer, and the set of permutations

18
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includes the identity permutation itself. It is interesting that the

smallest example of an independent pair [I,P] where P h aDI+b for

=Y a& is over the domain D
13 ( tno e: for any n , if an independent

pair CP, ,%I exists, then there exists a pair of the form Cw? )*
A L . .

Several examples exist for D13 , one is:
c

X

0

1

2

3
4

5x_
6

7

8

9
10

11

12

c

3.2 Upper Bounds

c

c

c if and only if a1 = bly a2 = be, .-. , ad = bd l

I(4

0

1

2

3
4

5
6

7
8

9
10

11

12

P(x)

0

3

8

11

5
1

10

4

7
12

2

9
6

Lemma. If cp,, . . ..Pd) is an independent set of permutations over Dn ,

n>l, such that for all i ,< d , Pi(O) = 0 , then for every pair of

sequences alYa2Y " 'Zad and bl,b2,...,bd where each ai and each bi

is 0 or 1 ,

al-Pi(l) + . ..+ ad-Pd(l) = blePl(l)+ . ..+bd*Pd(l) mod n

19
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Proof. The "if" part is trivial.

For the proof in the other direction assume that there exist

distinct sequences of ai's and bits for which

al.Pl(l)+ . ..+ ad.Pd(l) = bl.Pl(l)+  . ..+bd.Pd(l) mod n . Now consider
. .

the sequence c~,c~,...,c~  where ci = ai-bi for each i 5 d . Each

c. is 0 , 1 or -1 , not all c/s
1 1

are zero, and

cl*P1(0)+ . ..+ Cd'Pd(0) = 0 as Pi(O) = 0 for all i

and

cl.P1(l)+ . ..+ cd*Pd(l) = 0 mod n

i.e., {P
1Y l **, Pd] is not additive, but this is impossible as shown by

property (47 of independent permutations. This completes the proof.

It follows from this lemma that 2d ,< n , and hence:

Theorem 2. For n >l , SW ,< Ll%g(n)J l

L

c

c

c

This upper bound is about the best nondecreasing bound one can hope

for, since by the lower bound theorem it is tight when n is a prime.

Theorem 3. For n >l , let m denote the smallest prime factor of n .

Then

Proof. We will first consider the case m = 2 and show that S(n) ,< 1 ,

and then show the theorem for odd m . In each case we will only use

the additive property of independent permutations, and hence the upper

bound is shown to be true even for additive permutations.
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c

c

c

c

c

c

n even, m = 2 . Suppose there exist two permutations Pl and P2

over Dn that are independent. We wish to derive a contradiction from

this.

Now Pl(0),Pl(l),...,Pl(n-1)  are the numbers O,l,...,n-1  in some

order, as are P2(0),P2(1),...,P2(n-1)  , and also

qa + p&a mod n, Pi(l) +P,(l) mod n, . . .,
L

P,(n-l)+P,(n-1)  mod n ,
A.. L

by the additive property.

c
O<x<n-1

p,(x)
- -

-- c
O<x<n-1

p2 (4
- -

Therefore

= n.(n-1)
2

= (i)modn ,

= n,(n-1)
2

= (;)modn ,

Olx<n-1
P,(X) +P2(X) = F = (i) mod n .

But

c Pl(x)+P2(x) mod n = c
O_<xln-1

p#, + c P
O<x<n-1

2 (x) mod n
Osx<n-1 - -

which is a contradiction.

n odd, m odd . Let

c

m-l
CT= X .

O<x<n-1- -

“+ n
=2 5 mod n

= (I mod n

2 1



We will first show that (J # 0 mod n , and then use this result in the

proof that follows. We have
c

U=
c

m-l
X = c

O_<xLn-1
C {mil]i! ( 2 ,

O_<xLn-1 O<ilm-1
._

c where {
m-l
i

1 represents Stirling numbers of the second kind -- see, for

example, Knuth [4], pg. 65. Note that when x < i then (2) = 0 by

definition. Hence

c

CT =
c C {"i'ji!(t)

O<i<m-1 O<x<n-1- - - -

c

c

e

c

= =I 1 {milji!(iTl)
O<i<m-1- -

= c _Emi] (m-l)! (i)+ c
O_<i<m-2

Irni' 3 '! (i+l)f!(n-i-1) 1 '.

so

n (n-l)!
&(m-l)! = (m-l)! ; (n-m)t + C ["I']~n*  l

O<i<m-2
.

e Now, the first term on the right hand side is

(E)(m-l)!  (n-l) (n-2) . . . (n-m+l)

= (E) (m-l)! (-l)m-l(m-l)! mod n

= (i) ((m-l)!)2 mod n

f 0 mod n

c
since m is a prime; and the second term is 0 mod n because
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c
m-l

3
(m-l)!

i f i+l '
are all integral. Thus

c

a(m-l)! f 0 mod n , and hence 0 # 0 mod n .

We can now prove the desired result. Suppose there exists a set

m+l
of k=T independent permutations. . [P,, P2, . . . ,Pk] over Dn .

We wish to obtain a contradiction from this.
c

First, let S
P

denote the set of all vectors (sl,...,sp) where

each s
i

equals 1 or -1 (s stands for "sign"). Consider the sum

L

i

c

% = c c
(sl,...,sk)~Sk  O_<x<n-1

(slP1(x)  + s2P2(x) + l l l + skPk(x))m-l

= c c (slP1(x) + . . . + SkPk(x))m-l l

Q._<x_<n-1 (sl,...,sk)~Sk

On expansion, terms in which any Pi appears with an odd power are

cancelled out, and the coefficients of terms in which all Pi’s appear

with even powers add up, to give

!k = c ek
O<x<n-1

C (pil(x) >m-l
- - l_<i,_<k

+ c ( 4mmt 1 (�4  C⌧>  >

jl
l (pi3(⌧))

j2

l_<il<i21k J1 J2 "1

O~j,J,

jly j, even

j,+j,=m-1

+ c (
l_<il<i2<i3-<k j02 33

m71 . ) (Pil(X)

O_<jlyj2J3

j,, j,, j3 even
jl+j2tj3=m+l

. .
1
Jl

~ ’ (pi2(x)) J2 ’ (pi3(x)l j3
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+ . . .

c

c

c

c

c

c

c

c

c

c ( m-l
1 lp* C⌧)>

jl
+
l_<il<...<ik-,_<k jlj2  l ** jkol �1

l � l Cpik lC⌧)  >

jk-1

Iolj,y  l ,jkol -�
+ . . ..jkol even

jl+ ...+jk-l=m-l

( i.e., all j's are 2)

where (
m-l
j, 3, 1

m-l
Y ( 3, 3, j3 ) etc., represent multincxnial  coefficients.

We use the following notation:

Tl(x) -= c
l_<il<k

(pil(x) lrnol

etc.

Thus

il<i2<k

jly j,

j,, 3, even
.

jl+J, =m-1

(
m-l
3, j,

> (pil(x)l jl (‘i Cx)) j2
2

In general, for lLp<k, consider the sum
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c

c

c like (Pil(x))m-l appear SC (I,"-i) times, terms like

A =
P c c c (slPa (x)+***+spP1 (x))m-l

155<i,<-. <tpsk (s~,~..~s )cSp O<x<n-1 1
P -- P

= c
OLx,<n-1

When we expand

. .m
l_<al<... <apsk (s,,  . . l ,sp)d (slPr

1
(x)+. . ‘+spPL

P P
(x))m-lJ

;he summations shown in brackets above, all terms in

which any Pi appears with an odd power are cancelled  out, and terms

.

jl
(pi2(x)  > J2

appear 2p(3 times, and so on,

c
to yield a.

A=2P
P c ( pk:;) T#)+ (;I;) T2(x)+ .*a + (k;p) Tp(x) .

O<x<n-1- -
c

We now form the sum

c

.

c

A = c (-1)' gkoP A
1LPLk P

32 2k

c [
Tl(X) c

OsxLn-1 1LPLk
wp ( ,":; 1

+ TJX) c (-l)p(k-2
P-2 1

,2_<psk

+ . . .

+ Tk-l x( >
k-l_<psk

I .

=o .
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We can also form the same sum in another way. Noting that

c

c

t

c

c

c

CT= c
Ogx<n-1-

m-l
X

and using the additive property..of independent permutations we see that

Ap = (32'0. modn

i.e.,

A = c
llPlk

(-l)pek-pqr

= ek*o.* t wp Ck) mod n
1LPLk P

= - 2k l u mod n .

But n is odd, and CT { 0 mod n , hence A h 0 mod n . This is the

desired contradiction.

Corollary. Let m be the smallest prime factor of n (n >l) .

Then if n is prime or m < 5 , then S(n) = Llog2(m)J .-

The smallest values of n for which S(n) is not given by this

corollary are 49 , 77 , and 91 .
c

c

c

c

4. Relation to Moser's Problem

Let M(n,d) denote the set of all vectors (xl,...,xd)  where each

X. is an element of D
1

l and let f(n,d) denote the size of then ,

largest subset S cM(n,d) containing no n collinear points.

Obviously, f(n,l) = n-l , and f(n,d+l) 5 nf(n,d) , so that*
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d d-l
f(n,d) ,< n -n .

c

i

L

c

c

c

L

d
Moser conjectured that f(n,d) = o(n ) for each fixed n ; this

conjecture has not been proved or disproved yet, though, of course,

WY 4 =l for all d . It has-been shown, however, that

f(3,d) > c3d//d ( s e e  El), and f(3,3) = 16 , f(3,4) = 43 ( s e e  Dl).

Also, f(4,2) = 12 , f(4,3) = 48 . These can be shown by the set

S c M(4,3) represented by squares marked x in Figure 2 which represents

four parallel planes of a cube of side four.

Theorem 4. Given any n and d suchthat l_<d_<S(n) ,

f(n,d) = nd-nd-' .

Proof. Given a set of independent permutations {P,,...,P,] on a

domain Dn , we wish to show that

f(n,d) = nd-nd-' .

Let S be the set of all (xl,...,xd) eM(n,d) such that

Pl(xl)+ P2(x2)+ . ..+Pd(xd) k 0 mod n .

d d-l
Clearly S contains n -n nodes because for every x~,x~,...,x~-~

in D- there is exactly one x, for which (⌧1,⌧2,  l ..,xd) is not

in S . To see that S contains no n collinear points, observe that

any line passing through n points may be represented as:

x1
=al+b .z, =

1 x2
a2+b

2
l Z Y . . .,

Xd
= ad+bd.z

where z is a parameter that takes on values O,l,...,n-1 , and for

each i either
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Figure 2

x x X

~

X x x
x x x

x x x
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c

( 1i bi = 0 and aieDn , i.e., xi is

(ii) bi = 1 and ai = 0 , or

(iii) bi = -1 and ai = n-l ,

and not all bits are zero. Then by-the

permutations, the function of z defined

Pl(a1+bl.z)+...+Pd(ad+bd4z)

t
-- is a permutation and hence for some value of z it equals 0 , and by

constant

definition of independent

bY

the definition of the set S the corresponding node is not in S . This

completes the proof.
--.

Corollary.
d d-l

Given any d there is an n > 1 for which f(n,d) = n -n .

c
This follows from the above theorem and from the fact that S(n)

can be made arbitrarily large by a suitable choice of n .--.  I.

c

c

c

t

c

50 Relation to P6lya's Theorem

We return, now, to the problem motivated in the introduction,

that is, the question of the existence of a configuration of n

noncapturing superqueens on an nxn board. We shall relate the

existence of such configurations to our concept of independent

permutations.

Theorem 5. If n is any integer n > 1 , then n noncapturing

superqueens can be placed on an nxn board if and only if S(n) 2 2 .

Furthermore, the number of ways in which n superqueens can be so placed
*

equalsthe number of permutations P over Dn such that {I,P') is

independent.
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L

L

c

c

Proof. All arithmetic below is modulo n . And we use the words

"square" (in an n xn board), "node", and "vertex" interchangeably.

(a) If S(n) > 2 there exists a set {Pl,P2} of independent permutations-

over D
n l

Consider the configuration in which superqueens are placed on

exactly those nodes (x,y) where Pl(x)+P2(y) = 0 . Now, clearly,

there is exactly one superqueen in every row and column. Furthermore,

two superqueens cannot be on the same diagonal (with wrap around)

because any diagonal can be represented as y = a+bx where b is 1

_-
or -1, and aeDn ,

l then as Pl(x)+P2(a+bx) must be a permutation

( as p1'p2 are independent) there can be only one point on the diagonal

where it iszero, i.e., there cannot be two superqueens on the diagonal.

L

(b) On the other hand, if there is a configuration for noncapturing

superqueens then for each yeDn there is a unique xeDn such that

there is a superqueen at (x,y) . Let Q denote the set of nodes on

which superqueens are placed. We define the permutation P by

P(y) = -(the unique x for which (x,y)eQ) . P is a permutation because

for any x there is a unique y for which (x,y)eQ . Now, the set

(I,P] where I is the identity permutation, is independent, because

if not there exist a1>a2  EJ& Y
bl,b2 E {0,1,-l] not both zero, and

c

L

L

x1,x2”Dn Y x1 f

I(al+blxl) -1

Thus

x2
such that

P( a2+b2* xl) = I(al+blex2)+P(a2+b2*x2)  .

P(a2+b2*xl) -P(a2+b2*x2) = bl*(x2-x1) .

Now, b2 # 0 because if b2 = 0 then bl .too would have to be 0 . By

the definition of P , there are superqueens on nodes

30



v1 = (-P(a2+b2.xl),a2+b2.xl)  and on

which is the same as (-P(a2+b2*xl)d

b2 f 0 and x1 # x2 the nodes vl

the line of nodes (x,y) given by

v2 = (-P( a2+b2.x2),a  +b
2 20X2)

bl(x2-xl),a2+b2'x2)  . Since

and v
2

are distinct. Now consider

-b2.x+bl.y = b2.P(a2+b2.xl)+'&20bl+bl~b2*xl

(this is a valid line since both bl,b2 are not zero). But both nodes

v1
and v2 fall on this line and hence in the original arrangement, one I

superqueen can capture another -- a contradiction.

It should be noted that in this construction the set of nodes Q

where superqueens are placed is given by those (x,y) for which

I(x)+P(y)i 0 l Comparing with part (a) of the proof we have a l-l

correspondence between superqueen solutions and independent permutations

of the form
CLPI lc

From our earlier results (Theorems 1, 3) we see tha;t (for n > 1 )

S(n) 2 2 if and only if n is not a multiple of two or three. We say

a superqueens solution is regular if it corresponds to an independent

set {I,a-I+b] , otherwise it is nonregular. The smallest nonregular

solution is for n = 13 (see Section 3.1). Incidentally, P6lya's

theorem can also be used to solve the related problem for super

.
nite-queens. A nite-queen is a piece that can move like a chess queen

or a chess knight (two squares in a horizontal or vertical direction

and one square in an orthogonal direction). A super nite-queen is a

nite-queen with wrap-around moves allowed. The problem of placing n

noncapturing super nite-queens on an n xn board has been mentioned

several times in the literature (see, for example, Golomb [3]). There
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exists a solution

c
two or three. We

follows. Clearly

if and only if n > ll and n is not a multiple of-

can show this by using independent permutations as

a solution can exist only if n is not a multiple

of two or three. From the construction in the proof of Theorem 5 we

c

c

c

c

c

see that if the independent pair CIY PI in which P has the form
.

P = aI+b , corresponds to a solution to the super nite-queens problem,

then the knight's-move constraint requires that a h 2,n-2,(n-1)/2,(n+l)/2 mod n .

But, for n = 5 or 7 the only independent pairs {I,P] are those for

which P hastheform a.I+b,and a=2 or 3 if n=5, and

a = 2,3,4 or 5 if n = 7 (see Section 3.1), none of which corresponds

to a solution. Hence there is no solution for n = 5 or 7 l But we
-L.

can easily get a solution if n > 11 from the independent pair {I, 313-

if, if course, n is not a multiple of two or three. Also, the example

of the independent set {LP] for D13 in Section 3.3 corresponds to a

nonregular solution for the super nite-queens problem. There is another

interesting piece which we call a super K-queen. It moves like the super

nite-queen except that in one move it can take any number of knight

steps in any one direction, whereas the super nite-queen could take only

one step. A proof somewhat similar to the proof for Theorem 3 can be

used to show that n non-capturing super K-queens can be placed on an

n xn board if and only if n is not a multiple of 2,3,5, or 7

(by showing that if m , the least prime factor of n , is 5 or 7

then no solution exists, and if m > ll then {IJI) corresponds to a-

solution). The smallest nonregular solution of super K-queens is unknown,

but a computer search shows that only regular solutions exist for n ,< 23 .
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