LOGIC FOR COMPUTABLE FUNCTIONS DESCRIPTION OF A MACHINE IMPLEMENTATION

BY

ROBIN MILNER

SUPPORTED BY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AND
ADVANCED RESEARCH PROJECTS AGENCY ARPA ORDER NO. 457

MAY 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

LOGIC FOR COMPUTABLE FUNCTIONS

DESCRIPTION OF A MACHINE I MPLEMENTATION

by

CONTENTS

PAGE

1. INTRODUCTION 2
2, THE LOGIC LCF 3
2. THE MACHINE IMPLEMENTATION OF LCF 7
3.1 An Examole 7
3.2 Rules of Inference 11
3,3 Goal-orlented Commands 17
3.4 Mlscellaneous Commands 24
3,5 Simplification Rules - - 27
3.6 syntax a a - a a - .
20
20
3.7 Commands Por Axloms and Theoroms 30
3. HOW to use the system lCF 34
4, 1 Initiallzation and Termination 34 35
4. ACKNOWLEDGMENTS 36
5. INTRODUCTION

LCP is based on a logic of Dana scott, proposed by him at Oxford in the Fall of 1969 , for reasoning about computable functions, In Section 2 we present this logic, essentially as scott himself presentec $i t$, but using the typed X-calculus instead of the tyoed combinetors S end k, since the former is more fanillar to comouter scientists and is any case easier to work with. Section 3 then describes the machine implementation of a proof-checker for the logic. We refer to both the loglc and the lmolementation as the tyoed logic for computable functions, or typed LCF, or Just LCF,

The loglc ppesubposes no special domain of computation (e, g. lists Or integers), However, particular domains can be axlomatized in It ; Scott gave en axiomatization for arithmetic and we suggest a partial axiometization for lists In section 3, But many lntepesting pesults - e.g. eauivalence of pecupsion equation schemata are provable in the pure logic without any proder (non-logical) axioms.

It is hoped that a potential user of the system can, with the help of the example of section 3.1 and wltr section 4, get onto the machine without reading the wholecf this document,

Further discussior of LCF and examples of lts adolications can ne found in the following paders:

Milner.R., "Implementation and apolications of Scott's logic for computatle functions", froe. ACM Conference on Proving assertions about Programs, New Mexico state University, Las Cruces, New Mexico, Jan b-7.1y72.

Wevinauch, fr, and Mi fner, "program semantics and correctness in a mechanized louic", Proc, USA-Japan Computer Conference, Tokyo, oct 1972 (t o appear).

Milner and Weyhrauch, "Proving comuiler correctness in a mechanized logie", Machine Intelligence 7, ed. D. Michie, Edinbupgh Univepsity Press 1972 (to appear).

Newey, M, "Axioms and Theorems for integers, lists and finite sets in LCF", forthcoming A! Memo, Computer science Dedt., Stanford University, 9972.
we give no further references here; they may be found in the above papers.

```
2. THE LOGIC LUF
```


Tynes

- - - - -

At bottom "tr"and "ind" are types. Further if $\beta 1$ and $\beta 2$ are tyoes ther ($\beta 1 \rightarrow(32$) is a tyoe, We adopt che convention that \rightarrow asociates to the right and frequontiy omit earentheses; thus we write $\beta 1 \rightarrow \beta 2 \rightarrow \beta 3$ for $\left(\beta_{1} \rightarrow\left(\beta_{2} \rightarrow \beta_{3}\right)\right)$. With each term of the logic there is an unambiguously associated type, For a term t we wrlte
$t: E$
to rean that the tyoe associatedwith tis. Throughout we use B, 31, $32, \ldots$ as metavapiables for tydes.

Terns (retavariables s.t.si,t1,...)

The following are topms:

This strict syntax is relaxod in the machine imolemertation (see Section 3) to allow a saving ot parentheses and brackets,

The intencedinterpretation of the $\alpha-\theta \times p$ ession [α f.s] is the miniral fixed-noint of the function or functional denotedby [$\left.\lambda^{f}, s\right]$. for exarole:

$$
[x f,[\lambda x,(p(x) \rightarrow f(a(x)), n(x))]]
$$

denotes the function definod recursively as fol lows:

$$
f(x)<=\text { if } p(x) \text { then } f(a(x)) \text { else } b(x)
$$

The identiflers Tt,ff denote truthralues true and false. UU denotes the totally undefined object of any type: in particulap, the undefined truthvalue.

```
Atoric hell-formed formulag (anffs)
```

```
-------------------------------
```

The follow/n3 is an awf:

$$
s \in t
$$

where sand t are \boldsymbol{o}^{f} the same type. The intended interppetation of sct is, roughly, tnat t is at least a well defined as, and consistent withe. s.

Well-fopmed formulae (wffs) (metavarlades P,Q,P1,01,....)

Wffs are sets of zero or more awffs, witten as lists with separating commas. They ape interppeted as conjunctions. We use
$s 3 t$

```
to abbreviate sct, tcs ,
```

Sentences
Sentences are implications between wifs, wrltten
P 1-0
or, if p is emnty, just
$1-0$
Procfs
A jepof is a sequence of sentences, each being derived from zero or
more preceding sentences by a rule of inference,

Inference rules

Let us wilte $P(s / x)$ or $t(s / x)$ for the result of substituting sor for al free occurrences of x in port, after first changing bound
 the substitution, we have not stated comditions on the tyoes of identifiers and terms with each rule; any consistent assignment of tyoes is admissible,

	*****	CONDITIONAL
CONDT		----------
	$1-$	$T T \rightarrow$ sot $\equiv \mathrm{s}$
CONDU		
	1 -	UU \rightarrow s,t $\equiv \mathrm{UU}$

CDNDF

$$
1-F F \rightarrow s, t \equiv t
$$

FIXP

$$
\begin{aligned}
& \text { 1- }[\alpha x, s] \equiv s\{[\alpha x, s] / x\} \\
& P \quad 1-Q(U U / x) \quad P, Q \quad 1-Q(t / x)
\end{aligned}
$$

3. the MACHINE implementation OF lcf

We now describe the machine version of the loglc of section 2. and how to use lt interactively on the machine,

The user inas available four groups of commands:

- Rules of Inference - to generate new sentences or steps from zero or more previous staps. (Section 3.2)
- Goal Oriented Commands - to soecliy and attack goals and subgoals, (Section 3.3)
- Miscellaneous - malnly to do with displaying or filing Darts or all of the oroof sofar, and the goals, (section 3.4)
- Commands for axioms and theopems to enable the user to create ax lom systems, to prove and file theorems in these systems, and later to recall and instantlate those theorems, (seetlon 3.7)
Before desciling the commandsindetall, and the syntax of wffs, teris, etc, it may behelpful to see an example,
3.1 An Example

exarple us Introduce the macnine version of LCF by a simole exalthough short, exhibits many of the featupes, It Is a droof of a version of recursion induction, which statesthat if f is oeflined recursively and G (another function) satlsfies f's recurslve definition thenfeg. Inother wards, weprove that fis the rinimal fixed point of its defining equation,

After Initial Ization (see section 4), the system types 5 asterisks as a sisnal to the userto start a proof. Irl fact 8 asterisks are always the signal for the user to continue his proof. Thus, In what follows the user's contribution may be distinguisned by beirg preceded by *****, We explain each user and machine contribution on the right of a vertical line,
*****ASSUME FE[बF,FUN F], SミFUN G;
lThe user assumes a wff (a sequence of atomic wffs
Iseparatedoy commas, where each atomic wff has $\equiv \mathrm{Or}$
|elnfixed between two terms). Every user
lcommancendswith a semicolon, Detailed syntax is
Igiven later but note in particular that application
Imay be represented (somstimes) by juxtaposition as ln
1 "FUN G" to save parentheses, Note also that F occurs both
If pee and oound (by x) without confusion.

```
1 FE[\alphaF,FUN(F)] (1)
2 GEFUN(G) (2)
    IThe machine separates the assumption into two sentenceso
    lgiving each a stepnumber. Every sentence which the
    Imachine generates will have a stepnumber, and wll| consist
    lof a wff followed by a list of stepnumbers of assumptions
    Ion which the wff depends, A sentence
    1 n > S
    Iwhere Pis a wff ard S a list of stepnumbers is the
    lanalogue I n LCF of the sentence
    I Q |- P
lof Dupe LCF, where 0 ls the conjunction of assumbtions
ldeslgnated by S, Each of steos 1 and 2 above thus
Irepresents an instance of p |- P, which is a soecial
lcase of the inclusion rule of Section 2,
#####GOAL FCG;
    IThe user states his goal, but does not attack it yet,
    lHe mlght list several goals before attacking any of them;
    ||n each case the machine will simple glve a goal number:
NEWGOAL #1 FGG
    IGoal numbers are distingulshed from stepnumbers by #,
#####TRY 1 INDUCT 1;
    l The user wants to attack GOALl using the tactlc of
    I induction on step 1 - which is (as it must be)a
    Irecursive definition - I.e. FE[aF,FUN(F)].
NENGOAL &1#1 ULCG
NEWGOAL #1#2 FUN(F1)cG ASSUME F1CG
    IThe machine says that the Induction base and step
    lmust be established, For the step it olcks an arbitrary
    lidentifier not used oreviously (actually for mnemonic reasons
    lit oicks something which only differs from the Instantiated
    lbound variabie in its numerical suff(x).
    IWe now have two goals generated by the machine, at
    la lower level, The user need not - but probably will-
    lchoose to prove #1 by croving #1#1 and #1#2.
```

UUser chooses to attack \#1\#1 first, He need (and must) lonly refer to the goal by the last integer in its goal Inumber, This time he doesn't state a tactic mo knows Ihow to ppove it himself - so the machine merely steds down la level in the goal tree.and waits. Actual ly, he could luse the SIMPL tactic (see seotion 3.3), since thls Itactic notices Instances of MlN1 and would therefore Isave the user his next two commands,

ITho user notes that the subgoal UUCG can be proved loy the first minimality rule (see Section 2), so calls lit with the appropriate term - G - as parameter,

3 UUCG
IThe machine obediently generates the proper instance of Iminimatity, Notice that this sentence depends on no lassumptions.

The user can say $Q E D$ to tell the machine that he has loroved exactly the goal under attack, GOAL \#1\#1 PROVED, BACK UP TO COAL \#1
REMAINING SUBGOALS:
2 FUN(Fi)CG ASSUME FicG
IThe machlne agrees, Now in general it will baok up Ithe goal tree until it finds a goal some of whosesubgoals Ihave not been proved, It will remain at that level and list Ithese subgoals for the user to try,
****TRY 21

IAgain, user gives no tactic.
4 FicG (4)
IThe machine makes the assumption of the goal for him (note (that goal \#1\#1 had no assumption), and wafts.
*****APPL FUN,4;
I"ADD ly fun to Step 4 " - an Instance of application (see 1Section 2).

5 FUN(F1)CFUN(G) (4)

```
2;
```

ITupn step 2 around ready for an apdlication of transitivity, $6 \operatorname{FUN}(G) \equiv G$
*****TRANS 5,6;

INote that the parameters of inference rules are always Istepnumbers or terms, separated by commas,

7 FUN(F1)CG (2 4)
****QED;
GOAL \#1\#2 PROVED, BACK UP TO GOAL \#1. NO MORE SUBGOALS
3 FeG (21)
1-----The machine hasn't fin/shed yet, but not8 that it
|makes an explicit step to represent the proof of \#1 so |that the whole seauence of steps, with all the goal Istructure stripoed away, shall be a formal proof). Note lalso the assumptions of step 8,

GOAL \#1 PROVED, BACK UP TO TOP LEVEL. NO MORE SUBGOALS,
I (There might have been more goals listed at todevel, Isince the usep can list many before attacking any).
*****SHOW PROOF RECIND;
IThe user decides to keep his proof on a fllecalled RECIND. IThe version kept is shown below, Notice that not evepyo Ithlng which the user typed reappears; In partioular, the Istatement of a goal is not reproduced, only its tplal,

IIf the user wanted instead to display hls proof (atany loolnt, not just at the end) he would just type "SHOW PROOF;"

PROOF

```
1 F \equiv[\alphaF,FUN(F)] (1) ---- ASSUME.
2 G ミFUN(G) (2) \cdots... ASSUME,
```

ITRY\#1 F C Gi INDUCT 1
ITRY \#1\#1 uu $\in G$
13. UU © G MIN1G.

3．2 Rules of Inference

Let us assume for the monent the syntax classes 〈wff，〈awf f （atcric wff），〈term＞，Details of these arein Seotion 3．6，but for now look only at the conventions givan for syntax deflnltions at the start of that Section．
we need for the present

〈teprname〉 ：：＝？（ G （：〈stepname〉）？（i＜integep〉）（：L｜：R）
$\langle p a n g e\rangle::=\langle s t e n n a n \theta\rangle$ ？ \mid sitepname〉：？〈stepname〉
In a 〈stepname〉＂－＂means＂thelast step＂，＂．＂＂means the last step but one，etc，and for example＂．DD－1＂means the step preceding that label led D ，see sectlon 3.4 ，the LABEL command，for how to label staps．

A＜termname＞may aopearanywherethat a term can aooear－for examole as a subtermof a term－and frequently saves tyolng lons foptulae．We explain termames by a few examples（sudpose the last step was numbered 15）：

We now list the rules，with some examples，Note that ln the machine implementation there ls no typechecking whatsoever．We rely on the user to use types consistently，

```
ASSUME <wff>;
    Each <awff> Ai in the <wff> ls given a new stepnumberni,
    and the steps
\begin{tabular}{ll}
\(n 1\) & \(A 1(n 1)\) \\
\(n 2\) & \(A 2(n 2)\)
\end{tabular}
    is a tautology, since a step p(n) means 0 i- p, where
    Qls the <awfi> at step number n. Thus the purpose of
    Assume is only to Introduce peferences for <awff>s,
    See Section 3,1 for examples of ASSUME,
SASSUME <wff>;
    Like ASSUME, but every <awff> of the \langlewff> is hencefopwapd
    treated 3s a simolification rule (see Section 3.5).
INCL <stepname>, <integer>;
    Picks out an 〈awff>, Example:
    |15 Z\equivF(X,Y), AミB, [\lambdaX,X](Y)<14 (13 7)
    |*****INCL 15,2;
    |16 AミB (13 7)
CONJ .-.-\range>,... ;
    Fopms conjunction of all steps In the <range>s, Examole:
    115 PCQ,RミS (12)
    | W. - W.
    117 FEG (12 4)
    1*****CONJ ---,-;
    118 PCQ, RES, FEG (12 4)
    --m------------------------------*
CUT <stepname>, <stepname>;
    If the steps referred to are P(m1,m2,...) and Q(n1,n2,.,)
    pespectively, where the m's and n's are stepnumbors,
    and lfevery <awff> referenced by the n's oceurs as an
        <awff> In P, then the step Q(m1,m2,..)|s generated.
        Example:
```

```
17 FEG (7)
-----
12 PCO (7)
115 FEG, GCH (14 2)
|*****CUT 15,12;
116 PCQ (14 2)
```

HALF 〈stepname〉；
Red｜aces＂シ＂b y＂c＂In the flrst〈awfi＞，and throws
the rest away，Examole：
$16 X \equiv G(X), Y \equiv H(Y)(13)$
1＊＊＊＊＊HALF 6：
17 $x \in G(X)$（1 3）

SYM 〈stepname〉；

Interchanges the terms in the first 〈awf（provided＂E＂occurs） and throws the pest away．Example（continuing the previous）：

1＊＊＊＊＊SYM 6；
$18 G(X) \equiv X(13)$

TRANS 〈stepname＞，〈stepname＞；
Looks at the first〈awfi＞in each＜wff＞，lf these apesi（三｜c）s2． s2\｛́c\}s3 respectively, thensies3 orsi\#s3 ls generated, the assumptions being＂unioned＂．Example；

```
l12 X\equivY(Z), PeQ (11 4)
113 Y(Z)\subsetY(X) (4 9 8)
1*****TRANS 12.13;
114 X\subsetY(X) (11 4 9 8)
```

APPL \{〈stepname〉, _ . $\langle\langle t e r m\rangle, \ldots-|\langle t \theta r n\rangle,\langle s t e p n a m \theta\rangle\} ;$
In the first case, apolies both sides of the first 〈awfi> of
〈stepname> to the <term>s in sequence,
In the second case, apDlies the <term> to both sldes
of the fipst 〈awff of 〈stepname>. Examoles:

```
11N XEY(Z), P\subsetQ (9 4)
```

1****APPL F, 10;

```
11: F(X)\equivF(Y(\dddot{z})) (9 4)
    -----
12% FE[\lambdaX,X],PCQ (11 4)
1*****AFPL 22,:-.:2:R;
```


ABSTR＜stepname〉．
．Sidentifier＞，－－－；
Does λ－abstraction o n lst＜awff．The identifiers must not occur free in any of the assumptions of the sted． Example（continuing the previous）：
｜＊＊＊＊＊ABSTR 2？，F；
$124[\lambda F, F] \equiv[\lambda F,[\lambda X, X]]$（114）
－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－
CASES ，These are not present as inference rules，since it is ）less tedious to use theip goal oplented versions（see INDUCTICN，Section 3．3）．

CONV（＜stepname＞｜＜term＞）；
Does all X－conversions in the＜term＞or＜steoname＞．Example：

```
114 BE[\lambdaX,X(X)][\lambdaX,X(Y)]
|*****CONV -;
115 RミY(Y)
```

Remark：the term in 14 violates the type structure，but the system does not chack this，

ETACONV＜term＞；
 with x not free in the term s．Example（pemember that
$F(X, Y)$ abbreviates $(F(X))(Y)):$
｜\＃\＃\＃\＃\＃ETACONV［ $\lambda Y, F(X, Y)]$ ；
$149 \quad[\lambda Y, F(X, Y)] \equiv F(X)$

EQUIV 〈stepname〉，＜stepname＞；
Looks at the flrst 〈awfi＞In each 〈wff，lf these are sics2， s2csi pespectively，then s1ミs2 is generated．Example：

REFL1 〈term＞；

Givest $\begin{gathered}\text { there } t\end{gathered}$ is designated by the mterm．Examolel

```
1＊＊＊＊＊REFL \(x(x x)\) ；
\(119 x(x X) \equiv x(x X)\)
```

NFL2 〈term＞；
Like REFL1，but gives tet．
MIN1 〈tepm＞；
Gives UUCt，Example：see Section 3.1
MIN2＜term＞；
Gives UU（t）ミUU，Example（continuing the orevious）：

1＊＊＊＊＊M！N2：L；
$120 U U(X(X X)) \equiv U U$

CONDT 〈term＞；
Checks that the＜term＞t has form $T T+s 1, s 2$ and if so genepates tミsi．Examole：

1－．．．．
$121 F(x) \equiv T T \rightarrow X, F(G(y, x))(10)$
1＊＊＊＊＊CONDT：R；
$122 T T \rightarrow x, F(G(y, x)) \equiv x$

CONDF 〈torm＞；
Checks that the＜term＞t has form $F F \rightarrow \boldsymbol{s i n}^{1, s 2}$ and if so generates tEs？。
CONDU 〈term＞；
Checks that the mterm t has form UUASI，s2
and if so generates $t \equiv J U$ ．
FIXP＜stepname＞s
Checks that the first 〈awff is a recursive definltion e．g，$s \equiv[\alpha G . t]$ ，and generates $s \equiv t(s / G)$ ．Example：

```
1- - - - - - -
123 F 三[\alphaG.H([\lambdaF,G(F)])]
```

1*****F1XP 23;
$124 \quad F \equiv H\left(\left[\lambda_{F} 1 \cdot F(F 1)\right]\right)$
 Let the first＜stepname＞have tl $\$$ t2 as lts first 〈awfi，where $\$$ stands for \equiv in case（1），and for \equiv or C in case（2），
Case（i），If there is an 〈stepname〉 following＂IN＂，then t2 is substituted for all occurrences designated by the＜integer＞－ Iist（oral loccurrences，if no list）of tlin the 〈wfi＞．
Case（il），If there ls a＜term＞s following＂IN＂then $\boldsymbol{s}^{\$} s^{\prime}$ ls generated，where s^{\prime} is the result of substituting t 2 for the apDpopriate occurrences（as in case（i））of t1 in \mathbf{a}^{\prime} ．

Note that for ti to occur in a term sany occurence of a free varlable in ti must not be bound $1 n$ s．Also see the caution on occurrence numbers in Section 3．6．

Examole：

```
|25 [\lambdax,F(x)] eG(F(x),F(x)) (2 3)
    -----
126 F(x) \equiv x (5 1)
|*****SUBST 26 OCC 1 IN 2%
127[\lambdaX,F(X)] = G(X,F(X)) (2 3 5 1)
1*****SURST 36 IN:25:R;
128 G(F}(x)\cdotF(x)) \equivG(x,x) (5 1
```


In the case of an <stepname>, its 〈wfi> is simplifled
(see Section 3.5) using a simpliflation rules thoseln
SIMPSET together with those designated by the <pange>-11st
following each "BY", and without those designated by the
〈range>-list following each "WO". A 〈tepm>t is similariy
simplified, to tl say, and t Eti is generated, The SIMPSET
remains unchanged,
Example, continuing the previous (Section 3.5 givesmoredetall):

---.-
$129[\lambda P, P \rightarrow F(X), Y](T T) \subset U U(X) \quad(1 \neq)$
1\#\#\#**SIMPL - BY 26;
$130 x \in U U(10 \quad 5 \quad 1)$

This hapdens because CONV, CONDT, MIN2 are among the simplification pules.

```
3.3 Goal.Oriented
Commands
```

Anytning provabie with the goal Oriented commands Is provable in PURE LCF, but most woofs would then be tedious (that's why we only deseplag the $\ln \operatorname{DOUCTION}$ and CASEs rules in goal-oriented form). Experience shows that with the goal-oriented commands the user has only to type a small fraction of what he would otherwise have to type.

The user may generate a subgoal structure of arbltparydeoth. This structure is represented by three entitiss gGOALTREE, GQALLIST and THISGOAL. THISGOAL is always the goal currently under trials all its ancestops in goaltree are (Indirectiy) also under trial; the subgoals of THISGOAL are listed in GOALLIST. Each goal has a goal number e e.g. \#1\#2\#3 - which indicates its ancestors and loy the number of Parts) its level In the tree, Here is a samole goal strueture:

FIGURE 1

Each goal has a status (not shown In diagram) whlen ls elther "UNDER TRIAL" (Only THISGOAL and lts ancestors have this status), or "NOT TRIED" or "PROVED".

The user has flve goal oriented commands available：we give first thelr syntax，then detailed descriotions．
GOAL＜wff＞？（ASSUME｜SASSUME）$\langle w f f\rangle$ ；．
TRY ？\langle integer〉 ？＜tactic〉；
QEJ ？〈stepname〉；
ABANDON
；

SCRATCH＜integer＞；
$\langle t a c t i c\rangle \quad::=$ CONJ 1
CASES 〈term＞｜
ABSTR 1

USE 〈identif｜er＞？，．\langle＜instantiation＞，．．．
＜instantiation＞：：＝＜identif｜ep＞＊＜term＞

The GOAL command．

GOAL specifles a new goal to be added to GOALLIST，Its effect on the goal structure of Figure 1 is as follows（figure 2）：

FIGURE 2
（Notlce that the new goal lsn＇t yet under trial）

A goal riay or may not be given assumptions．The only difference between ASSUME AND SASSUME is that In the latter case，when the goal is trled，the assumption wff will be added to the set of
simolification rules（Sae section 3．5）for the duration of thle goal＇s tplal．Examoles：

```
I*****GOAL FeG;
```

INEWGOAL \#1 FCG
1****GOAL $F(X) \equiv G(Y)$ SASSUME $F \equiv G, X \equiv Y$;
INEWGOAL \#2 $F(X) E_{G}(Y)$ SASSUME $F \Xi_{G}, X \equiv Y$

The only purpose of the system seply is to allot the goal a number，

TRY specifles one of the goals of GOALLIST to be trled if the ＜integer＞is absent，thelast goal specifledis assumed），If the user gives no tactic，the now GOALLIST Will be null（flgure 3 ），

FIGURE 3

Butif the user gives a tactic，the system will set up a new GOALLIST for nlm．whose number of members depends on the tactlc．Tactlos are described laterin this sectiongbut look at the Exampl follow ing OED＇s descilotion below to see what happens without them，

The QED command，

QED indicates that the 〈stepname＞－or previous step if no＜stepname＞ －proves THISGOAL；the user wlll normally say QED when he TRIED thls goal with notactic．Sometimes the user has been able to prove a contradiction，l．e any of the 〈awff＞s 〈tv＞E〈tv＞or 〈tv＞e＜tv〉 where the $\langle t V\rangle s$ are distinct members of（TT，UU，FF）and in the case of c the
first <tv> is not UU, QED will accedt a contradiction, since it proves anythlna, The effect of $Q E D$ is to restope figure 3 to figure 2. with the difference that the status of \#2\#\#\#\#3will become "PRCVED"; further, if THISGOAL (of flgure 2) was TRIED with e tactic, and al I subgoals generated by this tactic are now "PROVED", the system ill back further up the tree, this may continue por many steps; eventually the system will stop and tell the usep whieh goal has now become THISGOAL, and whlchnembers of its GOALLIST remain to be proved,

The following example continues the one above, and il lustrates TRY and QED:

```
(*****TRY 2;
113 F 三G (13) ) The system makes the assumDtions.
114x \ Y (14) )
|*#***APPL[ 13,X; )
|15 F(X)=G:X) (i3) )
1*****APPL G.14; )
110G(X)\equivG(Y) (14) ) The user Droves the goal,
1***##TRANS 15,16 )
117 F(X) EG(Y) (13 14) )
| )
1*****OED; ,
IGOAL #2 PROVED, RACK UP TO TOP LEVEL, ) The system
IREMAINING SUBGCALS: ) backs uD.
11 FeG
```

The ABANDON command,

ABANOON indicates that the user doesn't like his curpent trial of THISGOAL, The effect will be to restore figure 3 to figure 2 © but the status of \#2\#1\#2\#3 becomes agaln "NOT TRIED". Thus no further backing up can haoden.

The SCRATCH command,

SCRATCH removes the indicated goal from GOALLIST, However, the system will refuse to scratch goals generated by tactics.

Tactics，

We now describe the tactićs avaliable．There ape six basic ones，each based on a particular inference rule；in addition the usep may omploy any THEOREM（see section 3．7）as a tactic．

For CONJ，thesystem generates a separate subgoal fop each ＜awff in the goal．

For CASES，if s is the 〈term＞and P is the 〈wff of the goal， the system generates the 3 subgoals P SASSUME sETT，p SASSUME sEUU，p SASSUME SEFF。

For ABSTR，the system instantiates in each＜awf in the goal for as rany bound variables as arebound by the outermost λ In its left－hard side，thus generating a single new subgoal，Now variables are chosen which are not free in the proof so far，for examole，If the goal is［iXXY，F（Y，X）］ $\bar{j}[\lambda Z, G(Z, Z)]$ ，and X is already free in the Proof，the new goal willbe $F\left(Y_{1} X_{1}\right) \equiv G\left(X_{1}, X_{1}, Y\right)$ ．

For SIMPL，the system generates a new subgoal by simolifyling the goal as far as possible，using a modifled simpSET（if any＂By＂op ＂WO＂Is present）as explalnedin section 3．2 under the SIMPL rule． The roaifled SIMPSET remalns in force，but the old one will be reinstated when the new goal is eitherproved or ABANDONed（gee section 3．5）．If the system aiscovers that all＜awffs of the new subgoal are identically true－i，e，they are ail of the form ses or s三s or UUEs－it initiates the backing up process described under QED above instead of generating the subgoal，If some but not all of the ＜awff＞s are identically true they aresimply omltted from the new subgoal，

For SUBST，the syitem generates a new subgoal by substituting the phs of＜stepname＞for the lhs of 〈stepname＞In the goai either throughout， $0 r$ at the designated occurrences when an＜integer＞－ilst is giver．（see the caution on occurrence numbers in section 3．6）．

For INDUCT，let Pbethe 〈wff of the goal，The system chocks that＜stopname〉 has the form $s \equiv[\alpha y, t]$ ．i，e．that it is a recursive definition，Inthat case，it generates two new subgoals，The first is

$$
P(U U / s)
$$

and the second Is

$$
P\left\{t\left\{y^{\prime} / y\right\} / s\right) \text { ASSUME } P\left(y^{\prime} / s\right)
$$

where y^{\prime} is a variable not previously used free，and where the substitution in pakes olace at aporoorlate occurrences，exactly as for SUBST above，

For USE，the＜identifier＞is a theorem name，The system will instantiatethe THEOREM by matchirs its consequent to the goal， taking Into account any instantiations supolied explicitly by the User，and will genepate tne aporopriate instance of lts antecedent as a now qoal．See section 3．7 for a fuller discusslon of THEOREMS，
we now give exampios of each tactic（except CONJ，which is Easy to understand）．Some are realistically combined．

```
->|*#*#COAL P->X,P->Y,E \equivF->X,Z;
```

 INEWGOAL \# \(P \rightarrow X, P \rightarrow Y, Z \equiv P \rightarrow X, Z\)
 1
 $\rightarrow 1$ \#***TRY CASES P;
INEWGOAL \#1\#1 $P \rightarrow X, P \rightarrow Y, Z \equiv P \rightarrow X, Z$ SASSUME $P \equiv T T$
INEWGOAL $\# 1 \# 2 \quad P \rightarrow X, F \rightarrow Y, Z \equiv P \rightarrow X, Z$ SASSUME $P \equiv U U$
INEWGOAL \#1\#3 $P \rightarrow X, P \rightarrow Y, Z \equiv P \rightarrow X, Z$ SASSUME $P \equiv F F$
\rightarrow I\#\#\#\#\#TKY 1 SIMFL;
125 PミTT (25)) Hepe SIMPL peduces goal
$126 P \rightarrow X, P \rightarrow Y, Z \equiv P \rightarrow x, Z(25) \quad$) \#1\#1 to identity, using
IGOAL \#g.a1 PROVED. BACK UF TO GOAL \#1, 25 ano also an instance
IREMAIIIINO JIIEGOALS: \quad) of CCNDT as simp. pules,
$12 \mathrm{P} \rightarrow-$ - - - - \quad SASSUME $P \equiv J U$
$13 \mathrm{~F} \rightarrow-\cdots$ - - - ZASSUME $P \equiv F F$
1
\rightarrow (\#\#\#\#\#TAY 2 SIMPL;
i(etc.)

The example looks long，but the users contribution（shown by $" \rightarrow$＂）is short．（The system keeps reminding the user of what subgoals remain，the＂hard cooy＂proof produced by the SHOW command will be comparatively smort．

The next examole illustrates the remaining tactics，and also apolication to a darticular subject matter－lists．The first four steps are the pesult Of SASSUME oy the user．Note also the abbreviations $\forall X Y$ ，etc．，a sexplainedin section 3．6．

```
    11 YK y. HO(CONS (X,Y)) \equivX (1)
    12\forallXY, TL(CONS}(X,Y)) 三 Y (2)
    13\forallX,Y,NULL(CONS(X,Y)) 三FF (3)
    |4 NULL(UU) \equiv UU (4)
-> 1****#ASSUME AP \equiv, \alphaF, \lambdaX Y,NULLL X Y Y,CONS(HD X,F(TL X,Y)):
    15 AP \equiv[看,[\lambdaX Y,NULL(X)->Y,CONS(HD(X),F(TL(X),Y))]] (5)
```

```
* 1*****F|XP 5;
    16 AF \equiv[\lambdaX Y,NULL (X)->Y,CONS(HD(X),AP(TL(X),Y))](5)
-1***##COAL \forallX,AP(X,AP(Y,Z)})\equivAP(AP(X,Y),Z)
        NEWGOAL #1 \forallX,AP(X,AP(Y,Z)) ミAP(AP(X,Y),Z)
* I*****TRY INDUCT 5 OCC 1:4;
    |NEWGOAL #1#1 \forallX,UU(X,AP(Y,Z)) ミ AP(UU(X,Y),Z)
    |NEWGOAL#1#2 \forallX,[\lambdaX Y,NULL(X)->Y,CONS(HD(X),F1(TL(X),Y))]
    |(X,AP(Y,Z))
    I\equivA\dot{A}([\lambda\mp@subsup{X}{}{Z}Y,NULL(X)->Y,CONS(HD(X),FI(TL}(X),Y))](X,Y),Z
    IASSUME \forallX,F1(X,AP(Y,Z)) ミAP(FI(X,Y),Z)
-> |*****TPY 1 ABSTR;
    |NEWGOLL #1#1#1 UU(X,AP(Y,Z)) ミAP(UU(X,Y),Z
    I
    ->|##**TRY SUBST 6 OCC 2;
    |NEWGOAL #1#1#1#1 UU(X,AF(Y,Z)) 三
    | [\lambdaXY,NULL(X)->Y,CONS(HD(X
* I*****TRY SIMPL;
    17 UU(X,AP(Y,Z)) \equiv[迋,Y,NULL(X)->Y, CONS(HD(X),AP(TL(X),Y))]
    IGOAL #1#1#1#1 PROVED, BACKUP TO GOAL #1#1#1. NO MORE SUBGOALS
    | UU(X,AP(Y,Z))=AP(UU(X,Y),Z) (4 5)
    |GOAL #1#1#1 PROVE& EACKUP TO GOAL #1#1. NO MORE SUGGOALS
    19 }\X,\cup\cup\cup(X,AP(Y,Z)) \equivAP(UU(X,Y),Z)(4 5
    IGOAL#1#1 PROVED, RACKUP TO GOAL #1.
    IREMAINING SUBGOALS:
    l2 (Herefollo w sapestatemento fgoal#1#2)
    |(etc,)
```

Note that simplification lusing the built－in simolification pulesconv and MIN2 and CONDU a s well a s Steo 4）reduced goal \＃1\＃1\＃1\＃1 to identity，and the system generated step 7 on these grounds，\quad n backing up，it generates an explicit flnal step， identical to the goal statementinltswfe to tie up the proofof each goal proved．

Note also that the user＇s contribution（Indicated by＂ه＂）is short in the above example．

Finally，here is an examoleof theorem used as a tactic （read section 3.7 first：）．It also shows how the user can make many of the inference rules into tactics－even using the same names，of course，THEOREMS used as tactics will at leasta s often be suostantial results previously droved and filed（consider the frequent occurrence in informal proofs of＂to prove xxx it is sufficient，by Theorem $A A A$, to Prove Yyy and $Z Z Z^{\prime \prime}$ ）．

```
First, to make a THEOREN out of the TRANS pule:
|##***ASSUME XEY, YミZ;
151 XZY (51)
152 YミZ (52)
|
|*####TRANS --.-;
153 XEZ (51 52)
|
|*##*THEOREM TRAVS: 53
ITHEOREY TRANS: XEZ ASSUME XEY,YミZ;
```

Now to use TRAIUS as a tactle:
! *****GOAL F(A,X) $\operatorname{EG}(x)$;
INEWGOAL \#1 $F(A, X) \equiv G(X)$
ITRY USE TRANS YoH(X,A);
INEWCOAL \#1\#1 $F(A, X) \equiv H(X, A)$
|NENGOAL \#1\#2 $H(X, A)=G(X)$

Note that the X, Y, Z of the THEOREM are metavapiables which do not conflict with the vapiatles of the proof，

```
3.4 Miscellameous Commands
```


The SIMPSET command．

```
SIMPSET __- ( (+|-) _._(\langlepange\rangle,_-. )... ;
```

The stels designated are adoec to op removedfrom the set of simplification rules（See section 3．5）．

The SHOW comband．

SHOW

THEOREMS í（ $\quad \ldots,\left\langle i d \theta_{n t i f i e r\rangle, \ldots)\}}\right.$ GOALTREE ？＿－．．，＜range＞，．．．． THISGOAL GOALLIST
 STEPS ？－－．．〈pange＞，－－． SIMFSET ？．．．．〈pange〉，．．．．
 $\overrightarrow{\mathrm{T}} \mathbf{T}^{-}\langle$identifier〉 ？$\langle$integer〉；
If the final 〈ldentifier＞is present the material ls sent to the fle named，otherwise it is displayed on the Console，the finai 〈integer〉 if present denotes the linew width．

If $a<r a n g e>$ or＜identifier＞－list is not present，the whole is shown，The＜ldentifler＞－list for AXIOMS op theorems denotes the particular axioms or theorems required，The＜range＞－list for GOALTREE refers to levels（ \mathbb{Z} is tod level），and for PROOF，STEPS，SIMPSET and LABELS refers to steonumbers，Thus

SHOW STEPS ：3，8，20：23， $30,55:$ ：
will show steps $1,2,3,8,2 \not, 21,22,23,30$ and 55 onwards of he proof， with no goal structure；SHOW PRCOF wlll show steps with goal strueture，Solsnopmally used with a single＜range＞，opr a whole oroof．Only the steonumbers bound to labels are shown．

The FETCH command．

FETCH．．．．＜identifier＞，．．．；
The＜identifiep＞－ifst names fles，Axioms and theorems on those files will be broughtin，In fact any admissible commam＇os on these files will be treated exactly as if tyoed at the console er．b． ASSUMptions may be made－so the user may prepare such flies other than by SHOWING axioms or theorems，Much of what a user tyoes ls dependent on the stepnumbers that the system is generating，so the use of files ppedaped offline islimited．However，this difflculty is somewhat alleviated by the Label command（seebelow）．The files are expectec t be simply sequences of commands，so severalfiles may easlly be concatenated without editing，

The CANCEL command，

CANCEL ？〈stepname〉；
This steps back through the＜stepname＞given，otherwise just the last step．Cancelled steds ape removed from the SIMPSET，Goal trials encountered will be ABANDONed，It is not Dossibleto cancel back dast any step which proves a goal，

The INFIX command，

INFIX＿．．．，＜identifier＞，＿．．；
This causes all the＜identifier＞s named to be treated exactly as ＜infix＞es（see section 3．6）．ln particular，the user must henceforward＂！＂them in non－infix contexts，

The PREFIX command，

PREFIX－．．．－＜identifiar＞，．．．：
This revokes the infix status of al 1 ＜identifier＞s named，standard ＜infix＞es are immune from this，however．

The LABEL command，

LABEL ．．．．〈identifiep〉？〈stepname＞，．．．－：
Each：＜laentlfiep＞is attached as a label to the stepindicatedoy the〈stepname＞if present，otherwise to the next step to be generated， Thus after＂LABELDO－；＂the previous step and Its Predecessors and successors may be later referenced bythe＜stepname＞s＂．$D D^{\prime \prime}, ", D D-1 "$ ， ＂．UU＋1＂etc．

```
At any stage in a proof, there is a Current get of simplification rules, Steps may be added toor removed from the simplification rule set (SIMPSET) in five ways:
- By sassume (See section 3.2)
- By the SIMPSET oommand (see Section 3.4).
- By the goal tacticsIMPL(See Section 3.3).
- If the SIMPSET Was modified by attacking a goal with a SASSUMDtion (see section 3.3) or by using the SIMPL tactic, then it will be utomatically reinstated when the goal is proved or ABANDONed, - By Cancel (see section 3,4).
```

Simplification is invoked only by the SIMPL rule, (3.2) and by the SIMPL tactic (3,3). The rules are then apollod repeatedly to ail subterms of the apdrodplate awf or term until they oan be apdiedno further,

An adollcation of a simolification rules $\equiv t$ consists $t n$ finding all occurrences of sand replacing them by tsothe user must be careful not to make something like $F(x) \equiv G(F(x))$ a simplification rule, or he will cause indefinite expanslonil. In addition, in the case of a simplification rule Vxrxy... . $\mathbf{s}^{-}=$all Instances of s, gained by peplacing x, y, \ldots by apblteary terms in s, will be replaced by the appropriate Instanoes of t.

There are five bullt in rules: CONV (X-CONVERSION), MIN2 (UU(s) ミUU) and CONDT, CONDU, CONDF (simplification of conditionals) (see these rulos of inference in 3.2). Together with the provlously mentloned feature, this wlll allow the assumption

$$
\forall X Y, H D(\operatorname{CONS}(X, Y)) 3 X,
$$

when used as a simplification rule, to peduce
HD(CONS(s1,s2))
via $[\lambda X Y, X](s 1, s 2)$
to
s1.

Such fopmulae may usually be kept permanently in the SIMPSET. Others, notably the SASSUMDtions of the CASES tactic, wlll come and go under system control, Still others the user will need to hande himselfi a good example is the result of Fixp on a recursive definition of form $s \equiv[\alpha x, t]$ - the result has form $s \equiv t(s / x)$ and so oan lasd 0 indefinite expansion as a simollfioation rule, but will not do so in the case that the recursive computation, which lt will carry out, terminates as a consequence of other members of SIMPSET.

3．0 Syrtax

As well as the usual BNF conventions we use the following：
\＆\} apefor grouping syntax patterns 8
？Defore a pattern means optional，
．．．f．－．means one or more instances of the patternp， ．．．．．．．．．means ons cr nore instances of P separated by commas．
$\langle w f f\rangle::=\ldots,\left\langle a w f f^{\prime}, \ldots\right.$

＜tepm＞$\{\equiv \mid c$ ）＜term＞
＜term＞：：＝＜infixterm＞｜＜conditiona｜term＞
＜conditiona｜term＞：：＝＜infixterm＞$\rightarrow\langle t e r m>,\langle t e r m>$ ＜｜nfixterm＞：：＝〈simpleterm＞？＿＿（＜infix＞＜simpletepm＞\}....
 （..- ．$\langle t e r m\rangle, \ldots$ ））．．．．
＜c｜osedterm＞：：＝＜identifier＞｜＜入tepm＞｜＜बterm＞｜＜termname＞｜ （〈tarm＞）

〈入term＞：$:=[\lambda \ldots \ldots$ Identifier＞，，，,$\langle t \theta p m\rangle$
$\langle\alpha t e r m\rangle::=[\alpha\langle i d e n t i f i \theta p\rangle,\langle t e r m\rangle]$
〈identifiep＞：：＝＜word＞｜：＜lnfix＞｜－｜a
\langle word＞：：＝－－－i＜｜etter＞｜＜d｜git＞｜．．｜，－
＜infix＞：：＝anyo fthe single characters
or any＜word＞with current INFIX status（3．4）
Spaces ray occup anywhere excect within a 〈word〉，but are only necessary to separats＜wora＞s or to separate＂．＂from a digit （e．g．if＂$\forall x$ ， $\boldsymbol{x} \leq x \equiv T T "$ ），The later ls because the MLISP？ narser takes＂． $\boldsymbol{x}^{\prime \prime}$ as a ingle element or token，

The brackets round 〈入tepm＞s and＜aterm＞s may be omitted when no arblgulty arises，
Examoles follow，with Intended interpretation：
－$F \rightarrow Q \rightarrow X, Y, R \rightarrow Y, Z$ is a＜conditionalterm＞，abbreviating

$$
P \rightarrow(Q \rightarrow X, Y),(R \rightarrow Y, Z)
$$

－$A P(A P X Y, Z)$ is a＜simoleterm＞，abbreviating

$$
A P(A P(X, Y), Z) \text { Or } A P((A P(X)) Y, Z)
$$

$$
\text { OP }(A P((A P(X)) Y)) Z
$$

（Thus the type which we should associate wlth Ap is $(\beta \rightarrow(\beta \rightarrow \beta))$ ，whepe β is the type of individuals．）
－XX Y，NULL $X \rightarrow Y, T L X_{D}$ is a 〈入term＞，abbreviating
$[\lambda X,[\lambda Y,(N U L L(X) \rightarrow Y, T L(X))]]$

$P \rightarrow X, U U \equiv P \rightarrow Y, U U$
－$\forall X, f(X, X) \equiv Y$ is an 〈awff，abbreviating
$\lambda X, F(X, X) \equiv \lambda X, Y$
$m \quad \forall X Y, X=Y:: X \equiv Y$ is an 〈awfi，abbpeviating
$x x \quad Y, X=Y \rightarrow X, U U \equiv x x \quad Y, X=Y \rightarrow Y, U U$
－$: \in \equiv \lambda X L, X=H D(L) \rightarrow T T, X \in T L(L)$
illustrates the＂：＂－ing（which may pronounced＂shrloking＂ or perhaps＂howling＂）of＜infix＞es，which is necessary whenever they are mentioned in a non－infixed context．

Many examples of 〈wfi＞s and 〈awff＞soccur throughout this paper，
Caution：：Some commands refepto occurpences of a＜term＞in a 〈wfi＞． Occhrences are counted from left to right after al loceureances of ＂：$:$（which is an abbreviation for legibility reasons only）have been expanded as indicated in the examples，and with＜infix＞es considered as prefixed，

```
3.7 Commands for Axions and Thonrems
```

We row descibe now the user may create, storeaway, andeten axioms
and theorems, so that he can buildupa file of results over several
sessions on the computer, and does not have to start from scratch
each tine,
We startwithasimole example, and then describe the new commands in
detall.
\#\#\#\#\#AXIOM LISTS: $\forall X . N U L L X:: \quad x \equiv$ NIL,.,, $;$
|The user creates an axion consisting of several
<awff>s: the example uses only one, so the others
lare represented by ---. The system lists them
|for hlm - as new steos-and wil I remember the
lcollection by its name: - LISTS,

AXIOM LISTS

```
1 - - -
2 - - -
3.}\forallX,NULL(X):: X ミNIL
4-.
```

*****SASSUME NULL YミTT;
5 NULL(Y)ミTT (5)
*****APPL $3, Y$;
$6[\lambda X, N U L L(X) \rightarrow X, U \cup](Y) \equiv[\lambda X, N U L L(X) \rightarrow N!L, U U](Y)$
*****SIMPL 6;
7 YミNIL (5)

Note that the SASSUMDtion 5 has been used，so litappears as a condition for 7.
＊＊＊＊＊THEOREM UNIQUENULL：7；
IThe user wants to keed the result 7 －he will be
Ite able to Instantiate for Y in later use，so the Isystemreally treatslt as a metatheorem，The lsystem writes it in full for nim，reminding him Ithat It depends on LISTS：－
THECREM（LISTS）UNIOUENULL：YENIL ASSUME NULL（Y）ミTT
－－－
－－－
－－－
ISuppose that the user proves some more theorems，
land then wants to keep his axioms（there may be （others besides L！STS）and theorems．He says：

```
****"SHOW AXIOMS AXFILE;
```

*****SHOW THEOREMS THFILE;

IHecan actually select jüst some to be koot (3.4). Also Iff he omits the filename, they will not be kept lout displayed,
\ldots NOW, ON SOME LATER OCCASION:

```
- - - 
- - - -
```

lThe user decides ne now wants to talk about llsts, land would like the theorems that he prevlously oroved,
*****FETCH AXFILE, THFILE;
AXIOM LISTS
15 - .
16 - -
$17 \forall x_{1} \operatorname{NULL}(x):: x \equiv$ NIL
18. - -

THEOREM (LISTS) UNIQUENULL: YミNIL ASSUME NULL(Y) ETT

- -

23 NULL(HD(Z)) ETT (15 18)
Heapolies the theorem, as follows (and In thls lcase the only free instantiable variable ls y):

*****USE UNI QUENULL
 231

$24 H O(Z) \equiv N I L(1518)$
IIt is Possible that not all theinstantiable vaplables loccurin the hyoothesis of the theorem; the full Idefinition of the USE command shows how they may lbe Instanttated.

We now give the new commands which concern axioms and theorems，

The AXIOM command，

$$
\text { AXIOM }\langle\mid d e n t i f i e r\rangle: \ldots,\{\langle s t e n n a m e\rangle \mid\langle a w f\rangle\}, \ldots-\ldots ;
$$

The system will remember all the＜awfiss，mentioned explicitly of designated by an＜stepname＞，by the name＜icentifier＞；it alsolists then．－each with anew stepnumber．Thereafter，any THEOREMs created， and saved by the 5 hOW command，will be tagged as dependent on this axior．

The THEOREM comma－nd，

THEOREM $\{\langle i d e n t i f \mid e p\rangle:\langle s t e p n a m e\rangle \mid$ ？\｛（－－i＜identifiep＞，）） $\langle i d e n t i \bar{f} \bar{i} \theta p\rangle:\langle w f f\rangle$ f（ $\bar{A} \bar{S} \bar{S} U M E\langle w f f\rangle)\rangle ;$

The first oction is for naming a proved result designated by ＜stepnare＞－as a theorem，The second oat ion is for naming an explicit sentence－i．e．〈wff〉？（ASSUME 〈Wff〉）－as a theopem，and saying what axioms lt depends on lthe lists of＜identiflep＞s is a list of axiom names），

In the first option，the system wlll remember the theorem by name， and tag it as dependent on al axioms opesent in the system．

In the second ootion，the systemwll check that the axioms mentioned are Dresent（if not it Will warn you）and in anycase will remember the theorem by name，and tag it as dependent on the axloms mentioned． This option is used by the systemasfollows when the user saves a THEGEEM on afileusing the SHOW command，what the system wites on the，file is precisely an instance of the secondodton，so that when the userfeTches the theorem on a later occasion he will be warned of any aDDPODPlate axioms that are not present so that he can fetch ther，too．

The USE command,

<|nstantiation>: : = <ident|f|ep> c <tepm>
The first <ldentiflep> must be a THEOREM name, and the system checks that all axioms on which it depends apepresent. The system treats the theorem as a metatheopem in that allits pres varlables, exoeot those whioh are free in axioms on whlchit depends, ape treated as metavarlables $t \quad 0$ be Instantiated, The user supolles the Instantiation In p a r tin two ways. Flpst, the list of <stepnamass desionates a list of <awfi>s, and some or all of the metavarlables are bound by matching this list to the anteoedentilst of the theorem,

Second cince there may be metavarlables whloh occur only in the conseauent of the theorem the user may give a list of instantlations each of which binds a tern to a metavarlable.
Any metavarlables not thus instantlatedwill just be left as they stand, After matching, the USE command will generate a new sted which is simoly the apDPODrlate instantiation of the consequent of the theorem. Examolei

```
1*****AXIOM AX1: XEY;
IAXIOM AXI
11 XEY
1*****THEOREM (AX1) TH1: PEZ ASSUME ZER;
1--
115 F(Y) \equivG(X,Y) (2 6)
1*****USE TH1 15, P*H(X);
116H(X) #F(Y) (2 6)
```

```
4. HOW TO USE THE SYSTEM LCF
```

4.1 Initialization and Tepinination

R LC
The system returns with an asterisk: You are nowtalkingto LiSP,
(INIT)
This will Initialize the systemowhlen returns with 5 asterisks you are ready to generate a Proof by the commands of section 3. 5 asterisks is alwaysthe signal far a command. Remember, al commands end with a semicolon.

To finis a poof dafter maybe preserving lt on ilo using SHOW) type
\$;
The system willtyde ENDPROOF and You apethen randy to tart another proof with
(INIT).
It is possible to save your cope Image so as to presume the proofatalater time. To do this type

- C

SAVE <fl|ename〉
-and you can then either continue immediately by
START
(RESUME)
oratalatortime by
RUN 〈filename>
(RESUME)

```
4.2 Erpops and Recovery
There are threetypes oferrormessage:
- If you commit a syntax erporin a command, thesystem says
SYNTAX ERROR; TRY AGAIN
```

```
- If your command ls semantically suspect - for examole, you try to apoly trays (transitivity) to two steps for whlch it is inaporodriate - you willget something like
NASTYTRANS: TRY AGAIN
*****
- If you break the systom somehow and get a' LIsp error, usually something-like
3246 ILL MEM REF FQOM ATOM
*
*****
then you can try something different lyour first command may ylelda syntaxerrop, In which case Just repeat it); however, this should not occur and Malcolm Newey orl would like to know how it occurred,
If the system gets into aloop (the only known cause is if your SIMPSET allows indefinlte expansion) then
\(\rightarrow\) -
Start
(RESUME:)
will restore you, If you thereby abopt a (longo \(r\) looping) simplification invoked by the SIMPL tactic youwill also need to AEANDON.
```


5, ACKNOWLEDGEMENTS

The system is entirely basad on the logic prooosed by Dana Scott at Oxford in 1969 but undubllshed by him,

Iam grateful to Rlchard Weyhrauch for designing a better simplifloation algopithm which has provedindispensable, to Malcolm Newey for undertaking the necessary programming for coprectlons and improvements to the system. including the simolification lopoithm. and to both of them for constructive celticisms and discussions which have led to many improvements, I also thank John Mecarthy for encouraging me to undertake thls wopk,

The programming of the system was eased enormously by the MLISP2 extendible darser due to Horace Enez and David Smlth, and by the help they gave me in using lt, Infact, extensions to the system will be simole fop the same reason.

