STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-169

STAN-CS-72-288

LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTATION

. BY

ROBIN MILNER

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

MAY 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

—

i.

LOGIC FOR COMPUTABLE FUNCT]ONS

DESCRIPTION OF A MACHINE IMPLEMENTA TION

by
Robin M} Inep

CONTENTS

INTRODUCTION e B

THE LOGIC LCF « = o @« @« = = a

THE MACHINE IMPLEMENTATION QF LCF
3.1 An Exgmple - = a a
rules of Inferenge =« =
Goalworjented Commands
Mlsce|laneoys Commands
Simplificatlion Rules =
Syntax = a4 = a a =

WWW W
NOUIa WN
9 8 8 0

Commands for Axloms and Theorems

HOW TO USE THE sysTem LCF @ = = o =
4,1 Inittiallzatlon and Termination

4,2 Errors and Recovery a a

ACKNOWLEDGMEN TS - .- . w w o= o

LA A A R R B X % J

a

11
17
24
27
20
30

34

34
35

36

1. INTRODUCTI]ON

LCt is based on a laasic of Dana Scott, proposed by him at
Oxford in the Fall of 1969, for reasoning about computable functions,
In Section 2 we present this lodic, essentially as Scott himself
presentea It, but vusing the typed X-calculus instead of the typed
combinetors S end k, since the former Is more famillar to computer
scientists and is in any case easier to work With, Sectlon 3 then
describes the machine implementation of a proof-checker for the
jogic, We refer to both the loglc and the Implementation as the tyned
logie for computahle TFunctions, or typed LCF, or Just LCF,

The Joalc presupposes no special domain of computation (e,3,
lists Or integers), However, particular domains can be axlomatized in
it ; Scott gave en axiomatization for arithmetic and we suggest a
partial axiometization for lists In Section 3, But many Interesting
results - e,g, @aeguijvalense of raecursion equation schemata = are
provable in the pure logic Without any proper (non-logical) axloms,

It is hoped that a potential user of the system ¢an, with the

heisr of the example of Section 3,1 and W!lth Section 4, get onto the
machine without reading the whole ¢f this document,

Further discussion of LCF and examples of Its applications
can ne found in the fojilowing papérs:?

Milner,R.,» "Implementation and appllications of Scott’s logic for
computable functions”, FProe. ACM Conference on Proving Assertions
about Prodrams, MNew Mexico State lUniversity, Las Cruces, New MeXico,
Jan 5=7,1472,

Wevnrauch,R, and Mi |ner, "Program semantics and correctness in a
mechanized |owic", Proc, USA-Japan Computer cConference, Tokyo, O0ct
1972 (to appear),

Miiner and Weyhrauch, "Proving conpiler correctness In a mechanized
logie", Machine In.,elligence 7, ed, O, Michie, Edinby.gh Uniye,gigy
Press 1972 (to appear}.

NeweyY,M, , "axioms and Theorems for integers, lists and finlte sets in
LCF", forshcoming Al Memo,, Computer Science Dept,, Stanford
University, 1972,

we give no further references here; they may be found in the above
paners,

hY

-

r"-—-‘

2, THE LOGIC LCF

Tynes

At bottom "tr" and "ind" are types, Further if Bl and B2 are t¥pes
ther (B14B2) is a type, We adapt the convention that = associates to
the right and freguentiy omit prarentheses; thus we write Bl «R2aB3 for
(B14(B2483)), With each term Of the logic there is an wunambiguously
associated type, For a term t we wplte

t:F

to mean that the type Aassociated With t is [, Throughout we use
B,31,B2,,,, 2as matavariables for types.

Terms (metavariableg s,tsslritls,,.)

- o = o -

The following are terms:

Identifiers(metavariables X,¥) =~ sequences of Upper oOr lOwer

letters and 4i3its. We assune that the type of each identifier
is Uniquely determined {n some manner,

Applications = s(t) : 32 , where S5:P1-132 and t:81,
Conditlonalg = (s*tl,t2) ¢ B, where sitr and ti1,12:8,
M=oxpressions - [Ax,s5] ! BleB2 , where x:B1 and g:p2,
®=expressions - [¥x.5] ¢ B , Where X,s:R,

This strict syntax is relaxad In the machine implemeritation (see
Section 3) to allnw a saving ot Parentheses and brackets,

Ths intended interpretation OF the o-gxpression [af,s] IS the
miniral fixed-point of the functlion or functional denoted by Cif.sl.
For &xarpje:

Caf, IAx, (ptx)=f(alx)),n(x))]]
denotes the function dafined recursively as fol lows:

fix) <= if p(x) then fla(x)) else b),

Constants

The identiflers TT,FF denote truthvalues true and false, |jy denotes

the totally undefined object of any type: In particular, the
undefined truthvalye,

Atomic hell-formed formylaa (awffs)

W O s G W IR G WG TGS R e W WD e Wy

The follow/n3 s an awff:
s <t

where s and t are »af the same type, The intended interpretation of
s€t iss roughly, tmat t Is at least a s wel! defined as, and
consistent wWlth, s,

Well=fopmed formylag (Wwffs) (metavarliapjas P,Q,P1,Q01,...)

"W W TR T N E Y T e e W

‘Wffs are sets of zero Or more awffs, wrltten as lists with separating
commas, Thay are interpreted as conjunctions, We use

s 3 ¢t

to abbreviate s¢&t, {cs ,

Sentences

-Sentences are impiigatlons between wffs, written

P |l= Q
or, if P i35 ampty, just
|= @
Procfs
A meoof is a saguence of sentences, each being derived from Zero or

more preceding sentences by a rule of inference,

=

.

[

(-

r— r———- r__.,‘

r————y

Inference rules

Let Us wrlite P(s/x) or t{s/x) for the rasult of substituting s for
al ! free occurrences of x in P or t, after first changing bouynd
variables lﬁ P or t so that no variable free Insbecomes boundby
the substitution, Wwe have not stated aoxmditions on the types o f
identifiers and terms With each rule; any gonsistent assignment of

types s admissible,

»annn | - RULES A
INCL ceceeerea. (2 a subset of P)
L
P]- Q1 P 1- 32

CO:‘}J hadadiadh e il R R L X

P l- Q1uQ2

PL 1- P2 P2 |= “3
CUT bl di Al I o ox NG A s D e Aoy
P1 = P3
* %R (S RULES 4% %
APPL e LT P R e PR T
sl © g2 |- ti{sl) c ¢(g2)
REFL R TP,
P I = s © s
P | - s1 c g2 P | = s2 ¢ g3
TRANS e et . R TIE I R iU, L .
P |- sl © 53
E R X ¥ X Uy SULES LE XX
MINT L
”' UU [s

MINZ LA IR [.

|- Uts) =« uu

Sutay CONDITIONAL RULES LA LA

CONDT LE L XX XN X X N XY YN J

| = TT = st 2 s

CONDU MmN D WO W g s R W e

j= UU = g,4 5 UU

CONDF B L L T Ty, -
I= FF = syt £ ¢

b AR A A RULES T
P J- s et

ABSTR L R T LA L L L L (x nOt "‘ee in P)
P | - [Ax.sd ¢ [Xx.t]

CONV L R I R IS R X R R)
| = EAx,3](¢) = s{g/x)

1]

ETACONV cececcecccrcnana- - (x and y distinct)
|- CAx,¥(x)] = ¥y

P TRUTH RULE P

. Py s=2TT |- Q P, ssUU 1= Q Py s3FF |= @
P I= q
L2 XX 2 a RULES 2R
FlXP W W T g W - - e ey = en
| = Lax,s]) = s{[ax,s)/x}
P l= QUUU/x) P, @ 1= Q(t/x)
[NDUCT weemcccccecaneran LR TR TR PP (x not free In P)

P = Q{lax,tl/x}

- 7
- 3, THE MACHINE IMFLEMENTATION OF LCF

T s W AR R D AN D A W gy e P er TR WD e Wy e W

We now describe the machine version of the |oglic of Section
2, and how to use |t interactively on the machine,

o The yser nas available four groups of commands:

— e Rules of Inference - to generate new sentences or steps
from zero Or more previous steps, (Sectlon 3.2)

® Goal Oriented Commands -~ to specify and attack goals
¢ and subgoals, (Section 3.3)

e Mlisce|langous = malnly to do with displaying or filing
parts or all| of the proof so far, and the goals, (Section 3.4)

¢ Commands far axioms and theorems = to enable the user to create
o axiom systems: to prove and fl le theorems in these systems, and
later to recall and instantliate those theorems, (Sectlon 3,7)
L Before aescribing the commands In detal|, and the syntax of Wwffs,
terns, etc,, it may de helpful to see an example,

—

3.1 An Example

Let us Introduce the macnine version of |LCF by a simnle

exarple Wwhlch, although short, exhlbits many of the features, It Is

a prodf Of a version of recurslion Induction, which states that [f F

L is aefined recursively and G (another funoction) sat]sfies F’s

recurslive definition thsnfeG, Inother wards, weprove that F s
the minimal fixed point of Its defining equation,

v After Initial lzation (see Section 4), the system types 5
asterisks as a signal to the user to Start a Dproof. IrlI fact8 5
asterisks are always the signal for the user to continue his proof.
Thus, -in what follows the user"s contribution may be distinguished by
being preceded by #%#a#, We explain each user and machine
contribution on the right of a vertical line,

*AEEXASSUME FZLeF,FUN FIJ, GSFUN G
IThe user assumes a w~ff (a sequence of atomic wffs
Iseparatedoy cOommas, where each atomic wff has I Or
leinfixed between two terms)., Every user
lcommancendswith a semicolon, petailed syntax Is
lgiven later - but note in particular that application
Imay be represented {(som3times) by Juxtaposition as In
I "FUN G" to save parentheses, Note also that F oc¢curs both
Ifree and bgupnd (by 2) wilithgut confuslion.,

1 FECaeF ,FUN(F)] (1)
2 GEFUN(G)Y (2)

|The machine separates the assumption into two sentencesO
lgiving each a stepnumber., Every sentence which the

Imachine generates Will have a stepnumber, and wl|| consist
lof a wff followed by a |ist of stepnumbers of assumptions
lon which the wff depends, A sentence

| n P S

Iwhere P is a wFf ard S a |ist of stepnumbers {s the
lanalogue I n LCF of the sentence

| ¢ |- P

\

lof pure LCF, where @ Is the conjunction of assumptions
ldeslgnated by S, Each of steps 1 and 2 above thus
Irepresents an instance of P |~ P, which is a special
lcase of the inclusion rule of Section 2,

sunasGOAL FeGs

IThe user states his goal, but does not attack it vyet,

IHe might | ist several goals before attacking any of them;
l'in each case the machine Will simple glve a goal number:

NEWGOAL #1 FeG

IGoal numbers are dlstingulshed from stepnumbers by #,
ssxsasaTRY 1 INDUCT 1;

IThe user wants to attack GOAL1 using the tae¢tlc of

I induction on Step 1 = which is (as it must be)la
Irecursive ceflinitton - l,e, FILaF,FUN(F)],

NEWGOAL #1#1 UleG
NEWGOAL r1#2 FUN(F1)eG ASSUME F1¢G

|The machine Says that the Induction base and step

fmust be established, For the step 1t pleks an arbitrary

I identifiegr not used previously (actually for mnemonic reasons
lit picks somgthing whigh only differs from the Instantiated
Ibound veriable in Its numerical suffix),

IWe now have two goals generated by the machine, at

la lower level, The user need not = but probably wil| =
lchoose to prove #1 by proving #1#1 and #1#2,

sauaxTRY 13

9

|User chooses to attack #1#1 first, He need (and must)
lonly refer to the goal by the last integer In its goal
Inumber, This time he doesn"t state a tactic = he knows
fhow to prove it himself = so the machine merely steps down
la level in the goal tree-and waits. Actual ¥, he could
luse the SIMPL tactic (see Seotion 3.3)s since this
Itactic notices Instances of MIN1 and would therefore
|save the user his next twWo commands,

annneMINL G}

|The user notes that the subgoal UUsG can be proved

Iby the first minimality rule (see Section 2), s¢ calls
lit with the appropriate term = G = as parameter,

3 UUeG
IThe machine obediently generates the proper instance of
Iminima}ity, Notice that this sentence depends on no
lassumptions,

snnnaQED;

|The user can say QED to tell the machine that he has
Iproved exactly the goal under attack,

GOAL #1#1 PROVED, BACK UP TO COAL #1
REMAINING SUBGOALS:

2 FUN(F1)eG ASSUME Fi1e6

IThe machine agrees, Now in general 1t will baok up

| the goal tree until it fiinds a goal some Of Whosgsupgotls
lhave not been proved, It will remain at that level and list
| these subgoals for the user to trY.

ananaTRY 23
|Again, user glves no tactic,
4 F1eG (4)

IThe machine makes the assumptlon Of the goal! for him (note
(that goal #1#1 had no assumptlion), and wafts.

snnneAPPL FUN,4;

I"App Y FUN to Step 4" = an Instance of applicatlion (see
ISection 27,

5 FUN(FLISFUN(G) (4)

10
#unraeSYM 2;
ITuen step 2 around ready for an application of transitivity,
6 FUN(GIZG (2)

sxuusTRANS 5,6;

INote that the parameters of inference rules are always
Istepnumbers or terms, separated by commas,

7 FUNCFLYeG (2 4)

wxunaQED:
GOal #1#2 PROVED, BACK UP TO GOAL #1. NO MORE SUBGOALS

8§ FeG (2 1)

-

| w====The machine hasn"t fin/shed Yet, but not8 that it

Imakes an expllclt step to represent the proof of #1 (so
Ithat the whole sequence of steps, with all the goal
Istructure stripped away, shall be a formal proof), Note
lalso the assumptions of step 8,

GOAL #1 PROVED, RACK UP TO TOP LEVEL. NO MORE SUBGOALS,

I(There might have been more goals !|isted at toplevel,
Isince the user can list many before attacking any),

#xwnuSHOW PROOF RECIND;

IThe user decides to keep his proof on a flle cal|ed RECIND,

IThe versiion kept Is shown below, Notlce that not every=
Ithing which the user typed reappears; fn perticular, the
Istatemant of a goal is not reproduced, only its trial,

I1f the user wanted instead to display hls proof (at any
lpolnt, rot just at the end) he would Jjust type "SHOy PROOF;"

PROOF
1 F 2 [oF ,FUN(F)] (1) ==-= ASSUME.
2 G = FUN(G) (2) =--= ASSUME,
ITRY #1 F ¢ G INDUCT 1.,

PR RN X KR XX NI X R KA A KR XX]

ITRY #1#1 uu ¢ G
I3 . U e G =---—- MIN1 G,

WP WP T gy T U s YN Es R gy SN Y S W W W

~

r— r—— r—-

11

I | TRY #1#2 FUN(FL) © G ASSUME FL ¢ ¢ .

| | 4 F1 ¢ G (4) ---- ASSUME,

I 16 FUNCGY)SCGFUN(G)Y (4) ---- APPL 4 FUN,
(2) ==== sSYM 2,

| | 7 FUN(F1) < ¢ (4 2) --=-= TRANS &% 6,

| 8 e g (2 1) --—— INDUCT 3 7,

3.2 Rules of Inferance

WU DD RGP WD DR W g W e

l.et Us assume for the moment the syntax ¢lassas <wff>, <awffd>
(ateric wff), <termd>, Details of these are In Section 3.6, but for
now |ook only at the conventions given for syntax definftlons at the
start ©0f that Sectiogn,

We need for the present

<stepnamre> i:= <integerd| -----——- I . <identifier> 2{ (¢|=) <integer>
<terrnampe> ::= 7(:Gli<stepname> } ?2{ i<integer>)} {:L]:R)
<range> ;:= <stepnane> 1 ?<stepnamed ! ?<stepname

In a <stepnamed> "=" means "“the |ast steép", "+«" means the
last step but one, et¢c,, and for example ",ND-1" means the step
preceding tnat labe| led DD, See Sectlon 3,4, the LABEL g¢ommand, for
how to labe| steps,

A {termname> may appearanywhere that a term can appear = for
examrple as a subterm of a term - and frequently saves typlng lons
forrulae, We explain terrnames by a few examples (suppose the last
step was numbered 15) ,

$15:1:R)
., t=311R)
115:tR) al | designate the term which occurs s
-3R) right hand side In the first <awffd> of Step 15.
‘R)
:,0D:2:L deslgnates the Ihs of the second <awff)>
of the steplabelied DD,
tG!2:R) designate the rhs of the second <awff> ot

the current 9Jo0a| ~THISGpA|_ (See Section 3.3)

The <rangeds 12, 29:30, 142, 58: denote respectively the

single step 12, the steps 20 to 33 inclusively, the stepsup to0 and
including 4@, and the st2ps from 50 onwards..

12

We now llist the rules, with some examples, Note that In the
machine Implementation there |s no type-checking whatsoever., We rely
on the user to use types consistently,

ASSUME Kwff)y
tach <awff> Al in the <wff> Ig given a new stepnumber MNi,

and the steps
nl Al1(nl)
n2 A2{(n2)

are generated, Each one

is a tautologys since a step P(n) means Q@ I= P, where
Qs the ¢ewff> at step number n. Thus the purpose of
ASSUME 1Is only to Introduce references for <cawffds,

See Section 3,1 for examples of ASSUME,

SASSUME <wffd;
L1ke ASSUME, but every <awff> of the <wff> is henceforward
treated as a simplificatlon rule (see Seoction 3,5),

INCL <stepname>, <integer>;
Picks out an <awff>, Example:

LE R R R R FR A F K N R K I A R A A A

|15 ZZF(X,Y), AZB, [AX.XJ(Y)c14 (13 7)
22w INCL 15,2;
116 A=B (13 7)

TP G WP DT W W@ W W G W wwn

CONJ _..s<range>,___ ;
Forms conjunction of all steps In the <range>s, Example:

|15 Pe@,RZS (12)

| W--W-

117 F=6 (12 4)
|#2n2ucON) ===)=;

118 peQ, R3S, Fig (12 4)

L I I R N R R R R A A

CUT <stepnamed>, <stepname>;
1f the steps referred to are P{(mi,m2,,.,) and Q(ni,n2,.,)
respectively, where the m"s and n‘s are stepnumbers,
and I f every <awff> referenced bY the n"s oc¢curs as an
<awff> In P, then the step Q(mi,m2,,.) |s generated,

Example:

13

- Al R L I R I IR R R

_ 7 FsG (7))

| -

112 PR (7)

‘ - e em W g

115 FE26, GeH (14 2)
L I#*nancyT 15,12;

116 peg (14 2)

--"-o.'--.--n-~-~0~--~~-«-n--q

HALF <stepname);

Rep laces "2 b y "e" 5 the flrst<awff>, and throws
- the rest away, Example:

I6 XSG(X), YSH(Y) (1 3)
|eeneudALF 63
L |7 XeG(X) (1 3)

-'-"---—-----w-----—----oqun--g

L SYM <stepname);

Interchanges the terms inthe first <awff> (provided "2" occurs)
and throws the rest away, Example (contlnuing the previous):

------'-----.-.-----n-------—.

|##enuSYM 6;
- I8 G(X)z=Xx (1 3)

bl Bl R AR L L R T R RN I

TRANS <stepnamed>, <stepname>}
Looks at the firstcawffd in each ¢Wwff>, [If these are sii{z|c)s2,
s2(Z|c}s3 respectively, thensics3 orsiZs3 Is generated, the
. assumptlions being "unioned”, Example;

--.---.-----v-------Q'--n-----

112 XZY(2), PecQ (11 4)
| *W-W-

113 Y(Z)ey(x) (4 9 8)
|#2euuTRANS 12,13;

114 XeY(X) (11 4 %9 8)

---------------------—'-------

APPL (<stepname>, ___,<term>,___. |<term>,<stepnamed};
In the first case, applies poth sides of the flirgt cawffd of
<stepname> to the <termds in sequence, _
In the second case, applies the <term> to both sldes
of the first ¢awff> of ¢stepname>, Examples;

-----—---uw-'-—--‘-----—------—’

[1d XEY(Z), PeQ (9 4)
lesasaAPPL F,10;

14

112 FUX)EFCLY(Z)Y) (9 4)

‘ - gy W gy W

12% FELAX.XJ,PecQ (11 4)
|s2auu AFPL 22, !=22:R}

123 F(Q)EIAX,X1(Q) (11 4)

------------ LR e o et

ABSTR <stepnamed>, ___.<identifier>,___ ;
Does \-abstraction O N 1st <awff5 The identifiers
must not accur free in any Of the assumptions Of the step,

gexample(continuing the previous):

L XA L SR R R R R R R R R N R

|****"’ABSTR 212"",
124 OAF,FIZDNFLINXXI] (11 4)

CASES) R Thege are NOt present as inference rules, sgince it is
) less tedious to use their goal orlented versions (see
INDUCTIGN) Section 3.3).

CONV (<stepname>|<term>};
Does all X-conversions |In the <term> or <stepname)>, Example:

" en TR g W S T e T Ay VG S TE DWW

114 BELAXXCX)IDAX.X(Y)]
|#savacONV =;
145 Rzy(Y)

Remark: the term in 14 violates the type structure, but the
system does not chack this,

ETACONV <term>;

Eta-converts the <term>, provided it has the form [AX.s(x)],
with x not free in the term s, Example f{(remembar that
F(X,Y) abbreviates (F(X))(Y)):

W T D N WM TG g W e W W

| % %vuETACONV [AY, F(X,Y)3;
149 [XNY. F(X,Y)ISF(X)

EQUIV <stepname),{stapnamed>;
Looks at the flrst <awff> In each <wff>, If these are sics2,
s2¢csl respectively, then s1%s82 is generated. Example:

T e W W e YW O W W LI) - o

| com——

I16 Xey, P=Q (12)

15

117 Yex, HeG (1 2)
lesnssEQUIV 16,17;
118 XY (12 1 2)

C-.---—-----'---.---'-.-----Cﬂ

REFL1 <term>;
Gives tZt where t IS designated by the mterm, Examplel

lesanwaREFL X(XX);
119 X(XX) = X(XX)

NFL2 <tepmd;
Like REFL1, but gives tct,

MINL <term>;
Gives UUet, Example: see Section 3,1

MINZ <term>;
Gives UU(t)zUU, Example (continuing the previous):

-----—---—-"-—--—----—---—--.--

i#vesaMINZ o,
120 UUCXEXX)) = uu

----‘----.-v--ﬂ-----.--u-—----

CONDT <Ctaprmd

Checks that the <term> t has form TT+s1,s2 and if
30 generates tZsl, Example:

el el Al X K B X R

‘ - oW ay

. 121 F(X) 2 TTAX,F(G(Y,X)) (12)
|#*82uCONDT :R:
122 TT=X, Flg(Y,X)) = X
CONDF <termd;
Checks that the <term> t has form FF=sl,s2 and if
so generates tZs2,
CONQU <teprmd>;

Checks that the mterm
and !f so generates t

has form UU»si, s2
Ju,

m <t

FIXP <stepname;}
Cheoks that the first <awffd> is a recursive definition
6,9, s32laG,t], and qenerates sZt{s/G), Example:

- - LR R I R R - wwww - - -

' - - - - - - - -

23 F T CaG,HOLINF, G(F)J)Q
|veanuFiXP 23;

124 ¢ = H (CAFL, r(ri)])

SUBST <stepname> 2{ 0OCC ___,<integer>,___) IN (<stepnamed|<term>};

Let the first <stopname> have tl § t2 as Its first <cawff>, where
$ stands for £ in case (1), and for £ or € in case (2),

Case (i), If there is an <stepname> Tfollowing "IN", then t2 is

substituted for all occurrences designated by the <integerd=
list (or al | occurrences, !f no list) of tl in the <wff>,

Case (11), 1f there Is a <term> s folioWwing"IN" then

3 $ s |s generateds» where s’ is the result of substituting t2
for the appropriate occurrences (as in case (i)) of t1 in s’

Note that for ti1 to occur in a term 8 any occurrence of a free

varlable in t1 must not be bound In S, Also see the caution on
occurrence numbers In Section 3.6.

Example!

TN e W G TS g B T n S AR WP N P O N S e AW W e

125 IXAX.F(X)] € GI(FIX),F(X)) (2 3)

| oW

|26 F(x) = X (5 1)

|wewaaSURST 26 Occ 1 IN 2%

127 IXX.piX)] = g(Xyp(X)) (2 3 5 1)
|##us8SUq ST 36 IN $1254¢R;

|28 G‘FQX)’F(X)) = g(X,X) (5 1)

- an gy G e Ny O R e g e WD D W YOV M W - e up W w w

(<stepname>l<cterm>) 2___{ (BYIWO) ___,<ranged>,___ }___ i

In the case of an <stepnamed, jts <Wff> jis simpllfied

(see Section 3,5) using as simpliflication rules those In
SIMPSET together with those deslignated by the <range>=-|list
following each "BY", and without those designated by the
<range>=~list Tollowing each "WO", A <term> t is similarly
simplified, to tl say, and t 2 t1 is generated, The SIMPSET
remains unchanged,

Example, continuing the previous (Section 3.5 givesmore detall):!

LS A R T R ladnladontiasteeddingbadl B L LA N

\ comem
129 [AP,P=F(X),YI(TT) < UU(X) (12)
|##neeSIMP - 3Y 26;
130 Xeyu (12 5 1)

Y

17

This happens because CONV, CONDT, MIN2 are among the
simplification rules,

3.3 Goal-Oriented Commands

Anything provable with the goal Oriented commands s provable

in PURE LCF, but most woofs would then be tedious (that’s why we
only deseribe the INDYCTION and CASES rules in goal-oriented form),
Experience shows that With the goal-oriented commands the user has
only to type a smal | fraction Of what he would otherwise have to

type ,

The user may generate a subgoal structure of arbltrary depth.
This structure |s represented by three entdrdes GOALTREE» GQALLIST
and THISGOAL. THISgOAL I/s always the goal currently under trialy all
its ancestors In GOALTREE are (indjrectiy) also wunder trlal; the
subgoals of THISGOAL are listed In GOALLIST, Each goal has a goal
number = e.gs #1#2#3 « which indicates its ancestors and (bY the

number of Parts) its level In the tree, Here iS5 a sample goal
structure;,
LEVEL 2 o)
------- |-‘--~--. ,
| | |)
LEVEL 1 #lie H2e #3e)
|)
LEVEL 2 on2#1) GOALTREE
| I)
LEVEL 3 o#24141 OR2#1#2 +===THISGOAL
|
--"’-ﬂ-l-----.——
| | |
o ° ° GOALLIST

#oRi1#2#1 B2#1#242 H#2R1H2#3

FIGURE 1

kEach goal! has a status (not shown In diagram) whigh Is elther
“UNDER TRIAL" (only THISGOAL and lts ancestors have this status), or

"NOT TRIED" or "PROVED",

18

The user has flve goal oriented commands available: we give
first thelr syntax, then detailed descriptions,

GOAL <wFf> ?2(ASSUME |SASSUME) <wff> i
TRY ?<integer> ?<tactic> ;

QED ?<stepname>

ABANDON 3

SCRATCH <integer> ;

<tactic> ::=z CONJ |
CASES <termd |

ABSTR |
SIMPL 2_._((BYIWO) ___,<stepname>,_"_ }___ 1
. SUBST <stepname> ?2(0CC ___,<integer>d,___) 1

INDUCT <stepname> ?2{0CC ___,<integer>,_ ..} I
USE <ldentifler> ?___,<instantiationd, __.

<instantiatijon> ti= <identifler> « <term>

The GOAL command,

GOAL specifles a new goal to be added to GOALLIST, Its effect on the
goal structure of Figure 1 is as TfTollows (Figure 2)¢

- - - - -)
: -) GOALTREE
Tomom-e- |—*we—m—-| ;
® OB2#1#2 vu==THISGOAL
TTTTITTTTITTTTTTTITTTTTTTT GoalLtst
®] ?® °
H2#LH244
FIGURE 2

(Notlce that the new goal Isn"t yet under trial)

A goal may or may not be given assumptions, The only difference
between ASSUME AND SASSUME is that In the latter case, when the goal
is trled, the assumption wff Wil be added to the set of

19

simplification rules (See Section 3,5) for the duratlon of thls
goal’s triaj, Examples:

bl B RN e W WP e W

l#snauGOAL FeG;
INEWGOAL #1 FcG
l#easeGOAL F(X)SG(Y) SASSUME F2G, XZY;
INEWGOAL #2 F(X)Sg(Y) SASSUME FZg, XEY

The only purpose of the system™s reply is to allot the geal| a number,

The TRY command,

TRY speciflies one of the goals of GOALLIST to be trled (If the
<integer> is absent, the last goal specified is assumed), If the user

gives no tactlc, the new GOALLIST will be null (Flgure 3),

- - - - -)
- - - -)

R [)

\ \)

. oH2BL#2) GOALTREE
—W——W——— |__'-_._‘ -------- ’
| | | |)
® ® ® °)

THISGOAL

|
(GOALLIST Initlally null)

FIGURE 3

But If the user 9ives a tactic, the system Wi|| B8t uvp a new GOALLIST
for hlm., wWhose number of members depends on the tgotlc, Tactles are
described later In this sectlon,put look at the EXgmpie Tollow Ing

QED’s description below to see what happens without them,

The QED command,

L ALK K B A X K X X E X X% ¥"¥Y

QED Indicates that the <stepnamed> = or previous step if no <stepname>

=~ proves THISGOAL; the user wlii normally say QED when he TRIED this
goal Wlth no tactic, Sometimes the user has been able to prove a
contradiction, 1,e, any of the <awffds <tv>3Ctv>or Ctvdectvd whare
the <tV>s are distlinct members of (TT,UU,FF) and in the gase of e the

22

first <tv> is not UU, QED wil| accept a contradiction, since it
proves anythinag, The effect of QED is to restore Figure 3 to Figure
2, with the difference that the status of #2#1#2#3 wil| become

"PRCVED"; Ffurther, if THISGOAL (of flgure 2) was TRIED with e tactle,
and a | subgoals generated by this tactic are now "PROVED", the
system will back further up the tree, This mayY continue for many
steps; eventually the sSystem will stop and tell the user which goal
has now become THISGOAL, and whichmembers of its GOALLIST remain to
be proved,

The following exanple continues the one above, and
i1 lustrates TRY and QED:

D T D W RN Ty e N e e R

(F****TRY 2;
113 F 2 6 (13)) The system makes the assumptions,
114 X = Y (14)

|

|eswssaPPL 13,X;

15 F(X)36iX) (i3)

\

|#snewsAPPL G,14;

16 G(X)ZG(Y) (14)

\

lessusTRANS 15,16

117 F(X)z6(Y) (13 14)
|

The user proves the goal,

|ensnnQED;)

IGOAL #2 PROVED, RACK yP TO TOP LEVEL,) The System
IREMAINING SUBGCALS:) backs up.
11 FeG

PR N G G RN YR R s T R es e T W e Ry e P W

The ABANDON command,

ABANDON indicates that the user doesn*t !ike his current trial of

THISGOAL, The effect will be to restore Figure 3 to Figure 2 = but
the status of #2#1#2#3 becomas agaln "NOT TRIED", Thus no further
backing up can happen,

The SCRATCH command,

SCRATCH removes the indijcated goal from GOALLIST, However, the system
will refuse to scratch goals generated by tactics.

r—

21

Tactics ,

We now describe the tacticés avallable, There 2are six basic

ones, each based on a vparticular inference rule; in addition the user
may employ any THEOREM (see section 3,7) as a tactlc,

For CONJ, thesystem generates a separate subgoal for each
<awff> in the goal,

For CASES, if s is the <tern> and P ig the <wff) of the goal,

tne system generates the 3 subgoals P SASSUME s=TT,r SASSUME s3UU, p
SASSUME s=FF,

For ABSTR, the system instantiates in each <awff) In the goal

for as many bound variables as are bound by the outermost X In Tts
left-hard side, thus generating a single new subgoal, New variables
are chosen which -are not free In the proof so far, For example, |If
the goal Is TRX Y.FCY,X)1 = [0N2.G(2s2)] » and X is already free In
the Proof, the new goal will be F(Y,X1) 2 G(X1,X1,Y),

For SIMPL, the system generates a new subgoal by simplifying
the goal as far as possible, using a modiflied SIMPSET (if any "BY" or

"WO" Is present) as explalned in Section 3.2 under the SIMPL rule,
The moaified SIMPSET remalns in force, but the old one wlil be
reinstatead when the new 302l is either proved or ABANDONed (gee

section 3.5), If the system aiscovers that all <awff>s of the new
subgoal are identically true =~ i.e, they are ail of the form s€s or
sZs or Uues ~ It initiates the backing up process described under QED
above instead of generating the subgoal, !f some but not all of the
<awff>s are identically true they aresimply omitted from the new
subgoal,

For SUBST, ths system generates a new subgoal by substituting
the rhs of ¢stepnamed for the lhs of ¢stepname> In the goai =~ either
throughout, Or at the deslignated occurrences when an ¢integeprd=|ist
is giver, (see the c¢aution O0n Occurrence numbers in sectlom 3,6).

~ For INDUCT, 1let P be the <wff> of the goal, The system c¢hecks
that <stepname> has the form s=[aoy,t] - i,e, that It is a recursive
defirition, In that case, It generates two new subgoals, The first
is

P{UU/sg}
and the second s
P{t{y’/y)/s} ASSUME P{(y‘'/s)

where y' Is a variable not previously used Tfree, and where the

substitution in P takes place at appropriate occurrences, exactly as
for SUBST above,

22

For USE, the <identifier> is a THEOREM name, The system will
instantiate the THEQPREM by matehirg Its consequent to the goel,
taking Into accoupt any instantiations supplied expliclitly by the
user, and Will yepsrate tne appropriate jnstance of Its antecedent as

a new9oal, See sgction3,7 fcr a fuller discusslion of THEOREMS,

We now 4yive exampies Of each tactic (except CONJ, which s
easy to understand), Some are realistically “combined.

"l‘*’**@OAL P—'X,F"‘Y.E = P"X;Z;

INEWGOAL #1 PaX,P=Y,Z2 T Fax,?
|

+|nwunexTRY CASES P
INEWGOAL #1#1 PaX,PaY,Z
INEWGOAL #1842 PaX,FaY,Z
INEWGOAL #£1#3 PaX,P=Y,#

PaX,2 SASSUME P=TT
P-X,Z SASSUME PzUU
P+X,2 SASSUME P:=FF

LEARETERT}]

~jnuenxTRY 1 SIMPL;
125 PZTT (25)
j26 PaX,PaY,2 = PaXx,? (25)
IG0aL #1m3 PROVED, B8BACK UP T0O GOAL #1
IREMATNHING SURGOALS:
j2 Ps = = « « « =7 SASSUME P
|3 P+ = =« ~ - - =Z gAggUME P
|

+|newsaTrY 2 SIMPL;
lcete,)

D D G S Ve A n e S IR e TGRS TSN W WS W W

Here SIMPL reduces goal
#1#1 to ldentity, using
25 and also an instance
of CONDT as simp, rules,

- s s s

Ju
FF

i

The example looks longs but the users contribution (shown by
“+") js short, (Thg System keeps reminding the user of what subgoals
remain,) The "hard ccpy" proof produced by the SHOW command will be
comparatively short,

. The next example illustrates the remaining tactics, and also
apolication to a particular subject matter - lists, The first four

steps are the result Of SASSUME by +the user. Note also the
abbreviations YX Y, etc,, a Sexplainedin section 3.6.

1 Y% Y. un(c~wscx Y)) =
12 ¥X Y, TL(CONS(X,Y)) = Y (2)
I3 VY Y, NULL(CONS(X,Y)) =
4 NULLCUU) 2 UV (4)
|
+ |wesnsiSSUME AP = .aF ,AX Y. NULL X=Y,CONS(HD X,F(TL X,Y));
15 AP Z [af,[XX Y,NULL(X)=Y,CONS(HD(X),F(TL(X),Y))1] (5)
|

23

» |ansnnFIXp 5;
16 AP = [XX Y NULL(X)=Y,CONS(HD(X),AP(TL(X),Y))] (5)

\
* leeennGOAL yX,AP(X,AP(Y,2)) = AP(AP(X,Y),2);
\ NEWGOAL #1 WYX AP(X,AP(Y,Z)) = AP(AP(X,Y),Z)
|
- |ewse2TRY INDUCT 5 0CCC 1,4
INEWAGOAL #1#1 VX, UU(X,AP(Y,2)) = AP(UU(X,Y),2)
INEWGOAL #1#2 vXx.,[)X Y.NULL(X)*Y.CONS(HD(X),FltTL(X).Y))J
FOX, APCY,2))
2 AP CONX Y, NULL(X)=Y,CONS(HD
TASSUME yX,FL1(X,AP(Y,2)) = AP

(X)pF1(TL(X)pY))J(XpY).Z)
(F1(X,Y),2)
\
+ |##384TY 1 ABSTR;
INEWGOAL #1#1#1 UU(X,AP(Y,Z)) S AP(UU(X,Y),Z
|
+|{wsaxeTRY SUBST 6 OCC 2;
INEWGOAL #1g1g1#1 UULX,AP(Y,2)) =

| CaX Y,NULL(X)aY:CONS(HD(X)yAP(TL(X).Y))](UU(X»Y):E)

+ |#%ssaTRY SIMPL;
7 UUCX, AP (Y, Zy) = EXNX Y NULL(X) =Y, CONSCHD(X) 2 AP(TL(X),Y))]
\ (ul(x, Yy, & (4)

[GOAL #1#1#1#1 PROVED, BACKUP TO GOAL #1#1#1. NO MORE SUBGOALS

I8 UUCX,AP(Y,Z)) = AP(UU(X,Y),2) (4 5)
1GOAL #1#1#1 PROVE& EACKUP TO GOAL 1R, NO MORE SUBGOALS

19 vX,UU(X,aP(Y,2)) = AP(LUCX,Y),Z) (4 5)
IGOAL #1#4 PROVED, BACKUP TO GOAL #1,
IREMAINING SUBGQOALS:

l2 (Herefollowsarestatemanto fgoal#1#2)
I(etec,)

W AP AR T T e W e e gy e e e - e e L I R YRy

Note that simplification (Using the built-in simplification
rules CONV and MIN2 and CONDU as well as Step 4) reduced 9oal
#l#1xl#1 to identity, and the system generated Step 7 on these
grounds, In backing up, it generates an 8xplicit flnal step,
identical to the goal statement in [ts wff, to tie up the ppoofof
each goal proved,

Note also that the user's cortribution (Indicated by "s") i's
short In the above exanmple,

Finally, here is an example of a THEOREM used as a t&ctic

(read ssction 3,7 firgt!), It also shows how the user can make many
of the inference rules into tactics =~ @even using the same names, Of

course, THEOREMS wused As tactics Will at leastas often be
supstantial results previously proved and Ffiled (consider the
frequent oOccurrence in informal Proofs of "to prove xxx it s

sufficient, by Theorem AAA, to Prove YYY and 2Z2zZ"),

24

Firsts, to make a THEOREM out of the TRANS rule:

|nanexASSUME XZY, YE=Z;

I51 X=Y (51)

152 yY=Z2 (52)

|

| #4280 2TRANS ==, =;

153 X=2 (51 52)

|

jrawaaTHENREM TRANS: 53

JTHEOREM TRANS: X=Z ASSUME XZ2Y,Y=ZZ;

L I I R I N R R K dedaddadetadndatind

‘Mow to use TRANS as a tactles

-

lo2veeGOAL FlA,XISG(X);
INEWGOAL #1 F(A,X)EG(X)
ITRY USE TRANS YeH(X,A):
|NEchAL #1lu1 F(A,X)EH(XyA)
INEWGOAL #1822 H{X,4)2G(X)

LR R I I e R R L L K

Note that the X,Y,Z of the THEOREM are metavariables which do
conflict with the variatles of the proof,

SIMPSET ___{ (+|=)} ___,<ranged, } ;

The steys desivnated are adoec to or removed from the set of
simplification rules (See section 3.5),

not

25

The SHOW command,

SHOW
¢ AXIOMS 7(¢ ---y<iggntifigrds___) } |
THEQOREMS 7¢ ¢ ___,<identifiep>,___) } |
GOALTREE ?___,<ranged, ... |
THISGOAL
GOALLIST
PROCF ?___o(range>,_-_ |
STEPS 7___,<ranged>, ... |
SIMPSET ?2.._.,<ranged>, ___
- LABELS %...2<range>, __._)
?{ <ldentifier> ?<integerd>) ;

I1f the final <identifierd is present the material Is sent to the flle
named, otherwise itisdisplayed on the Console, The flnal <integer>
if present denotes the |lne~width,

If a <range>- or <identifier>-list Is not Dresent, the whole s

shown, The <ldentifler>-llst for AXIOMS or THEOREMS denotes the
particular axioms or theorems required, The <ranged>-|ist for GOALTREE
refers to levels (g is top level), and for PROOF, STEPS, SIMPSET and
LABELS refers to steonumbers, Thus

SHOW STEPS :3, 8, 2m1:23, 30, 553

will show steps 1,2,3,8,27,21,22,23,3g and 55 onwards ofthe proof,

with no goal structure; SHOW PRCOF wlll show steps Wwith goal
structire, solisnormally used with a single <range>, or a Who e
proof, Only the stepnumbers bound to LABELS are shown,

The FETCH command,

Lo I I I R R gy

FETCH ___,<identifier>,

—_——- 7

The <identifier>=|ist names flles, Axloms and theorems on those
files wWil| be brought in, In fact any admissible commamys on these
files will be treated eXactly as if typed at the console = 2,4,

ASSUMptions may be made = so the usar may prepare such flies other
than by SHOWING axijoms or theorems, Much of what a yser types ls
dependent on the stepnumbers that the system |[s generating, so the
use of files prepared offline islimited.However, this dlfflculty is
somewhat alleviated by the LABEL command (geebe|ow),The files are
expectec t o be simply sequences of commands, so severa| files may
eas! Y be concatenated withoyt editing,

26

The CANCEL command,

CANCEL ?<stepnamed> ;

This steps back through the <stepname> given, otherwise Just the last

step « Cancelled steps are removed from the SIMPSET, Goal trials
encountered wi || be ARANDONed, It is not possible to cancel back past
any sten which proves a goal,

The INFIX command,

INFIX _._,<identifierd>,___. i

This causes all the <identifier»s named to be treated exactly as

<infix>es (see section 3.6), In oparticular, the user must
henceforward "!" them in non-infix contexts,

Tne PREF]IX command,

PREFIX y<identifiar>, __ i

This revokes the infix status of al | <identifier>s named, Standard
<infix>es are immuneg from this, however,

The LABEL command,

LABEL _._,<identifier> 2<stepnamed>,_ .. }

fach-<lgentlfiepr> is attached es a label to the step indlcateddy the
{stepnhared> if present, otherwise to the next step to be generated,

Thus after "_ABE| DD = ;" the previous step and Its Predecessors and
successors may be later referenced bythe <stepname>s ",00", ",DD~-1",
" . DD*l" etC.

27

3.5 Simpiificatlion Rules,

MR PWE BB RPRE OB RR BT O EP am e R e ®

At any stage in a proof, there is a Current get of
simplification rules, Steps may be added to or removed from the
simplificatlion rule set (SIMPSET) in five ways:

® By SASSUME (See Sectlion 3,2)

e By the sIMPgET command (See Section 3,4),

o By the goal tacticSIMPL(See Section 3.,3),

e If the SIMPSET was modified by attacking a ¢o0gl
with a SASSUMption (see section 3.3) or by

using the SIMPL tactlic, then it Will be automatical]y
reinstated when the goal is proved or ABANDONed,

e By CANCEL (see seootion 3,4).

Simplification 1Is invoked only by the SIMPL rule, (3,2) and by the
SIMPL tactiec (3,3), The rules are then appljed repeatedly to ail

subterms of the appropriate awff or term until they oan be appliedno
further,

An appllication of a simplification ruje s = t consists tn
finding all occurrence8 Of s and replacing them by t (so the user
must be careful not to make something 1like F(X)Z G(F(X)) a
simplificatlon rule, or he will cause indefinite expansion}). In
addition, in the case of a simp|ificatlion rule Vxva'y ,., , £ all
Instances of 8, gained by réplacing X,¥,.., by arbitrary terms in s,
will be vreplaced by the appropriate Instances of t,

There are five bullt in rules: CONV (X-CONVERSION), MIN2

(UU(s) = UU) and CONDT, CONDU, CONDF (simplificatlion of conditlonais)
(see these rules of inference in 3,2), Together with the previously
mentloned feature, this will allow the assumption

VX Y,HD(CONS(X,Y)) 3 X,

when used as a simp|iflcation rule, to reducse
HD(CONS(sl1,s2))

via CAX Y, XJ(s1,82)

to s1 ,

Such formulae may usually be kept permanently in the SIMPSET. Others,

notably the SASSUMptions of the CASES tactic, Wll| come and go under
system control, Still others the user wWill need to handle himself} a
gooad example |s the result of FI{XP on a recursive definition of form
s 2 (9x,t] = the result has form s £ t{s/X} and so oan lead to
indefinite expansion as asimpl!ficatlon rule, but will not do so in
the case that the recurs!ve computation, which [t will carry out,
terminates as a consequence of other members of SIMPSET,

e B - ks Sy I ',

28

Y.,60 Syrtax

as well as the usua| BNF conventions we use the following:

€)Y arefor grouping s¥yntax patternss8

? nefore a pattern means optional,

means one or more instances of the pattern P,
e.- Means onz2 cr more instances of P separated

by commas,

)

<wff> 1= ___,<awff>,___

Cawff> ii= 2___(V ___+<identifier>,___ | <term>::)
<tepm> (3 lc) <term>

—-

Ctermd> :1:=z Kinfixterm>|<conditionalterm>

<conditioné|term> iz dinfixterm> - <term> , <term>

<Infixterm> i:= <simpletermd> 2 ___{(<infix><simpletermd)_

<simpleterm> ::= <closedtern> ?___{ <closadterm>|

(_o_»<term>,___)}

-

<closedtermd ::= Cidentifierd>I<hterm>|<etarmd>i<termnamed|
(<tarmd)

<termnamae> iz ?2{ :Gl:<stepname> } ?(:<integerd } (:L]IR)

<hteem> = [XN ___<ldentifier>,,, , <term>]

Coterm> t:= [@ <Cidentifier> , <term>]

<identtifiard :1:z2 <word> | !<Infix> | =~ | 3

<word> = ___(<letter>|<digitrl |, , -

<infix> !{:=anyo fthe singlie characters
nU$|+-9iAV/\@hSZ<>¢=“fie
or any <word> with current INFIX status (3,4)

Spaces may occur anywhere exceert within a <word>, but are only
necessary to separats <word>s Cr t0 separate "," from a digit

(e,g, in "Vx, 2<x = TT"), The latter Is because the ML13P2
parser takes ".,d" as a sinole elemen*t or token,

The brackets round <¢xtermd>s and <«term>s may be omitted when
no arblguity arises,

Examples follow, with Intended interpretation:

-

29
P+Q=X,Y,RaY,2 is a <conditlonalterm>, abbreviating
Pa(Q=XsY)) (RnY,2Z)
AP(AP X Y,Z) is a <simpleterm>, abbreviating

AP(AP(X,Y),2) or APC(AP(X))Y,2)
or (APCCAP(X))Y))Z

(Thus the type which we should associate wlth
AP is (B+(B4B)), where B is the type of
individuals,)

XX Y NULL X«Y,TL Xp is a <\term>, abbreviating
CAX, DAY (NULLCX)=Y, TL(X))]]
P :: X Y is an <awff>, abbreviating

PaX,Uy T P-Y,UU

YX, FIX,X) = V¥ is an <awff)>, abbreviating
AXAFOXaX) = AXWY

¥X Y, XsY : x Y is an <awff>, abbreviating
xX Y X=Y2*X,UU 2 xx Y. X=Y=2Y,UU

AX L, X=HD(L)»TT, XeTL(L)

le

illustrates the "!"=ing (which may pronounced "shrleking"
or perhaps "howling") of ¢infix)es, which is necessary
whenever they are mentioned in a non-infixed context,

Many examples of (Wff>s and <awffd>s occur throughout this paper,

Caution!

! Some commands refer to Ooccurrences of a <term> in a <Wff>,

Occurrences are counted from left to right after al ! ogcurrences of
"1:1 (which 1s an abbreviation for |egibilitY reasons Only) have been

expanded

as indicated in the examples, and with {infix>es considered

as prefixed,

3¥

3.7 Commands for Axions and Thearems

WG TGN G e S e T e WU W W W m P

We noW describe how the user may create,storeaway, andfetch axioms
and theorems, so that he can build un a file of results over 3eéveral
sessions on the computer, and does not have to start from Ssc¢ratch
each tine,

W e startwithasimgie example, and then describe the new commands In
detall,

(11}

sanasAXIOM LISTS: ,4,0.0, 0 YX NULL X -1 X NIL,.,,;

IThe user creates an axiom consisting of several
I<awff>s: the example uses only 0One, s6 the others

lare represented by ===, The system lists them
|for him -« as new steps=- and Wi 1 | remember the
lcollectian by its name: = LISTS,

AXICM LISTS

E-VX.NULL(X) 1 X ENIL

#xussSASSUME NULL Y=TT:

5 NULL(Y)ISTT (5)

susenAPPL 3,Y;

6 CAXGNULL(X)=X,Uud(Y) = IXX,NULLCXD)=NIL,UUICY)
sxnas8SIMPL 6;

7 YsNIL (5)

INote that the SASSUMption 5 has been used, So
- |itappears as a condition for 7.

axze e THEOREM UNJQUENULL: 7;

|The user wants to keep the result 7 = he will be

lce able to Instantiate for Y in later uUse, so the
Isystemreally treatsit as a metatheorem, The
Isystem wei+es It In full for him, reminding him

Ithat 1t depends on LISTS:-
THEGREM(LISTS) UNIQUENULL® YENIL ASSUME NULL(Y)ETT

|Suppose that the user proves some more theorems,

land then wants to keep his axioms (there may be
(others besides LISTS)and theorems. He says:

e

31

FHRAXUSHOW AXIOMS AXFILE:
wesu#8SHOW THEOREMS THFILE;

IHe can actually select just some to
Iif he omits the Filename, they will
Ibut displayed,

==~ NOW, ON SOME LATER OCCASION: w==

- = W™ -

w W - w

be kept (3,4), Also
not be kept

IThe user decides he now wants to talk about !lsts,
land would like the theorems that he previously proved,

sunaeFETCH AXFILE, THFILE;
AXIOM LISTS

15 - —-

16 =~ = =

17 VX NULL(X) 8% X = NIL
18 = = =

THEOREM (LISTS) UNIQUENULL: YENIL ASSUME NULL(Y)ESTT

IRemember there may have been other axioms and
Itheorems on these flles (they should hava been
lat least represented by ===, but we didn‘t

Ibother),
|

IThe crucial point is that all varlab|es which
farefreelnthe theorem, but not free In the axloms
ton which It depends, may pe instantiated, and the
lusear can Tforce an instantiation by usling the theorem

las an Inferance rule, Suppose later he proves (step 23)i

- o o

- o =

23 NULL(HD(Z))ETT (15 18)

IHeapp|ies the theorem, as follows (and In thls
lcase the only free Instantliable variable ls Y)i

#xs#aUSE UNIQUENULL 233
24 HD(Z)ENIL (15 18)

I1t is Possible that not all the Instantiable varlables
loccur In the hypothesls of the theorem; the ful]
Idefinttion of the USE cemmand shows how they may

Ilbe Instanttated.

32

We now glve the new commands which concern axlioms and theorems,

The AXIOM command,

AXIOM <ldentifier> : _._.»{(<stepnamed|<awffd},___ ;

The system will remember all the <awff>s, mentioned explicitly OFf
designated by an <stepname>, by the name <iaentifier>; ltalso lists
then- - each with anew stepnumber, Thereafter, any THEOREMs created,
and saved by the SHOW command, Will be tagged as dependent on this
axiom,

The THEOREM comma-nd,

L RN R I I SR 0 Sy S

THEOREM (<identifler> . <stepname> |

2((___s<ldentifier>,___)}
Cidentifiapd - <CWwff> 2{ ASSUME <wff> } }

The flyrst option is for naming a proved result -designated by
¢stepnarey * as a theorem, The second oat ion is for naming an
expliclt sentence = i.,8, ¢Wff> 2{ ASSUME «¢wff>) - as a theorem, and
saying what axfoms 1t depends on (the lists of ¢identiflerys is a
list of axiom names),

In the first option, the system WIll| remember the theorem by name,
and tag it as dependent on al | axioms prasent in the sYstem,

In the second option, the s¥Ystem Wl | 1 check that the axioms mentioned
are present (If npot it Will warn You) and in any Case Wji|| remember

the theorem by name, and ta9 it as dependent on the axloms mentioned.
This option is used by the systemas follows. when the user Saves a
THEGREM on afl le uging the SHOW command, what the system writeés on
the . file s precisely an instance of the second optlon, so that when
the vuser FETCHes the theorem on a later occasion he wil | be warned of
any @approprlate axioms that are not present so that he can FETCH

ther, too,

— —

33

The USE command,

L A R A X K N R N KRN N

USE <ldentifler> ?___,<stepnamed,;__ ?¢ ., __.s<Instantiatlond,___)
Cinstantiation> !i= Cidentifler> « <{termd

The First <ldentifler> must be a THEOREM name, and the system chegks

that a|! axloms on which it depends are present, The system treats
the theorem as a metatheorem in that al| its fres varlables, except
those whioh are free in axioms on which it depends, are treated as
metavariables t o be Instantiated, The user supp|les the
Instantlation In p a r tIn twoways, Flrst, the |lst of ¢stepnameds
designates a |ist of cawff>s, and some or all of the metavarliables
are bound by matching this |ist to the antecedent |ist of the
theorem,

Second (since there may be metavarlables which oOccur only In the

consequent OFf the theorem) the user may give a list of instantlations
each of whieh binds a tern to a metavarliablse.

Any metavarlables not thus Instantiated wil| just be left a8 they

stand, After matching, the USE command will generate a new step
which Is simply the appropriate instantiatlon of the consequent of
the theorem, Exampie!

S ERGSTe W TWe WWe W -..-—.--.---’.----.--.

lewnawpxioM AX1, XEY;
TAXTOM aXi

11 XEY

|

lesawaTHEOREM (AX1) TH1: PSZ ASSUME Z:=R;

115 F(Y)SG(X,Y) (2 6)
|

|##swnsaUSE TH1 15, PeH(X);
[16 H(X)ZF(y) (2 6)

bl dadl A A A X N RN TR N RN R hadindi oA A A A X A N X K K X X X K X X _F-R % ¥

34
4, HOW TO USE THE SYSTEM LCF

4,1 Initlalization and Termination

PO PSP DTS W W e LR X IR N N W N N X X N X J

R LCF

The system returns with an asterisk: You are nowtalklingto LISP,

(INIT)
This wil | Initialize the system,whleh returns wlth 5 aster!sks! you
are ready to generate a Proof by the commands of Section 3. 5
asterisks is always the signal far a command. Remember, al | commands

end with a semlicolon,

To finisn a proof (after maybe preserving It on a file uslng
SHOW) type

$;
ThesystemwllltypeENDPROOFandY ou arethen randy tostart another
proof wlth

(INIT),

It Is possible to save your core Image 8o as to resume the
proofatalater time, To do thils type

+C
SAVE <fl |gname>

-and you can then elther cOntinue immediately by

START
(RESUME)

oratajatertime by

RUN <f!lename)
(RESUME)

35

4,2 Errors and Recovery

There are three types oferrormessage:

elfyoucommitaSyntax erreor ina c¢command, the system says

SYNTAX ERROR; TRY AGAIN

* * 3 % #

@ If your c¢ommand |Is semantically suspect = for example, you
try to applyY TRAYS (transitivity) to two steps for Whlch it is
ineppropr iate = vyou will get something like

NMASTYTRANS; TRY AGAIN

L. X X-X X 3

¢ |IT you break the system somehaw and get a* LISP error,
usually something™|ike

3246 1LL MEM REF FR0OM ATOM

L
LA 2 X 2]

then you can try something different (your flrst command may yleld a

syntax 8rror, In which case Just repeat |t) however, this should
not occur and Malcoim Newey or] would like to know how !t occurred,

If the s¥Ystem gets Intoalood (the only known cause |s if
your SIMPSET allows indefinite expansion) then

+C
START
. (RESUMED
will restore You, If yeu thereby abort a (longo r looping)

simplification invoked by the SIMPL tactic youwill also need to
ABANDON,

{7‘“

36

5, ACKNOWLEDGEMENTS

L E IR R R X R R e

The system is entlrely basad on the logic proposed by Dana
Scott at Oxford in 1969 but unpubilshed by him,

| am grateful to Rlchard Weyhrauch for deslgning a better

simp|ifloation ajgorithm which has proved indispsnsable, to Malcoelm
Newey for undertaking the necessary programming for corractlons and
improvements to the system = including thesimplification aigoprithm «
and to both of them for constructive criticisms and discussions which
have led to many improvements, ! also thank John MeCarthy for
encoureging me to undertake thls work,

The programming of the system was eased enormously by the

MLISP2 extendible parser due to Horace Enea and David Smlth, and by
the he{p they gave me in using It, In fact, extenslons to the system
wiltl be simple fopr the same reason,

