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Abstract
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Thirty-seven research problens are described, covering a w de
- range of combinatorial topics. Unlike Hilbert's probl ens, nost of

these are not especially famus and they m ght be "do-able" in the

e -
next few years.
| (Problens 1-16 were contributed by Klarner, 17-26 by Chvétal,
27-37 by Knuth. Al cash awards are Chvdtal's responsibility.)
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- Probl em 1.
~ Consider the set (2x+1,3x+1: 1) defined to be the snmallest set
of natural numbers which contains 1 and is closed under the operations

X - 2xt1l or 3x+1 . The set can be constructed by iterating these

- operations as indicated in the following tree.
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M chael Fredman showed in his thesis that this set has density 0

in the set of all natural nunbers; hence, S = (2x+1,3x+1: 1) does not

LL contain an infinite arithmetic progression. et N denote the set of
all natural nunbers. |s it true that NS may be expressed as a disj oint

- union of infinite arithmetic progressions?

b
Problem 2. Milner's Probl em (Robin Milner at Stanford A |. project)

L ‘ Let B, denote the set of all binary sequences of length n .
Suppose m< n , éeBn : BeBm , and let v(a,b) denote the nunber of

> - subsequences of a equal to 5. The mlist of éeBn consists of a

know edge of the nunbers v(a,b) for all Be:r%' How | arge nmust m be
such that the mlists for all elenents éeBn are distinct? This is
Milner's problem chvatal, Rivest, and Kl arner have obtained some
results on this problem A related problemis the follow ng. There
are nmany identities connecting the v's. For exanple, let B

m,n

denote a 2" x2" nmatrix with b, , defined to be v(i,3)(n-m): where
2
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i and j denote the binary sequences of length n and mused to

represent i and j respectively. Then it is easy to check that

Br,sBs,t - Br,,t '

al gebraical Iy independent of these. For exanple, v(a,(11)) = (V(aé(l))) _

Many other identities exist which seemto be

The problemis to find a basis for all algebraic identities relating the

numbers v(a,b) for fixed a , as b ranges over all hinary sequences.

Probl em 3.
Recently, Ron Rivest and David Klarner succeeded in show ng that

a< k.65 , where o = :Lim(a(n))l/n and a(n) denotes the number of

n-w

connected square-celled animals with n cells. |n fact, we designed a

procedure for cal cul ating nunbers o, ,a.,... such that a < «a < q
1772 i+1 i

for all i . W were unable to prove, but conjecture that
[imoa, =a .
. 1
1 —ow®

Prove or disprove our conjecture. Try to beat our upper bound a < 4.65 .

Reference: D. Klarner and R. Rivest, "a procedure for inproving the
upper bound for the nunber of n-ominces," CS 263, Conputer Science
Department, Stanford University, February 1972.

Probl em 4.

Gve a "sieve formula" for enunerating planted plane trees having

- certain subtrees excluded.  The n-omino enuneration problemis a special

case of this problem

Probl ems.

Mre on plane trees. A fanous problemin probability theory

(solved, by the way) asks for the probability that a candidate always



has at least j/k of the votes cast. Here is a related enunmeration
problem How nany binary sequences (al’aQ""’akn) of length kn

containing exactly jn ones satisfy the conditions

ayt..ta, > gm “for m=1,...,n ?

Wien j =1, the solution is
kn+k
( )

nt+l

TKkn+k-n)

Probl em 6.
Give a sinple proof that if a rectangle is cut into three congruent

n-omnoes, then the n-omino is a rectangle.

Probl em 7.

Find the smallest number x > 0 , such that copies of the Y-pentom no

(DD:D> pack a 12x 5x rectangle. Kl arner holds the record

with x = 16 .

Probl em 8.
Every 3-celled animal on the line packs sone interval. An exanple

of a 3-celled aninal and an interval it packs:

lalbJalblcfafbjc|d|c|d]e|f|d]e|fle|f]

the interval
t he ani nal the animal's reflection



. b-celled animal that does not pack the plane, namely,

Translations of the animal and its reflection are used in the packing.

Here gaps between the cells are 1 and 2 , and the length of the
smal l est interval the animal can pack has length g(1,2) = 18 . If
the gaps between the cells aré mand n in a three-celled animl, it
can be shown that the length of the smallest interval the animal can

m+n

pack £(m,n) is bounded above by 1+ 3 This proof depends on the
following algorithm Suppose m<n, |et A denote the animal wth
gap m on the left, and |let B denote the animal with gap m on the
right. W pack a one-way infinite strip of cells as follows. Fill the
first cell with the left-most cell of A. Fill the left-nost unfilled
cell in thestrip with the left-most cell of A, if there is overlap
remove A and try B . It is an interesting exercise to show that
this procedure results in a packing of an interval whose length is not
preater than 1+3™" . Let 2(mn) denote the length of the interval

packed by this algorithm Gve a nice upper bound on £(m,n) , and find

out if it satisfies some kind of recurrence relation.

Probl em o.

Does every L-celled animal in the plane pack the plane? Does every

5-celled animal in the plane pack the plane? There is at |east one

A 3n-celled animal like this one can be constructed which does not

pack E . Thus, if every n-celled animal packs E then n < 3k .

k k)
I mprove this upper bound if possible.
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Probl em 10. (R Rado)
Consi der sets of squares in the plane having sides parallel to

the x- or y-axis. Let a(S) denote the area covered by the union of

suchaset S. [s it true that"
a(T 1
max > ?
TCs a(s) < Ry

d's in T disjoint

Probl em 11. (R Stanley)

Consi der partitions of n which satisfy a tableau condition:

2>
11 |*12 | %13
a a
" 22 | %23
o3 This border may be irregul ar
but must be nonincreasing

T

This border is regular

The entries a.l.J do not decrease in the rows or colums, and their
total is n. Let T denote the shape of the array, and |et vT(n)
denote the nunber of ways of filling in the array subject to these

conditions. Prove that the generating function is as follows:

-~}

TT S = Z VT(n)xn

(1,3)er | _ isd n=0

where the nunbers d.i ; oare defined as in the follow ng exanple:

A2
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To find d; begin in cell (1,3) and count all cells inits rowto

3
the right of (1,3), count also the cells in the colum bel ow (1,3) ,
and if one can "turn the corner" at the bottom of this colum, count

the cells in this row as well. Thus, d1,5 =8, dz,h =5, d5’5 =2,

etc.

Probl em 12. An extremal problem (see problems728 of Amer. Math.
Mont hly, 1970).

n-| different pairs of parallel

The "octahedron” in E has 2
hyper pl anes spanned by two n-sets whose union conprises the vertex set
of the octahedron. Prove that the octahedron is an optimal configuration
of 2n points in EI1 having the property that the points span many

pairs of parallel hyperplanes.

Probl em 13.

R. C. Read (J. London Math. Soc., 1963, 99-104) enunerated classes
of isonmorphic self-complenentary linear graphs with Ln vertices and
cl asses of isonorphic self-conplenentary directed graphs with 2n
vertices. It turns out that these nunbers are equal. Gve a "natural”

one-one correspondence between the two sets.



Probl em 1k.

Recently, Kl arner showed that the set S = (m_Lx1+ oM 1)
(that is, the smallest set of natural numbers which contains 1 and is
cl osed under the operation miXg . oeetmox wher e ms -
natural nunbers) is a finite union of infinite arithnetic progressions

.eom are gi ven

provided (i) » > 2, (ii) (ml,‘..;,mr) =1, and
(iii) (ml...mr,ml+. ..+mr) = 1. Does the conclusion still follow

if we drop hypothesis (iii)?

Probl em 15.

Hautus.and Klarner gave a sinple characterization of all uniform
{mx n}-colorings of the square plane lattice provided (mn) =1 . We
were unabl e to describe the uniformcolorings when (m,n) >1 . Any

nice theorens about these designs?

Probl em 16. (Due to Leo Mser.)
Can the whole plane be tiled by using exactly one square each of

sides 1,2,3,4, ... 2

Probl em 17.

The ordinary game of tic-tat-toe is an instance of a positional game

pl ayed on a hypergraph H = (V,E) . Here V (the set of vertices of H)
is afinite set and E (the set of edges of H) is a set of subsets

of v . Two players take turns to claima previously unclainmed vertex

of H. If a player clains all the vertices of an edge of H, he wins.

If all the vertices of # have been claimed but no one has yet won then

the gane is a draw. An easy argument (Hales and Jewett, "Regularity and

7
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positional ganes," Trans. Amer. Math. Soc. 106 (1963), 222-229) shows
that the second player cannot have a winning strategy. Besides, if the
gane results in a draw then there is a partition V = v, UV, such that
no V.1 contains an edge (in that case, H is called 2-colorable).

Gven positive integers n , k with k < n we define a hypergraph
Wn, k) by setting V = {1,2,...,n} ‘and letting a set A - Vto be an
element of Eif, and only if, |Al=k and the elenents of A form
an arithnetic progression. Van der Waerden (Beweis einer Baudetschen
vermutung, Ni euw Archief v. Wskunde 15 (1928), 212-216) proved that given
any k there is always an n such that Wn, k) is not 2-colorable.

Let N(k) e the smallest such n . It is easy to show that N(2) = %

and N( 3) = 9 ; one has N(4) = 35 (see Chvatal, "Sonme unknown van der

Waerden nunbers," Conbinatorial Structures and Their Applications (R K Quy

et al., Eds.), Gordon and Breach, New York, 1970). As far as | know, the
value of N(5) is still unknown. The existing upper bounds on N(k) are
beyond the range of algebraic expressions. The existence of N(k) inplies
the existence of the smallest n = n(k) such that the first player has
a winning strategy on w(n,kx) . Cbviously, we have n(k) <N(k) . One
has n(3) = 5 and n(h) = 17 (sece Chvdtal, "Hypergraphs and Ramscyian
theorems," Thesis, University of Waterloo, 1970). Apparently, N(K) s
a rather poor upper bound for n(k) .

What is the value of n(5) 2 Can you find a decent upper bound
for n(k) 2 1s n(k) always odd? If so, is -:EL—(n(k)+l) a W nning
first nmove? |Is there a winning strategy for the first player on Wn, k)

for all n > n(k) °



Probl em 18.

A k-graph is a hypergraph (v,E) with |aA] = k for all AcE .
m(k) be the smallest | in a k-graph which is not 2-colorable.
Qoviously, m2) =3. It is not difficult to showthat n(3) = 7;
the edges of the corresponding 3-graph are the lines of a projective

pl ane of order two. One has
oK1+ 2k'l)'l < mk) < rkgzkel/g log 2/(1+ (1+2p))1 .

(Herzog and Schonheim, "The Br property and chromatic nunbers of

generalized graphs,'* J. Conbinatorial Theory 12 (1972), k1-k9),

2. k+1

i nprovi ng ol < mk) < k2 due to Erdds.)

Let

Erdds repeatedly asks for the value of m(4) . Perhaps a conputer

woul d hel p.

Probl em 19.

A graph G is called hypohaniltonian if it contains no hamltonian

circuit (that is, a circuit passing through all the vertices of G),

given any vertex u of G, the vertex-del eted subgraph Gu has a

but

hamiltonian circuit. The smallest hypoham |tonian graph is the Petersen

gr aph.




Herz, Duby and Vigué ("Recherche Systématique des G aphes Hypohanil toni ans,”

Theory of Gaphs (P. Rosenstiehl, Ed.), 1966) used a conputer to search

for hypoham |tonian graphs with 11 or 12 vertices and found that
there are none. However, they discovered one with 13 and anot her one
with 15 vertices. Since then, the existence of hypohaniltonian graphs
with n vertices has been demonstrated for all n >13 except for

n= 14, 17, 19, 20, 25
(see Chvétal, '*Flip-flops in hypohaniltonian graphs,'* to appear in
Canad. Math. Dull.). Perhaps it is time to settle at |east the case
n = 14 (conputers coul d help).

The hypohamiltonian graphs offer a number of anusing questions. It
seens that these graphs never contain a circuit of length three or four.
However, so far no one has found any graph F such that no hypohaniltonian
graph contains F. | offer $5.00 for an exanple of a planar hypo-

ham [ toni an graph or a proof that there is none.

Pr obl em 20.

A graph Gis called t-tough if deletion of any mpoints fromG
results in a graph that is either connected or else has at nost nit
conponents. It is not difficult to see that every hamiltonian graph
is |-tough but the converse is not true (the Petersen graph is % -t ough).

| offer $10 . & for the proof that every t-tough graph is hamiltonian
and $10 ®““mfor an exanpl e of a t-tough graph (t > %) whi ch is not
hamiltonian.

Fl ei schner ("Square of a block is hamltonian," to appear in J.

Conbi natorial Theory) proved that the squares of a 2-connected graph is

always hamltonian. (The square ¢ of a graph Gis defined to be the

10



graph having the same vertices as G; vertices u, v are adjacent

in ¢if and only if they have distance at nost two in G.) gnce
the square of a k-connected graph is always k-tough, it is desirable to
prove that every 2-tough graph is hamltonian. An exanple of a

3

5 -tough nonham | toni an graph is obtained when in the Petersen graph

each vertex is replaced by a triangle as indicated bel ow

o

Sone results on toughness are contained in a forthconm ng paper of nine,
to appear in Discrete Mathematics.

Probl em 21.

A unit distance graph is one whose vertices can be represented by

points in the Euclidean plane in such a way that adjacent vertices are
represented by points having distance one. (oviously, the unit distance
graphs can be characterized by forbidden subgraphs. It is easy to show

that the unit distance graphs contain neither K, nor Ky 3
3 .

11



Let us denote by smthe |argest possible nunmber of edges in a unit
di stance graph with n vertices. One has f(3) =3, £f(¥ =5,
f(6) =9 . Cbviously, if G, = (Vl,El) and G, = (v ,Eg) are unit
di stance graphs then G, xG, (defined as (Vi><V2,E) with
{(x5%,)5 (y)5¥,) } €E iff either x; = y; , {x,v,} €B, or else
x, = Y2, {xpy;}eE ) is aunit distance graph. Therefore
f(mn) > mf(n) +nf(m) and so f(n) >cnlog n . On the other hand, the
absence of Ké,B in unit distance graphs inmplies quite easily that
f(n) < cn/® . Erabs asked whether f(n) = o(n”/?) .

Kl arner has observed that, for any representation of the circuit C),
of length four, the opposite edges nust be parallel, and that this fact
can be used to construct nore forbidden subgraphs. For instance, the

graph below is not a unit distance graph: xu is parallel to yv and

so dist(u,v) =dist(x,y) =1

Neverthel ess, there are graphs with n vertices and cn5/2 edges

which do not contain even a C) These can be obtained by assigning
vertices to all the points and lines of a projective plane and joining
a point-vertex to a line-vertex if and only if the Iine passes through

the point. Thus a geonetry of order mgives rise to a (bipartite)

12
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graph having total of 2(m2+m+ 1) vertices and (m+l)(m2+m+ 1)

edges, containing no c, 1 suspect that these graphs are not unit

di stance graphs but have not proved it even for m= 2 .

Probl em 22.

For any finite graph F (wthout isolated vertices) we define r(F)
to be the smallest N such that, for every graph Gwith N vertices,
either Gor its conplement G contains F . Cbviously, r(F) < r(Kn)
where F has n vertices and K, is the conplete graph with n
vertices. Hence the existence of r(F) for every F follows from
Ramsey's theorem  ®rdls conjectures that K, nininmizes r(F) anong
all n-chromatic graphs F and suggests to test this conjecture on

t he wheel w6 )

W have r(Kh) = 18 ; the unique graph Gwth 17 vertices such that

th ¢t G, K, ¢ Gis the graph with vertices {0,1,.0 ©0Q , two of them

(i,3) being adjacent iff |i-j| is a quadratic residue mod 17 .
Certainly r(wé) > 17 . Indeed, there is a graph Gy w th eight

vertices such that @, contains no K, and G, contains no K,

Repl aci ng each vertex Xy in G, by a pair of adjacent vertices x:.lL, x?

and joi ning Xi to x;’ (i"£ j) if and only if X, is adjacent to xj

13



in Go,vveobtainagraph G with 16 vertices such that W6¢G,

W6 ¢ é‘ .
Can you prove r(w6) >18 2

Probl em 23.

Among many equi val ent formul ations of the four-color conjecture,
there is a recent one which deserves special interest. Unlike in nost
other cases, the proof of the equivalence is nontrivial and so it may
constitute the first step towards the solution of Lc . Gven any graph
G=(V,E) and a set S V, we denote by 3 the nunber of edges
having exactly one endpoint in S . A function w V - {(-2,+2} is

called a bal anced coloring if

38 > L w(x)
xesS

for all Sc V. Bondy ("Balanced colourings and the four colour
conjecture," to appear in Proc. Aner. Math. Soc.) proved that the four
col or conjecture is equivalent to the follow ng "bal anced col oring
conj ecture":

Every bridgel ess cubic planar graph admts a bal anced col oring.
(A cubic graph is one where each vertex neets exactly three edges; a
bridgel ess graph is one which renmains connected after the deletion of
an arbitrary edge.) One can think of the vertices x with w(x) = -2
as being colored blue and those with w(x) = 2 as colored red. A balanced
coloring of a cubic graph has two sinple but interesting properties:

(1) the number of blue vertices equals the nunber of red ones,

(ii) there is no nonchromatic path with three vertices.

It would be nice to prove that every bridgel ess cubic planar graph adnits

14
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a coloring with properties (i), (ii). Besides, it may be useful to

study bal anced colorings in the class of all graphs, not necessarily

bri dgel ess cubic planar ones.

Probl em 2k,

Let 4, >d,>_. . . >d be nonnegative integers. \hat are the

necessary and sufficient conditions for the existence of a planar graph

with n vertices having degrees dps dyy .

to be quite deep. Wien the planarity assunption is dropped, the answer

od 7 Thi s question appears

beconmes quite sinple: the sum of all d,'s nust be even and the
inequality
k

n
; < k(k-|)+.§ min(k,di)

d
i=1 i=k+1

satisfied for each k = 1,2,...,n (ErdSs and Gallai, "Gréfok elSirt
fokd pontokkal," Mat. Lapok 11 (1961),264-274; also in Harary, G aph
Theory, Addi son-Wesley, Reading, Mss. 1969). The only additi onal

condition which is known to be necessary in the planar case is

) k(n-1) , l1<k<e2 ,
). d; < on+ 6k - 16 Egkg%(mh), (1)
izl

n+3k-12 , 3 (wh) <k <n

(Bowen, "On suns of valencies in planar graphs," Canad. Math. Bull. 9
(1966) , 111-11k; and Chvatal, "Planarity of graphs with given degrees of

vertices," Nieuw Archief voor W skunde 17 (1969),L47-60).

Unli ke the general (purely conbinatorial) case, the planar problem
exhibits peculiar irregularities. \Wen dealing with the sinplest case,

d; =d, =. . . =d =d, Fuler's formula (resp. (1) with k =n)

15
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forces d <5 and n 23‘_% . These conditions, together with the

trivial dn = even , turn out to be sufficient apart fromtwo
exceptionalcases: d=4,n=7and d =5, n=1I% . |t wuld be
interesting to go deeper into the structure of the problemand find nore
subtle additional conditions that woul d exclude the two exceptional

cases.

Probl em 25.

A finite famly F of finite sets is called an independence systemif

XeF,Y € X = YeF

Afamly of sets is called intersecting if it contains no two disjoint

sets. It is called a star if all of its sets have at |east one el ement

in common.  For exanple, the fanily

g, {1}, 12} ,{3} ,{1,2},{1,3},{2,3}

I's an independence system its subfamly
1} » (1,2} ,{1,3}
is a star (and therefore intersecting), the subfamly
11,23, {1,233, (2,3}
is intersecting but not a star. | offer $10.00 for a proof or a disproof
of the follow ng conjecture.
Among the largest intersecting subfamlies of an independence
system there is always a star.
Naturally, I amnot going to pay anything for the degenerate
"counterexample” F = {{#}} . Decent as we are, we are interested in
i ndependence systems F with |F| > 2 . Wthout |oss of generality,
we can assunme that the sets in F are sets of positive integers. Then

we wite X<y if, and only if, there is a one-to-one mappi ng

16



f: X -Y with f(t) >t for each tex . | can prove the above conjecture
for rather special independence systems, nanely, those which satisfy
XeF, Y <X = YeF
Inits full generality, the problemappears to be quite difficult.
| amrather skeptical about the use of counting argunents. It would be
interesting to prove the conjecture for independence systens whose

maxi mal sets are lines of a projective plane.

Probl em 26.

In the 1930*s, Mss Esther Klein asked whether there is a function
F(n) such that fromany F(n) points in the plane (no three collinear)
one can always choose n+l of them which are the vertices of a convex

pol ygon. Erd8s and Szekeres ("A conbinatorial problemin geonetry,"

2n-2
n-1

Szekeres married Mss Kliein. Xomlds and | proved a nmore general result

Conpositio Math. 2 (1935), 463-470) proved F(n) < ( )+1 ; subsequently
("Some combinatorial theorems on nonotonicity," Canad. Math. Bull. 14
(1971), 151-157) which goes as follows. Let f be an arbitrary real-

val ued function defined on the edges of a directed graph D which contains

no directed cycles. If the vertices of D cannot be colored in (2;1‘12)
colors then there is a directed path with n edges ej,e, . . e, such

that the sequence f(el),f(ee),f(e,e),..,f(en) i's nonotone. (The
specialization is clear: the points in plane can be ordered by their

first coordinate, D becones a transitive tournament and f is the

2n-2
n-1

F(3) =5, F(4) = 9 . | wonder if the last equality carries through

slope function.) The bound F(n) < ( )*1 is not sharp; one has

to the abstract setting. The abstract version of the problem (nore

messy but nore faithful than the first one) can be set up as foll ows.

17



Let f be an arbitrary real-valued function defined on the set

. {(i,9):1<i <j <N} ; (2)
- per haps we shoul d assune
min(f(1,J),f(J,k)) < £(i,k) < max (£(i,3),f(J,k))
L‘ for all 1<i <j <k <N . By an n-gon, we shall nean a pair of
sequences (il’ie" . .,in) s (jl,j2,.:.,js) with r,s >2 such that
j'l<i2<' t <ir
¢ Jp Sdp < < g
- f(il, i2) < f(ig, 15) <. .. < f(ir_l, ir)
and i1 =Jy . i, =3g, rs-2=n. Llet @n) denote the smallest
— N such that every function f defined on (2) gives rise to an
< (n+1)-gon. Cbviously, F(n) < Gn) ; the theorem of Xomlds and nysel f
shows that G(n) < (*F)+1. It is not difficult to show that G3) = 5.
Indeed, let f be an arbitrary real-valued function defined on
C f(i,§): 1 <i <j <5}. Wthout |oss of generality, we can assume
£(1,2) < £(2,3) . Now, let us assume that f gives rise to no L-gon.
- Then we necessarily have - step by step -
L £(2,3) > £(3,4) because of (1,2, 3,4, (1,4
£(3,4) < £(k,5) because of (2,5),(2,3,4,5)
£(2,3)> £(3,5) because of (1,2,3,5), (1,5)
- £(2,4)> £(4,5) because of  (2,45), (2,5,5)
£(1,2) < £(2, ¥)  because of  (1,5),(1,2,4,5)
£(1,3) < £(3,4) because of  (1,2,4), (1,3,4)
[

and so finaly(1,3,4,5),(1,5) is a 4-gon; contradiction.

Is{4) =9 and, nore generally, Qn) = F(n) for all n ?

. 18



Probl em27. Nunber Systens

The problemis to determne all sets D of ten real nunbers such
that every positive or, (if you prefer, nonnegative, or arbitrary)

real x can be represented as .

k
x= ¥ al  aed . (*)
-o<k<n k k
It is clear that if D= {dl,. . .,dlo1 has this property, then so

does oD = {adl,...,cxdlo} for any real @ >0 . This will be inplicitly
under st ood bel ow.

I'f Oocd and all 4, are > 0 then we can deduce that
D= {0,1, ...,9} . It is also known that D can be chosen to be
{x,x+1,x+2,...,x+t9} for any x , -9<x<1.

As an instance of the latter, take the symmetric case where
x =-4% . Then

D= {"h%:'E%,'E%:"':B%;h%} 5

the nunber 0 , for exanple, now admts the representation

B RECES VGRS RSP

$+ L (~up07" =
nZl

o}
+
O

An interesting feature of this system noted by O aude Shannon, is that
roundi ng-of f is equivalent to truncation.

Anot her interesting case is when x = +1 . The foll owi ng exanpl e
shows how a positive nunber witten in ordinary decinal notation can be

transformed into the new system
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LO 023 0oks deci mal #
- 0 111 111 -
¢ .9 911 93
~ .0 111 111+ add back w thout carries
9102210 k5 | representation in new system
¢ It can easily be shown that this nethod works in general. For
= other x replace the 1's in the above exanple by x's .
Finally, it should be remarked that we require D to have ten
¢ el ements, since Ron Graham proved that if it had fewer, the set of nunbers
e representable as (¥) is a set of neasure zero. It is not difficult,
however, to construct sets D with as few as three elenents which give
¢ rise via (¥) to a set of nunbers dense on the positive real axis, even
_ if we stipulate that a_ = 0 for a|2| k < 0. Such an exanple is
D = {0,1,a} where o = - Z 0.
¢ n>1
Probl em28.  Sorting by Deques
C The problemis to investigate the pernutations that can be obtained
froma general deque starting with the pernutation 1,2,...,n as input.
. For exanple, oOne would like to know a sinple test for deciding whether
C or not a given permutation can be so obtained. Another interesting
question is to count the nunber of pernutations thus obtainable, by
recurrence, generating function, and/or asynptotic fornula.
( For a definition of deque, related problens, and a description of
t echni ques that have been found useful in attacking them see Section 2.2.1
- and the following problens in D. Knuth "Fundamental Al gorithms" (p. 234).
L Note: It was remarked that q/’;; exists.  Possible "canonical"

sequences of the four-operations
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insert next input at left
insert next input at right
output the leftnost element
output the rightnost element

(with exactly one canonical sequence per obtainable pernutation) are
being investigated. Vaughan Pratt found that there exist four special
permutations of every odd length > 5 such that a given pernutation is

obtainable if and only if it contains none of these special pernutations.

Probl em29. Dragon Curve
The "dragon design" is obtained by repeatedly folding a sheet of
paper in one direction and then unfolding it so that each of the creases
forms a fixed angle 6. For a nore precise definition and many
interesting properties of this curve, see the article: *'Number representations

and dragon curves' by Chandler Davis and D. E. Knuth, J. Recreational Math. 3

(1970), 66-81, 133-149.

It is experinentally observed that there is a greatest angle 8
bet ween 90° and 100° , such that for 6y < 6 < 180° the dragon curve
does not have any self-intersections. The problemis to determne 6 -
Sone experinentation indicates that the "crucial points", where

self-intersection is likely, occur at the 5(5-2n) and 5(11-2n) .

Pr obl em 30. Posets and Pernutations

W consider a partially ordered set P, such as the one drawn bel ow.

7o 8 a9
uI 15 J(;
lI S ;15

37
where we use arrows to indicate the ordering relations.
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W also label the points of P in a particular way, consistent
with their relative order with the integers 1,...,n; that is, we
require that if i -j , theni <]

The problemnow is to find.an efficient algorithm for determning
the pernutation of the labels 1,2,...,n which gives a labelling
still consistent with the partial order of P, but which has a naxinma

number of inversions. (An inversion of a pernutation Py - -2, is two

nunbers . DITED N with i < | but p; > p.J .)

For the above exanple we easily find that the desired permutation
i's uniquely D, - ..p9 = 147258369 .

Anot her way to veiw this problem (obtaining the inverse pernutation,
whi ch has the sane nunber of inversions) is to consider any method of
removi ng the points of the graph one at a time, never renoving a point
until its predecessors have been renoved. The idea is to naximze the

nunber of inversions in the output. The exanple

18— ——-).6
5

shows that it is not sufficient sinply to renove the |argest possible el ement
first (1, 5, 6, 2, 3, 4 has nore inversions than 2, 3, 4, 1 5, 6).

[This problem was inspired by conputer sorting.]

Problem 31.  Partitions into subintervals
It is a known result that
(1) If e s irrational then the numbers {ne} = nomod 1
n=20,1,2,... are dense in [0,1] and in fact evenly

distributed (H Wyl) and that
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(2) having introduced the points {k®} , k = 0,1,...,n-1, the
= next point {ne} will then fall in the mddle of one of the
L3 | argest remaining intervals. It is furthernore true that at

each stage we have at nost three distinct sizes of subintervals

N (V. T. S8s).
LS . : : . .

W are concerned here with proving the follow ng generalization of
the above. Let o and Opyeees® be any reals, and |et kosesesk
be any positive integers. Then R Gaham has conjectured that the

| ¢
nunbers
- {6} , {28} o -{Hﬁ}
fe+ra} {2@4—@1} Co Uﬁ9+ai}
“« ~ o
{g + an_ I 3 b4 {2@ + an_ | 3 o o e {kn_le an_l}
(.
will subdivide [0,1] into subintervals of at nost 2n distinct sizes.
| &
Problem 32, Counting leftist trees
- In what follows we consider only binary trees (with [eft distinguished
€
fromright); a leaf node has no sons, and a nonleaf node has 2 sons.
W assign to each vertex of a binary tree a weight by proceeding as
- follows. W first assign O to all | eaves. Then we clinb up the tree
¢
by the rule that if the two sons of a node have been given weights x
and y , the node itself receives the wei ght min(x,y)+1 .
Now such a weighted binary tree is called leftist if for each node,
L
the son situated to the left has a weight at |east as great as the son
situated to the right. The constraints can be synbolized by
L min(x,y)+1



The picture below shows a leftist tree

Intuitively leftist trees are characterized by the fact that to go from
any node to the nearest leaf it suffices to proceed always to the right.
The problemthen is to conmpute the asynptotic growth of a t he nunber

of leftist trees with n | eaves.

Probl em 33.  Counting bal anced trees

A simlar problemcan be asked about the situation where we nodify
the above as follows. If the two sons of a node have weights x and y ,
then the node itself has weight max(x,y)+1 . A binary tree so weighted
is called balanced if the weights of the two sons of any node differ by

at nost one. Thus, the constraints now are

max (x,y)+1

/\ Ix-y| <1 .

X v

It is known that the "Fibonacci trees" are the balanced trees with
the mniml nunber of nodes for a given height h . (The height of a

tree is the weight at the root.) The Fi bonacci trees T, are gi ven by

el



Al'so the number of distinct balanced trees with height h is known

h
to grow as c® where Cis a positive (unknown) constant. (Balanced
trees are sometinmes known by the less desirable term"AvL trees".) What

Is the asynptotic number of balanced trees with n |eaves?

Probl em 34. A basic equivalence relation on graphs.

Find an efficient algorithmfor conputing the weak conponents of a
directed graph. (Efficient in the sense that it takes
O(max(vertices, edges)) steps.) The weak conponents are the finest
partition such that, if all nodes in each component were collapsed
toget her, the graph would be linear and the ordering would be a |inear
orderi ng, i\;e., s—>e——30——0 | S acceptable but

58— Jo&——0—Ho i s not.

Exanpl e:

0 -
. %
\__—" \ /\l
~ s AN
( .ﬁ_.’Q / \\z)
-

—

The dotted lines indicate strong conponents and the horizontal |ines

i ndi cate weak conponents.
Formally, x and y are in the sane weak component if they are

in the sanme strong conponent or if one can get fromx to y and back
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by a sequence of "non-path" steps. Nodes a and b are said to be
connected by a non-path if there is no path froma to b .

Reference: G aham Knuth, and Mtzkin, Discrete Math. 2 (1972), 17-30.

Probl em 35. Geatest common substrings.

It is possible to find the | ongest common subsequence of two
sequences of a's and b's in atine proportional to the product of
their lengths. Can one do better? Note: aba is a subsequence of

aabbbba .

Probl em 36.. Pernutations as substrings. (Due to R M Karp.)

What is the shortest string of {1,2,...,n} containing all pernutations
on n elenents as subsequences? (For n = 3, 1213121
for n =k 12341231 4%3221 5 for n=5, M Newy clains

the shortest has length 19 .)

Probl em 37. Random growth of 3-2 trees.

Anal yze the probability that various nunbers of splits will occur
during random insertion into (3,2) trees as the trees becone |arge.
A (3,2) tree is a tree in which every node may be a leaf or else it

has 2 or 3 sons. One may wite (3,2) trees as foll ows:

The dots indicate data itens, one or two in each cell. Downward arcs
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| eaving a node indicate possible results of conparing another data item
with those in a node. For exanple, a node containing only one item x

can yield only two results for new incomng y , either y <x or y> x .

In a node of form Al so,

all items y in subtree a are smaller than Xy in b they are

bet ween Xy and X, ) and in c they are larger than %,

in (:f’—;i::;;> all itens in subtree a are smaller than Xq and

a b

Simlarly

all itens in subtree b are larger than X
Now, we consider only (3,2) trees with this ordering on their itens

and whose |eaves are all at the same level. W insert by introducing

itens randony at the positions of the leaves. (The |eaves represent

equi probabl e gaps between existing itens.)

W insert by a sequence of operations local to various nodes al ong

the path to the root. For exanple, to insert x* in place of leaf a in

a b
we get
at a" b

toinsert z in place of leaf c in

27



gi ves

which splits into
a b ct c"

and y is inserted in the node above in the sane way. (If there was no
node above, we place y in a new root node.)

Thus the first three steps in the growh of a 3-2 tree are al ways

and the fourth step is either

or <.

By symmetry, we may choose the former. Now the fifth step yields

¢ o ey vith probability 2, o> with probability £ .
% Ce o>
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The question is, how many splittings will occur on the n-th random step,
on the average, and how many tree nodes will there be? This is one of

the few inportant "basic" algorithnms that hasn't been anal yzed yet.

Note: After SiXx steps the tree i S either

and it appears that all are equivalent with respect to further operations.

O are they?
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