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Abstract

Thirty-seven research problems are described, covering a wide

L range of combinatorial topics. Unlike Hilbert's problems, most of

e -

these are not especially famous and they might be "do-able" in the
--.

next few years.
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(Problems l-16 were contributed by Klarner, 17-26 by Chvatal,

27-37 by Knuth. All cash awards are Chva'tal's  responsibility.)
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Problem 1.

Consider the set (2x+1,3x+1:  1) defined to be the smallest set

of natural numbers which contains. . 1 and is closed under the operations

x + 2x+1 or 3x+1 . The set can be constructed by iterating these

operations as indicated in the following tree.
I *

--6 . .

Michael Fredman showed in his thesis that this set has density 0

in the set of all natural numbers; hence, S = (2x+1,3x+1: 1) does not

contain an infinite arithmetic progression. Let N denote the set of

all natural numbers. Is it true that N\S may be expressed as a disjoint

union of infinite arithmetic progressions?

Problem 2. Milner's Problem (Robin Milner at Stanford A. I. project)

Let Bn denote the set of aU binary sequences of length n .

Suppose m < n ,- &Bn , ikBm , and let V(&t) denote the number of

: subsequences of 2 equal to 5 . The m-list of &Bn consists of a

knowledge of the numbers v(a,6) for all 6eB . How large must m be
m

such that the m-lists for all elements &Bn are distinct? This is

Milner's problem. Chvatal, Rivest, and Klarner have obtained some

results on this problem. A related problem is the following. There

are many identities connecting the V’S . For example, let Bm n
9

denote a 2m~2n matrix with bi,j defined to be V(i,j)(n-m)!  where
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f and 3 denote the binary sequences of length n and m used to

represent i and j respectively. Then it is easy to check that

B Br,s s,t =Brt .
Y

Many other identities exist which seem to be
-.

algebraically independent of these. For example, v&(11)) = (v(a;(l))) .

The problem is to find a basis for all algebraic identities relating the

numbers V&G) for fixed g , as $ ranges over all binary sequences.

Recently, Ron Rivest and David Klarner succeeded in showing that

a < 4.65 , where a = lim(a(n))+ and a(n) denotes the number of
n+ao-e.

connected square-celled animals with n cells. In fact, we designed a

procedure for calculating numbers a+~~,... such that Q < a
i+l < aa1

for all i . We were unable to prove, but conjecture that

lim ai=a ..l-+co

Prove or disprove our conjecture. Try to beat our upper bound a < 4.65 .

Reference: D. Klarner and R. Rivest, "A procedure for improving the
upper bound for the number of n-ominoes," CS 263, Computer Science
Department, Stanford University, February 1972.

Problem 4.

Give a "sieve formula" for enumerating planted plane trees having

- certain subtrees excluded. The n-omino enumeration problem is a special

case of this problem.

Problem 5.

More on plane trees. A famous problem in probability theory

(solved, by the way) asks for the probability that a candidate always

2



has at least j/k of the votes cast. Here is a related enumeration

problem. How many binary sequences (al,a2,...,akn) of length kn

containing exactly jn ones satisfy the conditions

a
1

+ . ..+akn 1 jm “for m = l,...,n ?

When j =l, the solution is
- -

(
kn+k
n+l 1

( k n+k-n) '

Problem 6.

Give-a simple proof that if a rectangle is cut into three congruent

n-ominoes, then the n-omino is a rectangle.

L

c.

c

Problem 7.

Find the smallest number x > 0 , such that copies of the Y-pentomino

FE9
pack a 12x 5x rectangle. Klarner holds the record

with x = 16 .

Problem 8.

Every 3-celled animal on the line packs some interval. An example

of a 3-celled animal and an interval it packs:

the interval

the animal the animal's reflection

3
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Translations of the animal and its reflection are used in the packing.

Here gaps between the cells are 1 and 2 , and the length of the

smallest interval the animal can pack has length 1(1,2) = 18 . If
. .

the gaps between the cells are m and n in a three-celled animal, it

can be shown that the length of the smallest interval the animal can

pack e(m,n) is bounded above by l+3m+n . This proof depends on the

following algorithm: Suppose m < n , let A denote the animal with

gap m on the left, and let B denote the animal with gap m on the

right. We pack a one-way infinite strip of cells as follows. Fill the

first cell with the left-most cell of A . Fill the left-most unfilled

cell in thestrip with the left-most cell of A , if there is overlap

remove A and try B . It is an interesting exercise to show that

this procedure results in a packing of an interval whose length is not

fr;reater  than 1-t 3m+n . Let a(m,n) denote the length of the interval

packed by this algorithm. Give a nice upper bound on R(m,n) , and find

out if it satisfies some kind of recurrence relation.

Problem 9.

Does every b-celled animal in the plane pack the plane? Does every

?-celled animal in the plane pack the plane? There is at least one
-

1 G-celled animal that does not pack the plane, namely,

k!l

.

A 3n-celled animal like this one can be constructed which does not

pack En . Thus, if every n-celled animal packs Ek , then n < 3k e

Improve this upper bound if possible.



Problem 10. (R. Rado)

Consider sets of squares in the plane having sides parallel to

the x- or y-axis. Let a(S) denote the area covered by the union of

suchaset S. Is it true that“

a's in T disjoint

Problem 11. (R. Stanley)

Consider partitions of n which satisfy a tableau condition:

L-
>-

Q
L

T’ ’ I
L

IL-

i

IV

all al2 "13

a22 a23
.

"23 This bord
but must

This border is regular

.er may be irregular
be nonincreasing

The entries a.. do not decrease in the rows or columns, and their
13

total is n . Let T denote the shape of the array, and let VT(n)

denote the number of ways of filling in the array subject to these

conditions. Prove that the generating function is as follows:

l-r
(bj)ET

1 =
1 -xdb3

f v&dxn
n=O

where the numbers d.
bj

are defined as in the following example:
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To find dU begin in cell (1,3) and count all cells in its row to

the right of (1,3) , count also the cells in the column below (1,3) ,

and if one can "turn the corner" at the bottom of this column, count

the cells in this row as well* Thus, dl,5 = 8, d2,4=5t d3,5=2~

etc.

Problem 12. An extremal problem (see problem 5728 of Amer. Math.
--.

Monthly, 1970).

The "octahedron" in En has 2
n-l different pairs of parallel

hyperplanes spanned by two n-sets whose union comprises the vertex set

of the octahedron. Prove that the octahedron is an optimal configuration

of 2n points in En having the property that the points span many

pairs of parallel hyperplanes.

Problem 13.

R. C. Read (J. London Math. Sot., 1963, 99-104)  enumerated classes

of isomorphic self-complementary linear graphs with 4n vertices and

classes of isomorphic self-complementary directed graphs with 2n

vertices. It turns out that these numbers are equal. Give a "natural"

one-one correspondence between the two sets.

6
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Problem 14.

Recently, Klarner showed that the set S

(that is, the smallest set of natural numbers

= (m x + . ..+m x : 1)
1 1 rr

which contains 1 and is

closed under the operation "1x1" . ..+mrxr where ml,...'m, are given

natural numbers) is a finite union of infinite arithmetic progressions

provided (i) r 2 2 , (ii) (m+;'m,) = 1 , and

(iii) (ml...mr,ml+ . ..+mr) = 1 . Does the conclusion still follow

if we drop hypothesis (iii)?

Problem 15.

c-

I

t

fb-

Lb

i

Hautus.and Klarner gave a simple characterization of all uniform

[mx n)-colorings of the square plane lattice provided (m,n) = 1 . We

were unable to describe the uniform colorings when
(m,n)  >1 l &Y

nice theorems about these designs?

Problem 16. (Due to Leo Moser.)

Can the whole plane be tiled by using exactly one square each of

sides 1,2,3,4,... ?

Problem 17.

The ordinary game of tic-tat-toe is an instance of a positional game

played on a hypergraph  H = (V,E) . Here V (the set of vertices of H )

is a finite set and E (the set of edges of H ) is a set of subsets

of v . Two players take turns to claim a previously unclaimed vertex

of H . If a player claims all the vertices of an edge of H , he wins.

If all the vertices of II have been claimed but no one has yet won then

the game is a draw. An easy argument (Hales and Jewett, "Regularity and
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positional games," Trans. Amer. Math. SOC. 106 (1963), 222-229) shows

that the second player cannot have a winning strategy. Besides, if the

game results in a draw then there is a partition V = Vl U V2 such that

no V.1
contains an edge (in tha< case, H is called 2-colorable).

Given positive integers n , k with k 5 n we define a hypergraph

W(n,k) by setting V = {1,2,...,n}  *and letting a set A c V to be an

element of E if, and only if, 1 A = k and the elements of A form1

an arithmetic progression. Van der Waerden (Beweis einer Baudetschen

Vermutung, Nieuw Archief v. Wiskunde 15 (1928), 212-216) proved that given

any k there is always an n such that W(n,k) is not 2-colorable.

Let N(k) -be the smallest such n . It is easy to show that N(2) L- j

and N( 3) = 9 ; one has N(4) = 35 (see Chvatal,  "Some unknown van der

Waerden numbers," Combinatorial Structures and Their Applications (R. K. Guy

et al., Eds.), Gordon and Breach, New York, 1970). As far as I know, the

value of N(5) is still unknown. The existing upper bounds on N(k) are

beyond the range of algebraic expressions. The existence of N(k) implies

the existence of the smallest n = n(k) such that the first player has

a winning strategy on
W(n,k) l Obviously, we have n(k) <N(k) . One-

has n(3) = 5 and n('l) = 15 (ccc ChvjLal, "Hypergraphs and Ramscyian

theorems,"  Thesis, University of Waterloo, 19'70). Apparently, N(k) is

a rather poor upper bound for
n(k) l

What is the value of n(5) ? Can you find a decent upper bound

for n(k) ? Is n(k) always odd? If so, is $ (n(k)+l) a winning

first move? Is there a winning strategy for the first player on W(n,k)

for all n > n(k) ?-
*

L
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Problem 18.

A k-graph is a hypergraph (V,E) with IA! = k for all AeE . Let

m(k) be the smallest EI I in a k-graph which is not 2-colorable.

Obviously, m(2) = 3 . It is no+, difficult to show that m(3) = 7 ;

the edges of the corresponding 3-graph are the lines of a projective

plane of order two. One has

2k(l+ 2k-l)-' < m(k) < rk 2 e2 k v2 log 2/(1+ (1+2p))l .

CL

C-

(Herzog and Schijnheim,  "The Br property and chromatic numbers of

generalized graphs,'* J. Combinatorial Theory 12 (1972), 41-49,

improving
2k-l < m(k) < k22k+1 due to Erd&.)

-=.
Erd'ds repeatedly asks for the value of m(4) . Perhaps a computer

would help.

Problem 19.

A graph G is called hypohamiltonian if it contains no hamiltonian

circuit (that is, a circuit passing through all the vertices of G ), but

given any vertex u of G , the vertex-deleted subgraph G-u has a

hamiltonian circuit. The smallest hypohamiltonian graph is the Petersen

graph.

9
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He=, Duby and Vig& ("Recherche Syst&natique des Graphes Hypohamiltonians,"

Theory of Graphs (P. Rosenstiehl, Ed.), 1966) used a computer to search

for hypohamiltonian graphs with 11 or 12 vertices and found that

there are none. However, they discovered one with 13 and another one

with 15 vertices. Since then, the existence of hypohamiltonian graphs

with n vertices has been demonstrated for all n >13 except for-

n = 14, 17, 191 2% 25

(see Ch&al, '*Flip-flops in hypohamiltonian graphs,'* to appear in

Canad. Math. Dull.). Perhaps it is time to settle at least the case

n = 14 (computers could help).

The h~ohamiltonian graphs offer a number of amusing questions. It

seems that these graphs never contain a circuit of length three or four.

However, so far no one has found any graph F such that no hypohamiltonian

graph contains F . I offer $5.00 for an example of a planar hypo-

hamiltonian graph or a proof that there is none.

Problem 20.

A graph G is called t-tough if deletion of any m points from G

results in a graph that is either connected or else has at most m/t

components. It is not difficult to see that every hamiltonian graph

4is l-tough but the converse is not true (the Petersen graph is -3 -tough).

I offer $10 l & for the proof that every t-tough graph is hamiltonian

and $10 t+1 3l m for an example of a t-tough graph (t > 5) which is not

hamiltonian.

Fleischner ("Square of a block is hamiltonian," to appear in J.

Combinatorial Theory) proved that the squares of a 2-connected graph is

always hamiltonian. (The square G2 of a graph G is defined to be the

10
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graph having the same vertices as G ; vertices u , v are adjacent

in G2 if and only if they have distance at most two in G .) Since

the square of a k-connected graph is always k-tough, it is desirable to

prove that every 2-tough graph is hamiltonian. An example of a

32 -tough nonhamiltonian graph is obtained when in the Petersen graph,

each vertex is replaced by a triangle as indicated below.
L

c-

Some results on toughness are contained in a forthcoming paper of mine,
to appear in Discrete Mathematics.

.

L

L’-

L

Problem 21.

A unit distance graph is one whose vertices can be represented by

points in the Euclidean plane in such a way that adjacent vertices are

represented by points having distance one. Obviously, the unit distance

graphs can be characterized by forbidden subgraphs. It is easy to show

.
that the unit distance graphs contain neither K4 nor

K2,3 l

11
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Let us denote by f(n) the largest possible number of edges in a unit

distance graph with n vertices. One has f(3) = 3 , f(4) = 5 J

f(6) = 9 . Obviously, if Gl = (Vl,El) and G2 = (V2,E2) are unit

distance graphs then GlxG2 (defined as (VlxV2,E) with

CC xlJx2)9(~l,~2)3  EE iff either x1 = yl y [x2,y2} eE2 or else

x2 = Y2 J [xl,yl] E El ) is a unit distance graph. Therefore

f(mn) 2 mf(n)+nf(m) and so f(n) > cn log n . On the other hand, the

absence of K in unit distance graphs implies quite easily that

f(n) < cn3/2 y"Erd8s asked whether f(n) = o(n312) .

Klarner has observed that, for any representation of the circuit C4

of length four, the opposite edges must be parallel, and that this fact

can be used to construct more forbidden subgraphs. For instance, the

graph below is not a unit distance graph: xu is parallel to yv and

so dist(u,v) = dist(x,y) = 1 .

Nevertheless, there are graphs with n vertices and cn312 edges

which do not contain even a c4 l

These can be obtained by assigning

vertices to all the points and lines of a projective plane and joining

a point-vertex to a line-vertex if and only if the line passes through

the point. Thus a geometry of order m gives rise to a (bipartite)

12
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graph having total of 2(m2+m+1) vertices and (m+l)(m2+m+l)

edges, containing no
c4 l

I suspect that these graphs are not unit

distance graphs but have not proved it even for m = 2 .

Problem 22.

For any finite graph F (without isolated vertices) we define r(F)

to be the smallest N such that, for every graph G with N vertices,

either G or its complement G contains F . Obviously, r(F) L an>

where F has n vertices and Kn is the complete graph with n

vertices. Hence the existence of r(F) for every F follows from

Ramsey's theorem. Erd8s conjectures that Kn minimizes r(F) among

all n-chromatic graphs F and suggests to test this conjecture on

the wheel W4 .

We have r(K4) = 18 ; the unique graph G with 17 vertices such that

‘K4 $ G Y K4 g ?! is the graph with vertices
{WY l l l �lq , two of them

(i,j) being adjacent iff Ii-j1 is a quadratic residue mod 17 .

Certainly +76) 2 17 l Indeed, there is a graph Go with eight

vertices such that G
0 contains no

% and z. contains no K4 l

Replacing each vertex xi in Go by a pair of adjacent vertices X1i, x2
1

and joining xsi to xi (i'f j) if and only if x
i is adjacent to x

j

13
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in
Go '

we obtain a graph G with 16 vertices such that w6 $ G ,

w&G.

Can you prove r(w6) 2 18 ?

. .

Problem 23.

Among many equivalent formulations of the four-color conjecture,

there is a recent one which deserves special interest. Unlike in most

other cases, the proof of the equivalence is nontrivial and so it may

constitute the first step towards the solution of &X . Given any graph

G = (V,E) and a set S c V , we denote by 3s the number of edges

having exactly one endpoint in S . A function w: V 3 c-2,+2) is-.

called a balanced coloring if

as > c w(x)-
xd3

for all S c V . Bondy ("Balanced colourings and the four colour

conjecture," to appear in Proc. Amer. Math. Sot.) proved that the four

color conjecture is equivalent to the following "balanced coloring

conjecture":

Every bridgeless cubic planar graph admits a balanced coloring.

(A cubic graph is one where each vertex meets exactly three edges; a

bridgeless graph is one which remains connected after the deletion of

an arbitrary edge.) One can think of the vertices x with w(x) = -2

as being colored blue and those with w(x) = 2 as colored red. A balanced

coloring of a cubic graph has two simple but interesting properties:

(i) the number of blue vertices equals the number of red ones,

(ii) there is no nonchromatic path with three vertices.

It would be nice to prove that every bridgeless cubic planar graph admits

14
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a coloring with properties (i), (ii). Besides, it may be useful to

study balanced colorings in the class of all graphs, not necessarily

bridgeless cubic planar ones.

._

Problem 24.

Let dl ,> d2 > . . . > dn be nonnegative integers.- What are the

necessary and sufficient conditions for the existence of a planar graph

with n vertices having degrees dl, d2, . . ..dn ? Thi s question appears

to be quite deep. When the planarity assumption is dropped, the answer

becomes quite simple: the sum of all dils must be even and the

inequality 5.

t di ,< k(k-l)+ f
i=l i=k+l

min(k,di)

satisfied for each k = 1,2,...,n (Era% and Gallai, "Grgfok el&rt

foti pontokkal," Mat. Lapok 11 (1961)' 264-274;  also in Harary, Graph

Theory, Addison-Wesley, Reading, Mass. 1969). The only additional

condition which is known to be necessary in the planar case is

kb1) ’
k

l_<k<2,

c di <
i=l -

2n+6k-16 , 3 5 k 5 $ (n+b) , 0)

%+3k-12 , $ (n+4) < k < n .- -

@Owen, "On sums of valencies in planar graphs," Canad. Math. Bull. 9

(1966) y 111-114;  and Chv&tal, "Planarity of graphs with given degrees of

vertices," Nieuw Archief voor Wiskunde 17 (1969)'  47-a).

Unlike the general (purely combinatorial) case, the planar problem

exhibits peculiar irregularities. When dealing with the simplest case,

‘11 =d
2
= . . . =d =d,

n EUer's formula (resp. (1) with k = n )

15
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12forces d 5 5 and n >m . These conditions, together with the

trivial dn = even , turn out to be sufficient apart from two

exceptionalcases: d=4, n=7 and d=5, n=lk. It would be

interesting to go deeper into the structure of the problem and find more

subtle additional conditions that would exclude the two exceptional

cases.

Problem 25.

A finite family F of finite sets is called an independence system if

XeF,Y c X ti YEF .

A family of sets is called intersecting if it contains no two disjoint

sets. It is called a star if all of its sets have at least one element

in common. For example, the family

53 9 11) 9 f2) Y c33 Y 023, [1,33,  [2,3]

is an independence system; its subfamily

Cl3 2 CL21 Y Cl,33

is a star (and therefore intersecting), the subfamily

w4 Y CL33 I C&33

- is intersecting but not a star. I offer $10.00 for a proof or a disproof

of the following conjecture.

Among the largest intersecting subfamilies of an independence

system, there is always a star.

Naturally, I am not going to pay anything for the degenerate

"counterexampler' F = [($]] . Decent as we are, we are interested in

independence systems F with IFI 2 2 . Without loss of generality,

we can assume that the sets in F are sets of positive integers. Then

we write X <Y if, and only if, there is a one-to-one mapping

16
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f:X-+Y with f(t) >t for each teX . I can prove the above conjecture

c

C
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for rather special independence systems, namely, those which satisfy

XeF,Y <X 3 YeF .

In its full generality, the problem appears to be quite difficult.. .

I am rather skeptical about the use of counting arguments. It would be

interesting to prove the conjecture for independence systems whose

maximal sets are lines of a projective plane.

Problem 26.

In the 193O*s, Miss Esther Klein asked whether there is a function

F(n) such that from any F(n) points in the plane (no three collinear)

one can always choose n+l of them which are the vertices of a convex

polygon. Erdiis and Szekeres ("A combinatorial problem in geometry,"

Compositio Math. 2 (1935), 463-470) proved F(n) 5 (F-T)+1 ; subsequently

Szekeres married Miss Klein. Komlo's and I proved a more general result

("Some combinatorial theorems on monotonicity," Canad. Math. Bull. 14

(1971), 151-157) which goes as follows. Let f be an arbitrary real-

valued f'unction  defined on the edges of a directed graph D which contains

no directed cycles. 2n-2If the vertices of D cannot be colored in (n 1>

colors then there is a directed path with n edges el,e2, . . ., e such
n

that the sequence f(e1),f(e2),f(e2),..,f(en)  is monotone. (The

specialization is clear: the points in plane can be ordered by their

first coordinate, D becomes a transitive tournament and f is the

slope function.) The bound F(n) 5 (2nn'-:)+l is not sharp; one has

F(3) = 5 , F(4) = 9 . I wonder if the last equality carries through

to the abstract setting. The abstract version of the problem (more

messy but more faithful than the first one) can be set up as follows.

17
c



Let f be an arbitrary real-valued function defined on the set

B

L

c
L

i

L

Q
L
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L

{(i,j): 15 i < j SN) ; (2)
perhaps we should assume

min(f(iyj)J(jyk)) < f(W) < m&f(i,j),f(j,k))- -

for all 15 i < j < k IN . By an n-gon, we shall mean a pair of

sequences (i1' i2Y . . ..in> y (jlyj,y~~.,js) with r,s 2 2 such that

il < i2 < . . . < i
r

j, < j, < . . . < js

f(ily i2) ,< f(i2, i3) 5 . . . 5 f(irwly ir>

_f(j,☺,)  ,> f(j2yj3) ,> l 1 f(js-lyjs>

and i1 = j, , ir = js , r+s-2 = n . Let G(n) denote the smallest

N such that every function f defined on (2) gives rise to an

(n+l)-gon. Obviously, F(n) < G(n)- ; the theorem of Komlds and myself

shows that G(n) ,< (Flf)+l . It is not difficult to show that G(3) = 5 .

Indeed, let f be an arbitrary real-valued function defined on

f(i,j): l_< i < j < 5) . Without loss of generality, we can assume

f&2) < f(2,3) l- Now, let us assume that f gives rise to no 4-gon.

Then we necessarily have - step by step -

fPY3) > f(3Y4) because of (L2Y 314) Y (L4)

f(3Y4) < f(4Y5) because of (2,5)&3,4,5)

w-,3) > f(3,5) because of (w,3,5L (lr5)

WY 4) > f(4Y5) because of (%4,5) Y (2,315)

f(W) < WY 4) because of OY5ML2,4,5)

f(L3) < f(314) because of h9%4), (1,3,4)
c

and so finally (1,3,~,5),(1,5) is a 4-gon; contradiction.

I

IS G(4) = 9 and, more generally, G(n) = F(n) for all n ?

18
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Problem 27. Number Systems

The problem is to determine all sets D of ten real numbers such

that every positive or, (if you prefer, nonnegative, or arbitrary)

real x can be represented as .

c k
x =

-=<k<n
"kl' , akeD .

-
( 1*

c-
It is clear that if D = idly . . ..dloj has this property, then so

does 0 = [adl,...,~dlo] for any real a > 0 . This will be implicitly

understood below.

6
L

If OcD and all di are > 0 then we can deduce that-

D = {O,l, my93 . It is also known that D can be chosen to be

{x,x+1,x+2,...,x+93 for any x , -9<xjl.

As an instance of the latter, take the symmetric case where

x=-4$. Then

D = {-4+,-3+,-2&,...,3&,4&3  ;

the number 0 , for example, now admits the representation

0  =  * l (-4h)(-4h) ... =

Q+ x (-4+)10-n = *+$ = 0 l

n>l-

An interesting feature of this system, noted by Claude Shannon, is that

rounding-off is equivalent to truncation.

Another interesting case is when x = +l . The following example

shows how a positive number written in ordinary decimal notation can be
I

i-

6
C

transformed into the new system:

19
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L O 0 2 3 045 decimal f

.o 1 1 1 lll-

-9 911 934
.o 111111+ add back without carries

.9 10 2 2 10 4 5 representation in new system. .

It can easily be shown that this method works in general. For

other x replace the 1's in the above example by x's .

Finally, it should be remarked that we require D to have ten

elements, since Ron Graham proved that if it had fewer, the set of numbers

representable as (*) is a set of measure zero. It is not difficult,

however, to construct sets D with as few as three elements which give

rise via (*T to a set of numbers dense on the positive real axis, even

if we stipulate that ak = 0 for all k < 0 . Such an example is

1
2

D = ~O,~,CX] where a = - lo-n .
n>l

Problem 28. Sorting by Deques

The problem is to investigate the permutations that can be obtained

from a general deque starting with the permutation 1,2,...,n as input.

For example, one would like to know a simple test for deciding whether

or not a given permutation can be so obtained. Another interesting

question is to count the number of permutations thus obtainable, by

recurrence, generating function, and/or asymptotic formula.

For a definition of deque, related problems, and a description of

techniques that have been found useful in attacking them, see Section 2.2.1

and the following problems in D. Knuth "Fundamental Algorithms" (p. 234).*

Note: It was remarked that n anJ exists. Possible "canonical"

sequences of the four-operations

20
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insert next input at left

insert next input at right

output the leftmost element

output the rightmost element

(with exactly one canonical sequence per obtainable. .

being investigated. Vaughan Pratt found that there

permutation) are

exist four special

permutations of every odd length > 5 such that a given permutation is-

obtainable if and only if it contains none of these special permutations.

Problem 29. Dragon Curve

The "dragon design" is obtained by repeatedly folding a sheet of

paper in one direction and then unfolding it so that each of the creases--.

forms a fixed angle 8 . For a more precise definition and many

interesting properties of this curve, see the article: *Number representations

and dragon curves ' by Chandler Davis and D. E. Knuth, J. Recreational Math. 3

(197o)y 66-81, 133-149.

It is experimentally observed that there is a greatest angle Q. ,

between 90" and 100' , such that for Q. < 0 < 180' the dragon curve-

does not have any self-intersections. The problem is to determine Q. .

Some experimentation indicates that the "crucial points", where

self-intersection is likely, OCCUT at the B(5*2n) and $(ll02~) .

Problem 30. Posets and Permutations

We consider a partially ordered set P , such as the one drawn below.

where we use arrows to indicate the ordering relations.
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We also label the points of P in a particular way, consistent

with their relative order with the integers l,...,n ; that is, we

require that if i --) j , then i < j .-

The problem now is to find-.an  efficient algorithm for determining

the permutation of the labels 1,2 ,...,n which gives a labelling

still consistent with the partial order of P , but which has a maximal

number of inversions. (An inversion of a permutation p
1

. ..p is two
n

numbers . ..p. . ..p. . . .
1 J

with i < j but pi > p. .)
J

For the above example we easily find that the desired permutation

is uniquely pl . ..p
9
= 147258369 .

Another way to veiw this problem (obtaining the inverse permutation,

which has the same number of inversions) is to consider any method of

removing the points of the graph one at a time, never removing a point

until its predecessors have been removed. The idea is to maximize the

number of inversions in the output. The example

3
2.-*-.4

shows that it is not sufficient simply to remove the largest possible element

first (1, 5, 6, 2, 3, 4 has more inversions than 2, 3, 4, 1, 5, 6 ).

[This problem was inspired by computer sorting.]

Problem 31. Partitions into subintervals

It is a known result that

(1) If 0 is irrational then the numbers c Qln = nQmod 1 ,

n = 0,1,2,... are dense in [OYU and in fact evenly

L

distributed (H. Weyl) and that
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(2) having introduced the points WI , k = O,l,...,n-1 , the

next point CnQl will then fall in the middle of one of the

largest remaining intervals. It is furthermore true that at

each stage we have at most three distinct sizes of subintervals

(V. T. S6s). =*

We are concerned here with proving the following generalization of
. .

the above. Let 0 and al,...,an 1 be any reals, and let ko,...,kn l

be any positive integers. Then R. Graham has conjectured that the

numbers

I.Ql Y PQI . . . {koQ]

IQ+yl J {2Q+al] . . . {klQ+al]
--. . . .

CQ +Q! 3n-l ' PQ +Cl
n-l 3 l l l Ck,_lQ + a,_,3

will subdivide [wj into subintervals of at most 3n distinct sizes.

Problem 32. Counting leftist trees

In what follows we consider only binary trees (with left distinguished

from right); a leaf node has no sons, and a nonleaf node has 2 sons.

We assign to each vertex of a binary tree a weight by proceeding as

follows. We first assign 0 to all leaves. Then we climb up the tree

by the rule that if the two sons of a node have been given weights x

and y , the node itself receives the weight min(x,y)+l .

Now such a weighted binary tree is called leftist if for each node,

the son situated to the left has a weight at least as great as the son

situated to the right. The constraints can be symbolized by

L
1.

L

x > y .-

23



The picture below shows a leftist tree.
i
i

Intuitively leftist trees are characterized by the fact that to go from

any node to the nearest leaf it suffices to proceed always to the right.

i: +/
rc‘

The problem then is to compute the asymptotic growth of an , the number
i

of leftist trees with n leaves.

C-

i

i

Problem 33. Counting balanced trees

A similar problem can be asked about the situation where we modify

I
i

the above as follows. If the two sons of a node have weights x and y ,

then the node itself has weight max(x,y)+l . A binary tree so weighted

is called balanced if the weights of the two sons of any node differ byL

I at most one. Thus, the constraints now are

I Ix-y 51 .L

It is known that the "Fibonacci trees" are the balanced trees with

the minimal number of nodes for a given height h . (The height of a

tree is the weight at the root.) The Fibonacci trees Tn are given by

L

and Tn =

A

To=. , Tl =
Ii

Tn-l Tn-2



c

Also the number of distinct balanced trees with height h is known

to grow as C
2h

where C is a positive (unknown) constant. (Balanced

trees are sometimes known by the less desirable term "AVL trees".) What

is the asymptotic number of balanced trees with n leaves?

i
c

Problem 34. A basic equivalence relation on graphs.

Find an efficient algorithm for computing the weak components of a

c-
i

L-

i
L

L

c
L-

directed graph. (Efficient in the sense that it takes

O(max(vertices, edges)) steps.) The weak components are the finest

partition such that, if all nodes in each component were collapsed

together, the graph would be linear and the ordering would be a linear
--e.

ordering, i.e., 0-----je----+@+0 is acceptable but

e----W<--g-e is not.

Example:

The dotted lines indicate strong components and the horizontal lines

indicate weak components.

Formally, x and y are in the same weak component if they are

L

in the same strong component or if one can get from x to y and back
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by a sequence of "non-path" steps. Nodes a and b are said to be

connected by a non-path if there is no path from a to b .

Reference: Graham, Knuth, and Motzkin, Discrete Math. 2 (1972), X7-30.

Problem 35. Greatest common substrings.

It is possible to find the longest common subsequence of two

sequences of a's and b's in a time proportional to the product of

their lengths. Can one do better? Note: aba is a subsequence of

aabbbba .

L

c L

Problem 36,. Permutations as substrings. (Due to R. M. Karp.)

What is the shortest string of !1,2,...,n] containing all permutations

on n elements as subsequences? (For n = 3 , 1 2 1 3 1 2 1  ;

for n = 4 , 1 2 3 4 1 2 3 1 4 3 2 1 ; for n = 5 , M. Newey claims

the shortest has length 19 .)

c

L

Problem 37. Random growth of 3-2 trees.

Analyze the probability that various numbers of splits will occur

during; random insertion into (3,2) trees as the trees become large.

A (5,2) tree is a tree in which every node may be a leaf or else it

has 2 or 3 sons. One may write (3,2) trees as follows:

L

L

The dots indicate data items, one or two in each cell. Downward arcs

26



leaving a node indicate possible results of comparing another data item

with those in a node. For example, a node containing only one item x

can yield only two results for new incoming y , either y < x or y>x.

In a node of form YFTw e  a s s u m e  x1 <x2 .  A l s o ,

a b C

all items y in subtree a are smaller than x
1

; in b they are

between x1 and x2 ; and in c they are larger than
x2 l

Similarly

all items in subtree a are smaller than x
1 and

a b

all items in subtree b are larger than x1 .

Now, we consider only (3,2) trees with this ordering on their items

and whose leaves are all at the same level. We insert by introducing

items randomly at the positions of the leaves. (The leaves represent

equiprobable gaps between existing items.)

We insert by a sequence of operations local to various nodes along

the path to the root. For example, to insert x' in place of leaf a in

_-_- --
< x. .
/

- _____-.
?

a b

we get

a' a" b

to insert z in place of leaf c in

a b c
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which splits into

L-

c

L

Q

a b C ’ C”

9%X

a b
5%Z

C’ C”

and y is inserted in the node above in the same way. (If there was no

node above, we place y in a new root node.)

Thus the first three steps in the growth of a 3-Z tree are always

and the fourth step is either

By symmetry, we may choose the former. Now the fifth step yields

with probability - ,z 7$T$Ic probability $ .

e
L
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The question is, how many splittings will occur on the n-th random step,

on the average, and how many tree nodes will there be? This is one of

the few important "basic" algorithms that hasn't been analyzed yet.

Note: Af'ter six steps the-tree is either

and it appears that all are equivalent with respect to f'urther operations.

Or are they?
--.
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